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Abstract

In answer set programming (ASP), a problem at hand is solved by (i) writing a logic program

whose answer sets correspond to the solutions of the problem, and by (ii) computing the

answer sets of the program using an answer set solver as a search engine. Typically, a

programmer creates a series of gradually improving logic programs for a particular problem

when optimizing program length and execution time on a particular solver. This leads the

programmer to a meta-level problem of ensuring that the programs are equivalent, i.e., they

give rise to the same answer sets. To ease answer set programming at methodological level, we

propose a translation-based method for verifying the equivalence of logic programs. The basic

idea is to translate logic programs P and Q under consideration into a single logic program

EQT(P ,Q) whose answer sets (if such exist) yield counter-examples to the equivalence of P

and Q. The method is developed here in a slightly more general setting by taking the visibility

of atoms properly into account when comparing answer sets. The translation-based approach

presented in the paper has been implemented as a translator called lpeq that enables the

verification of weak equivalence within the smodels system using the same search engine as

for the search of models. Our experiments with lpeq and smodels suggest that establishing

the equivalence of logic programs in this way is in certain cases much faster than naive

cross-checking of answer sets.

KEYWORDS: Answer set programming, weak equivalence, programming methodology,

program optimization

1 Introduction

Answer set programming (ASP) has recently been proposed and promoted as a

self-standing logic programming paradigm (Marek and Truszczyński 1999; Niemelä

1999; Gelfond and Leone 2002). Indeed, the paradigm has received increasing

attention since efficient implementations such as dlv (Leone et al. 2006) and smodels

(Simons et al. 2002) became available in the late nineties. There are numerous

� This is an extended version of a paper (Janhunen and Oikarinen 2002) presented at the 8th European
Workshop on Logics in Artificial Intelligence in Cosenza, Italy.
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698 T. Janhunen and E. Oikarinen

applications of ASP ranging, e.g., from product configuration (Soininen et al. 2001)

to a decision support system of the space shuttle (Balduccini et al. 2001). The

variety of answer set solvers is also rapidly growing as new solvers are being

developed constantly for the sake of efficiency. The reader is referred elsewhere

(Janhunen et al. 2000; Lin and Zhao 2002; Lierler and Maratea 2004; Janhunen

2004; Anger et al. 2005; Gressmann et al. 2005; Liu and Truszczyński 2005) in this

respect.

Despite the declarative nature of ASP, the development of programs resembles that

of programs in conventional programming. That is, a programmer often develops

a series of gradually improving programs for a particular problem, e.g., when

optimizing execution time and space. As a consequence, the programmer needs to

ensure that subsequent programs which differ in performance yield the same output.

This setting leads us to the problem of verifying whether given two logic programs P

and Q have exactly the same answer sets, i.e., are weakly equivalent (denoted P ≡ Q).

Looking at this from the ASP perspective, weakly equivalent programs produce the

same solutions for the problem that they formalize.

There are also other notions of equivalence that have been proposed for logic

programs. Lifschitz et al. (2001) consider P and Q strongly equivalent, denoted

P ≡s Q, if and only if P ∪ R ≡ Q ∪ R for all programs R each of which acts

as a potential context for P and Q. By setting R = ∅ in the definition of ≡s, we

obtain that P ≡s Q implies P ≡ Q but the converse does not hold in general.

Consequently, the question whether P ≡ Q holds remains open whenever P �≡s Q

turns out to be the case. This implies that verifying P ≡ Q remains as a problem of

its own, which cannot be fully compensated by verifying P ≡s Q. As suggested by

its name, ≡s is a much stronger relation than ≡ in the sense that the former relates

far fewer programs than the latter. This makes ≡s better applicable to subprograms

or program modules constituting larger programs rather than complete programs

for which ≡ is more natural. Moreover, there is a number of characterizations

of strong equivalence (Lifschitz et al. 2001; Pearce et al. 2001; Lin 2002; Turner

2003), which among other things indicate that strongly equivalent programs are

classically equivalent, but not necessarily vice versa as to be demonstrated in

Example 4.4. Thus, strong equivalence permits only classical program transformations,

i.e., substitutions of a program module (a set of rules) by another. In contrast to this,

weak equivalence is more liberal as regards program transformations some of which

are not classical but still used in practice; the reader may consult Example 4.3 for an

instance.

For the reasons discussed above, we concentrate on the case of complete pro-

grams and weak equivalence in this article. We develop a method that extends

Janhunen and Oikarinen (2002) and Janhunen and Oikarinen (2004), and hence fully

covers the class of weight constraint programs supported by the front-end lparse

(Syrjänen 2001) used with the smodels system (Simons et al. 2002). The key idea

in our approach is to translate logic programs P and Q under consideration into a

single logic program EQT(P ,Q) which has an answer set if and only if P has an

answer set that is not an answer set of Q. Such answer sets, if found, act as counter-

examples to the equivalence of P and Q. Consequently, the equivalence of P and Q
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can be established by showing that EQT(P ,Q) and EQT(Q, P ) have no answer sets.1

Thus the existing search engine of the smodels system can be used for the search of

counter-examples and there is no need to develop a special purpose search engine for

the verification task. Moreover, we are obliged to develop the underlying theory in a

more general setting where programs may involve invisible atoms, e.g., generated by

lparse when compiling weight constraints. The basic idea is that such atoms should

be neglected by equivalence relations but this is not the case for ≡ and ≡s. To this

end, we apply yet another equivalence relation, namely visible equivalence denoted by

≡v (Janhunen 2003; Janhunen 2006). This relation is compatible with ≡ in the sense

that these equivalence relations coincide in the absence of invisible atoms. In fact,

we develop a translation-based verification method for ≡v and characterize the class

of smodels programs for which the method is guaranteed to work by constraining

the use of invisible atoms. This class is identified as the class of programs possessing

enough visible atoms. Most importantly, this property is shared by weight constraint

programs produced by the front-end lparse during grounding.

The rest of this paper is organized as follows. The rule-based syntax of logic

programs supported by the current smodels system is described in Section 2. It

is then explained in Section 3 how the semantics of such rules is covered by

the stable model semantics proposed by Gelfond and Lifschitz (1988). Section

4 introduces the notion of visible equivalence mentioned above. We perform a

preliminary complexity analysis of the problem of verifying P ≡v Q for P and Q

given as input. Unfortunately, recent complexity results (Eiter et al. 2005) suggest

discouraging rises of complexity in the presence of invisible atoms. Thus we need

to impose additional constraints in order to keep the verification problem in coNP;

thus enabling the use of smodels as search engine in a feasible way. In Section 5,

we present our translation-based method for verifying the visible equivalence of

smodels programs. The correctness of the method is also addressed. The resulting

complexity classifications are then concluded in Section 5.1. Section 6 concentrates

on the case of weight constraint programs supported by the front-end lparse of

the smodels system and shows how programs in the extended language are covered

by the translation-based method. Section 7 is devoted to experiments that we have

performed with an implementation of the translation-based method, a translator

called lpeq, and the smodels system. The results indicate that in certain cases

verifying the equivalence of smodels programs using lpeq is one or two orders of

magnitude faster than naive cross-checking of stable models. Finally, the paper is

finished by a brief conclusion in Section 8.

2 Programs in the smodels Language

The goal of this section is to make the reader acquainted with the rule-based language

supported by the current smodels system (Simons et al. 2002). Definition 2.1 lists

1 Turner (Turner 2003) develops an analogous transformation for weight constraint programs and
strong equivalence. Moreover, Eiter et al. (2004) cover the case of disjunctive programs under strong
and uniform equivalence and present the respective transformations.
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five forms of rules which constitute the knowledge representation primitives of the

system. Besides basic rules (1) of conventional normal logic programs, there are also

other expressions such as constraint rules (2), choice rules (3), weight rules (4), and

compute statements (5). These extensions have been carefully chosen to be directly

and efficiently implementable in the search engine of the smodels system (Simons

et al. 2002). It should be stressed that the front-end of the system, lparse (Syrjänen

2001), admits a more liberal use of constraint and weight rules Syrjänen (2004) but

we postpone the discussion of such features until Section 6.

Definition 2.1

Rules are expressions of the forms

h← a1, . . . , an,∼b1, . . . ,∼bm (1)

h← c {a1, . . . , an,∼b1, . . . ,∼bm} (2)

{h1, . . . , hl} ← a1, . . . , an,∼b1, . . . ,∼bm (3)

h← w � {a1 = wa1
, . . . , an = wan ,∼b1 = wb1

, . . . ,∼bm = wbm} (4)

compute {a1, . . . , an,∼b1, . . . ,∼bm} (5)

where n � 0, m � 0, and l > 0, and where h, each ai, each bj , and each hk are atoms

and c, each wai , each wbj , as well as w, are natural numbers.

The symbol ∼ occurring in Definition 2.1 denotes default negation or negation as

failure to prove which differs from classical negation in an important way (Gelfond

and Lifschitz 1990). We define positive and negative default literals in the standard

way as atoms a or their negations ∼a, respectively. The exact model-theoretic

semantics of rules is deferred until Section 3, but – informally speaking – the rules

listed above are used to draw conclusions as follows.

• The head h of a basic rule (1) can be inferred if the atoms a1, . . . , an are

inferable by other rules whereas the atoms b1, . . . , bm are not.

• The head h of a constraint rule (2) can be inferred if the number of

inferable atoms among a1, . . . , an plus the number of non-inferable atoms

among b1, . . . , bm is at least c.

• A choice rule (3) is similar to a basic rule except that any subset of the

non-empty set of head atoms {h1, . . . , hl} can be inferred instead of a single

head atom h. Note that it is not necessary to infer any of the head atoms.

• A weight rule (4) involves summing as follows: the weight wai (resp. wbj ) is

one of the summands if and only if ai is inferable (resp. bj is not inferable).

The head h can be inferred if such a sum of weights is at least w.

• The default literals involved in a compute statement (5) act as direct constraints

saying that the atoms a1, . . . , an should be inferable by some rules whereas the

atoms b1, . . . , bm should not.

A couple of observations follows. A constraint rule (2) becomes equivalent to

a basic rule (1) given that c = n + m. A weight rule (4) reduces to a constraint

rule (2) when all weights are equal to 1 and w = c. Moreover, default literals may

be assigned different weights in different weight rules, i.e., weights are local in this
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sense. The types of rules defined above are already well-suited for a variety of

knowledge representation and reasoning tasks in a number of domains. Example 2.2

demonstrates the use of rules in a practical setting. The reader is referred elsewhere

(Niemelä 1999; Marek and Truszczyński 1999; Simons et al. 2002; Gelfond and

Leone 2002) for more examples how to represent knowledge in terms of rules.

Example 2.2

Consider the task of describing coffee orders using rules2 introduced in Definition 2.1.

The nine rules given below form our formalization of this domain which should be

self-explanatory. The compute statement in the end identifies the orders of interest

to be those for which “acceptable” can be inferred.

{coffee, tea, biscuit, cake, cognac}.
{cream, sugar} ← coffee.

cognac← coffee.

{milk, lemon, sugar} ← tea.

mess← milk, lemon.

happy← 1 {biscuit, cake, cognac}.
bankrupt← 6 � {coffee = 1, tea = 1, biscuit = 1, cake = 2, cognac = 4}.
acceptable← happy,∼bankrupt,∼mess.

compute {acceptable}.

We define a logic program P as a finite3 set of ground rules of the forms (1)–

(5) given in Definition 2.1. It follows that programs under consideration are fully

instantiated and thus consist of ground atoms which are parallel to propositional

atoms, or atoms for short in the sequel. The Herbrand base of a logic program P

can be any fixed set of atoms Hb(P ) containing all atoms that actually appear

in the rules of P . Furthermore, we view Hb(P ) as a part of the program which

corresponds to defining a logic program as pair 〈P ,Hb(P )〉 where Hb(P ) acts as

the symbol table of P . The flexibility of this definition has important consequences.

First, the length ||P || of the program, i.e., the number of symbols needed to represent

P as a string, becomes dependent on |Hb(P )|. This aspect becomes relevant in the

analysis of translation functions (Janhunen 2006). Second, the explicit representation

of Hb(P ) enables one to keep track of atoms whose occurrences have been removed

from a program, e.g., due to program optimization. For instance, the program

〈{a← ∼b. }, {a, b}〉 can be rewritten as 〈{a. }, {a, b}〉 under stable model semantics.

There is a further aspect of atoms that affects the way we treat Herbrand bases,

namely the visibility of atoms. It is typical in answer set programming that only

certain atoms appearing in a program are relevant for representing the solutions

of the problem being solved. Others act as auxiliary concepts that might not

appear in other programs written for the same problem. As a side effect, the

models/interpretations assigned to two programs may differ already on the basis

2 Rules are separated with full stops and the symbol “←” is dropped from a basic rule (1) or a choice
rule (3) if the body of the rule is empty (n = 0 and m = 0).

3 This reflects the fact that the theory being presented/developed here is closely related to an actual
implementation, the smodels engine, which admits only finite sets of ground rules.
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of auxiliary atoms. Rather than introducing an explicit hiding mechanism in the

language itself, we let the programmer decide the visible part of Hb(P ), i.e., Hbv(P ) ⊆
Hb(P ) which determines the set of hidden atoms Hbh(P ) = Hb(P ) − Hbv(P ). The

ideas presented so far are combined as follows.

Definition 2.3

A logic program in the smodels system (or an smodels program for short) is a

triple 〈P ,Hbv(P ),Hbh(P )〉 where

1. P is a finite set of rules of the forms (1)–(5);

2. Hbv(P ) and Hbh(P ) are finite and disjoint sets of atoms and determine the visible

and hidden Herbrand bases of the program, respectively; and

3. all atoms occurring in P are contained in Hb(P ) = Hbv(P ) ∪Hbh(P ).

Finally, we define Hba(P ) as the set of atoms of Hb(P ) not occurring in P .4

Note that the atoms of Hba(P ) can be viewed as additional atoms that just extend

Hb(P ). By a slight abuse of notation, we often use P rather than the whole triple

when referring to a program 〈P ,Hbv(P ),Hbh(P )〉. To ease the treatment of programs,

we make some default assumptions regarding the sets Hb(P ) and Hbv(P ). Unless

otherwise stated, we assume that Hbv(P ) = Hb(P ), Hbh(P ) = ∅, and Hba(P ) = ∅,
i.e., Hb(P ) contains only atoms that actually appear in P .

Example 2.4

Given P = {a← ∼b. }, the default interpretation is that Hb(P ) = {a, b}, Hbv(P ) =

Hb(P ) = {a, b}, and Hbh(P ) = ∅. To make an exception in this respect, we have to

add explicitly that, e.g., Hbv(P ) = {a, c} and Hbh(P ) = {b}. Together with P these

declarations imply that Hba(P ) is implicitly assigned to {c}.

Generally speaking, the set Hbv(P ) can be understood as a program interface of P

and it gives the basis for comparing the program P with other programs of interest.

The atoms in Hbh(P ) are to be hidden in any such comparisons.

3 Stable model semantics

In this section, we review the details of stable model semantics proposed by

Gelfond and Lifschitz (1988). Stable models were first introduced in the context

of normal logic programs, i.e., logic programs that solely consist of basic rules (1),

but soon they were generalized for other classes involving syntactic extensions. In

addition to recalling the case of normal programs, it is also important for us to

understand how the semantic principles underlying stable models can be applied

to the full syntax of smodels programs introduced in Section 2. Yet another

generalization will be presented in Section 6 where the class of weight constraint

programs is addressed.

The class of normal programs includes positive programs that are free of default

negation, i.e., m = 0 for all rules (1) of such programs. The standard way to determine

4 The atoms in Hba(P ) are made false by stable semantics to be introduced in Section 3.
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the semantics of any positive program P is to take the least model of P , denoted

by LM(P ), as the semantical basis (Lloyd 1987). This is a particular classical model

of P which is minimal with respect to subset5 inclusion and also unique with this

property. Moreover, the least model LM(P ) coincides with the intersection of all

classical models of P . Consequently, an atom a ∈ Hb(P ) is a logical consequence

of P in the classical sense if and only if a ∈ LM(P ). It is also important to

realize that the semantic operator LM(·) is inherently monotonic: P ⊆ Q implies

LM(P ) ⊆ LM(Q) for any positive normal logic programs P and Q.

Gelfond and Lifschitz (1988) show how the least model semantics can be general-

ized to cover normal logic programs. The idea is to reduce a normal logic program P

with respect to a model candidate M by pre-interpreting negative literals that appear

in the rules of P . The resulting program PM – also known as the Gelfond-Lifschitz

reduct of P – contains a reduced rule h← a1, . . . , an if and only if there is a rule (1)

in P so that the negative literals ∼b1, . . . ,∼bm in the body are satisfied in M. This

makes PM a positive program whose semantics is determined in the standard way,

i.e., using its least model (Lloyd 1987).

Definition 3.1 (Gelfond and Lifschitz (1988))

For a normal logic program P , an interpretation M ⊆ Hb(P ) is a stable model of

P if and only if M = LM(PM).

For a positive program P , the reduct PM = P for any M ⊆ Hb(P ) implying that

LM(P ) coincides with the unique stable model of P . Unlike this, stable models need

not be unique in general: a normal logic program P may possess several stable

models or no stable model at all. However, this is not considered as a problem in

answer set programming, since the aim is to capture solutions to the problem at hand

with the stable models of a program that is constructed to formalize the problem.

In particular, if there are no solutions for the problem, then the logic programming

representation is not supposed to possess any stable models.

Simons (1999) shows how the stable model semantics can be generalized for

the other kinds of rules presented in Section 2. However, the reduced program

is not explicitly present in the semantical definitions given by him. This is why

we resort to an alternative definition, which appears as Definition 3.4 below. It

will be explained in Section 6 how the forthcoming definition can be understood

as a special case of that given by Simons et al. (2002) for more general classes

of rules. In contrast to their definitions that involve deductive closures of sets of

rules, we define stable models purely in model-theoretic terms using the least model

concept.

Given a logic program P , an interpretation I is simply a subset of Hb(P ) defining

which atoms a are considered to be true (a ∈ I) and which false (a �∈ I). By the

following definition, we extend the satisfaction relation I |= r for the types of rules r

under consideration. In particular, let us point out that negative default literals are

treated classically at this point.

5 It is assumed that interpretations are represented as sets of atoms evaluating to true.
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Definition 3.2

Given an interpretation I ⊆ Hb(P ) for an smodels program P ,

1. A positive default literal a is satisfied in I (denoted I |= a) ⇐⇒ a ∈ I .

2. A negative default literal ∼a is satisfied in I (denoted I |= ∼a) ⇐⇒ I �|= a.

3. A set of default literals L is satisfied in I (denoted I |= L) ⇐⇒
I |= l for every l ∈ L.

4. A basic rule r of the form (1) is satisfied in I (denoted I |= r) ⇐⇒
I |= {a1, . . . , an,∼b1, . . . ,∼bm} implies I |= h.

5. A constraint rule r of the form (2) is satisfied in I (denoted I |= r) ⇐⇒
c � |{ai | I |= ai} ∪ {∼bj | I |= ∼bj}| implies I |= h.

6. A choice rule r of the form (3) is always satisfied in I .

7. A weight rule r of the form (4) is satisfied in I (denoted I |= r) ⇐⇒

w � WSI (a1 = wa1
, . . . , an = wan ,∼b1 = wb1

, . . . ,∼bm = wbm )

=
∑

I |=ai

wai +
∑

I |=∼bj

wbj

(6)

implies I |= h.

8. A compute statement s of the form (5) is satisfied in I (denoted I |= s) ⇐⇒
I |= {a1, . . . , an,∼b1, . . . ,∼bm}.

9. A program P is satisfied in I (I |= P ) ⇐⇒ I |= r for every r ∈ P .

The equality in (6) determines how weighted literal sets are evaluated. Given an

interpretation I and an assignment of weights to default literals as in the body of a

weight rule (4), the respective weight sum in (6) includes the weight of each literal

true in I . This primitive will be needed a lot in the sequel to deal with weight rules.

Example 3.3

The third but last rule of Example 2.2 is satisfied in an interpretation I1 =

{tea, biscuit}, but not in I2 = {coffee, cake, cognac}.

An interpretation I is a (classical) model of a logic program P if and only if I |= P .

However, stable models are not arbitrary models of logic programs. As discussed in

the beginning of this section, they involve a reduction of logic programs which is

based on a pre-interpretation of negative literals.

Definition 3.4

For an smodels program P and an interpretation I ⊆ Hb(P ) of P , the reduct P I

contains

1. a basic rule h ← a1, . . . , an ⇐⇒ there is a basic rule (1) in P such that

I |= {∼b1, . . . ,∼bm} or there is a choice rule (3) in P such that h ∈ {h1, . . . , hl},
I |= h, and I |= {∼b1, . . . ,∼bm};

2. a constraint rule h← c′ {a1, . . . , an} ⇐⇒ there is a constraint rule (2) in P and

c′ = max(0, c− |{∼bi | I |= ∼bi}|);
3. a weight rule h ← w′ � {a1 = wa1

, . . . , an = wan} ⇐⇒ there is a weight rule (4)

in P and w′ = max(0, w −WSI (∼b1 = wb1
, . . . ,∼bm = wbm )); and

4. no compute statements.
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Note that in addition to evaluating negative literals in the bodies of rules, the

head atoms h ∈ {h1, . . . , hl} of choice rules (3) are subject to a special treatment: an

essential prerequisite for including h← a1, . . . , an in the reduct PM is that M |= h, i.e.,

h ∈ M. This is the way in which the choice regarding h takes place. Moreover, it is

clear by Definition 3.4 that the reduct PM is free of default negation and it contains

only basic rules, constraint rules, and weight rules, but no compute statements. Thus

we call an smodels program P positive if each rule r ∈ P is of the forms (1), (2) and

(4) restricted to the case m = 0. The least model semantics can be generalized for

positive programs by distinguishing their minimal models.

Definition 3.5

A model M |= P of a (positive) smodels program P is minimal if and only if there

is no M ′ |= P such that M ′ ⊂M.

Positive programs share many important properties of positive normal programs

and the straightforward semantics based on minimal models and the least model is

easily generalized for positive programs.

Definition 3.6

For a positive smodels program P , we define an operator TP : 2Hb(P ) → 2Hb(P ) as

follows. Given any interpretation I ⊆ Hb(P ), the result of applying TP to I , i.e.,

TP (I) ⊆ Hb(P ), contains an atom a ∈ Hb(P ) if and only if

1. there is a basic rule a← a1, . . . , an ∈ P and I |= {a1, . . . , an}; or

2. there is a constraint rule a← c {a1, . . . , an} ∈ P and c � |{ai | I |= ai}|; or

3. there is a weight rule a← w � {a1 = wa1
, . . . , an = wan} ∈ P and

w � WSI (a1 = wa1
, . . . , an = wan ).

Intuitively, the operator TP gives atoms that are necessarily true by the rules of

P if the atoms in I are assumed to be true. It follows that TP (I) ⊆ I implies I |= P

in general. We are now ready to state a number of properties of positive programs.

Proposition 3.7

Let P be a positive smodels program.

1. For any collection C of models of P , the intersection
⋂
C is also a model of P .

2. The program P has a unique minimal model M, i.e., the least model LM(P )

of P .

3. The least model LM(P ) =
⋂
{I ⊆ Hb(P ) | I |= P } and LM(P ) = lfp(TP ).

Moreover, positive programs are monotonic in the sense that P1 ⊆ P2 implies

LM(P1) ⊆ LM(P2). Given the least model semantics for positive programs, it

becomes straightforward to generalize the stable model semantics (Gelfond and

Lifschitz 1988) for programs involving default negation. The key idea is to use

the reduction from Definition 3.4, but the effect of compute statements must also

be taken into account as they are dropped out by Definition 3.4. To this end, we

define CompS(P ) as the union of literals appearing in the compute statements (5)

of P .
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Definition 3.8

An interpretation M ⊆ Hb(P ) is a stable model of an smodels program P if and

only if M = LM(PM) and M |= CompS(P ).

Definition 3.8 reveals the purpose of compute statements: they are used to select

particular models among those satisfying the conventional fixed point condition

from Definition 3.1. Given any logic program P , we define the set

SM(P ) = {M ⊆ Hb(P ) |M = LM(PM) and M |= CompS(P )}. (7)

In analogy to the case of normal logic programs, the number of stable models

may vary in general. A positive program P has a unique stable model LM(P ) as

PM = P holds; recall that compute statements are not allowed in positive programs.

It is also worth noting that M = LM(PM) and M |= CompS(P ) imply M |= P ,

i.e., stable models are also classical models in the sense of Definition 3.2. However,

the converse does not hold in general, i.e., M |= P need not imply M = LM(PM)

although it certainly implies M |= CompS(P ). For example, interpretations M1 = {a}
and M2 = {a, b} are models of the program P = {a← 1 {∼a,∼b}. }, but only M1 is

stable. To verify this, note that PM1 = {a← 0 {}. } and PM2 = {a← 1 {}. }.

Example 3.9

Recall the program P from Example 2.2. According to smodels there are 33

acceptable orders that are captured by the stable models of P . One of them is

M7 = {acceptable, happy, lemon, tea, biscuit}. The reader is kindly asked to verify

M7 = LM(PM7 ) and M7 |= CompS(P ) using the reduct PM7 listed below.

tea. biscuit.

cognac← coffee.

lemon← tea.

mess← milk, lemon.

happy← 1 {biscuit, cake, cognac}.
bankrupt← 6 � {coffee = 1, tea = 1, biscuit = 1, cake = 2, cognac = 4}.
acceptable← happy.

4 Notions of equivalence

We begin this section by reviewing two fundamental notions of equivalence that

have been proposed for logic programs, namely weak and strong equivalence, and

point out some of their limitations. This is why we resort to another notion of

equivalence in Section 4.1: visible equivalence is a variant of weak equivalence which

takes the visibility of atoms better into account. Then we are ready to identify the

respective verification problem in Section 4.2 and discuss in which way invisible

atoms render the verification problem more difficult. This serves as a starting point

for characterizing a subclass of programs for which visible equivalence can be verified

using a translation-based technique in analogy to Janhunen and Oikarinen (2002).

Lifschitz et al. (2001) address two major notions of equivalence for logic programs.

The first one arises naturally from the stable model semantics.
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Definition 4.1

Logic programs P and Q are weakly equivalent, denoted P ≡ Q, if and only if

SM(P ) = SM(Q), i.e., P and Q have the same stable models.

The second notion is definable in terms of the first and the definition is given

relative to a class of logic programs which is represented by R below. Of course, a

natural choice for us would be the class of smodels programs but that is not made

explicit in the following definition.

Definition 4.2

Logic programs P and Q are strongly equivalent, denoted P ≡s Q, if and only if

P ∪ R ≡ Q ∪ R for any logic program R.

Here the program R can be understood as an arbitrary context in which the

other two programs P and Q being compared could be placed. This is how strongly

equivalent logic programs can be used as semantics preserving substitutes of each

other. This feature makes ≡s a congruence relation over the class of logic programs

under consideration: if P ≡s Q holds, then also P ∪ R ≡s Q ∪ R holds for any

R. Moreover, it is easy to see that P ≡s Q implies P ≡ Q, but not necessarily

vice versa: ≡s relates far fewer programs than ≡ as demonstrated in Example 4.3.

This explains why we call ≡ the weak equivalence relation for the class of logic

programs introduced in Sections 2 and 3. It is worth pointing out that whereas ≡
is an equivalence relation it does not permit substitutions (P ≡ Q does not imply

P ∪ R ≡ Q ∪ R in general) and hence it does not qualify as a congruence relation.

Example 4.3

Consider P = {a ← ∼b. } and Q = {a. }. It is easy to see that SM(P ) = SM(Q) =

{{a}} and P ≡ Q. However, when joined with R = {b. }, we note that SM(P ∪ R) �=
SM(Q∪R) holds so that P �≡s Q. The programs P and Q are not classically equivalent

either as M |= P and M �|= Q hold for M = {b}.

Although the relation ≡s appears attractive at first glance, a drawback is that

it is quite restrictive, allowing only rather straightforward semantics-preserving

transformations of (sets of) rules. In fact, Lifschitz et al. (2001) characterize ≡s

in Heyting’s logic here-and-there (HT) which is an intermediary logic between

intuitionistic and classical propositional logics. This result implies that each program

transformation admitted by ≡s is based on a classical equivalence of the part being

replaced (say P ) and its substitute (say Q), i.e., P ≡s Q implies that P and Q are

classically equivalent. However, the converse is not true in general as there are

classically equivalent programs that are not strongly equivalent.

Example 4.4

The propositional sentence a↔ (¬a→ a) is classically valid – suggesting a program

transformation that replaces P = {a. } by Q = {a← ∼a. }. However, since SM(P ) =

{{a}} and SM(Q) = ∅, we have P �≡ Q and P �≡s Q although P and Q are classically

equivalent.

Since ≡s is a congruence relation, it is better applicable to subprograms or program

modules constituting larger programs rather than complete programs. In contrast to
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this, weak equivalence is mainly targeted to the comparison of complete programs

in terms of their stable models. Due to the nature of ASP, this is often the ultimate

question confronted by a programmer when optimizing and debugging programs.

For this reason, we concentrate on the problem of verifying weak equivalence in this

paper and we leave the modularization aspects of weak and visible equivalence to

be addressed elsewhere (Oikarinen and Janhunen 2006).

4.1 Visible equivalence

We do not find the notion of weak equivalence totally satisfactory either. For P ≡ Q

to hold, the stable models in SM(P ) and SM(Q) have to be identical subsets of

Hb(P ) and Hb(Q), respectively. This makes ≡ less useful if Hb(P ) and Hb(Q) differ

by some (in)visible atoms which are not trivially false in all stable models. As already

discussed in Section 2, such atoms are needed when some auxiliary concepts are

formalized using rules. The use of such atoms/concepts may lead to more concise

encodings of problems as demonstrated by our next example.

Example 4.5

Consider the following programs consisting of basic rules, choice rules, and compute

statements. The parameter n below is an odd natural number.

Program Pn:{bit1, bit2, . . . , bitn}.
odd← bit1,∼bit2, . . . ,∼bitn.

odd← ∼bit1, bit2,∼bit3 . . . ,∼bitn.
...

odd← bit1, bit2, bit3,∼bit4 . . . ,∼bitn.

odd← ∼bit1, bit2, bit3, bit4,∼bit5 . . . ,∼bitn.
...

odd← bit1, . . . , bitn.

compute {∼odd}.

Program Qn:{bit1, bit2, . . . , bitn}.
odd1 ← bit1.

odd2 ← bit2,∼odd1. odd2 ← ∼bit2, odd1.
...

oddn ← bitn,∼oddn−1. oddn ← ∼bitn, oddn−1.

odd← oddn.

compute {∼odd}.

The first program generates all subsets B of BIT n = {bit1, bit2, . . . , bitn}, analyzes

when |B| is odd, and accepts only subsets with non-odd (even) cardinality. Thus

Pn has 2n−1 stable models M ⊆ BIT n with |M| even but also 2n−1 basic rules

capturing subsets with odd cardinality. In contrast, huge savings can be achieved by

introducing new atoms odd1, . . . , oddn so that each oddi is supposed to be true if and

only if |B ∩ {bit1, . . . , biti}| is odd. Using these, the oddness of |B| can be formalized
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in terms of 2n basic rules. The resulting program Qn has 2n−1 stable models, but

they are not identical with the stable models of Qn due to new atoms involved. Thus

we have SM(Qn) �= SM(Pn) and Qn �≡ Pn for every odd natural number n.

From the programmer’s point of view, the programs Pn and Qn solve the same

problem and should be considered equivalent if one neglects the interpretations of

odd1, . . . , oddn in the stable models of Qn. To this end, we adopt a slightly more

general notion of equivalence (Janhunen 2003; Janhunen 2006) which takes the

visibility of atoms properly into account. The key idea is that when two programs

P and Q are compared, the hidden atoms in Hbh(P ) and Hbh(Q) are considered to

be local to P and Q and thus negligible as far as the equivalence of the programs

is concerned. In addition to this feature, a very strict (bijective) correspondence of

stable models is necessitated by the notion of visible equivalence.

Definition 4.6

Logic programs P and Q are visibly equivalent, denoted P ≡v Q, if and only if

Hbv(P ) = Hbv(Q) and there is a bijection f : SM(P ) → SM(Q) such that for every

M ∈ SM(P ), M ∩Hbv(P ) = f(M) ∩Hbv(Q).

Proposition 4.7

The relation ≡v is an equivalence relation.

By defining Hbv(Pn) = Hbv(Qn)BIT n for the programs Pn and Qn defined in

Example 4.5 we obtain an intuitive relationship Qn ≡v Pn. The bijection f involved

in this relationship maps a stable model M ∈ SM(Qn) to another f(M) = M∩BIT n ∈
SM(Pn). Our following example demonstrates the case in which both SM(P ) and

SM(Q) have stable models that cannot be distinguished if projected to Hbv(P ) =

Hbv(Q), i.e., there are stable models M,N ∈ SM(P ) such that M ∩ Hbv(P ) =

N ∩Hbv(P ) and analogously for Q. However, this does not necessarily exclude the

possibility for a bijection in the sense of Definition 4.6.

Example 4.8

Consider logic programs P = {a ← b. a ← c. b ← ∼c. c ← ∼b. } and Q =

{{b, c}. a ← b, c. a ← ∼b,∼c. b ← c,∼b. c ← b,∼c. } with Hbv(P ) = Hbv(Q) = {a}
and Hbh(P ) = Hbh(Q) = {b, c}. The stable models of P are M1 = {a, b} and

M2 = {a, c} whereas for Q they are N1 = {a} and N2 = {a, b, c}. Thus P �≡ Q is

clearly the case, but we have a bijection f : SM(P )→ SM(Q), which maps Mi to Ni

for i ∈ {1, 2}, such that M ∩Hbv(P ) = f(M) ∩Hbv(Q). Thus P ≡v Q holds.

A brief comparison of ≡v and ≡ follows.

Proposition 4.9

If Hb(P ) = Hb(Q) and Hbh(P ) = Hbh(Q) = ∅, then P ≡ Q ⇐⇒ P ≡v Q.

In words, the two relations coincide when all atoms are visible. There is only a

slight difference: ≡v insists on Hb(P ) = Hb(Q) whereas ≡ does not. Nevertheless, it

follows by Definition 2.3 that such a difference is of little account: Herbrand bases

are always extendible to meet Hb(P ) = Hb(Q). The value of these observations is

that by implementing ≡v we obtain an implementation for ≡ as well. We will follow
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this strategy in Section 5. Moreover, it is also clear by Proposition 4.9 that ≡v is not

a congruence for ∪ and thus it does not support program substitutions like ≡s.

Visible equivalence has its roots in the study of translation functions (Janhunen

2003, 2006) and it was proposed as a faithfulness criterion for a translation function

Tr between classes of programs, i.e., P ≡v Tr(P ) should hold for all programs P . The

bijective relationship of stable models ensures that a faithful translation (see Theorem

6.10 for an instance) preserves the number of stable models. This is highly desirable

in ASP where stable models correspond to solutions of problems and the ability

to count solutions correctly after potential program transformations is of interest.

However, this is not guaranteed, if we consider weaker alternatives of ≡v obtained

in a general framework based on equivalence frames (Eiter et al. 2005). Visible

equivalence does not really fit into equivalence frames based on projected answer

sets. A projective variant of Definition 4.6 would simply impose {M ∩Hbv(P ) |
M ∈ SM(P )} = {N ∩Hbv(Q) | N ∈ SM(Q)} on P and Q for P ≡vp Q to hold, which

is clearly implied by P ≡v Q but not vice versa. The key observation is that a weakly

faithful translation function Tr, i.e., Tr satisfies P ≡vp Tr(P ) for all P , does not

necessarily preserve the number of stable models – contradicting the general nature

of ASP. As an illustration of these ideas, let us consider P = {a← ∼b. b← ∼a. } and

Qn = Trexp(P ) = P ∪ {ci ← ∼di. di ← ∼ci. | 0 < i � n} where n > 0 is a parameter

of Trexp and Hbv(Qn) = Hbv(P ) = {a, b} by definition. It follows that SM(P ) =

{{a}, {b}} and Qn has 2n+1 stable models so that M ∩ {a, b} ∈ SM(P ) holds for each

M ∈ SM(Qn). Therefore P ≡vp Qn but P �≡v Qn hold for every n > 0, i.e., Trexp would

be faithful only in the weaker sense. A drawback of translation functions like Trexp is

that for sufficiently large values of n, it is no longer feasible to count the number of

stable models of P using its translation Qn which is only polynomially longer than P .

Equivalence relations play also a role in forgetting. Given a logic program P and

a set of atoms F ⊆ Hb(P ), the goal is to remove all instances of atoms of F from P

but preserve the semantics of P as far as possible. Eiter and Wang (2006) provide an

account of forgetting in the case of disjunctive logic programs. The result of forgetting

fg(P , F) is not syntactically unique but its stable models are defined as the ⊆-minimal

elements of SM(P ) \ F = {M \ F | M ∈ SM(P )}. For instance, the program Pn in

Example 4.5 is a valid result of forgetting if we remove F = {odd1, . . . , oddn} from

Qn. We note that forgetting a set of atoms F is somewhat analogous to hiding F in

P , i.e., setting Hbh(P ) = F , but obvious differences are that Hb(fg(P , F)) ∩ F = ∅
by definition and forgetting can affect the number of stable models in contrast to

hiding. Nevertheless, Eiter and Wang (2006) show that forgetting preserves weak

equivalence in the sense that P ≡ Q implies fg(P , F) ≡ fg(Q, F). This property is

shared by ≡v in the fully visible case as addressed in Proposition 4.9. In general, we

can establish the following.

Proposition 4.10

If P ≡v Q, then fg(P ,Hbh(P )) ≡ fg(Q,Hbh(Q)).

Proof

Let us assume P ≡v Q which implies both Hbv(P ) = Hbv(Q) and the exist-

ence of a bijection f in the sense of Definition 4.6. Assuming fg(P ,Hbh(P )) �≡
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1: function EqNaive(P ,Q): Boolean;

2: begin

3: for M ∈ SM(P ) do

4: if M �= LM(QM)

5: then return false;

6: for N ∈ SM(Q) do

7: if N �= LM(PN)

8: then return false;

9: return true

10: end

1: algorithm NotEq(P ,Q);

2: begin

3: choose M ⊆ Hb(P ) and N ⊆ Hb(Q);

4: if M = LM(PM) and M �= LM(QM)

5: then accept;

6: if N = LM(QN) and N �= LM(PN)

7: then accept;

8: reject

9: end

(a) (b)

Fig. 1. A naive deterministic and a nondeterministic algorithm for verifying P ≡ Q and

P �≡ Q, respectively, when Hb(P ) = Hb(Q) and all atoms of P and Q are visible.

fg(Q,Hbh(Q)), we derive without loss of generality the existence of a stable model

M ∈ SM(fg(P ,Hbh(P ))) such that M �∈ SM(fg(Q,Hbh(Q))). Note that M is a subset

of Hb(fg(P ,Hbh(P ))) = Hbv(P ) = Hbv(Q) = Hb(fg(Q,Hbh(Q))) and a ⊆-minimal

element in SM(P ) \Hbh(P ) defined in the preceding discussion.

Then consider any M ′ ∈ SM(P ) such that M = M ′ \ Hbh(P ). It follows by the

properties of f that N ′ = f(M ′) ∈ SM(Q) and N ′ ∩ Hbv(Q) = M ′ ∩ Hbv(P ) = M.

Thus M = N ′ \ Hbh(Q) belongs to SM(Q) \ Hbh(Q). Let us then assume that M

is not ⊆-minimal in this set, i.e., there is N ∈ SM(Q) \ Hbh(Q) such that N ⊂ M.

Using the properties of f and the same line of reasoning as above for M ′ and N ′

but in the other direction, we learn that N ∈ SM(P ) \Hbh(P ) holds for N ⊂ M. A

contradiction, since M is ⊆-minimal in this set.

It follows that M is also a ⊆-minimal element in SM(Q) \ Hbh(Q) so that

M ∈ SM(fg(Q,Hbh(Q))), a contradiction. �

4.2 Preliminary Analysis of the equivalence verification problem

The definition of stable models is based on the whole Herbrand base Hb(P ) and

hence it neglects which atoms are visible and which not. The weak equivalence

relation ≡ is based on the same line of thinking and in (Janhunen and Oikarinen

2002), we presented methods for verifying the weak equivalence of two programs

P and Q satisfying Hb(P ) = Hb(Q). A relatively naive approach is to cross-check

the stable models in SM(P ) and SM(Q) in order to establish SM(P ) = SM(Q)

and thus P ≡ Q. The respective deterministic algorithm EqNaive is described

in Figure 1 (a).6 The algorithm may use any algorithm such as the one given

by Simons et al. (2002) for enumerating the stable models of P and Q one at

a time. Due to FNP-completeness of the respective function problem (Simons

et al. 2002), the computation of each model may require time exponential in

6 For the sake of brevity, compute statements (5) are not covered by EqNaive.
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the length of input, i.e., ||P || or ||Q||. The number of stable models to be cross-

checked by a function call EqNaive(P ,Q) can also be exponential. However, the

tests for instability on lines 4 and 7 can be clearly accomplished in polynomial

time. This is because the least model LM(R) of any positive set of rules R can be

computed in time linear in ||R|| using a generalization of the procedure developed by

Dowling and Gallier (1984).

On the other hand, we get an upper limit for the computational time complexity

of the equivalence verification problem by inspecting the nondeterministic algorithm

presented in Figure 1 (b). The idea is to select an interpretation M for P (line 3)

and to verify that M is a counter-example to P ≡ Q (lines 4–7). Both tasks can be

completed in time linear in ||P || + ||Q||. Since NotEq(P ,Q) accepts its input in the

nondeterministic sense if and only if P �≡ Q, we see that the equivalence verifying

problem is a problem in coNP. On the other hand, checking the existence of a stable

model for a given logic program forms an NP-complete decision problem (Simons

et al. 2002). Thus one can establish the coNP-completeness of the verification

problem by reducing the complement of the latter problem, i.e., checking that a logic

program does not have stable models, to the problem of verifying that P is equivalent

with {a ← ∼a} – a program having no stable models. These observations on

computational complexity suggest an alternative computational strategy for solving

the equivalence verification problem (Janhunen and Oikarinen 2002; Oikarinen and

Janhunen 2004). The idea is that counter-examples for P ≡ Q are explicitly specified

in terms of rules and then proved non-existent using the same search algorithm as

what is used for the computation of stable models.

Unfortunately, further sources of complexity arise if we allow the use of hidden

atoms in smodels programs and consider ≡v rather than ≡. To see this, let us

analyze how the operation of EqNaive should be modified in order to deal with

invisible atoms. In fact, each cross-checking step has to be refined. It is no longer

enough to compute a stable model M for P . In addition to this, we have to count

how many stable models of P coincide with M up to Hbv(P ), i.e., determine the

number n = |{N ∈ SM(P ) | N ∩Hbv(P ) = M ∩Hbv(P )}|. Then it is sufficient to

check that Q has equally many stable models that coincide with M up to Hbv(P ).

This line of thinking applies directly to the pair of programs given in Example 4.8.

By numbering stable models in the order they are encountered, we obtain the

basis for a bijective relationship as insisted by Definition 4.6. The bad news is

that the computational complexity of counting models appears to be much higher

than finding a model; see Roth (1996) for the case of propositional satisfiability.

Since classical models are easily captured with stable models (Niemelä 1999),

counting stable models of a logic program cannot be easier than counting satisfying

assignments for a set of propositional clauses. Thus the complexity of verifying ≡v

appears to be very high in general and restrictions on visible atoms do not seem

to provide us a way to circumvent the counting problem: If Hbv(P ) = Hbv(Q) = ∅
is assumed, then P ≡v Q if and only if P and Q have the same number of stable

models.

To avoid model counting as discussed above, we should restrict ourselves to logic

programs P , for which the set {N ∈ SM(P ) | N ∩Hbv(P ) = M ∩Hbv(P )} contains
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exactly one element for each M ∈ SM(P ). Then stable models M,N ∈ SM(P ) can

be distinguished in terms of visible atoms:

M �= N implies M ∩Hbv(P ) �= N ∩Hbv(P ). (8)

Definition 4.11

Given an smodels program P , a set of interpretations C ⊆ 2Hb(P ) is separable with

Hbv(P ) if (8) holds for all M,N ∈ C , and we say that P has separable stable models

if SM(P ) is separable with Hbv(P ).

Unfortunately, the separability of P and Q does not imply that EqNaive(P ,Q)

and NotEq(P ,Q) work correctly as Hbh(P ) and Hbh(Q) differ and may lead to

unnecessary disqualification of models by the polynomial time tests M �= LM(QM)

and N �= LM(PN). These tests capture correctly conditions M �∈ SM(Q) and M �∈
SM(P ), respectively, but when all atoms are visible. However, a higher computational

complexity is involved in the presence of invisible atoms. For example, the former test

would have to be replaced by a computation verifying that there is no N ∈ SM(Q)

such that M ∩Hbv(P ) = N ∩Hbv(Q) holds. This tends to push the worst case time

complexity of the equivalence verification problem to the second level of polynomial

time hierarchy Stockmeyer (1976). Thus it seems that we need a stronger restriction

than separability in order to keep the problem of verifying P ≡v Q as a decision

problem in coNP – an obvious prerequisite for the translation-based verification

technique in Janhunen and Oikarinen (2002).

4.3 Programs having enough visible atoms

In the fully visible case, the complexity of the verification problem is alleviated by

the computation of least models in algorithm NotEq(P ,Q). Those models are unique

models associated with the respective Gelfond-Lifschitz reductions of programs and

they provide the basis for detecting the (in)stability of model candidates. Having

such a unique model for each reduct is the key property that we would like to carry

over to the case of programs involving invisible atoms. To achieve this, we propose

a semantical restriction for the class of logic programs as follows. Given a logic

program P and a set of atoms A ⊆ Hb(P ), we write Av and Ah for A ∩Hbv(P ) and

A ∩ Hbh(P ), respectively. Moreover, we are going to use shorthands A, B, and H

for the respective sets of atoms {a1, . . . , an}, {b1, . . . , bm}, and {h1, . . . , hl} appearing in

rules (1) – (5). Analogously, the notations A = WA and ∼B = WB capture the sets

of weights associated with A and B in the body of (4). The goal of Definition 4.12

is to extract the hidden part Ph/Iv of an smodels program P by partially evaluating

it with respect to an interpretation Iv ⊆ Hbv(P ) for its visible part.

Definition 4.12

For an smodels program P and an interpretation Iv ⊆ Hbv(P ) for the visible part

of P , the hidden part of P relative Iv, denoted Ph/Iv, contains

1. a basic rule h ← Ah,∼Bh ⇐⇒ there is a basic rule h ← A,∼B in P such that

h ∈ Hbh(P ) and Iv |= Av ∪ ∼Bv;
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2. a choice rule {Hh} ← Ah,∼Bh ⇐⇒ there is a choice rule {H} ← A,∼B in P

such that Hh �= ∅ and Iv |= Av ∪ ∼Bv;

3. a constraint rule h← c′ {Ah,∼Bh} ⇐⇒ there is a constraint rule h← c {A,∼B}
in P such that h ∈ Hbh(P ) and c′ = max(0, c− |{l ∈ Av ∪ ∼Bv | Iv |= l}|);

4. a weight rule h ← w′ � {Ah = WAh
,∼Bh = WBh

} ⇐⇒ there is a weight rule

h← w � {A = WA,∼B = WB} in P such that h ∈ Hbh(P ) and

w′ = max(0, w −WSIv (Av = WAv
,∼Bv = WBv

)); (9)

5. and no compute statements.

This construction can be viewed as a generalization of the simplification operation

simp(P , T , F) proposed by Cholewinski and Truszczyński (1999) to the case of

smodels programs, but restricted in the sense that T and F are subsets of Hbv(P )

rather than Hb(P ). More precisely put, we have Ph/Iv = simp(P , Iv,Hbv(P )− Iv) for

a normal program, i.e., a set of basic rules P .

Roughly speaking, our idea is to allow the use of invisible atoms as long as they

do not interfere with the number of stable models obtained for the visible part. We

consider the invisible part of a program “well-behaving” in this sense if and only if

M = LM((Ph/Iv)
M) has a unique fixpoint M for every Iv ⊆ Hbv(P ). In particular, it

should be pointed out that Definition 4.12 excludes compute statements which are

not supposed to affect this property (in perfect analogy to Definition 3.8).

Definition 4.13

An smodels program P has enough visible atoms if and only if Ph/Iv has a unique

stable model for every Iv ⊆ Hbv(P ).

This property can be achieved for any program by making sufficiently many

atoms visible. To see this, consider Definition 4.12 when Hbv(P ) = Hb(P ) and

Hbh(P ) = ∅: it follows that Ph/Iv = ∅ for which the existence of a unique stable

model is immediate. Generally speaking, verifying the property of having enough

visible atoms can be computationally quite hard in the worst case, but this property

favorably trades off the complexity of verifying ≡v as we shall see in Section 5.

Proposition 4.14

Checking whether an smodels program P has enough visible atoms forms a coNP-

hard decision problem EVA that belongs to Πp
2 .

Here the language EVA consists of smodels programs that have enough visible

atoms. For the proof, we introduce two further languages EVA�1 and EVA�1.

The former includes those smodels programs P for which Ph/Iv has at most one

stable model for every Iv ⊆ Hbv(P ). The latter is defined analogously, but at

least one stable model for each Ph/Iv is demanded. It should be now clear that

EVA = EVA�1 ∩ EVA�1 which provides us a basis for complexity analysis.

Proof of Proposition 4.14

To show that EVA�1 ∈ coNP, we describe a nondeterministic Turing machine M>1

that accepts the complement of EVA�1. Given a finite smodels program P as input,

the machine M>1 chooses nondeterministically two interpretations I, J ⊆ Hbv(P )
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and computes Q = Ph/Iv. Then M>1 checks in polynomial time that Iv = Jv and

Ih �= Jh as well as that both Ih and Jh are stable models of Q. If not, it rejects the

input and accepts it otherwise. It follows that M>1 accepts P in the nondeterministic

sense if and only if P �∈ EVA�1. Hence EVA�1 ∈ coNP.

The case of EVA�1 is handled by presenting a nondeterministic machine M0 which

uses an NP oracle and which accepts the complement of EVA�1. The machine M0

chooses nondeterministically an interpretation Iv ⊆ Hbv(P ) for the input P . Then it

computes Ph/Iv and consults an NP-oracle Simons et al. (2002) to check whether

Ph/Iv has a stable model. If not, it accepts the input and rejects it otherwise. Given

the oracle, these computations can be accomplished in polynomial time. Now M0

accepts P in the nondeterministic sense if and only if P �∈ EVA�1. Thus we have

established that EVA�1 ∈ Πp
2 .

We may now combine M>1 and M0 into one oracle machine M that accepts an

smodels program P ⇐⇒ M>1 accepts P or M0 accepts P . Equivalently, we have

P �∈ EVA�1 or P �∈ EVA�1, i.e., P �∈ (EVA�1 ∩EVA�1) = EVA. Since M is an oracle

machine with an NP oracle, we have actually shown that EVA ∈ Πp
2 .

To establish coNP-hardness, we present a reduction from 3SAT to EVA. So let us

consider an instance of 3SAT, i.e., a finite set S = {C1, . . . , Cn} of three-literal clauses

Ci of the form l1 ∨ l2 ∨ l3 where each li is either an atom a or its classical negation

¬a. Each clause Ci is translated into a rule u ← f1, f2, f3 where fi = a for li = ¬a
and fi = ∼a for li = a. The outcome is an smodels program PS which consists of

clauses of S translated in this way plus two additional rules s← ∼u and x← s,∼x.

Moreover, we define Hbv(PS ) = Hb(S) and Hbh(PS ) = {u, s, x} so that either

(PS )h/Iv = {u. s← ∼u. x← s,∼x} or (PS )h/Iv = {s← ∼u. x← s,∼x} depending on

Iv ⊆ Hbv(PS ). It follows that S ∈ 3SAT ⇐⇒ there is an interpretation J ⊆ Hb(S)

such that J |= S ⇐⇒ there is an interpretation Iv = J ⊆ Hbv(PS ) such that u

does not appear as a fact in (PS )h/Iv ⇐⇒ there is an interpretation Iv ⊆ Hbv(PS )

such that (PS )h/Iv has no stable models ⇐⇒ PS has not enough visible atoms,

since (PS )h/Iv cannot have several stable models. Thus we may conclude EVA to be

coNP-hard. �

Although the classification of EVA given in Proposition 4.14 is not exact,

exponential worst case time complexity should be clear. However, there are certain

syntactic classes of logic programs which are guaranteed to have enough visible

atoms and no computational efforts are needed to verify this. For instance, programs

P for which Ph/Iv is always positive or stratified (Apt et al. 1988) in some sense.

Note that such syntactic restrictions need not be imposed on the visible part of P

which may then fully utilize expressiveness of rules.

Example 4.15

Consider logic programs P = {a ← b. }, Q = {a ← c. c ← b. }, and R = {a ←
∼c. c← ∼d. d← b. } with Hbv(P ) = Hbv(Q) = Hbv(R) = {a, b}.

Given Iv = ∅, the hidden parts are Ph/Iv = ∅, Qh/Iv = ∅, and Rh/Iv = {c← ∼d. }
for which we obtain unique stable models MP = MQ = ∅ and MR = {c}. On the

other hand, we obtain Ph/Jv = ∅, Qh/Jv = {c. }, and Rh/Jv = {c ← ∼d. d. } for
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Jv = {a, b}. Thus the respective unique stable models of the hidden parts are NP = ∅
and NQ = {c}, and NR = {d}.

Next we relate the property of having enough visible atoms with the model

separation property. The proof of Lemma 4.16 takes place in Appendix A.

Lemma 4.16

Let P be an smodels program. If M ⊆ Hb(P ) is a stable model of P , then Mh is a

stable model of Ph/Mv as given in Definition 4.12.

Proposition 4.17

Let P be an smodels program. If P has enough visible atoms, then P has separable

stable models.

Proof

Suppose that P is an smodels program which has enough visible atoms but SM(P )

is not separable with Hbv(P ). Then there are two stable models N,M ∈ SM(P ) such

that Mv = Nv but Mh �= Nh. Thus Mh and Nh are stable models of Ph/Mv = Ph/Nv

by Lemma 4.16. A contradiction as P has enough visible atoms. �

The converse of Proposition 4.17 does not hold in general. Consider, for instance

P = {a ← ∼a. b ← a,∼b. } with Hbv(P ) = {a}. Since SM(P ) = ∅, it is trivially

separable with Hbv(P ). But for Iv = {a} ⊆ Hbv(P ), the hidden part Ph/Iv = {b ←
∼b. } has no stable models and thus P does not have enough visible atoms.

5 Translation-based verification

In this section, we concentrate on developing a translation-based verification tech-

nique for visible equivalence, i.e., the relation ≡v introduced in Section 4. Roughly

speaking, our idea is to translate given smodels programs P and Q into a single

smodels program EQT(P ,Q) which has a stable model if and only if P has a

stable model M for which Q does not have a stable model N such that Mv = Nv.

We aim to use such a translation for finding a counter-example for P ≡v Q when

Hbv(P ) = Hbv(Q) and both P and Q have enough visible atoms. Note that if

Hbv(P ) �= Hbv(Q), then P �≡v Q follows directly by Definition 4.6. As already

discussed in Section 4, we need the property of having enough visible atoms to trade

off computational complexity so that a polynomial translation is achievable. The

good news is that the programs produced by the front-end lparse have this property

by default unless too many atoms are explicitly hidden by the programmer. Our

strategy for finding a counter-examples M is based on the following four steps.

1. Find a stable model M ∈ SM(P ) for P .

2. Find the unique stable model Nh for Qh/Mv.

3. Form an interpretation N = Mv ∪Nh.

4. Check that N �∈ SM(Q), i.e., N �= LM(QN) or N �|= CompS(Q).

Here the idea is that the uniqueness of Nh with respect to Mv excludes the

possibility that Q could possess another stable model N ′ �= N such that Mv = N ′v.
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P : a← ∼b. b← ∼a.
Hidden◦(Q) : b◦ ← ∼a.

Least•(Q) : a• ← b•,∼a. b• ← ∼a.
UnStable(Q) : d← a,∼a•. d← a•,∼a.

d← b◦,∼b•. d← b•,∼b◦.
e← c. e← d.

compute {e}.

Fig. 2. The rules of the translation EQT(P ,Q) for P = {a← ∼b. b← ∼a. } and

Q = {a← b,∼a. b← ∼a. } where a is visible and b is hidden.

This follows essentially by Lemma 4.16: if N ′ ∈ SM(Q) were the case, then N ′h would

be unique for N ′v = Mv = Nv, i.e., N ′h = Nh and N = N ′.

In the sequel, we present a translation function EQT that effectively captures the

four steps listed above within a single smodels program EQT(P ,Q). In order to

combine several programs in one, we have to rename atoms and thus introduce new

atoms outside Hb(P ) ∪Hb(Q):

• a new atom a◦ for each atom a ∈ Hbh(Q) and

• a new atom a• for each atom a ∈ Hb(Q).

The former atoms will be used in the representation of Qh/Mv while the latter are

to appear in the translation of QN . The intuitive readings of a◦ and a• are that

a ∈ Nh and a ∈ LM(QN) hold, respectively. For notational convenience, we extend

the notations a◦ and a• for sets of atoms A as well as sets of positive rules R in the

obvious way. For instance, A◦ denotes {a◦ | a ∈ A} for any A ⊆ Hbh(Q).

Definition 5.1

Let P and Q be smodels programs such that Hbv(P ) = Hbv(Q). The translation

EQT(P ,Q) = P ∪Hidden◦(Q) ∪ Least•(Q) ∪UnStable(Q) extends P with three sets

of rules to be made precise by Definitions 5.2–5.4. Atoms c, d, and e introduced in

Definition 5.4 are assumed to be new.

As regards our strategy for representing counter-examples, the rules in the

translation EQT(P ,Q) play the following roles. The rules of P capture a stable

model M for P while the rest of the translation ensures that Q does not have a

stable model N such that Mv = Nv. To make the forthcoming definitions more

accessible for the reader, we use simple normal programs P = {a← ∼b. b← ∼a. }
and Q = {a ← b,∼a. b ← ∼a. } with Hbv(P ) = Hbv(Q) = {a} as our running

example. The rules contributed by Definitions 5.1–5.4 are collected together in Fig. 2.

Definition 5.2

The translation Hidden◦(Q) of an smodels program Q contains

1. a basic rule h◦ ← A◦h, Av,∼B◦h,∼Bv for each basic rule

h← A,∼B in Q with h ∈ Hbh(Q);

2. a constraint rule h◦ ← c {A◦h, Av,∼B◦h,∼Bv} for each constraint rule

h← c {A,∼B} in Q with h ∈ Hbh(Q);

https://doi.org/10.1017/S1471068407003031 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003031


718 T. Janhunen and E. Oikarinen

3. a choice rule {H◦h} ← A◦h, Av,∼B◦h,∼Bv for each choice rule

{H} ← A,∼B in Q with Hh �= ∅; and

4. a weight rule h◦ ← w � {A◦h = WA◦h
, Av = WAv

,∼B◦h = WB◦h
,∼Bv = WBv

} for each

weight rule h← w � {A = WA,∼B = WB} in Q with h ∈ Hbh(Q).

The translation Hidden◦(Q) includes rules which provide a representation for the

hidden part Qh/Mv which depends dynamically on Mv. This is achieved by leaving

the visible atoms from Hbv(Q) = Hbv(P ) untouched. However, the hidden parts of

rules are renamed systematically using atoms from Hbh(Q)◦. This is to capture the

unique stable model Nh of Qh/Mv but renamed as N◦h.
7 In our running example, the

program Q has only one rule with a hidden atom b in its head and that rule gets

translated into b◦ ← ∼a due to the visibility of a.

Definition 5.3

The translation Least•(Q) of an smodels program Q consists of

1. a rule h• ← A•,∼Bv,∼B◦h for each basic rule h← A,∼B in Q;

2. a rule h• ← c {A•,∼Bv,∼B◦h} for each constraint rule h← c {A,∼B} in Q;

3. a rule h• ← A• ∪ {h},∼Bv,∼B◦h (resp. h• ← A• ∪ {h◦},∼Bv,∼B◦h) for each choice

rule {H} ← A,∼B in Q and head atom h ∈ Hv (resp. h ∈ Hh); and

4. a rule h• ← w � {A• = WA• ,∼Bv = WBv
,∼B◦h = WB◦h

} for each weight rule

h← w � {A = WA,∼B = WB} in Q.

The rules in Least•(Q) catch the least model LM(QN) for N = Mv ∪ Nh but

expressed in Hb(Q)• rather than Hb(Q). Note that N is represented as Mv ∪ N◦h
which explains the treatment of negative body literals on the basis of visibility

in these rules. Two rules result for our running example. The negative literal ∼a
appearing in the bodies of both rules is not subject to renaming because a is visible.

Definition 5.4

The translation UnStable(Q) of an smodels program Q includes

1. rules d← a,∼a• and d← a•,∼a for each a ∈ Hbv(Q);

2. rules d← a◦,∼a• and d← a•,∼a◦ for each a ∈ Hbh(Q);

3. a rule c← ∼a•,∼d for each positive literal a ∈ CompS(Q);

4. a rule c← b•,∼d for each negative literal ∼b ∈ CompS(Q);

5. rules e← c and e← d; and

6. a compute statement compute {e}.

The purpose of UnStable(Q) is to disqualify N as a stable model of Q. The rules

in Items 1 and 2 check if N and LM(QN) differ. If not, then the rules in Items 3

and 4 check if LM(QN) violates some compute statement of Q. The rules in Item 5

summarize the two possible reasons why Q does not have a stable model N such

that Mv = Nv. This is then insisted by the compute statement in Item 6. In our

running example, the program Q is free of compute statements and hence only rules

for d and e are included in the translation.

7 For the sake of simplicity, it is assumed that Q does not involve compute statements referring to
invisible atoms in order to achieve the property of having enough visible atoms.
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Example 5.5

The translation EQT(P ,Q) given in Fig. 2 has two stable models {a, d, e} and

{b, b◦, a•, b•, d, e} from which we can read off counter-examples M1 = {a} and

M2 = {b} for P ≡v Q and the respective disqualified interpretations for Q, i.e.,

N1 = {a} and N2 = {b}. The models LM(QN1 ) = ∅ and LM(QN2 ) = {a, b} are also

easy to extract by projecting the stable models of EQT(P ,Q) with {a•, b•}.

As regards the translation EQT(P ,Q) as whole, we note that Hb(EQT(P ,Q))

equals to Hb(P )∪Hbh(Q)◦ ∪Hb(Q)• ∪ {c, d, e}. Moreover, the translation is close to

being linear. Item 3 in Definition 5.1 makes an exception in this respect, but linearity

can be achieved in practise by introducing a new atom br for each choice rule r. Then

the rules in the fourth item can be replaced by h• ← h, br (resp. h• ← h◦, br) and

br ← A•,∼Bv,∼B◦h. However, we use the current definition to avoid the introduction

of further new atoms.

Let us then address the correctness of the translation EQT(P ,Q). We begin by

computing the Gelfond-Lifschitz reduct of the translation EQT(P ,Q).

Lemma 5.6

Let P and Q be two smodels programs such that Hbv(P ) = Hbv(Q) and I ⊆
Hb(P ) ∪ Hbh(Q)◦ ∪ Hb(Q)• ∪ {c, d, e} an interpretation of EQT(P ,Q). Moreover,

define M = I ∩ Hb(P ), Nh = {a ∈ Hbh(Q) | a◦ ∈ I}, N = Mv ∪ Nh, and L =

{a ∈ Hb(Q) | a• ∈ I} so that N◦h = I ∩Hbh(Q)◦ and L• = I ∩Hb(Q)•.

The Gelfond-Lifschitz reduct EQT(P ,Q)I consists of PM extended by reducts

Hidden◦(Q)I , Least•(Q)I , and UnStable(Q)I specified as follows.

First, the reduct Hidden◦(Q)I includes

1. a rule h◦ ← A◦h, Av ⇐⇒ there is a basic rule h ← A,∼B in Q such that

h ∈ Hbh(Q), and N |= ∼B;

2. a rule h◦ ← c′ {A◦h, Av} where c′ = max(0, c− |{b ∈ B | N |= ∼b}|) ⇐⇒ there is

a constraint rule h← c {A,∼B} in Q such that h ∈ Hbh(Q);

3. a rule h◦ ← A◦h, Av ⇐⇒ there is a choice rule {H} ← A,∼B in Q such that

h ∈ Hh �= ∅, Nh |= h, and N |= ∼B; and

4. a rule h◦ ← w′ � {A◦h = WA◦h
, Av = WAv

} where w′ = max(0, w−WSN(∼B = WB))

⇐⇒ there is a weight rule h ← w � {A = WA,∼B = WB} in Q such that

h ∈ Hbh(Q).

Second, the reduct Least•(Q)I consists of

5. a rule h• ← A• ⇐⇒ there is a basic rule h← A,∼B in Q such that N |= ∼B;

6. a rule h• ← c′ {A•} where c′ = max(0, c − |{b ∈ B | N |= ∼b}|) ⇐⇒ there is a

constraint rule h← c {A,∼B} in Q;

7. a rule h• ← A• ∪ {h} (resp. h• ← A• ∪ {h◦}) ⇐⇒ there is a choice rule

{H} ← A,∼B in Q with h ∈ Hv (resp. h ∈ Hh) such that N |= ∼B; and

8. a rule h• ← w′ � {A• = WA•} where w′ = max(0, w −WSN(∼B = WB)) ⇐⇒
there is a weight rule h← w � {A = WA,∼B = WB} in Q.

Third, the set UnStable(Q)I contains

9. a rule d← a ⇐⇒ there is a ∈ Hbv(Q) such that L �|= a;
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10. a rule d← a◦ ⇐⇒ there is a ∈ Hbh(Q) such that L �|= a;

11. a rule d← a• ⇐⇒ there is a ∈ Hb(Q) such that N �|= a;

12. the fact c← ⇐⇒ there is a ∈ CompS(Q) such that L �|= a and I �|= d;

13. a rule c← b• ⇐⇒ there is ∼b ∈ CompS(Q) and I �|= d; and

14. the rules e← c and e← d.

Lemma 5.6 can be easily verified by inspecting the definition of the translation

EQT(P ,Q) (Definitions 5.1–5.4) rule by rule and using the definitions of M, N,

and L as well as the generalization of Gelfond-Lifschitz reduct for the various rule

types (Definition 3.4). The following proposition summarizes a number properties

of LM(EQT(P ,Q)I ) which are used in the sequel to prove our main theorem.

Proposition 5.7

Let P , Q, I , M, N, and L be defined as in Lemma 5.6. Define conditions

(i) M = LM(PM), (ii) Nh = LM((Qh/Mv)
Nh ), and (iii) L = LM(QN).

1. LM(EQT(P ,Q)I ) ∩Hb(P ) = LM(PM).

2. If (i), then LM(EQT(P ,Q)I ) ∩Hbh(Q)◦ = LM((Qh/Mv)
Nh )◦.

3. If (i) and (ii), then LM(EQT(P ,Q)I ) ∩Hb(Q)• = LM(QN)•.

4. If (i), (ii), and (iii), then the set of atoms A = LM(EQT(P ,Q)I )∩ {c, d, e} satisfies

(a) d ∈ A ⇐⇒ N �= L,

(b) c ∈ A ⇐⇒ d �∈ I and L �|= CompS(Q), and

(c) e ∈ A ⇐⇒ c ∈ A or d ∈ A.

Theorem 5.8

Let P and Q be two smodels programs such that Hbv(P ) = Hbv(Q) and Q has

enough visible atoms. Then the translation EQT(P ,Q) has a stable model if and

only if there is M ∈ SM(P ) such that for all N ∈ SM(Q), Nv �= Mv.

The proofs of Proposition 5.7 and Theorem 5.8 are given in Appendix A. As

a corollary of Theorem 5.8, we obtain a new method for verifying the visible

equivalence of P and Q. Weak equivalence ≡ is covered by making all atoms of

P and Q visible which implies that the programs in question have enough visible

atoms.

Corollary 5.9

Let P and Q be two smodels programs so that Hbv(P ) = Hbv(Q) and both P and Q

have enough visible atoms. Then P ≡v Q if and only if the translations EQT(P ,Q)

and EQT(Q, P ) have no stable models.

5.1 Computational Complexity Revisited

In this section, we review the computational complexity of verifying visible equi-

valence of smodels programs using the reduction involved in Theorem 5.8. First,

we will introduce languages corresponding to the decision problems of our interest

and analyze their worst-case time complexities. The main goal is to establish that

the verification of visible equivalence forms a coNP-complete decision problem for

smodels programs that have enough visible atoms.
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Definition 5.10

For any smodels programs P and Q,

• P ∈ SM ⇐⇒ there is a stable model M ∈ SM(P );

• 〈P ,Q〉 ∈ IMPR ⇐⇒ Hbv(P ) = Hbv(Q) and for each M ∈ SM(P ), there is

N ∈ SM(Q) such that Nv = Mv;

• 〈P ,Q〉 ∈ IMPL ⇐⇒ 〈Q, P 〉 ∈ IMPR; and

• 〈P ,Q〉 ∈ EQV ⇐⇒ P ≡v Q.

The computational complexity of SM is already well-understood: it forms an

NP-complete decision problem as shown by Marek and Truszczyński (1991) and

Simons et al. (2002), and thus its complement SM is coNP-complete.

Theorem 5.11

IMPR, IMPL, and EQV are coNP-complete decision problems for smodels pro-

grams having enough visible atoms.

Proof

Let us establish that (i) IMPR ∈ coNP and (ii) SM can be reduced to IMPR.

(i) Let P and Q be two smodels programs having enough visible atoms. Then

define a reduction r from IMPL to SM by setting r(P ,Q) = EQT(P ,Q) if

Hbv(P ) = Hbv(Q) and r(P ,Q) = ∅ otherwise. To justify that r(P ,Q) can be

computed in polynomial time we make the following observations. The condition

Hbv(P ) = Hbv(Q) can be verified in linear time if atoms in Hbv(P ) and Hbv(Q)

are ordered, e.g., alphabetically. If not, sorting can be done in time of O(n log n)

where n = max(|Hbv(P )|, |Hbv(Q)|). Moreover, we can identify four subprograms

of EQT(P ,Q), i.e., P , Hidden◦(Q), Least•(Q), and UnStable(Q) in Definition 5.1

whose lengths depend mostly linearly on ||P ||, ||Q||, and |Hb(Q)|, respectively.

The rules of Item 3 make the only exception with a quadratic blow-up.

It follows by Definition 5.10 and Theorem 5.8 that 〈P ,Q〉 ∈ IMPR ⇐⇒
r(P ,Q) �∈ SM, i.e., r(P ,Q) ∈ SM. Since SM ∈ coNP (Simons et al. 2002) and r

is a polynomial time reduction from IMPR to SM, IMPR ∈ coNP.

(ii) Let R be any smodels program. Now R ∈ SM ⇐⇒ R �∈ SM ⇐⇒ SM(R) = ∅.
Then consider any smodels program ⊥ having no stable models, i.e., SM(⊥) = ∅,
with a visible Herbrand base Hbv(⊥) = Hbv(R). It follows that SM(R) = ∅ ⇐⇒
〈R,⊥〉 ∈ IMPR. Thus R ∈ SM ⇐⇒ 〈R,⊥〉 ∈ IMPR.

Items (i) and (ii) above imply that IMPR is coNP-complete. The classification of

IMPL follows by a trivial reduction 〈P ,Q〉 ∈ IMPR ⇐⇒ 〈Q, P 〉 ∈ IMPL that

works in both directions, i.e., from IMPR to IMPL and back.

The case of EQV follows. Definitions 4.6 and 5.10 imply that 〈P ,Q〉 ∈ EQV

⇐⇒ 〈P ,Q〉 ∈ IMPR and 〈P ,Q〉 ∈ IMPL. Thus EQV = IMPR ∩ IMPL and

EQV ∈ coNP as coNP is closed under intersection. The coNP-hardness of EQV

follows easily as it holds for any smodels program R and a trivial smodels program

⊥ with SM(⊥) = ∅ and Hbv(⊥) = Hbv(R) that R ∈ SM ⇐⇒ 〈R,⊥〉 ∈ EQV. Thus

we may conclude that EQV is coNP-complete. �
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6 Weight constraint programs

The verification method presented in Section 5 covers the class of smodels programs

as defined in Section 2. This class corresponds very closely to the input language of

the smodels search engine but it excludes optimization statements which will not be

addressed in this paper. In this section we concentrate on extending our translation-

based verification method for the input language supported by the front-end of

the smodels system, namely lparse (Syrjänen 2001; Syrjänen and Niemelä 2001).

The class of weight constraint programs (Simons et al. 2002) provides a suitable

abstraction of this language in the propositional case.8 Simons et al. (2002) show

how weight constraint programs can be transformed into smodels programs using a

modular translation that introduces new atoms. Our strategy is to use this translation

to establish that the weak equivalence of two weight constraint programs reduces to

the visible equivalence of the respective translations.

Next we introduce the syntax and semantics of weight constraint programs.

Recalling the syntax of weight rules (4), a natural way to extend their expressiveness

is to allow more versatile use of weights as well as constraints associated with them.

This is achieved by recognizing weight constraints as first-class citizens and using

them as basic building blocks of rules instead of plain atoms.

Definition 6.1

A weight constraint C is an expression of the form

l � {a1 = wa1
, . . . , an = wan ,∼b1 = wb1

, . . . ,∼bm = wbm} � u, (10)

where ai’s and bj ’s are atoms, and l, u, wai ’s, and wbj ’s are natural numbers.

As before, we use a shorthand l � {A = WA,∼B = WB} � u for a weight

constraint (10) where A = {a1, . . . , an} and B = {b1, . . . , bm} are the sets of atoms

appearing in the constraint. The numbers l and u give the respective lower and upper

bounds for the constraint. Definition 6.1 can be extended to the case where integers

rather than natural numbers are used as weights. However, negative weights can be

translated away (Simons et al. 2002) from weight constraints.

Definition 6.2

A weight constraint rule is an expression of the form

C0 ← C1, . . . , Cr (11)

where Ci is a weight constraint for each i ∈ {0, . . . , r}.

A weight constraint program is a program consisting of weight constraint rules.

As a weight constraint rule (11) is a generalization of a weight rule (4), we can define

the satisfaction relation for weight constraint programs in analogy to Definition 3.2.

Definition 6.3

For a weight constraint program P and an interpretation I ⊆ Hb(P ),

8 Since lparse is responsible for instantiating variables and pre-interpreting certain function symbols
the input language is actually much more general.
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1. a weight constraint C of the form l � {A = WA,∼B = WB} � u is satisfied in I

⇐⇒ l � WSI (A = WA,∼B = WB) � u,

2. a weight constraint rule of the form C0 ← C1, . . . , Cr is satisfied in I ⇐⇒ I |= C0

is implied by I |= C1, . . . , and I |= Cr , and

3. I |= P ⇐⇒ I |= r for every weight constraint rule r ∈ P .

The stable model semantics of normal programs (Gelfond and Lifschitz 1988) can

be generalized to the case of weight constraint programs using the reduction devised

for them by Simons et al. (2002).

Definition 6.4

Given an interpretation I for a weight constraint C of the form l � {A = WA,∼B =

WB} � u, the reduct CI is the constraint l′ � {A = WA} where the lower bound

l′ = max(0, l −WSI (∼B = WB)).

Definition 6.5

For a weight constraint program P and an interpretation I ⊆ Hb(P ), the reduct P I

contains a reduced weight constraint rule h← CI
1 , . . . , C

I
r for each C0 ← C1, . . . , Cr ∈

P and h ∈ A0 ∩ I satisfying for all i ∈ {1, . . . , r}, WSI (Ai = WAi
,∼Bi = WBi

) � ui.

It should be pointed out that P I consists of Horn constraint rules of the form

h← C1, . . . , Cr , where h is an atom, each constraint Ci contains only positive literals

and has only a lower bound condition. We say that a weight constraint program

P is positive if all the rules in P are Horn constraint rules. Thus P I is positive

by definition. The properties of minimal models carry over to the case of weight

constraint programs, too. Thus a positive weight constraint program P has a unique

minimal model, the least model, LM(P ), and we can define stable models for weight

constraints programs almost in analogy to smodels programs.

Definition 6.6

An interpretation M ⊆ Hb(P ) for a weight constraint program P is a stable model

of P ⇐⇒ (i) M |= P and (ii) M = LM(PM).

This definition is only slightly different from Definition 3.8 as M |= P ⇐⇒ M |=
PM does not hold generally for weight constraint programs – making condition (i) in

Definition 6.6 necessary. However, if we consider the restricted language described in

Section 2 and interpret the rules involved as weight constraint rules (11), then Defin-

itions 3.8 and 6.6 yield the same semantics as stated below. To this end, we consider

only choice rules (3) and weight rules (4) without loss of generality. Simons et al.

(2002) encode rules of these forms using the following weight constraint rules:

0 � {h1 = 1, . . . , hl = 1} ←
n + m � {a1 = 1, . . . , an = 1,∼b1 = 1, . . . ,∼bm = 1} (12)

1 � {h = 1} ← w � {a1 = wa1
, . . . , an = wan ,∼b1 = wb1

, . . . ,∼bm = wbm} (13)

Proposition 6.7

Let P be an smodels program and Pw its representation as a weight constraint

program. Then for any interpretation M ⊆ Hb(P ) = Hb(Pw),

M = LM(PM) ⇐⇒ M |= Pw and M = LM(PM
w ).
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The proof of this proposition is given in Appendix A. Simons et al. (2002) show

how weight constraint programs can be translated into smodels programs consisting

only of basic rules (1), choice rules (3) and weight rules (4). The translation is highly

modular so that each weight constraint rule can be translated independently of each

other. However, in order to keep the length of the translation linear, two new atoms

have to be introduced for each weight constraint appearing in a program.

Definition 6.8

The translation TrSNS(C) of a weight constraint C of the form l � {A = WA,∼B =

WB} � u is translated into two weight rules

sat(C)← l � {A = WA,∼B = WB}. (14)

unsat(C)← u + 1 � {A = WA,∼B = WB}. (15)

where sat(C) and unsat(C) are new atoms specific to C .

Definition 6.9

Let P be a weight constraint program and f �∈ Hb(P ) a new atom. The translation

of P into an smodels program TrSNS(P ) consists of

1. TrSNS(C) for each weight constraint C appearing in P and

2. the following smodels rules introduced for each C0 ← C1, . . . , Cr ∈ P :

{A0} ← sat(C1),∼unsat(C1), . . . , sat(Cr),∼unsat(Cr). (16)

f ← ∼sat(C0), sat(C1),∼unsat(C1), . . . , sat(Cr),∼unsat(Cr). (17)

f ← unsat(C0), sat(C1),∼unsat(C1), . . . , sat(Cr),∼unsat(Cr). (18)

compute {∼f}. (19)

where A0 is the set of positive default literals appearing in C0.

The visible Herbrand base of TrSNS(P ) is defined by Hbv(TrSNS(P )) = Hbv(P ).

Let us then briefly explain intuitions underlying TrSNS. The rules given in (14)

and (15) check whether the lower bound l of the weight constraint C is satisfied the

upper bound u of C is not satisfied, respectively, and then sat(C) and unsat(C) can

be inferred by the rules accordingly. The choice rule in (16) makes any subset of A0

true if the body of the weight constraint rule is satisfied in the sense of Definition

6.3, i.e., all lower bounds and upper bounds are met. Finally, two basic rules in

(17) and (18) and the compute statement in (19) ensure the satisfaction of the head

constraint C0 whenever the body C1, . . . , Cr is satisfied. A very tight correspondence

of stable models is obtained using the translation TrSNS(P ).

Theorem 6.10

The translation function TrSNS is faithful, i.e., P ≡v TrSNS(P ) holds for all weight

constraint programs P .

The proof of the theorem can be found in Appendix A. Theorem 6.10 and

Definition 6.9 imply together that the visible equivalence of weight constraint

programs can be reduced to that of smodels programs using TrSNS.
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Corollary 6.11

For all weight constraint programs P and Q,

P ≡v Q ⇐⇒ TrSNS(P ) ≡v TrSNS(Q).

However, we have to address the degree of visibility of atoms in the translation

TrSNS(P ) in order to apply the translation-based method presented in Section 5.

Recalling the limitations of the method, we should establish that TrSNS(P ) and

TrSNS(Q) have enough visible atoms under some reasonable assumptions about P

and Q. For the sake of simplicity, we will only consider a relatively straightforward

setting made precise in Proposition 6.12. Nevertheless, it implies the applicability of

our verification method to a substantial class of weight constraint programs.

Proposition 6.12

If P is a weight constraint program such that Hbh(P ) = ∅, then TrSNS(P ) has enough

visible atoms.

Proof

Let P be any weight constraint program such that Hbh(P ) = ∅, i.e., Hbv(P ) = Hb(P ).

Moreover, let us pick any interpretation Iv ⊆ Hbv(P ). Since Hbh(P ) = ∅ we have

Iv = I so that I is actually an interpretation for the whole program.

Let us then consider any rule C0 ← C1, . . . , Cr ∈ P and its translation under TrSNS

as given in Definition 6.9. Since Hbv(TrSNS(P )) = Hbv(P ) by definition and I = Iv,

the rules involved in the translation contribute to Ph/Iv as follows: (14) is reduced

to sat(Ci)← l′i � {} where l′i = max(0, li − wi) for wi = WSIv (Ai = WAi
,∼Bi = WBi

);

(15) is reduced to unsat(Ci) ← u′i � {} where u′i = max(0, (ui + 1) − wi); (16) is

dropped altogether as (A0)h = ∅; (17) and (18) remain intact because they involve

only hidden atoms; and (19) is dropped by definition.

Let us then verify that TrSNS(P )h/Iv is a stratified program. After inspecting the

dependencies in the reduced rules, we note that the hidden atoms in Hb(TrSNS(P ))

can be assigned to strata as follows: the atoms sat(C) and unsat(C) associated with

weight constraints C belong to stratum 0 and f belongs to stratum 1. Thus TrSNS(P )

is essentially a stratified normal logic program as the remainders of weight rules act

as facts. Then TrSNS(P ) has a unique stable model (Apt et al. 1988). �

By denying occurrences of hidden atoms in weight constraint programs, we

obtain a translation-based method for verifying weak equivalence. Note that the

requirement Hbv(P ) = Hbv(Q), i.e., Hb(P ) = Hb(Q) in this case, can be easily met

by extending the Herbrand bases of programs as discussed in Section 2.

Corollary 6.13

Let P and Q two weight constraint programs such that Hbh(P ) = Hbh(Q) = ∅ and

Hbv(P ) = Hbv(Q). Then P ≡ Q ⇐⇒ TrSNS(P ) ≡v TrSNS(Q) ⇐⇒ the translations

EQT(TrSNS(P ),TrSNS(Q)) and EQT(TrSNS(Q),TrSNS(P )) have no stable models.

It seems that hidden atoms can be tolerated in weight constraint programs to

some degree, but we skip such an extension of Corollary 6.13 for space reasons.

Nevertheless, the result established above enables us to implement the verification

of weak equivalence for the programs produced by lparse.
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7 Experiments

The translation function EQT presented in Section 5 has been implemented in C

under the Linux operating system. The translator which we have named lpeq takes

two logic programs P and Q as its input and produces the translation EQT(P ,Q) as

its output. The implementation assumes the internal file format of smodels which

enables us to use the front-end lparse of smodels in conjunction with lpeq.9 It is yet

important to note that lpeq checks that the visible Herbrand bases of the programs

being compared are exactly the same as insisted by ≡v. In practice, visible atoms

are recognized as those having a name in the symbol table of a program. The latest

version of lpeq is also prepared to deal with programs involving invisible atoms,

e.g., introduced by the front-end lparse as discussed in Section 6. Before producing

the translation EQT(P ,Q), the translator uses Tarjan’s algorithm to find strongly

connected components for the dependency graph of Qh when its checks that Qh/Iv
is stratifiable for all Iv ⊆ Hbv(Q). An overapproximation is used in this respect: all

dependencies of invisible atoms are taken into account regardless of Iv. A successful

test guarantees that Q has enough visible atoms so that EQT(P ,Q) works correctly.

Otherwise, an error message is printed for the user.

The current implementation (lpeq version 1.17) is available10 in the WWW. The

files related with benchmark problems and experiments reported in this section are

also provided. To assess the feasibility of lpeq in practice we performed a number

of tests with different test cases. The running times of the lpeq approach were

compared with those of a fictitious approach, i.e., the naive one:

1. Compute one stable model M of P not computed so far.

2. Check whether Q has a stable model N such that Mv = Nv. Stop if not.

3. Continue from step 1 until all stable models of P have been enumerated.

It is obvious that a similar check has to be carried out in the other direction to

establish P ≡v Q in analogy to Corollaries 5.9 and 6.13.

There is still room for optimization in both approaches. If one finds a counter-

example in one direction, then P �≡v Q is known to hold and there is no need

to do testing in the other direction except if one wishes to perform a thorough

analysis. Since running times seem to scale differently depending on the direction,

we count always running times in both directions. However, one should notice that

the search for counter-examples in one direction is stopped immediately after finding

a counter-example. Since the running times of smodels may also depend on the

order of rules in programs and literals in rules, we shuffle them randomly.

In both approaches, the smodels system (version 2.28) is responsible for the

computation of stable models for programs that are instantiated using the front-end

lparse (version 1.0.13). In the lpeq approach, the total running time in one direction

is the running time needed by smodels for trying to compute one stable model of

the translation produced by lpeq. The translation time is also taken into account

9 A textual human-readable output can also be produced on request.
10 Please consult http://www.tcs.hut.fi/Software/lpeq/ for binaries and scripts involved.
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(a) Place a queen on each column

negq(X,Y2) :- q(X,Y), d(X), d(Y), d(Y2), Y2 != Y.

q(X,Y) :- not negq(X,Y), not q(X,Y2): d(Y2): Y2 != Y , d(X), d(Y).

hide negq(X,Y).

(b) Place a queen on each column using a choice rule

1 { q(X,Y):d(Y) } 1 :- d(X).

(c) Place a queen on each row

negq(X2,Y) :- q(X,Y), d(X), d(Y), d(X2), X2 != X.

q(X,Y) :- not negq(X,Y), not q(X2,Y): d(X2): X2 != X , d(X), d(Y).

hide negq(X,Y).

(d) Make sure that queens do not threaten each other (same row or diagonal)

:- d(X), d(Y), d(X1), q(X,Y), q(X1,Y), X1 != X.

:- d(X), d(Y), d(X1), d(Y1), q(X,Y), q(X1,Y1), X != X1, Y != Y1,

abs(X - X1) == abs(Y - Y1).

d(1..queens).

(e) Make sure that queens do not threaten each other (same column or diagonal)

:- d(X), d(Y), d(Y1), q(X,Y), q(X,Y1), Y1 != Y.

:- d(X), d(Y), d(X1), d(Y1), q(X,Y), q(X1,Y1), X != X1, Y != Y1,

abs(X - X1) == abs(Y - Y1).

d(1..queens).

Fig. 3. Encoding the n-queens problem.

although it is negligible. The naive approach has been implemented as a shell script.

The running time in one direction consists of the running time of smodels for

finding the necessary (but not necessarily all) stable models of P plus the running

times of smodels for testing that the stable models found are also stable models of

Q. These tests are realized in practice by adding Mv ∪ {∼a | a ∈ Hbv(Q) \Mv} as a

compute statement to Q. It is worth noting that the naive approach does not test in

any way that the stable model N of Q with Mv = Nv is unique. However, the set of

benchmarks is selected in such a way that programs have enough visible atoms and

the correctness of the naive approach is guaranteed. All the tests reported in this

section were run under the Linux 2.6.8 operating system on a 1.7GHz AMD Athlon

XP 2000+ CPU with 1 GB of main memory. As regards timings in test results, we

report the sum of user and system times.

7.1 The n-Queens Benchmark

Our first experiment was based on the n-queens problem. We verified the visible

equivalence of three different formulations which are variants of one proposed by

Niemelä (1999, p. 260). The encoding Qx1
n consists of parts (a) and (d) given in

Figure 3 and is designed so that queens are placed column-wise to the board. The

second program Qx2
n consists of parts (b) and (d) given in Figure 3, i.e., it is a variant

of Qx1
n where the choice between placing or not placing a queen in a particular cell of

the chessboard is equivalently formulated using a choice rule rather than plain basic

https://doi.org/10.1017/S1471068407003031 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003031


728 T. Janhunen and E. Oikarinen

Table 1. Results for two equivalent logic programs (n-queens)

tavg
a tavg CPavg

b CPavg

n SMc
lpeq naive RARd

lpeq naive RIe ROf

1 1 0.000 0.080 – 0 0 7 28

2 0 0.000 0.051 – 0 0 38 130

3 0 0.003 0.051 17.000 0 0 124 384

4 2 0.019 0.120 6.316 0 2 300 884

5 10 0.042 0.454 10.810 5 18 600 1718

6 4 0.136 0.259 1.904 16 18 1058 2974

7 40 0.516 2.340 4.535 40 84 1708 4740

8 92 2.967 6.721 2.265 163 253 2584 7104

9 352 17.316 32.032 1.850 615 955 3720 10154

10 724 99.866 90.694 0.908 2613 3127 5150 13978

11 2680 617.579 451.302 0.731 11939 13662 6908 18664

a Average running time in seconds.
b Average number of choice points during the search.
c Number of stable models for Q

x1
n and Q

x2
n .

d Ratio of average running times.
e Number of rules in the input: |Qx1

n |+ |Qx2
n |.

f Number of rules in the output: |EQT(Q
x1
n , Q

x2
n )|+ |EQT(Q

x2
n , Q

x1
n )|.

rules. The third program Qy
n , i.e., parts (c) and (e) given in Figure 3, is an orthogonal

version of Qx1
n in which queens are placed row-wise rather than column-wise.

First we verified the visible equivalence of Qx1
n and Qx2

n and then that of Qx1
n and

Qy
n using both the lpeq and the naive approaches. The number of queens n was

varied from 1 to 11 and the verification task was repeated 100 times for each number

of queens – generating each time new randomly shuffled versions of the programs

involved. The results of these experiments are shown in Tables 1 and 2, respectively.

It appears that the naive approach becomes superior in the case of two equivalent

well-structured logic programs containing hidden atoms (the atoms negq(X,Y) are

explicitly hidden) as programs grow and the number of stable models increases.

Comparing the average running times from Tables 1 and 2, it can be seen that the

difference in running times is smaller in the case where the second program does

not contain hidden atoms. This can be seen as an indication that it is particularly

the translation of the hidden part Hidden◦(·) that increases the running time of

the lpeq approach. To investigate this further, we verified the equivalence of Qx1
n

and Qy
n without declaring the atoms negq(X,Y) hidden. The results obtained from

this experiment resembled our previous results in Janhunen and Oikarinen (2002),

i.e., the lpeq approach performs somewhat better than the naive one. Moreover,

the average running times of naive approach are approximately the same as with

hidden atoms, but the average running times for the lpeq approach are significantly

smaller. The reason why the naive approach appears to be immune to changes in the

visibility of atoms is the following. In our encodings of the n-queens problem, the

interpretation for hidden atoms can be directly determined once the interpretation

for visible part is known. However, this is not necessarily the case in general and
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Table 2. Results for two equivalent logic programs (n-queens).

tavg
a tavg CPavg

b CPavg

n SMc
lpeq naive RARd

lpeq naive RIe ROf

1 1 0.000 0.080 – 0 0 4 30

2 0 0.000 0.050 – 0 0 36 146

3 0 0.007 0.052 7.43 0 0 136 478

4 2 0.020 0.124 6.20 0 2 344 1146

5 10 0.052 0.473 9.09 4 18 700 2270

6 4 0.169 0.281 1.66 16 18 1244 3970

7 40 0.815 2.583 3.17 38 84 2016 6366

8 92 5.994 7.531 1.26 176 263 3116 9578

9 352 35.900 36.836 1.03 603 955 4404 13726

10 724 238.726 110.109 0.46 2734 3243 6100 18930

11 2680 1521.730 565.029 0.37 12210 13927 8184 25310

a Average running time in seconds.
b Average number of choice points during the search.
c Number of stable models for Q

x1
n and Q

y
n .

d Ratio of average running times.
e Number of rules in the input: |Qx1

n |+ |Qy
n |.

f Number of rules in the output: |EQT(Q
x1
n , Q

y
n)|+ |EQT(Q

y
n, Q

x1
n )|.

finding the unique stable model for the hidden part can be more laborious and time

consuming as in our last benchmark to be described in Section 7.3.

We chose the pairs of programs (Qx1
n , Qx2

n ) and (Qx1
n , Qy

n) for our experiments

in order to to see if the two approaches would perform differently depending on

whether a local change (a choice rule is used instead of basic rules) or a global change

(an orthogonal encoding is introduced) is made in the encoding. However, our test

results show no clear indication in either direction. Furthermore, we decided to test

non-equivalent pairs of n-queens programs. To this end, we dropped n random

rules from Qy
n , and verified the equivalence of Qx1

n and the modified version of Qy
n

by selecting only non-equivalent pairs (both with and without hidden atoms). The

results turned out to be very similar to the results that were obtained for equivalent

program pairs. In all our n-queens experiments the number of choice points (i.e.,

the number of choices made by smodels while searching for stable models for the

translation) is slightly smaller in the lpeq approach than in the naive one. Thus it

seems that verifying the equivalence of logic programs using lpeq leads to smaller

search space, but the eventual efficiency can vary as far as time is concerned.

7.2 Random 3-SAT and graph problems

We also performed some tests with randomly generated logic programs. We gen-

erated logic programs that solve an instance of a random 3-sat problem with a

constant clauses to variables ratio c/v = 4. Such instances are typically satisfiable,

but so close to the phase transition point (approximately 4.3) that finding models

is already demanding for SAT solvers. To simulate a sloppy programmer making

mistakes, we dropped one random rule from each program. Due to non-existence of
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Fig. 4. Average running times and numbers of choice points for random 3-sat instances

with the ratio c/v = 4.

hidden atoms, we checked the weak equivalence of the modified program and the

original program to see if making such a mistake affects stable models or not. As

a consequence, the pairs of programs included both equivalent and nonequivalent

cases. When c/v = 4, approximately 45–60% of the program pairs were equivalent.

This does not seem to depend much on the problem size (measured in the number of

variables in the problem) within problem sizes used in the experiments. With smaller

values of c/v the percentage of equivalent program pairs is lower but for larger

values of c/v the percentage grows up to 90%. In the first experiment with random

3-sat programs, we varied the number of variables v from 10 to 50 with steps of

5. For each number of variables we repeated the test 100 times and generated each

time a new random instance. The average running times and the average number of

choice points for both approaches are shown in Figure 4. These results indicate that

the lpeq approach is significantly faster than the naive one. The difference increases

as program instances grow. The number of choice points is also lower in the former

approach on an average.

In the second experiment with random 3-sat instances we generated programs as

in the previous experiment, but we kept the number of variables constant, v = 40,

and varied the ratio c/v from 3.75 to 4.75 with steps of 0.125. For each value of

the ratio c/v, we repeated the test 100 times generating each time a new random

instance. The motivation behind this experiment was to see how the lpeq approach
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Fig. 5. Average running times and numbers of choice points for random 3-sat instances

with fixed v = 40 and varying ratio c/v.

performs compared to the naive one as the programs change from almost always

satisfiable (many stable models) to almost always unsatisfiable (no stable models).

The averages of running times and numbers of choice points are presented in

Figure 5 for both approaches. For low values of the ratio c/v, the lpeq approach

is significantly better than the naive one like previously. As the ratio increases, the

performance of the naive approach gradually improves, but lpeq is still better. The

average number of choice points is also lower in the lpeq approach.

We also combined structured logic programs with randomness. We used two

graph problems formalized with rules by Niemelä (1999, p. 262): the problems of

n-coloring of a graph with n colors and finding a Hamiltonian circuit for a graph.

Using the Stanford GraphBase library, we generated random planar graphs with v

vertices where v ranges from 10 to 17 and instantiated the respective logic programs

for 4-coloring and Hamiltonian circuit by invoking lparse. As in the preceding

experiments with random 3-sat programs, the second program for equivalence

testing was obtained by dropping one random rule from the one instantiated by

lparse. The tests were repeated 100 times for each value of v using a new random

planar graph every time. The average running times and the average number of

choice points for both experiments are presented in Figure 6. In both experiments

the lpeq approach is significantly better than the naive approach, though running

times differ more in the 4-coloring problem. The numbers of choice points vary as

before.
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Fig. 6. Average running times and average number of choice points for 4-coloring random

planar graphs and finding Hamiltonian circuits.

7.3 Knapsack

Finally, we used the knapsack problem whose encoding involves weight constraints.

Here the objective was to test the performance of the translation-based approach

when programs involve a substantial number of hidden atoms and the verification

of equivalence requires the property of having enough visible atoms as stated in

Corollary 6.13. It should be stressed that the previous version of lpeq (1.13) and

the corresponding translation presented in (Janhunen and Oikarinen 2002) do not

cover such programs. In the knapsack problem, there are n types of items, each item

of type i has size wi and profit ci. The goal is to fill the knapsack with Xi items of

type i so that the maximum size W is not exceeded and the minimum profit C is

gained, i.e.,
n∑

i=1

Xi · wi � W and

n∑

i=1

Xi · ci � C.

We decided to use an encoding of the knapsack problem proposed by

Dovier et al. (2005) using the same weights and costs. An instance of the encoding is

denoted by KS(W,C) where the parameters W and C are as above. We considered

the visible equivalence of programs KS(127, C) and KS(127, C−1) for the values of C

in the sequence 184, 180, . . . , 104, 100. The starting value C = 184 was selected, since

it is the highest possible value for KS(127, C) to have stable models. As C decreases,

the number of stable models possessed by KS(127, C) grows. For each value of C
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Fig. 7. Average running times and average number of choice points for knapsack.

we generated 10 randomly shuffled versions of KS(127, C) and KS(127, C − 1). The

programs KS(127, C) and KS(127, C− 1) are always visibly non-equivalent as stable

models of KS(127, C) are also stable models of KS(127, C − 1) up to visible parts,

but not vice versa, because of weights used in (Dovier et al. 2005).

The averages of running times and numbers of choice points for the knapsack

problem are presented in Figure 7. It is worth noting that the total running time

is dominated by the direction that does not yield a counter-example. However, the

lpeq approach is also significantly faster than the naive one in the direction that

actually yields counter-examples.

8 Conclusion

In this article, we propose a translation-based approach for verifying the equivalence

of logic programs under the stable model semantics. The current translation

EQT(P ,Q) and its implementation lpeq cover the types of rules supported by the

smodels search engine which provide the basic knowledge representation primitives.

More general forms of rules implemented in the front-end lparse are also covered by

lpeq. This is partially achieved by lparse itself as it expresses high-level constructs

using the primitives of the engine. However, the task of verifying equivalence is

complicated considerably since lparse may have to introduce hidden atoms. To this

end, the newest version of lpeq includes a proper support for hidden atoms so that

it can be used to verify visible equivalence of smodels programs (denoted ≡v) rather
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than ordinary weak equivalence (denoted ≡). The underlying theory around the

property of having enough visible atoms is developed in Section 4 and we consider

these ideas as a significant extension to the original translation-based approach

presented in Janhunen and Oikarinen (2002).

Our conclusion of the experiments reported in Section 7 is that the translation-

based approach can really be useful in practice. In many cases, the number of

choice points and time needed for computations is less than in the naive cross-

checking approach. To the best of our understanding, this is because the translation

EQT(P ,Q) provides an explicit specification of a counter-example that guides the

search performed by smodels. Such coordination is not possible in the naive

approach where the stable models of P and Q are computed separately and cross-

checked. However, if the programs being compared are likely to have few stable

models or no stable models at all, we expect that the naive approach becomes

superior to ours. Recall that P is included in the translation EQT(P ,Q) which has

no stable models in the case that P has no stable models. The naive approach may

also be better off when programs turn out to be equivalent and the verification task

boils down to establishing the correspondence of stable models.

As regards future work, there are several issues to be addressed.

• The current translation and its implementation lpeq do not cover minim-

ize/maximize statements that are nevertheless supported by the smodels search

engine. Basically, one can deal with optimization on two levels. The first is

to verify the equivalence of programs without optimization statements which

should intuitively imply equivalence in the presence of the same optimization

statements expressed in terms of visible atoms. The second approach is the

fully general one that allows differences in the non-optimal models of the

programs being compared and in the formulation of optimization statements

as there may be several formulations that are effectively equivalent.

• Other notions of equivalence – such as the stronger notion of equivalence

proposed by Lifschitz et al. (2001) – should be covered by devising and

implementing suitable translations. Some translations in this respect have

already been presented by Turner (2003) and Eiter et al. (2004). However, the

visibility aspects of these relations have not been fully analyzed so far.

• The current implementation provides already a reasonably good support for

invisible atoms, since those introduced by lparse can be dealt with. However,

the notion of stratification used by lpeq is very cautious and we should also

pursue other natural classes of programs that have enough visible atoms. One

obvious question in this respect is whether the property of having enough

visible atoms is preserved by lparse.

• The case of disjunctive logic programs is also interesting, as efficient im-

plementations are available: dlv (Leone et al. 2006) and gnt (Janhunen

et al. 2006). The latter uses smodels for actual computations in analogy to

the translation-based approach followed by this paper. In (Oikarinen and

Janhunen 2004) we extend the translation-based approach to the disjunctive

case. The respective implementation for disjunctive programs, namely dlpeq,
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is reported in Janhunen and Oikarinen (2004). For now, invisible atoms are

not supported by dlpeq and it is interesting to see whether the concept of

having enough visible atoms lifts to the disjunctive case in a natural way.
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Appendix A Proofs

Proof of Lemma 4.16

Suppose that M ∈ SM(P ), i.e. M = LM(PM) and M |= CompS(P ). To prove

Mh ∈ SM(Ph/Mv), let us establish first that Mh |= (Ph/Mv)
Mh . Assuming the

contrary, some rule r ∈ (Ph/Mv)
Mh must be falsified by Mh. Since basic rules and

constraint rules are special cases of weight rules (c.f. discussion after Definition 2.1),

it is sufficient to consider only rules r of two types: weight rules and choice rules.

• If a weight rule h ← w1 � {Ah = WAh
} in (Ph/Mv)

Mh is falsified by Mh,

we have Mh �|= h and w1 � WSMh
(Ah = WAh

) in which w1 = max(0, w2 −
WSMh

(∼Bh = WBh
)) is related with a rule h← w2 � {Ah = WAh

,∼Bh = WBh
}

included in Ph/Mv. Thus w2 � WSMh
(Ah = WAh

,∼Bh = WBh
). Then the

definition of Ph/Mv and that of w1 in terms of the bound w2 imply that

w2 = max(0, w −WSMv
(Av = WAv

,∼Bv = WBv
)) for some weight rule h ←

w � {A = WA,∼B = WB} of P . By combining weight sums on the basis of

M = Mh ∪ Mv, we obtain w � WSM(A = WA,∼B = WB). On the other

hand, the reduct PM contains a weight rule h ← w3 � {A = WA} where

w3 = max(0, w −WSM(∼B = WB)). It follows that w3 � WSM(A = WA) and

M �|= h. A contradiction, since M |= PM holds for M.

• A choice rule {Hh} ← Ah,∼Bh cannot be falsified by definition, a contradiction.

Hence Mh |= (Ph/Mv)
Mh and it remains to establish the minimality of Mh with respect

to this property. Suppose there is M ′ |= (Ph/Mv)
Mh such that M ′ ⊂ Mh. Using M ′

we define an interpretation N = Mv ∪M ′ so that Nv = Mv, Nh = M ′ ⊂ Mh, and

Nh |= (Ph/Mv)
Mh by definition. Let us then assume that N �|= PM , i.e., there is some

rule r of the reduct PM not satisfied by N ⊂M. As above, it is sufficient to consider

the contribution of weight rules and choice rules to PM .

• If r is a weight rule h ← w2 � {A = WA} in PM , then N �|= h and w2 �
WSN(A = WA) holds for w2 = max(0, w −WSM(∼B = WB)) and some weight
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rule h← w � {A = WA,∼B = WB} of P . Since Mv and Nv coincide, we obtain

w � WSN(A = WA) + WSM(∼B = WB)

= WSNh
(Ah = WAh

) + WSMh
(∼Bh = WBh

) +

WSMv
(Av = WAv

,∼Bv = WBv
).

(A 1)

Two cases arise. (i) If h ∈ Hbh(P ), then Ph/Mv contains a rule h ← w3 �
{Ah = WAh

,∼Bh = WBh
} where w3 = max(0, w − WSMv

(Av = WAv
,∼Bv =

WBv
)). It follows by (A 1) that w3 � WSNh

(Ah = WAh
) + WSMh

(∼Bh = WBh
).

Moreover, the reduct (Ph/Mv)
Mh includes a rule h← w4 � {Ah = WAh

} where

w4 = max(0, w3 −WSMh
(∼Bh = WBh

)). Thus w4 � WSNh
(Ah = WAh

) holds

so that N �|= h and h ∈ Hbh(P ) imply Nh �|= r, a contradiction with Nh |=
(Ph/Mv)

Mh . (ii) If h ∈ Hbv(P ), then the definition of N implies M �|= h.

Moreover N ⊆ M implies WSN(A = WA) � WSM(A = WA) so that w2 �
WSM(A = WA). Thus M �|= r and M �|= PM which contradicts the fact that

M = LM(PM).

• If r is a basic rule h ← A associated with a choice rule {H} ← A,∼B of P ,

then h ∈ H , M |= h, M |= ∼B, N �|= h, and N |= A. Now h ∈ Hbv(P ) is

impossible as Mv = Nv, M |= h, and N �|= h. Hence h ∈ Hbh(P ) is necessarily

the case and Hh �= ∅. Moreover, Mv = Nv, N |= A, and M |= ∼B imply that

Mv |= Av ∪ ∼Bv. Thus {Hh} ← Ah,∼Bh is included in Ph/Mv. In addition,

M |= ∼B and M |= h imply Mh |= ∼Bh and Mh |= h so that h ← Ah is

included in (Ph/Mv)
Mh . Finally, we obtain Nh |= Ah, Nh �|= h and Nh �|= r from

N |= A and N �|= h. A contradiction.

To conclude the analysis above, it must be the case that N |= PM . Since N ⊂ M,

this contradicts the fact that M is a minimal model of PM . Thus Mh is necessarily

a minimal model of (Ph/Mv)
Mh , i.e., a stable model of Ph/Mv. �

Proof of Proposition 5.7

We prove the given four claims depending on conditions (i) M = LM(PM), (ii)

Nh = LM((Qh/Mv)
Nh ), and (iii) L = LM(QN). Let us define J = LM(EQT(P ,Q)I )

for more concise notation. It is clear that J |= EQT(P ,Q)I holds.

Claim 1: J ∩Hb(P ) = LM(PM).

(⊇) Since PM ⊆ EQT(P ,Q)I by Lemma 5.6, also J |= PM holds. Then J∩Hb(P ) |=
PM as PM is based on Hb(P ). Thus LM(PM) is contained in J ∩Hb(P ).

(⊆) Now LM(PM) |= PM holds. Then define an interpretation K = LM(PM) ∪
Hbh(Q)◦ ∪ Hb(Q)• ∪ {c, d, e} for which K |= EQT(P ,Q)I holds trivially by Lemma

5.6. Thus J ⊆ K and K ∩Hb(P ) = LM(PM) imply J ∩Hb(P ) ⊆ LM(PM).

Claim 2: If (i), then J ∩Hbh(Q)◦ = LM((Qh/Mv)
Nh )◦.

Assuming (i) we obtain M = I ∩Hb(P ) = LM(PM) = J ∩Hb(P ) by Claim 1.

(⊇) Let us assume that J �|= ((Qh/Mv)
Nh )◦. In this respect, it is sufficient to consider

only cases where weight rules and choice rules belong to the reduct.
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• Suppose there is a weight rule h ← w1 � {Ah = WAh
,∼Bh = WBh

} ∈ Qh/Mv

where h ∈ Hbh(Q) and w1 = max(0, w −WSMv
(Av = WAv

,∼Bv = WBv
)) is

obtained from h ← w � {A = WA,∼B = WB} ∈ Q. Then the rule h◦ ← w2 �
{A◦h = WA◦h

} is in ((Qh/Mv)
Nh )◦ and w2 = max(0, w1 −WSNh

(∼Bh = WBh
)).

Since this rule is falsified under J , we have J �|= h◦ and w2 � WSJ(A
◦
h = WA◦h

).

Using the definitions of w2 and w1, we obtain an inequality

w � WSJ(A
◦
h = WA◦h

) + WSNh
(∼Bh = WBh

) +

WSMv
(Av = WAv

,∼Bv = WBv
).

(A 2)

On the other hand, there is a rule r = h◦ ← w3 � {A◦h = WA◦h
, Av = WAv

}
with w3 = max(0, w −WSN(∼B = WB)) in EQT(P ,Q)I by Lemma 5.6. Since

N = Mv ∪ Nh by definition, we obtain w3 � WSJ(A
◦
h = WA◦h

) + WSMv
(Av =

WAv
) from the definition of w3 and (A 2). As M = J ∩Hb(P ), we know that

Mv = J ∩Hbv(Q) and w3 � WSJ(A
◦
h = WA◦h

, Av = WAv
). Thus J �|= r and J �|=

EQT(P ,Q)I which contradicts the choice of J in the beginning of this proof.

• Suppose there is a choice rule {Hh} ← Ah,∼Bh ∈ Qh/Mv so that Hh �= ∅ and

Mv |= Av ∪ ∼Bv hold for a rule {H} ← A,∼B ∈ Q. Consider any h ∈ Hh.

If Nh |= h, Nh |= ∼Bh, and Mv |= ∼Bv, there is a rule h◦ ← A◦h included in

((Qh/Mv)
Nh )◦. Assuming that this rule is falsified by J implies that J �|= h◦ and

J |= A◦h. Since N = Mv ∪ Nh by definition, we have N |= ∼B. Together with

Nh |= h, this implies that there is a rule r = h◦ ← A◦h, Av in EQT(P ,Q)I by

Lemma 5.6. Since Mv = J ∩Hbv(Q) as above, we obtain J |= Av so that J �|= r

and J �|= EQT(P ,Q)I . A contradiction regardless of the choice of h.

Thus J |= ((Qh/Mv)
Nh )◦ follows and LM((Qh/Mv)

Nh )◦ is necessarily contained in

J ∩Hb(Q)◦.

(⊆) Define an interpretation K = M ∪LM((Qh/Mv)
Nh )◦ ∪Hb(Q)• ∪ {c, d, e}. Since

(i) is assumed, it is clear that K |= PM but the satisfaction of rules addressed in

Items 1–4 of Lemma 5.6 must be verified. A case analysis follows.

• Let us assume that there is a weight rule r = h◦ ← w1 � {A◦h = WA◦h
, Av = WAv

}
∈ EQT(P ,Q)I where w1 = max(0, w −WSN(∼B = WB)) is associated with

h ← w � {A = WA,∼B = WB} ∈ Q satisfying h ∈ Hbh(Q). By assuming

K �|= r, we obtain K �|= h◦ and w1 � WSK (A◦h = WA◦h
, Av = WAv

). It follows

that w � WSK (A◦h = WA◦h
, Av = WAv

) + WSN(∼B = WB) by the definition of

w1. On the other hand, the hidden part Qh/Mv contains a weight rule h ←
w2 � {Ah = WAh

,∼Bh = WBh
} where w2 = max(0, w−WSMv

(Av = WAv
,∼Bv =

WBv
)). Thus the reduct (Qh/Mv)

Nh contains a rule r′ = h← w3 � {Ah = WAh
}

where the limit w3 = max(0, w2 −WSNh
(∼Bh = WBh

)). Using the definition of

w2, N = Mv∪Nh, and K , we obtain K∩Hbv(Q) = Mv; and from the preceding

inequality concerning w, w2 � WSK (A◦h = WA◦h
)+WSNh

(∼Bh = WBh
). Similarly,

the definition of w3, yields us w3 � WSK (A◦h = WA◦h
). But then the definition

of K implies that r′ is not satisfied by LM((Qh/Mv)
Nh ), a contradiction.

• Suppose there is a rule r = h◦ ← A◦h, Av ∈ EQT(P ,Q)I associated with a choice

rule {H} ← A,∼B ∈ Q such that h ∈ Hh, Nh |= h, and N |= ∼B. Assuming

K �|= r implies K �|= h◦, K |= A◦h, and K |= Av. Since K∩Hbv(Q) = Mv and N =
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Mv ∪Nh by definition, we know that Mv |= Av ∪∼Bv. Since Hh �= ∅, it follows

that {Hh} ← Ah,∼Bh is included in Qh/Mv. Moreover, the rule r′ = h ← Ah

belongs to (Qh/Mv)
Nh as Nh |= ∼Bh and Nh |= h. But then the definition of K

implies that r′ is not satisfied by LM((Qh/Mv)
Nh ), a contradiction.

The other rule types are covered by weight rules. It follows by the structure of

EQT(P ,Q)I described in Lemma 5.6 that K |= EQT(P ,Q)I . In particular the rules

in Items 5–14 are trivially satisfied by K as their heads are. It follows that J ⊆ K

and J ∩Hbh(Q)◦ ⊆ LM((Qh/Mv)
Nh )◦ as K ∩Hbh(Q)◦ = LM((Qh/Mv)

Nh )◦.

Claim 3: If (i) and (ii), then J ∩Hb(Q)• = LM(QN)•.

Let us assume both (i) and (ii). It follows by Claims 1 and 2 that M = I∩Hb(P ) =

LM(PM) = J ∩Hb(P ) and N◦h = I ∩Hbh(Q)◦ = LM((Qh/Mv)
Nh )◦ = J ∩Hbh(Q)◦.

(⊇) Let us first establish J |= (QN)•. It is clear by Lemma 5.6 that almost

all rules of (QN)• are present in EQT(P ,Q)I . The only exception concerns a rule

r = h• ← A• ∪ {h} (resp. r = h• ← A• ∪ {h◦}) included in EQT(P ,Q)I for a choice

rule {H} ← A,∼B ∈ Q such that h ∈ Hv (resp. h ∈ Hh) and N |= ∼B. Suppose that

J �|= r′ for the corresponding rule r′ = h• ← A• included in (QN)• which presumes

that N |= h. This implies J |= h (resp. J |= h◦) as N = Mv ∪Nh and M = J ∩Hb(P )

(resp. N◦h = J ∩ Hbh(Q)). Thus J �|= r, a contradiction. Hence J |= (QN)• and

J ∩Hb(Q)• |= (QN)•.

(⊆) Let us then define an interpretation K = LM(PM) ∪ LM((Qh/Mv)
Nh )◦ ∪

LM(QN)• ∪ {c, d, e}. It can be shown as in Claim 2 that K |= PM and the rules

mentioned in Items 1–4 of Lemma 5.6 are satisfied by K . As noted already, most

of the rules of (QN)• are included in EQT(P ,Q)I as such and thus satisfied by the

definition of K as LM(QN)• |= (QN)•. The only exceptions are made by rules r of

the forms defined above. Suppose that K �|= r and define r′ = h• ← A•. It follows

that K �|= r′ and h ∈ LM(PM) (resp. h ∈ LM((Qh/Mv)
Nh )). Then M = LM(PM)

(resp. Nh = LM((Qh/Mv)
Nh )) implies N |= h so that r′ ∈ (QN)•. Thus N |= r′ by

the definition of N, a contradiction. Finally, the rules in Items 9–14 of Lemma 5.6

are satisfied by K as K |= {c, d, e}. Thus K |= EQT(P ,Q)I . Since K ∩Hb(Q)• =

LM(QN)•, we obtain J ∩Hb(Q)• ⊆ LM(QN)•.

Claim 4: If (i), (ii), (iii), and A = J ∩ {c, d, e}, then (a) d ∈ A ⇐⇒ N �= L, (b) c ∈ A

⇐⇒ d �∈ I and L �|= CompS(Q), and (c) e ∈ A ⇐⇒ c ∈ A or d ∈ A.

Assume (i), (ii), and (iii). Using Claims 1–3, we obtain M = I ∩ Hb(P ) =

LM(PM) = J ∩ Hb(P ), N◦h = I ∩ Hbh(Q)◦ = LM((Qh/Mv)
Nh )◦ = J ∩ Hbh(Q)◦,

and L• = I ∩Hb(Q)• = LM(QN)• = J ∩Hb(Q)•.

(a) The structure of EQT(P ,Q)I made explicit in Lemma 5.6 and the properties

of LM(EQT(P ,Q)I ) imply that d ∈ A ⇐⇒ there is an atom a ∈ Hb(Q) such

that L �|= a and N |= a; or N �|= a and L |= a. But this is equivalent to N �= L.
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(b) The same premises imply that c ∈ A ⇐⇒ c ∈ J ⇐⇒ I �|= d; and there is

a ∈ CompS(Q) such that L �|= a or or there ∼b ∈ CompS(Q) such that L |= b.

Or equivalently, d �∈ I and L �|= CompS(Q).

(c) Finally, we have e ∈ A ⇐⇒ J |= e ⇐⇒ J |= c or J |= d ⇐⇒ c ∈ A or

d ∈ A.

�

Proof of Theorem 5.8

( =⇒ ) Suppose that EQT(P ,Q) has a stable model K , i.e. K = LM(EQT(P ,Q)K )

and K |= CompS(EQT(P ,Q)). Let us then extract three interpretations from K:

M = K ∩ Hb(P ), N = Mv ∪ Nh where Nh = {a ∈ Hbh(Q) | a◦ ∈ K}, and L =

{a ∈ Hb(Q) | a• ∈ K}. It follows that M = K ∩ Hb(P ) = LM(PM) by Claim 1 in

Proposition 5.7. Besides, we have M |= CompS(P ) as K |= CompS(EQT(P ,Q)) and

CompS(P ) ⊆ CompS(EQT(P ,Q)). Thus M ∈ SM(P ).

We may now apply Claim 2 in Proposition 5.7 since condition (i) is satisfied.

Thus N◦h = K ∩ Hbh(Q)◦ = LM((Qh/Mv)
Nh )◦ which makes condition (ii) true in

Proposition 5.7 so that Nh ∈ SM(Qh/Mv) is the case.

This enables the use of Claim 3 in Proposition 5.7 to obtain L• = K ∩Hb(Q)• =

LM(QN)•. Thus L = LM(QN) and condition (iii) in Proposition 5.7 is satisfied.

On the other hand, e ∈ A holds for A = K ∩ {c, d, e} as K |= CompS(EQT(P ,Q))

and e ∈ CompS(EQT(P ,Q)) by Definition 5.1. It follows by (c) and (b) in Claim 4

of Proposition 5.7 that c ∈ A or d ∈ A, i.e. d �∈ A and L �|= CompS(Q); or d ∈ A.

Using (a) we obtain N = L and L �|= CompS(Q); or N �= L. By substituting LM(QN)

for L and N for L, we have N = LM(QN) and N �|= CompS(Q); or N �= LM(QN).

Since Q has enough visible atoms, we know that Nh is unique with respect to Q and

Mv, and there is no N ∈ SM(Q) such that Nv = Mv.

( ⇐= ) Suppose that P has a stable model M = LM(PM) and there is no

N ∈ SM(Q) such that Nv = Mv. Since Q has enough visible atoms any such

candidate N must be based on the unique stable model Nh = LM((Qh/Mv)
Nh ). So

let us define N = Mv ∪ Nh. The instability of N implies either N �= LM(QN); or

N = LM(QN) and N �|= CompS(Q). In either case, let L = LM(QN). Moreover, let

A ⊆ {c, d, e} be a set of atoms so that d ∈ A ⇐⇒ N �= LM(QN), c ∈ A ⇐⇒
N = LM(QN) and N �|= CompS(Q), and e ∈ A unconditionally.

Let us then define an interpretation K = M∪N◦h∪L•∪A. It is easy to see that K |=
CompS(EQT(P ,Q)) as M |= CompS(P ) and K |= e by definition. It remains to estab-

lish that K = LM(EQT(P ,Q)K ). First, the definition of K implies that K ∩Hb(P ) =

M. It follows by Claim 1 in Proposition 5.7 that LM(EQT(P ,Q)K ) ∩ Hb(P ) =

LM(PM) = M. Second, we have K ∩Hbh(Q)◦ = N◦h by definition. Using Claim 2 in

Proposition 5.7 we obtain LM(EQT(P ,Q)K ) ∩ Hbh(Q)◦ = LM((Qh/Mv)
Nh )◦ = N◦h.

Third, we defined K so that K ∩Hb(Q)• = L•. It follows by Proposition 5.7 (Claim

3) that LM(EQT(P ,Q)K ) ∩ Hb(Q)• = LM(QN)• = L•. Finally, we recall that K ∩
{c, d, e} = A. It follows by Claim 4 in Proposition 5.7 that (a) d ∈ LM(EQT(P ,Q)K )

⇐⇒ N �= L ⇐⇒ N �= LM(QN) ⇐⇒ d ∈ A by the definition of A above; (b) c ∈
LM(EQT(P ,Q)K ) ⇐⇒ d �∈ K and L �|= CompS(Q) ⇐⇒ d �∈ A and L �|= CompS(Q)

⇐⇒ N = L and N �|= CompS(Q) ⇐⇒ N = LM(QN) and N �|= CompS(Q) ⇐⇒
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c ∈ A; and (c) e ∈ LM(EQT(P ,Q)K ) holds as the instability of N implies either d ∈ A

or c ∈ A. Thus LM(EQT(P ,Q)K ) ∩ {c, d, e} = A. To summarize, we have established

LM(EQT(P ,Q)K ) = M ∪N◦h ∪ L• ∪ A = K . Thus K ∈ SM(EQT(P ,Q)). �

Proof of Proposition 6.7

Let M ⊆ Hb(P ) be any interpretation for P and Pw . We rewrite (12) using shorthands

as 0 � {H = 1} ← |A|+ |B| � {A = 1,∼B = 1} where 1s are sets of weights

of appropriate sizes consisting of only 1s. As regards the respective choice rule

{H} ← A,∼B and any h ∈ H , Definition 3.4 implies that h ← A belongs to

PM ⇐⇒ M |= h and M |= ∼B. On the other hand, Definition 6.5 implies

h← (|A|+ |B| −WSM(∼B = 1)) � {A = 1} ∈ PM
w ⇐⇒ M |= h. Quite similarly, we

use 1 � {h = 1} ← w � {A = WA,∼B = WB} as an abbreviation for (13). Then the

reduced rule h← w′ � {A = WA} where w′ = max(0, w −WSM(∼B = WB)) belongs

to PM unconditionally and to PM
w ⇐⇒ M |= h.

( =⇒ ) Suppose that M = LM(PM). It follows immediately that M |= PM and

M |= P . Since choice rules and their translations (12) do not interfere with the

satisfaction of rules, we conclude M |= Pw by the close relationship of (4) and (13).

Moreover, it is easy to see that LM(PM
w ) ⊆ M as the analysis above shows that the

head atom h of every rule included in PM
w is necessarily true in M, i.e., h ∈M.

It remains to prove by induction that each interpretation in a sequence defined

by M0 = ∅ and Mi = TPM (Mi−1) for i > 0 is contained in LM(PM
w ). Note that

Mi ⊆M for each i � 0 and M = lfp(TPM ) = Mi for some finite i due to compactness

of TPM . Let us then consider any h ∈ Mi. Note that h ∈ M holds, i.e., M |= h.

The definition of Mi implies that (i) there is a rule h ← A ∈ PM such that

M |= ∼B and A ⊆ Mi−1; or (ii) there is a rule h ← w′ � {A = WA} ∈ PM with

w′ � WSMi−1
(A = WA). If (i) holds, the rule h ← |A| � {A = 1} belongs to PM

w as

M |= h. Moreover, A ⊆ Mi−1 ⊆ LM(PM
w ) by induction hypothesis. In case of (ii),

M |= h implies that the reduced rule is also in PM
w . Since Mi−1 ⊆ LM(PM

w ), we

obtain w′ � WSLM(PM
w )(A = WA). Thus h ∈ LM(PM

w ) results in both cases so that

Mi ⊆ LM(PM
w ) for each Mi and M in particular so that M = LM(PM

w ).

(⇐= ) Let us then assume that M |= Pw and M = LM(PM
w ) as well as M �|= PM .

The last cannot be caused by a choice rule because h ← A is included in PM

only if M |= h. If a weight rule is the reason, then h ← w′ � {A = WA} with

w′ = max(0, w − WSM(∼B = WB)) belongs to PM , w′ � WSM(A = WA), and

M �|= h. By adding WSM(∼B = WB) on both sides of the inequality, we obtain w �
WSM(A = WA,∼B = WB). Thus a rule 1 � {h = 1} ← w � {A = WA,∼B = WB} of

Pw is not satisfied by M, a contradiction. Hence M |= PM .

Now M |= PM implies LM(PM) ⊆M and we need induction to establish inclusion

in the other direction. This time we use a sequence defined by M0 = ∅ and

Mi = TPM
w

(Mi−1) for i > 0. Then consider any h ∈ Mi. Since M is the limit of the

sequence, we obtain h ∈M and M |= h. Moreover, the definition of Mi implies that

(iii) there is a rule h ← w′′ � {A = 1} ∈ PM
w where w′′ = |A| + |B| −WSM(∼B =

1) � WSMi−1
(A = 1); or (iv) there is a rule h ← w′ � {A = WA} ∈ PM

w such

that w′ � WSMi−1
(A = WA). In case of (iii), we infer WSM(∼B = 1) = |B| and

WSMi−1
(A = 1) = |A| as necessities so that M |= ∼B and A ⊆ Mi−1 follow. Thus
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h ← A ∈ PM as M |= h and LM(PM) |= A follows by the induction hypothesis

Mi−1 ⊆ LM(PM). If (iv) holds, the reduced rule is also a member of PM by definition.

Using the induction hypothesis again, we obtain w′ � WSLM(PM )(A = WA). To

conclude the preceding case analysis, we have h ∈ LM(PM) for any h ∈Mi and thus

Mi ⊆ LM(PM). Since M = Mi for some i, we obtain M ⊆ LM(PM). �

Proof of Theorem 6.10

Consider any weight constraint program P . Now P ≡v TrSNS(P ) holds by the

definition of ≡v if and only if Hbv(P ) = Hbv(Tr(P )) and there is a bijection Ext :

SM(P )→ SM(TrSNS(P )) such that for all M ∈ SM(P ) it holds that M ∩Hbv(P ) =

Ext(M) ∩Hbv(TrSNS(P )). Since Hbv(P ) = Hbv(TrSNS(P )) holds by Definition 6.9, it

remains to to establish such a bijection Ext from SM(P ) to SM(TrSNS(P )).

Given an interpretation M ⊆ Hb(P ), we define Ext(M) = M ∪ SUP (M) where

SUP (M) satisfies for each weight constraint C = l � {A = WA,∼B = WB} � u

appearing in P that

1. sat(C) ∈ SUP (M) ⇐⇒ l � WSM(A = WA,∼B = WB), and

2. unsat(C) ∈ SUP (M) ⇐⇒ u + 1 � WSM(A = WA,∼B = WB).

Now, if M ∈ SM(P ), then N = Ext(M) ∈ SM(TrSNS(P )) follows by the results of

Simons et al. (2002). Thus Ext is indeed a function from SM(P ) to SM(TrSNS(P ))

and it remains to establish that Ext is a bijection. It is clearly injective as M1 �= M2

implies Ext(M1) �= Ext(M2) by the definition of Ext.

To prove that Ext is also a surjection, let us consider any N ∈ SM(TrSNS(P ))

and the respective projection M = N ∩ Hb(P ). Since N ∈ SM(TrSNS(P )), it holds

that N |= TrSNS(P ) and moreover M ∈ SM(P ) holds by the results of Simons et al.

(2002). Thus we need to show N = N ′ for N ′ = Ext(M) = M ∪ SUP (M). Since

Ext : SM(P )→ SM(TrSNS(P )) we know that N ′ ∈ SM(TrSNS(P )).

Let us show that SUP (M) ⊆ N. Assuming the opposite there is an atom a ∈
SUP (M) such that a �∈ N. By the definition of SUP (M) either (i) a = sat(C) or (ii)

a = unsat(C) for some C = l � {A = WA,∼B = WB} � u appearing in P . This

leads to a case analysis as follows.

(i) If a = sat(C) ∈ SUP (M), then there is a rule (14) in TrSNS(P ) such that

l � WSM(A = WA,∼B = WB) = WSN(A = WA,∼B = WB) where last equality

holds by the definition of M as A ⊆ Hb(P ) and B ⊆ Hb(P ). Since sat(C) �∈ N,

it follows that (14) is not satisfied by N. But this contradicts N |= TrSNS(P ).

(ii) Quite similarly, if a = unsat(c) ∈ SUP (M), then there is a rule (15) such that

u + 1 � WSM(A = WA,∼B = WB) = WSN(A = WA,∼B = WB). Then (15) is

not satisfied by N as unsat(c) �∈ N. A contradiction with N |= TrSNS(P ).

Hence SUP (M) ⊆ N is necessarily the case. Since M ⊆ N by definition, we have

N ′ ⊆ N. How about the converse inclusion N ⊆ N ′ = M ∪ SUP (M)? It is clear that

N ∩Hb(P ) = M ⊆ N ′. Then a potential difference N ′ \ N (if any) must be caused

by new atoms involved in TrSNS(P ). There are three kinds of such atoms.

1. Suppose that sat(C) ∈ N for some C = l � {A = WA,∼B = WB} � u appearing

in P . Since N is a stable model of TrSNS(P ) and there is only one rule (14) in
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TrSNS(P ) having sat(C) as its head, the body of that rule must be satisfied in N,

too, i.e., l � WSN(A = WA,∼B = WB). Since M = N ∩Hb(P ), A ⊆ Hb(P ), and

B ⊆ Hb(P ), the same holds for M. Thus sat(C) ∈ SUP (M).

2. Using the same line of reasoning and the rule (15) included in TrSNS(P ), we

know that unsat(C) ∈ N implies unsat(C) ∈ SUP (M).

3. Now f �∈ N must hold as N is a stable model of TrSNS(P ) which includes (19).

To conclude, we have established N ⊆ N ′ which indicates that there is M ∈ SM(P )

such that N = Ext(M). Therefore Ext is bijective and TrSNS faithful. �
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