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Repeat expansion and autosomal
dominant neurodegenerative
disorders: consensus and controversy

Dobrila D. Rudnicki and Russell L. Margolis

Repeat-expansion mutations cause 13 autosomal dominant neurodegenerative
disorders falling into three groups. Huntington’s disease (HD), dentatorubral
pallidoluysian atrophy (DRPLA), spinal and bulbar muscular atrophy (SBMA),
and spinocerebellar ataxias (SCAs) types 1, 2, 3, 7 and 17 are each caused by a
CAG repeat expansion that encodes polyglutamine. Convergent lines of
evidence demonstrate that neurodegeneration in these diseases is a
consequence of the neurotoxic effects of abnormally long stretches of
glutamines. How polyglutamine induces neurodegeneration, and why
neurodegeneration occurs in only select neuronal populations, remains a matter
of intense investigation. SCA6 is caused by a CAG repeat expansion in
CACNA1A, agenethat encodes a subunit of the P/Q-type calcium channel. The
threshold length at which the repeat causes disease is much shorter than in
the other polyglutamine diseases, and neurodegeneration may arise from
expansion-induced change of function in the calcium channel. Huntington’s
disease-like 2 (HDL2) and SCAs 8, 10 and 12 are rare disorders in which the
repeats (CAG, CTG or ATTCT) are not in protein-coding regions. Investigation
into these diseases is still at an early stage, but it is now reasonable to
hypothesise that the net effect of each expansion is to alter gene expression.
The different pathogenic mechanisms in these three groups of diseases have
important implications for the development of rational therapeutics.
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Since the discovery of the first repeat-expansion
mutation disease (spinal and bulbar muscular
atrophy; SBMA) by La Spada and Fischbeck and
colleagues in 1991 (Ref. 1), repeat expansions
as a cause of neurodegeneration have captured
the attention of geneticists, molecular and
structural biologists, neurologists, cell biologists,
neuroscientists, neuropathologists and even
psychiatrists. What explains the fascination of
these diseases? In part, it is the concept that a
disease can simultaneously have both mendelian
and nonmendelian — simple and complex —modes
of inheritance. In part, it is nosological — the
confusing array of overlapping phenotypes of
adult-onset neurodegenerative disorders can be
placed into a simple classification that is satisfying
for the theoretician, practical for the clinician, and
tangible for the patient. Most importantly,
perhaps, the discovery of expansion mutations
has generated new insight into the pathogenesis
of neurodegeneration, with implications for the
relatively uncommon repeat-expansion diseases
themselves and for their more common cousins,
especially Parkinson’s disease and Alzheimer’s
disease.

In this article we focus on the dominant
neurodegenerative repeat-expansion disorders.
Our aim is not to be comprehensive, as more
than a paper each day has been published about
this group of disorders over the past ten years.
For instance, we do not discuss intriguing
new evidence about the role of polyglutamine
expansion in the regulation of internal calcium
(Ca*) stores (Ref. 213). Instead, our goal is to
highlight the aspects of the pathogenesis of these
diseases with the most promise for therapeutic
intervention, with a particular emphasis on
points of active controversy. The diseases are split
into three types based on presumed modes of
pathogenesis: (1) the diseases in which CAG
repeat expansions result in long polyglutamine
tracts; (2) the so far single disease in which a small
repeat expansion alters normal protein function;
and (3) those diseases in which repeat expansion
may interfere with gene expression.

The polyglutamine diseases: HD,
DRPLA, SBMA, SCAs 1, 2,3, 7 and 17
Nine neurodegenerative diseases result from
CAG repeat expansions in-frame to encode
polyglutamine: Huntington’s disease (HD),
dentatorubral pallidoluysian atrophy (DRPLA),
SBMA, and spinocerebellar ataxia (SCA)

types 1, 2, 3, 7 and 17. (SCA6, although also a
‘polyglutamine’ disease, is both genetically and
pathogenically distinct, and is considered below.)
Each disorder is caused by a mutation at a
different locus and in genes that have no similarity
to each other except for the presence of the CAG
repeat (Table 1). Nonetheless, several common
features are characteristic for the group.
Clinically, each disease is typically of adult onset,
progressive, and confined to the nervous system,
with signs and symptoms reflective of the specific
regions of the nervous system affected (Table 1).
Pathologically, these diseases are characterised
by the loss of specific neuronal populations.
Although the areas affected differ in each
disease, there is considerable overlap between
them (Ref. 2; see also Table 1). Microscopically,
inclusion bodies that stain with antibodies
against expanded polyglutamine or ubiquitin are
typically found within nuclei of multiple brain
regions in each disease. Genetically, the threshold
for repeat length to cause disease is typically in
the range of 35 to 40 triplets. Anticipation
(decreasing age of onset in successive generations)
is present in these disorders, a phenomenon now
understood as the result of an inverse relationship
between repeat length and age of disease onset
combined with a tendency for repeats in the
pathological range to expand further during
paternal transmission.

The striking similarities in clinical,
pathological and genetic features of the
polyglutamine disorders suggest that they
share a common mechanism of pathogenesis.
Finding this mechanism has become one of the
‘hottest’ topics in medical science, with some
areas of agreement and much that remains
controversial. Here we address the following
issues, chosen because of their potential relevance
for the development of rational therapeutics. Does
the expansion result in a new and toxic property,
or does it interfere with normal protein function?
What is the structural abnormality conferred
by polyglutamine expansion? What is the
structure and contents of the protein aggregates
that can be detected in these disorders, and how
(if at all) do these aggregates relate to disease
pathogenesis? Does polyglutamine expansion
confer toxicity by disruption of the ubiquitin—
proteasome pathway? Are the proteins with
polyglutamine expansions subject to proteolysis
and, if so, where and by what enzymes? Is the
proteolysis critical for pathogenesis? What is the
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Table 1. Summary of clinical findings and neuropathology for characterised
dominant repeat disorders? (tab001lrmb)

HD;
huntingtin;
6-35 vs 36—>200

SBMA,;

9-36 vs 38-62

DRPLA;
atrophin-1;
3-35vs 49-88

SCAL,;
SCA1/ ATX-1;
6-38 vs 39-83

SCA2;
SCAZ2;
14-31 vs 32-77

SCA3 (MJD);
MJD;
12-40 vs 54-86

Disease; gene;
triplet expansion

androgen receptor;

Clinical findings

Polyglutamine (gain of toxic function)

Motor impairment, involving both voluntary and
involuntary movements. Chorea is the classic
symptom, but rigidity and dystonia are occasionally
more prominent, especially in juvenile-onset
cases. Abnormal eye movements, ataxia and
dysphagia are common. Cognitive decline is
universal, and psychiatric syndromes are common
(Ref. 192)

Males only. Proximal muscle weakness, muscle
atrophy, and fasciculations. Patients often show
gynecomastia, testicular atrophy, and reduced
fertility due to androgen insensitivity (Ref. 194)

Ataxia, choreoathetosis, dementia, and psychiatric
disorders in adults; ataxia myoclonus, epilepsy,
and dementia in children (Ref. 196)

Universal gait and limb ataxia, dysarthria, and bulbar
dysfunction. With progression, some have vibration
and proprioception loss, abnormal saccades,
nystagmus, ophthalmoparesis, mild optic atrophy,
hypertonia (usually early), hypotonia (later), and
decreased deep tendon reflexes. Late-stage
findings include facial weakness, difficulties with
swallowing or breathing, and extrapyramidal signs
including dystonia and chorea (Ref. 198)

Near-universal gait and limb ataxia, dysarthria, and
abnormal eye movements. Neuropathy, chorea or
dystonia, and dementia are frequently present, and
pyramidal signs are occasionally present

(Refs 200, 201)

Wide spectrum, arbitrarily divided into four types:
Type 1, with long repeats, young onset, dystonia

and rigidity; Type 2 (the most common form), with
onset age 20-45 years, and cerebellar and
pyramidal signs; Type 3, with onset age 40-60 years,
slow progression, and predominance of cerebellar
signs and peripheral neuropathy; and possibly

Type 4, with prominent parkinsonism (Ref. 203)

Neuropathology

Marked neuronal loss and gliosis of
the striatium and cerebral cortex.
Less consistent loss in thalamus,
substantia nigra, olive, hypothalmus,
and deep cerebellar nuclei (Ref. 193)

Selective degeneration of lower motor
neurons in the anterior horn, bulbar
region, and dorsal root ganglia (Ref. 195)

Degeneration of cerebral cortex,
cerebellar cortex, globus palidus,
striatum, dentate, subthalamic and red
nuclei. Intense gliosis and severe
demyelination at sites of neuronal
degeneration; occasionally
calcification of the basal ganglia

(Ref. 197)

Degeneration of Purkinje cells,
dentate, inferior olive, red nucleus,
cranial nerve nuclei (especially 3rd,
10th and 12th), and sometimes
substantia nigra, putamen, pallidum,
and subthalamic nucleus (Ref. 199)

Degeneration of Purkinje and granule
neurons, inferior olive, pontocerebellar
nuclei, substantia nigra, striatum,
Clarke’s column of the spinal cord,
and spinal ganglia; demyelination of
the posterior columns and
spinocerebellar tracts; sometimes
cerebral cortex; dentate is spared
(Ref. 202)

Degeneration of subthalamic nucleus,
substantia nigra, dentate nucleus,
pontine and cranial nerve nuclei

(3rd, 4th, 6th, 7th, 8th and 10th) and
spinal neurons. Occasional sensory
and motor peripheral neuropathy.
Relative sparing of cerebellar

and cerebral cortex, inferior olive,
caudate and putamen (Ref. 203)

(continued on next page)
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Table 1. Summary of clinical findings and neuropathology for characterised
dominant repeat disorders (tab001lrmb) (continued)

Disease; gene;
triplet expansion

SCAT7;
SCA7;
4-35 vs 37-200

SCA17;
TBP;
29-42 vs 47-63

SCAG;
CACNALA;
4-19 vs 20-30

SCAS;
SCAS;
16-91? vs 107-1277

SCA10;
SCA10;
10-22 vs 750-4500

SCA12;
PPP2R2B,;
7-28 vs 66-78

Clinical findings

Near-universal visual loss, accompanied by gait

and limb ataxia and dysarthria. Relatively common
pyramidal signs, decreased vibration sense,
dysphagia, ophthalmoplegia, sphincter dysregulation,
and hearing impairment. Extrapyramidal signs
relatively uncommon (Ref. 204)

Gait and limb ataxia, dementia, with later pyramidal

and extrapyramidal signs, often including parkinsonism

and either chorea or dystonia. Eye movements
are normal. Seizures develop in many individuals at
varying stages of the disease (Refs 55, 206)

Alteration of normal protein function

Cerebellar findings dominate the illness,
particularly in the first ten years or so, although

mild noncerebellar signs including ophthalmoplegia,
spasticity, peripheral neuropathy, dysphagia and
parkinsonism sometimes develop later in the
course of the disease. The course is slowly
progressive, and wheelchair use may not be
required for 15 years (Refs 161, 207, 208)

Alteration of gene expression

Clinical findings include limb and gait ataxia,
dysarthria, spasticity, oculomotor abnormalities,
and decreased vibration sensation. Progression

is slow, such that mobility aids are not required

for >20 years of illness duration (Ref. 210). Other
case series noted similar findings, with the addition
of tremor and frequent cognitive complications in

a Finnish series (Ref.178) and a case of infantile
onset in a Portuguese series (Ref.181)

Progressive cerebellar ataxia and dysarthria,
usually accompanied by seizures and psychiatric
disturbances (depression and/or aggression).
Nearly half of the affected individuals had pyramidal
signs, and most had evidence of polyneuropathy
and abnormal eye movements. Liver, cardiac and
haematological abnormalities have been detected in
a few pedigrees (Ref. 185)

Begins with action tremor of the head and upper
extremities and progresses to include a wide range
of signs and symptoms, including mild cerebellar
dysfunction, hyper-reflexia, subtle parkinsonian
features, psychiatric symptoms, and, in some of the
oldest subjects, dementia. Symptoms in most
individuals begin in the fourth decade, and the
disease is slowly progressive thereafter

(Refs 187, 188, 191)

Neuropathology

Degeneration of retina, cerebellar
Purkinje and granule cells, dentate
nucleus, inferior olive, subthalamic
nucleus, and spinal motor neurons
(Ref. 205)

Degeneration of small neurons in the
caudate and putamen, Purkinje cells,
thalamus, and frontal and temporal
cortex (Refs 55, 214)

Cerebellar degeneration with loss of
Purkinje cells more severe than loss
of granule neurons or neurons in the
dentate nucleus; some neuronal loss
in the inferior olive but only minimal
brainstem atrophy (Ref. 209)

MRI scans show cerebellar atrophy
(Ref. 210)

MRI scans show cerebellar atrophy
with little or no cortical or brain stem
atrophy (Ref. 185)

One brain examined: generalised
atrophy of the CNS, predominantly
affecting the cerebral cortex and
cerebellum; marked Purkinje cell
loss (Ref. 211)

(continued on next page)
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Table 1. Summary of clinical findings and neuropathology for characterised
dominant repeat disorders (tab001lrmb) (continued)

Disease; gene;

triplet expansion Clinical findings

(Refs 173, 175)

protein.

HDL2; Variable, but within broad HD phenotype. In some,
junctophilin-3; prominent early weight loss, followed by rigidity,
7-26 vs 41-57 bradykinesia, dystonia, mild chorea, psychiatric

syndromes, dementia and rapid decline; others
with prominent chorea and slower course

@ Table based partly on Ref. 212, with permission from Current Medicine.

Abbreviations: ATX-1, ataxin-1; CACNA1A, voltage-dependent P/Q-type Ca?* channel alpha Al subunit; CNS, central
nervous system; DRPLA, dentatorubral pallidoluysian atrophy; HD, Huntington’s disease; HDL2, Huntington’s
disease-like 2; MJD, Machado-Joseph disease; MRI, magnetic resonance imaging; PPP2R2B, 55 kDa 3 subunit of
protein phosphatase 2A; SBMA, spinal and bulbar muscular atrophy; SCA, spinocerebellar ataxia; TBP, TATA-binding

Neuropathology

Three brains examined: neuronal loss in
striatum, cortex and other regions
indistinguishable from HD

(Refs 175, 176)

role of nuclear localisation? Does polyglutamine
expansion initiate apoptotic pathways via
mitochondrial toxicity? Can polyglutamine
toxicity be reversed? Although much of the data
that we cite derives from studies of HD, the most
intensely investigated of the polyglutamine
disorders, we also include pertinent results from
the other polyglutamine diseases. We recognise
that this approach blurs the distinctions among
these diseases, but our goal is to emphasise
common themes and controversies. HD is covered
in more detail in Expert Reviews in Molecular
Medicine in Ref. 3.

The toxic gain-of-function hypothesis

The discovery of the polyglutamine-expansion
diseases immediately suggested a loss-of-
function hypothesis — that is, repeat expansion
interfering with gene expression and resulting in
haploinsufficiency, as it does in fragile X. It rapidly
became clear that this supposition was wrong, and
that pathogenesis most likely arises from a toxic
gain-of-function mutation. First, very early data
demonstrated that the CAG repeat expansions
were both transcribed and translated, with equal
levels of normal and mutant protein expression
(Refs 4, 5). Overexpression of polyglutamine
repeats (with various flanking sequences) in
neuronal and non-neuronal cultured cells (Refs
6, 7, 8), transgenic mice (Refs 9, 10, 11, 12, 13, 14,
15, 16, 17), knock-in mice (Refs 18, 19, 20, 21, 22,
23, 24), Drosophila (Refs 25, 26, 27, 28, 29, 30) and
Caenorhabditis elegans (Refs 31, 32, 33) typically
results in cell toxicity, movement abnormalities,

or aspects of neuropathology (see below) that
reflect the human diseases. On the contrary, most
knock-out mice with heterozygous deletions of
huntingtin or Scal do not show behavioural or
neuropathological alterations (Refs 34, 35), and
homozygotes have severe developmental
deficits that do not resemble the deficits observed
in polyglutamine-expansion diseases (Refs 34,
36, 37). This toxic gain of function is consistent
with the clinical finding that rare patients
homozygous for HD do not phenotypically differ
from heterozygotes (Refs 38, 39). However,
homozygosity might lead to a more severe
phenotype in SCA3 (Ref. 40). In addition, patients
and rodents with complete loss of the androgen
receptor (the gene with the CAG repeat expansion
in SBMA) develop an androgen insensitivity
syndrome but not other features of SBMA (Refs
41, 42).

The possibility that a loss of huntingtin
function might contribute to HD pathogenesis
has recently re-entered the debate. It now
appears that huntingtin might be necessary for
proper neuronal function in adult mouse brain,
with huntingtin expression necessary for normal
nuclear and perinuclear membrane organelles,
RNA biogenesis, iron homeostasis (Ref. 43) and
vesicular transport (Refs 44, 45). The complete
absence of huntingtin results in embryonic
lethality (Refs 34, 36, 37), and elimination of
huntingtin expression in adult mouse forebrain
results in progressive neurodegeneration (Ref. 46).
Of particular interest, polyglutamine expansion
was shown to reduce the capacity of huntingtin
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to stimulate brain-derived neurotrophic factor
(BDNF) in cortical neurons derived from transgenic
mice overexpressing mutant huntingtin (Ref. 47).
Loss of BDNF was also detected in human HD
brain. This series of experiments suggests that loss
of BDNF trophic support to striatal neurons may
substantially contribute to the death of these
neurons. Huntingtin with an expansion appears
to recruit the normal huntingtin protein into
aggregates, which might further potentiate the
loss of huntingtin function (Ref. 48). Loss of
huntingtin function might also contribute to
pathogenesis by a novel nonreceptor-mediated
pathway that activates caspase-8 and results in
apoptosis (Ref. 49). It has also been suggested, at
least in HD, that translation of expanded repeats
could begin from an alternative site, shifting the
reading frame so that the repeat would encode
polyalanine (Ref. 50). Although polyalanine
expansions may be toxic (Ref. 51), there is little
other support for this mechanism.

Additional evidence that loss of function
may contribute to aspects of the polyglutamine
disease phenotype derives from the androgen
insensitivity or testicular feminisation observed
in SBMA, a consequence of loss of androgen
receptor function (Refs 52, 53, 54). Polyglutamine-
expansion-dependent loss of function of TATA-
binding protein (TBP) might also contribute to the
SCA17 phenotype (Ref. 55).

Structure of elongated polyglutamine tracts
Perutz originally suggested that normal protein
conformation is destabilised by the presence of
expanded polyglutamine tracts, which lead to
abnormal protein—protein interactions and
formation of B-sheet structures held together
by hydrogen bonds (polar zippers) between
their main-chain and side-chain amides (Refs 56,
57). In vitro experiments have shown that
truncated huntingtin fragments with an expanded
polyglutamine tract form amyloid-like protein
aggregates with a fibrillar or ribbon-like
morphology (Ref. 58). Recent evidence suggests
that polyglutamine aggregation is an ordered
process, resembling amyloid fibril formation in
both assembly kinetics and aggregate structure,
and might involve intermediaries similar to the
protofibrils observed in amyloid fibril formation
(Refs 59, 60).

Alternatively, the abnormal structure of
polyglutamine expansions has been proposed to
stem from transglutaminases, which crosslink

glutamine repeats with lysine residues in other
proteins through isopeptide bonds (Ref. 61).
Although in vitro evidence has confirmed the
potential for transglutaminase crosslinkage of
protein with long tracts of polyglutamine (Refs
62, 63, 64, 65), transglutaminase activity has no
effect on aggregation of a truncated huntingtin
fragment containing an expanded polyglutamine
tract in an HD cell model (Ref. 66). Evidence for
the presence of y-glutaminyl-lysyl bonds
colocalising with expanded glutamine tracts
within neuronal intranuclear inclusions would
strengthen the transglutaminase hypothesis. It is
possible that both polar zipper and enzymatic
crosslinking contribute to aggregate formation.

Inclusions: cause or consequence?

The potential relevance of protein aggregates to
polyglutamine disease was brought to the
forefront when intranuclear inclusions containing
the appropriate disease protein (ataxin-1, ataxin-3
or huntingtin) and ubiquitin were identified in
neurons of SCA1, SCA3 and HD patients and HD
transgenic mice (Refs 10, 67, 68, 69). Inclusions
have since been found in SCA7 and DRPLA
patient brain and transgenic mice modelling
SCA7, DRPLA and SBMA (Refs 14, 70, 71, 72, 73),
but are completely absent from the cerebellum of
SCA2 patients, a key site of neurodegeneration
(Refs 74, 75, 76). The distribution of aggregates is
generally nuclear in brain regions most affected
by the diseases, but can also be cytoplasmic and
extranuclear (dystrophic neurites and neuropil
aggregates). Aggregates have been detected in glia
(Ref. 68) and tissue outside of the central nervous
system (CNS) (Ref. 77). Immunohistochemical
evaluations have shown that these inclusions not
only contain the mutant protein (with long
polyglutamine stretches stained by one of several
antibodies relatively specific for expanded, but not
normal, polyglutamine), but also ubiquitin,
components of proteasomes, chaperones and
transcription factors (see below).

The potential role of inclusions in pathogenesis
has been addressed directly and indirectly using
several model systems and by semiquantitative
analysis of pathological samples (Ref. 78).
However, it is now becoming clear that
aggregations themselves are probably not an
essential part of the pathogenic pathway. For
example, in a well-characterised SCA1 transgenic
mouse model in which ataxin-1 with an expanded
glutamine is driven by the PcP2 promoter, the
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formation of intranuclear inclusions was
dependent on the presence of the ataxin-1 self-
association domain. Purkinje cell loss and
abnormal behaviour was present whether or
not this domain was part of the overexpressed
ataxin-1 construct (Ref. 79), although Perutz
suggested later that removal of the self-
assocciation domain could itself result in
abnormal folding of the protein and ataxic
phenotype (Ref. 80). In a striatal cell model,
transfection of an N-terminal huntingtin fragment
under conditions that inhibited the formation of
inclusions (blockade of ubiquitination) increased
cell death (Ref. 81). Similarly, aggregations
were not associated with cell death in primary
neurons from a mouse model conditionally
expressing mutant huntingtin (Ref. 16).

The observation that nuclear inclusions exist,
and might even be more dense, in neuronal types
that show little degeneration in a given disease
also supports a dissociation of inclusion formation
from neuronal toxicity. In HD patients, aggregates
are primarily present in brain regions with little
or no cell loss (Ref. 82). Lack of inclusions in
affected neurons and their more frequent presence
in neurons more resistant to neurodegeneration
has also been reported for SCA2 and SCA7 (Refs
67, 75, 82, 83), although this relationship may be
somewhat different in SBMA (Ref. 83). A similar
dissociation has been detected in mouse models
of HD (Ref. 84). In other mouse models, neuronal
intranuclear inclusions occur only after the
development of pathological and behavioural
changes (Refs 16, 23, 85).

One possible explanation for the apparent lack
of a direct association between inclusions and
pathogenesis is that intermediates that arise
during the process of aggregation are more toxic
than the final resulting inclusions. This line of
investigation has been in part motivated by
the complex biochemical process leading to
amyloid generation, which involves the step-wise
accumulation of several intermediate species,
including oligomers and protofibrils (Ref. 86).
Intermediates have recently been reported in an
in vitro model of huntingtin aggregation (Ref. 60)
and ‘microaggregates’ have been detected in a
SBMA transgenic mouse (Ref. 87). The toxicity of
an intermediate stage of aggregation might
explain the results of the experiment in which
blockade of formation of large aggregates led to
increased toxicity. Aggregate intermediates
might be more accessible to other proteins

(Ref. 80), and this could explain some of the effects
of polyglutamine expansions on transcription
described below. Recently, it was reported that
the azo-dye Congo Red promotes the clearance
of expanded polyglutamine in vitro and in a
transgenic mouse model of HD (Ref. 88). Congo
Red has the ability to bind to B-sheets containing
amyloid fibrils (Ref. 89) and can inhibit
oligomerisation (Ref. 90). In the infused animals,
a protective effect of the chemical on weight loss,
survival and motor performance was observed,
suggesting a viable therapeutic approach.

Formation of insoluble aggregates might also
represent a cellular mechanism to diminish
toxicity of intermediate products of aggregation.
Aggresomes are pericentrosomal cytoplasmic
structures into which aggregated, ubiquitinated,
misfolded proteins are sequestered via active
transport by the cytoskeletal microtubular system,
potentially representing a protective cellular
response to excess amounts of misfolded proteins
(Refs 91, 92). Evidence that cytoplasmic inclusions
formed of polyglutamine protein resemble
aggresomes derives in part from similarities of
these inclusions to the aggregates observed in a
cell model of familial amyotrophic lateral
sclerosis. A potential role for aggresomes in
polyglutamine pathogenesis is also supported by
perinuclear accumulations of mutant huntingtin
in human HD brain samples (Ref. 93), and the
demonstration that microtubule disruption in
yeast overexpressing mutant huntingtin results in
decreased huntingtin aggregation but increased
cytoxicity (Ref. 94).

Ubiquitin, proteasomes and chaperones

The observation that polyglutamine-disease
aggregates stained for ubiquitin (Refs 10, 68, 69)
raised the possibility that the ubiquitin-mediated
proteolytic pathway might be affected by
polyglutamine expansions. In this pathway,
ubiquitin, a 76 amino acid peptide, is attached to
a target protein at one or more lysine residues by
a ubiquitin-conjugating enzyme (Ubc E2).
Proteins can become mono- or polyubiquitinated.
The polyubiquitinated proteins are transported to
the 26S proteasome, a complex cytosolic and
nuclear protease with an active 20S multicatalytic
proteolytic core (Refs 95, 96). This system is one
of the key mechanisms for clearing unneeded
proteins from the cell, and disabling the system
results in cell toxicity (Ref. 97). Detection by
immunohistochemical methods of both ubiquitin
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and 20S proteasomes within Purkinje cell
aggregates in brain from SCA1 transgenic mice
and SCA1 patients provided further evidence that
this system might be impaired in polyglutamine
disease (Ref. 98). A later experiment demonstrated
that ataxin-1 containing only two glutamines
and ataxin-1 containing an expanded repeat
with 92 glutamines become polyubiquinated to
an equal extent, but ataxin-1 with an expanded
polyglutamine tract was more resistant to
proteasomal degradation (Ref. 99). Together, these
findings led to the more specific hypothesis that
proteins with expanded polyglutamines are
misfolded and targeted for proteolysis, but are
resistant to degradation. In support of this
hypothesis, inhibition of proteasomal function in
several different cell lines transfected with a
truncated ataxin-3 fragment led to increased
aggregation of mutant ataxin-3 (Ref. 100). In
addition, clearance of aggregates in primary
neurons derived from a reversible mouse model
of HD (Ref. 16) is dependent on proteasomal
activity (Ref. 101).

If misfolding of proteins with expanded
polyglutamine stretches is indeed relevant to
polyglutamine disease pathogenesis, as suggested
by both structural analyses and the involvement
of the ubiquitin-proteasome system, then
molecular chaperones, which facilitate normal
protein folding, should modify the pathogenic
process (Ref. 102). Indeed, overexpression of
molecular chaperones diminishes the toxicity of
glutamine expansions in a number of in vitro,
invertebrate and mouse model systems without
necessarily reducing polyglutamine aggregation
(Refs 103, 104). The HSP40 and HSP70 families of
chaperones, which refold misfolded proteins
(Refs 105, 106) and play a role in ubiquitin-
dependent protein degradation (Refs 107, 108),
appear to be of particular relevance. For instance,
both the constitutive (Hsc70) and inducible
(Hsp70) forms of HSP70 decrease aggregation
of huntingtin and androgen receptor protein
with expanded polyglutamine (Refs 109, 110),
and overexpression of Hsp40/HDJ-1 and
Hsc70/Hsp70 reduced toxicity in cell culture
models of SBMA and HD (Refs 111, 112). In a
Drosophila model of polyglutamine toxicity,
Hsp70 suppresses neuronal degeneration with
little effect on aggregates (Ref. 113). Similar
results were observed in a mouse model of SCA1
(Refs 109, 110, 114, 115). Pharmacologically
increasing the levels of certain chaperones might

be of potential therapeutic value, as shown in an
experiment in which geldanamycin-induced
expression of Hsp40, Hsp70 and Hsp90 inhibited
aggregation of a truncated huntingtin protein
(Ref. 116).

Endosomal-lysosomal pathway

In addition to the ubiquitin—proteasome pathway,
at least some processing of proteins with
polyglutamine expansions might occur through
the endosomal-lysosomal pathway (Ref. 117).
Electron microscopic immunohistochemistry of
DRPLA and SCAS3 brain revealed the presence of
neuronal intracytoplasmic granules containing
expanded polyglutamine stretches. The granules
corresponded predominantly to lysosomes of a
primitive type. This is consistent with earlier data
demonstrating the presence of lysosome-related
structures containing mutant huntingtin in HD
brain (Ref. 93). The endosomal-lysosomal-
vacuolar pathway has also been linked to
autophagy, a form of cell death characterised by
the degradation of cytoplasmic proteins or
organelles in lysosomes (Ref. 118). It has been
suggested that autophagy might be induced by
the accumulation of mutant huntingtin via
stimulation of the endosomal-lysosomal system,
leading to huntingtin proteolysis and autophagic
cell death (Ref. 45). However, exactly the opposite
could be the case: inhibition of the sequestration
stage of autophagy was reported to increase
aggregate formation and cell death in COS-7 cells
overexpressing mutant huntingtin exon 1,
suggesting agents that stimulate autophagy might
have therapeutic potential (Ref. 119).

Proteolytic cleavage

The possibility of pharmacological intervention
through inhibition of proteases has generated
considerable interest in the role of proteolytic
cleavage in polyglutamine pathogenesis. In
human HD and SBMA tissue (Refs 71, 77), in an
HD mouse model (Ref. 23) and in cell models
(Ref. 7), polyglutamine inclusions stained with
antibodies directed against N-terminal, but not
C-terminal, huntingtin or androgen receptor
epitopes, suggesting that the inclusions were
composed of truncated huntingtin and androgen
receptor. In transiently transfected 293T cells
and an inducible NG108-15 cell model of HD, the
length of the transfected mutant huntingtin,
holding repeat length constant, correlated
inversely with its potential to aggregate and
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trigger cell death (Refs 7, 120). Processed
fragments of mutant protein have been detected
inhuman SCA2 brain (Ref. 74), DRPLA transgenic
mice and human brain (Ref. 14), SCA7 transgenic
mice (Refs 72, 121), and a stable inducible HD
cell model (Ref. 122). Recently, several transiently
transfected neuronal (X57, X58, NG108-15) and
non-neuronal (293T) cell models were used to
detect a cleavage site in huntingtin that results in
a fragment of similar size to that observed in HD
human brain. Cleavage appears to be dependent
upon the length of the polyglutamine repeat
(Ref. 123). However, there is also evidence that
cleavage might not be critical to polyglutamine
pathogenesis. For instance, wild-type full-length
huntingtin is more susceptible to cleavage than
full-length mutant huntingtin in affected brain
tissue (Ref. 124), and nuclear localisation appears
to involve full-length huntingtin in a knock-in
mouse model of HD (Ref. 23).

If cleavage occurs, what enzymes are
responsible? Caspase activity has been suggested
in numerous studies. Huntingtin has been shown
to be a substrate of caspase-1 and caspase-3 (Refs
125, 126). Lymphoblasts derived from HD patients
have previously been reported to exhibit increased
stress-induced apoptotic cell death associated
with caspase-3 activation (Ref. 127). Inhibition of
caspase-1 and caspase-3 by minocycline delayed
mortality in an HD transgenic mouse model
(Ref. 128). Inhibiting caspase-3 and caspase-6
cleavage of huntingtin reduced toxicity and
aggregate formation in neuronal and non-
neuronal cells (Ref. 129). Caspases that do not
cleave huntingtin directly might also play a
role in HD. For example, caspase-8 is recruited
to and activated by polyglutamine-containing
aggregates, including aggregates in HD brains
(Ref. 130). Mutation of caspase cleavage sites
within the androgen receptor and atrophin 1
proteins renders them less toxic when expressed
in cells exposed to an exogenous toxic stimulus,
and prevents the formation of intracellular
aggregates (Ref. 131). Evidence from human HD
tissue and rat primary cortical neurons suggests
a role for calpains (Ca*-dependent noncaspase
cysteine proteases) in HD proteolysis (Refs 129,
132), and the possibility of sequential proteolysis
of huntingtin by caspase-3 and calpain has been
raised (Ref. 133). Most recently, evidence has
emerged suggesting a role for pepstatin-sensitive
aspartic endopeptidases in huntingtin cleavage
(Ref. 122). The opportunity to block particular

proteolytic enzymes pharmacologically is an
intriguing approach to the prevention of
polyglutamine toxicity, tempered by concern for
nonspecific effects of such inhibition.

Toxicity within the nucleus and
transcriptional dysregulation

Although, as discussed above, cytoplasmic
processes such as protein misfolding, proteasomal
processing, and aggresome formation may be
important to polyglutamine disease pathogenesis,
other lines of evidence suggest the possibility that
nuclear events are central to pathogenesis.
Manipulation of huntingtin by adding or
removing nuclear localisation or export signals
has generally suggested that nuclear localisation
corresponds best to toxicity of polyglutamine
tracts (Refs 81, 134). Use of truncated forms of
polyglutamine-containing proteins in cell culture
has focused attention on the mechanisms for
nuclear entry, including the potential role of
active transport and protein cleavage in nuclear
translocation. The other issue is how entry into
the nucleus might prove toxic. One potential
mechanism is through disruption of transcription
regulation. For instance, polyglutamine
aggregates, or protoaggregates, might sequester
transcription factors, including CREB-binding
protein (CBP; an acetyl transferase) (Refs 135, 136)
and Sp1 (Refs 137, 138), through their glutamine-
rich domains, and impede transcription of genes
dependent on these factors. Other transcription
factors that might be similarly affected include
TBP-associated factor (TAF130) (Refs 139, 140),
the co-repressors N-Cor and mSin3a (Ref. 141),
and the co-activators CA150 (Ref. 141) and p53
(Refs 135, 142). Interestingly, the proteins with
polyglutamine expansions that cause SCA17
(TATA-binding protein) and SBMA (the androgen
receptor) are themselves transcription factors
(Ref. 55).

Transcriptional dysregulation might also
provide a clue for the regional differences in
neuronal degeneration among the polyglutamine
disorders. The retinal degeneration that is
characteristic of SCA?7, for instance, might be at
least partially accounted for by a specific
interaction between ataxin-7 and the cone-rod
homeobox protein (CRX), a transcription factor
containing a polyglutamine reach region (Ref. 143).
Polyglutamine (Q)-tract-binding protein 1
(PQBP-1), a repressive transcription cofactor of
the neuronal transcription factor Brn-2 that is
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predominantly expressed in the cerebellum,
interacts with ataxin-1 in a polyglutamine-
dependent manner, resulting in the induction of
cell death via apoptosis (Ref. 144). However, some
mechanisms of transcriptional dysregulation
might be common to multiple polyglutamine-
repeat disorders. For instance, a large number of
overlapping gene expression changes were
detected in the cerebella of huntingtin and
atrophin-1 transgenic mouse (Ref. 145). A subset
of the changes was also observed in the cerebella
of mice expressing mutant ataxin-7 and androgen
receptor.

Another promising line of investigation,
consistent with polyglutamine-induced
dysregulation of transcription, focuses on the
modulatory role of histone deacetylase inhibitors
(Ref. 146). Polyglutamine toxicity in neuronal cell
culture correlates with a deficiency in histone
acetylation, an effect that can be reversed by
treatment with histone deacetylase inhibitors
(Ref. 30). HDAC inhibitors also ameliorated
polyglutamine-induced neurodegeneration in
Drosophila (Ref. 30) and motor deficits in the
R6/2 line of HD transgenic mice (Ref. 147).

Mitochondria and polyglutamine toxicity

Mitochondria dysfunction has been implicated in
the pathogenesis of multiple neurodegenerative
diseases (Ref. 148), and pathways through which
mitochondrial dysfunction leads to cell death
have been partially elucidated (Ref. 149). The
possibility that mitochondrial dysfunction
could play a role in the pathogenesis of HD
emerged with animal models developed prior to
the discovery of the HD gene. 3-Nitropropionic
acid (3-NP) and malonate inhibit succinate
dehydrogenase, disrupting mitochondrial
transmembrane potential with consequent
generation of superoxide radicals, secondary
excitotoxicity, and apoptosis. Systemic delivery
of these agents to rodents results in selective
neuronal loss in the striatum that mimics the
pathology observed in HD (Refs 150, 151).
Evidence that the HD mutation can disrupt
mitochondria derives from analysis of
lymphoblasts from HD patients (Ref. 127),
which exhibited lower membrane potential and
depolarisation at lower Ca*" loads than control
mitochondria. The same mitochondrial defect was
detected prior to the onset of behavioural or
neuropathological abnormalities in a yeast
artificial chromosome (YAC)-transgenic mouse

model expressing full-length mutant huntingtin
(Ref. 152).

Polyglutamine diseases: pathways and
therapeutics

As illustrated in Figure 1, the various pathogenic
pathways discussed above suggest multiple
approaches to therapeutic intervention. Each
model system developed to explore these
pathways has unique strengths and limitations
as a method of screening for therapeutic agents
(Ref. 153). The experience of the CARE-HD
study (Ref. 154), the largest clinical treatment trial
of a polyglutamine disease, demonstrated that the
resources for performing high-quality patient
trials are insufficient for launching more than a
few such trials at any one time. It will therefore
be important to test potential agents carefully in
a variety of models before moving to work in
patients.

Biochemical models, such as a system
developed for screening aggregation formation
(Refs 116, 155), can be extremely efficient, but are
useful only to the extent that the particular process
under study proves to be fundamental to disease
pathogenesis. Cell models are easy to manipulate,
and allow for assays of several outcomes,
including aggregate formation, cell death, and
biochemical processes such as protein cleavage.
The idiosyncracies of the particular cell type under
investigation must be carefully considered. Also,
cell models might not reflect nonautonomous
mechanisms of pathogenesis, such as the impact
of glutamatergic cortical projection neurons on
striatal neurons (Ref. 156). Slice models have
recently been developed that keep intact such
projections, although biochemical analysis of
slices is more problematic than that of typical cell
culture assays.

Mice present complexity approaching that of
the human patient, but at the cost of slower speed
of analysis and greater expense than other
systems. Each mouse line has its own particular
idiosyncracies. The R6/2 transgenic mouse line
(Ref. 9) that overexpresses a short huntingtin
fragment with an expanded polyglutamine tract
is useful for assaying aggregate formation and
behavioural responses, but the potential benefits
of inhibition of huntingtin cleavage cannot be
assessed. The mice might also have a latent
diabetes (Ref. 157), and do not show clear
neurodegeneration. Mice expressing YACs
containing the full human huntingtin gene
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(Ref. 11), or mice in which an expanded repeat is
inserted into the mouse huntingtin gene system
(Ref. 158) nicely recapitulate the HD phenotype,
but pathology develops only very slowly. The
short time span for development of pathology in
Drosophila or C. elegans lines that overexpress
expanded polyglutamine, and the large number
of animals that can be rapidly screened for genetic
or pharmacological modifying factors, vastly
increases efficiency over murine models, at the
cost of a loss of system complexity. A recently
developed rat transgenic model of HD may prove
of value in neuroanatomic studies (Ref. 159).

None of the mouse HD models yet devised
exhibits substantial loss of spiny medium neurons
(the striatal cell type most profoundly affected in
patients), and aberrant quantitative and spatial
expression of huntingtin transgenes introduces
additional variables that might be difficult to
control. In partial answer to these problems, a
new HD model has been developed based on
lentiviral-mediated delivery of mutant huntingtin
to rat striatum (Ref. 160). Rats injected with
truncated huntingtin containing 82 glutamines
developed intranuclear inclusions, then neuronal
dysfunction. The phenotype progresses over three
months, with drastic and dose-dependent
degeneration of striatal neurons. The relative
distribution of aggregates between nucleus and
cell processes varied with the strength of the
promoter used. In addition to recapitulating HD
pathology, lentiviral models also can be tested
across species, facilitating development of
nonhuman primate models of polyglutamine
pathogenesis. An alternative rodent model,
employing a conditionally expressed truncated
form of mutant huntingtin, was used to show that
protein aggregation and behavioural abnormalities
reverse when expression of the mutant protein
is turned off (Ref. 16). This experiment suggests
that removal or inactivation of the mutant protein
might be an effective therapeutic strategy, even
after the onset of clinical disease.

SCAG: repeat expansion and
altered normal protein function
SCA®6, a slowly progressive disease primarily
involving the cerebellum, is caused by relatively
small expansions in the CAG repeat within
CACNA1A, the gene encoding the alpha(1)2.1
subunit of P/Q-type Ca* channel located on
chromosome 19p13 (Ref. 161). Normal repeat
length ranges from 4 to 19 triplets, whereas the

disease range (overlapping with normal) is 19 to
30 triplets, well within the normal range for the
other polyglutamine disorders and many other
proteins (Ref. 162). The mean onset age is about
50 years, with longer expansions associated with
early onset age. Repeat length is typically,
although not universally, stable during vertical
transmission. In SCA6 Purkinje cells, cytoplasmic
and intranuclear inclusions were detected using
1C2, an antibody specific for expanded tracts of
polyglutamine (Ref. 163), while antibodies specific
to ataxin-6 recognised densely immunoreactive,
oval or rod-shaped structures in the cytoplasm,
but not nucleus (Ref. 164). Although a direct role
of polyglutamine toxicity in SCA6 pathogenesis
cannot be excluded, the relatively short size of
the expansion makes such an explanation less
likely. By contrast, there is evidence that the
CAG expansion increases the density of the
alphalA voltage-dependent Ca*" channel in the
cell membrane, with a consequent overall
increase in inward Ca?" flux following channel
activation (Ref. 165). The toxicity of the
polyglutamine expansion is therefore most
likely to be a result of an alteration of normal
Ca?*-channel function.

Additional support for this mode of
pathogenesis derives from the existence of two
disorders allelic to SCA6. Episodic ataxia type 2
(EA2)is characterised by constant and progressive
cerebellar signs complicated by attacks of vertigo,
visual disturbance, dysarthria, and ataxia
responsive to acetazolamide (Refs 166, 167).
Familial hemiplegic migraine (FHM) is
characterised by migraine headaches, at times
with accompanying ictal hemiparesis and in some
families with progressive cerebellar degeneration
(Ref. 168). The cause of these disorders are point
mutations in CACNAIA (Ref. 169). The extensive
phenotypical overlap among EA2, FHM and
SCAG6 (Refs 170, 171, 172) supports the notion that
it is abnormalities within the alpha(1)2.1 subunit
of P/Q-type Ca* channel that are essential to
SCA6, rather than direct toxicity of the
polyglutamine repeat. The relationship of disease
to Ca* flux suggests that therapeutic strategies
aimed at restoring normal Ca? homeostasis might
be of value to all members of this disease class.

Repeat expansion and

loss of gene expression
The common feature of the third class of
autosomal dominant repeat-expansion
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Figure 1. Polyglutamine pathogenesis: a multimodal hypothesis (fig001rmb) (see next page for legend).
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Figure 1. Polyglutamine pathogenesis: a multimodal hypothesis (legend; see previous page for figure).
Various pathogenic pathways have been suggested. As a simplification, they are depicted here as originating
in the cytoplasm, although some of the disease proteins, including huntingtin, might also be located in the
nucleus or cycle between the cytoplasm and nucleus. (a) The pathogenic process (blue arrows) begins with
the synthesis of a protein with an expanded polyglutamine (polyQ) tract. (b) The expanded polyglutamine
tract alters the native conformation of the protein, modulated by the presence of molecular chaperones.
(c) At least a fraction of the abnormally folded protein is subjected to lysosomal-dependent proteolysis,
and (d) another portion of the abnormal protein is ubiquitinated (Ub) and degraded via the proteasome.
(e) Cleavage of the abnormally folded mutant protein produces an N-terminal fragment that favours the
aggregation process. (f) The mutant proteins shift, in part, from a monomeric random coil or B-sheet into
oligomeric B-sheets and eventually into insoluble aggregates (amyloid fibrils). (g) These might contribute to
pathology through abnormal interactions with cellular proteins, or might represent a mechanism for reducing
the toxicity of aggregation intermediates. (h) Aggregation intermediates inhibit proteasomal processing. (i) The
monomers or oligomers directly activate caspases or disrupt mitochondrial function, leading to indirect activation
of caspases. (j) Proto-aggregates translocate into the nucleus (by an unknown mechanism) and (k) recruit
specific nuclear factors, co-activators and co-repressors, inhibiting their normal activities and (I) resulting in
altered gene transcription (an example is the loss of function of proteins with histone acetyltransferase activity).
The pathogenic pathways depicted here suggest a number of potential sites for therapeutic intervention
(indicated in red). These include: (1) inhibition of expression of the mutant protein at the level of transcription
or translation; (2) facilitation of chaperone function; (3) inhibition of proteolysis; (4) inhibition of aggregation
(by enhancement of chaperones or by pharmacological agents such as Congo Red that suppress formation of
intermediates or protofibrillar assembly into insoluble aggregates); (5) mitochondrial stabilisation (agents such
as creatine that protect against bioenergetic dysfunction); (6) caspase inhibition; (7) inhibition of histone
deacetylase (HDAC) activity; and (8) modulation of transcription that is adversely affected by mutant huntingtin.
This model is most representative of HD pathogenesis, but also pertains, in part, to other polyglutamine diseases
(fig001rmb).

neurodegenerative disorders (HDL2, and SCAs
8,10 and 12) is that the causative repeat expansion
is not in an open reading frame. The effect of the
expansion on each gene appears to be different,
but itis possible that the net effect of the expansion
in all four diseases is a change in gene expression.
The consequences of the expansion mutation
would be expected to vary based on the function
of each gene. One therapeutic strategy for these
diseases might consist of restoring gene
expression to normal, either through preventing
the mutation from affecting gene expression, or
by increasing or decreasing gene expression to
compensate for the effect of the mutation.
However, downstream approaches to blocking
neurodenegeration might be more feasible,
especially since each of the following diseases is
quite rare.

HDL2: loss of function and dysregulation
of Ca* flux?

HDL2, currently reported in 18 pedigrees of
African ethnicity and one Mexican pedigree, is
strongly associated with a CTG repeat expansion
in the junctophilin 3 (JPH3) gene on chromosome
16923.4 (Ref. 173). The junctophilins are a
family of proteins that form a component of the

junctional complex between the plasma
membrane and the endoplasmic or sarcoplasmic
reticulum. This physical coupling might facilitate
the functional coupling between cell-surface
voltage sensors and intracellular Ca*" channels
(Ref. 174). The CTG repeat is 760 nucleotides 3' to
exon 1 of/PH3. Exon 2A, containing the repeat, is
not expressed as part of the normal full-length
JPH3 mRNA. However, alternative splice
products exist in which JPH3 exon 1 is spliced to
alternative splice acceptor sites in exon 2A (which
then becomes the terminal exon), such that the
repeat is variably in a 3' untranslated region, in
frame to encode polyalanine, or in frame to encode
polyleucine. There is little evidence of a transcript
on the reverse strand. Intranuclear inclusions that
stain with the 1C2 antibody that is allegedly
specific for expanded polyglutamine expansions
have been reported in the three HDL2 brains that
have come to autopsy (Refs 175, 176; R. Margolis,
unpublished), but the presence of 1C2-positive
inclusions in SCA6 brain suggests that the
antibody may detect epitopes other than very long
polyglutamine tracts. Given the putative function
of JPH3 as a modulator of Ca?* flux, a mutation-
induced loss of function of this allele in HDL?2 is
an attractive but as yet unproven hypothesis.
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SCAS: expansion in an untranslated gene
SCAS8 remains the most controversial of the
SCAs. The disease was initially defined in 1999
when a CTG/CTA repeat expansion in an
untranslated gene on chromosome 13q21 was
found to segregate with SCA in a large Minnesota
pedigree (Ref. 177). Repeat length in affected
individuals ranged from 107 to 127 triplets,
whereas unaffected expansion carriers had repeat
lengths of 71 to 101 CTG triplets. Almost all
expanded alleles were maternally inherited,
with paternal transmissions usually resulting
in a marked repeat contraction. The mean onset
age of disease in this family is 39 years (range 13
to 65). SCA8 might account for as many as 3-6%
of cases of autosomal dominant cerebellar
ataxia and some sporadic cases, but the
calculation is impeded by the potentially high
rate of nonpenetrance of the SCA8 expansion.
Expansions (defined as repeats of 100 or more
triplets) have been detected in 1-3% of many
(Refs 178, 179, 180), but not all (Refs 177, 181),
control populations. Even if the worldwide
prevalence of the expansion is only 0.1%, the
number of individuals with nonpenetrant
expansions would exceed the total number of all
dominant cerebellar ataxia cases by a factor of
between 10- and 100-fold, creating considerable
difficulties in interpreting SCAS8 genetic test
results. The debate continues about whether the
SCA8 mutation is causative but of low penetrance,
or is in linkage disequilibrium with another
mutation. The likelihood of the latter possibility
increased with the recent finding that a point
mutation in fibroblast growth factor 14, on
chromosome 13q34, results in a dominant
cerebellar ataxia (Ref. 182).

The proposed mechanism of SCAS8
pathogenesis is unique among neurodegenerative
disorders. The SCAS8 gene itself is not translated
into protein, but overlaps the transcription and
translation start sites and the first splice junction
of KLHL-1, a gene on the antisense DNA strand
from SCAS8 (Ref. 183). KLHL-1 encodes a 748 amino
acid protein, expressed in multiple brain regions
and in some tissues outside the CNS, with
structural similarities to a family of proteins
involved in the organisation of the cytoskeletal
protein actin. The working hypothesis is that
SCAS8 normally regulates expression of KLHL-1
through an RNA-RNA interaction, and that an
SCAS8 repeat expansion alters this regulatory
activity. However, it is possible that the repeat

expansion has other effects at the RNA level or
alters expression of other nearby genes.

SCA10: the first pentameric-repeat-
expansion disease

SCA10, found in five pedigrees from Mexico
(Refs 185, 186), is caused by an expansion of an
ATTCT pentanucleotide repeat located within
intron 9 of SCA10, a gene of unknown function
located on chromosome 22q13-qter. The normal
length of the repeat is 10 to 22 pentamers, whereas
affected individuals carry an expanded allele
varying in length from ~800 to 4500 pentamers.
There is marginal correlation between age of onset
and repeat length. The mode of pathogenesis
remains unknown, although it seems plausible
that the repeat expansion disrupts SCA10
expression. The precedent for this type of
pathogenesis is in Friedreich’s ataxia, a recessive
disorder usually caused by a long intronic GAA
repeat that blocks expression of the frataxin gene.

SCA12: altered phosphatase activity?
SCA12 was initially identified in a large American
pedigree of German descent and has been
subsequently identified in multiple Indian
pedigrees (Refs 187, 188), perhaps accounting for
6% of all dominant SCA cases in India. SCA12 is
caused by a CAG repeat expansion in the gene
encoding PPP2R2B (Ref. 189), a brain-specific
regulatory subunit of a ubiquitous enzyme,
protein phosphatase PP2A, which is involved in
multiple cellular functions. Normal repeat length
in the population is 7 to 32 triplets, whereas
expanded repeats range from 55 to 78 triplets
(Ref. 190). There is no clear association between
repeat length and age of SCA12 onset, although
repeat length is modestly unstable during vertical
transmission. Preliminary analysis of the single
SCAI12 brain that has come to autopsy revealed
diffuse atrophy, including loss of cerebellar
Purkinje cells, with no evidence of abnormal tau
accumulation (Ref. 191). Preliminary findings
suggest that the repeat occurs in a functional
promoter region, and that the SCA12 mutation
alters the expression of PPP2R2B (Ref. 190), which
could in turn shift the substrate preference for
PP2A, with potentially lethal consequences.

Outstanding questions

and clinical implications
The available evidence suggests that repeat
expansion leads to dominant neurodegenerative
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diseases by one of three mechanisms:
polyglutamine toxicity, altered normal protein
function, and altered gene expression. Why is
repeat expansion mutation frequently the
aetiology of neurodegenerative processes, yet
rarely of other diseases? For the polyglutamine
diseases, the answer appears to lie in the realm of
specific neuronal vulnerability to long stretches
of glutamine, and the frequency with which
polyglutamine-containing proteins are expressed
in the CNS. For the other two classes of disorder,
the answer is less clear. Part of the explanation is
probably a bias towards searching for repeat
expansions in rare dominant disorders of the
CNS, and perhaps the frequency with which
rare dominant disorders occur in the CNS relative
to other organ systems.

Many questions with important clinical
implications remain only partially answered.
Polyglutamine expansion is clearly toxic, but is
loss of function of normal polyglutamine-
containing proteins a contributing factor? If this
loss is important, can it be reversed by blocking
aggregation? Is polyglutamine aggregation
directly toxic? Much evidence now suggests that
the aggregates reflect the end-product of more-
toxic intermediates. What is the relative
importance and interrelationship of pathways
that involve proteolysis, proteasomal
degradation, mitochondrial toxicity, oxidative
stress, and transcriptional dysregulation? Is
blocking one pathway sufficient to stop the
phenotype? What other pathways may be
involved? For the non-polyglutamine-repeat
diseases, the key questions involve how the
expansion alters gene expression, and what the
effect of altered expression may be.

More importantly, what is the most feasible
therapeutic approach to these disorders? The early
pathogenic stages that may be common to all
(or most) of the polyglutamine disorders, such
as the early stages of aggregate formation,
proteolysis, or nuclear import, make intriguing
targets (Fig. 1). While the rarity of the other repeat-
expansion diseases might preclude development
of specific therapies, strategies designed to block
common final pathways of neurodegeneration
might be universally beneficial.
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Further reading, resources and contacts

The following websites provide general information and other links about Huntington’s disease and related
disorders:

National Ataxia Foundation
http://www.ataxia.org/
Hereditary Disease Foundation
http://www.hdfoundation.org/
Huntington’s Disease Society of America
http://www.hdsa.org/
Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine

http://ww.hopkinsmedicine.org/bhdc/
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Figure
Figure 1. Polyglutamine pathogenesis: a multimodal hypothesis (fig001rmb).

Table
Table 1. Summary of clinical findings and neuropathology for characterised dominant repeat disorders
(tab001rmb).
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