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SUMMARY
It is common in robot tracking control that controllers are designed based on the exact kinematic
model of the robot manipulator. However, because of measurement errors and changes of states in
practice, the original kinematic model is often no longer accurate and will degrade the control result.
An adaptive backstepping controller is designed here for parallel robot systems with kinematics
and dynamics uncertainties. Backstepping control is used to manage the transformation between the
errors in task space and joint space. Adaptive control is utilized to compensate for uncertainties in
both dynamics and kinematics. The controller demonstrated good performance in simulation.

KEYWORDS: Parallel robots; Adaptive control; Backstepping control; Dynamics; Robot kinematics;
Tracking control; Uncertainty.

1. Introduction
Robot manipulators are highly nonlinear in their dynamics and kinematics. More nonlinearity typically
appears in parallel robot manipulators than serial robot manipulators. In order to have a good tracking
performance of parallel robot manipulators, many try to compensate for the nonlinearities and use
feedback PD control to minimize the tracking error. In refs. [1] and [2], a nonlinear PD controller
was proposed by using the nonlinear terms in robot dynamics as nonlinear feedback to cancel those
terms and PD feedback to control the tracking error. This controller is very sensitive to uncertainties
in the robot model as it needs very accurate knowledge of the robot dynamics to cancel the nonlinear
terms in the system. To make the controller robust to the dynamic uncertainties of the parallel robot
manipulator, adaptive control, high gain control and high frequency control methods are introduced.
In refs. [3] and [4], an adaptive controller was created with an estimator for the dynamic parameters
of the robot to compensate for the uncertainties. And in ref.[5], sliding mode control method is
applied to decentralize uncertain dynamic parameters of the robot manipulator to get a more robust
performance. Those controllers work well with parallel robots having uncertainties in dynamics.
However, since there are no estimators to predict the uncertain parameters in kinematic functions and
the decentralization method is not applied to uncertain terms appearing in the kinematics, they are
not robust to kinematic uncertainties. In refs. [6] and [7], adaptive controllers are proposed to make
the whole system resistant to uncertainties in both dynamics and kinematics through the design of an
estimator to predict and compensate the uncertain terms in both dynamic and kinematic functions.
The controllers give good control results. Nevertheless, the researchers produce integrated controllers
to compensate for both dynamics and kinematics uncertainties. As the kinematics uncertainties are
decoupled from the control input, much more mathematical analysis and structure complexity are
required for the controllers. A robust backstepping controller is proposed in ref. [8]. The design needs
less effort, but its Lyapunov analysis is based on the slow varying assumption on some parameters,
which means the robot is not influenced by potentially arbitrarily large and fast external torques,
and this is a bad assumption for parallel robot manipulators, where arbitrarily large and fast external
torques can appear due to geometric constraints on the links of the robot.
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2 Uncertain parallel robot adaptive backstepping control

In this paper, the mathematical analysis of the Jacobian matrix of a parallel robot helps to conclude
that it is linear in physical parameters. And then through the implementation of backstepping control
and adaptive control, a controller which is robust to uncertainties in dynamics and kinematics is
constructed. With the application of backstepping control, massive mathematical analysis according
to the decoupling of control input and kinematics uncertainties is avoided. And the adaptive control
has a good performance for the parallel robot with arbitrarily large and fast dynamics caused by
geometric constraints.

2. Kinematics and Dynamics Analysis of Parallel Robot

2.1. Kinematics analysis
Here, a kinematic structure that has a rigid base connected to a rigid end-effector by means of n serial
kinematic chains in parallel is discussed. Each set of a serial kinematic chain is defined as a “leg”. The
ith “leg” has ni degrees of freedom, qi,1, . . . , qi,ni

, collected in a ni × 1 vector qi . Let N be the total
number of joints: N = ∑n

i=1 ni, and Q be the N × 1 vector of all joint angles: Q = (qT
1 . . . qT

n )T .
The definition of the corresponding terms in this section can be found in ref. [9]. According to

ref. [9]

JT = JjSj

(
Q̇1 . . . Q̇nT

) = JjSjP, (1)

where JT is the Jacobian matrix for which ẋ = JT q̇a , and ẋ is the velocity of the end-effector, q̇a

is vector containing angular velocities of the active (or driving) joint. P is the dependency matrix
defined as ρ = q̇a − q̇d , with Q̇l the N × 1 vector of all joint velocities when the ith driving joint is
given a unit speed and all other (nT − 1) driving joints are kept motionless.

The rest of this section discussed the linearity property of the Jacobian matrix for the proposed
parallel robot.

From the definition of selection matrices Sd , Sp and Si , the dependency matrix P , Ad and Ap in
ref. [1], Eq. (1) can be transformed into

JT = JjSj

(
Q̇1 . . . Q̇nT

) = JjSjS
T
d

((
S1

d

)T
. . .

(
S

nT

d

)T
)

− JjSjS
T
p A+

p Ad

((
S1

d

)T
. . .

(
S

nT

d

)T
)

= JjSjS
T
d SnT

− JjSjS
T
p A+

p AdSnT
, (2)

where A+
p is the Moore–Penrose pseudo-inverse of Ap, and SnT

is a nT × nT matrix. Usually with
proper arrangement of q̇a in Q̇a and Q̇, SnT

= InT ×nT
.

It can be derived that

ẋ = JT Q̇a = JjSjS
T
d SnT

Q̇a − JjSjS
T
p A+

p AdSnT
Q̇a. (3)

The following theoretical analysis is focused on exploring the linearity properties of Eq. (3).
The conclusion that Sd , Sp, Si , SnT

, Ap, Ad and Jj are all linear in physical parameters is obtained
from their descriptions in ref. [13].

The first component of Eq. (3), i.e., JjSjS
T
d SnT

Q̇a is therefore linear in a set of physical parameters
θ2 = (θ21, θ22, . . . , θ2m2 )

JjSjS
T
d SnT

Q̇a = Y2
(
q, Q̇a

)
θ2, (4)

where Y2
(
q, Q̇a

)
is the regressor matrix.

The linearity exploration of the second part of Eq. (3), i.e., JjSjS
T
p A+

p AdSnT
Q̇a requires more

mathematical analysis.
According to the definition of the Moore–Penrose pseudo-inverse, JjSjS

T
p A+

p AdSnT
Q̇a could be

transformed as follows:

JjSjS
T
p A+

p AdSnT
Q̇a = JjSjS

T
p

(
AT

pAp

)−1
AT

pSnT
Q̇a = JjSjS

T
p AppAT

pSnT
Q̇a∣∣AT

pAp

∣∣ , (5)
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where App = (AT
pAp)−1|AT

pAp|. (JjSjS
T
p AppAT

pSnT
Q̇a) is linear in a set of physical parameters

θ3 = (θ31, θ32, . . . , θ3m3 )

JjSjS
T
p AppAT

pSnT
Q̇a = Y3

(
q, Q̇a

)
θ3, (6)

where Y3(q, Q̇a) is the regressor matrix.

Then the linearity of
Jj Sj S

T
p AppAT

p SnT
Q̇a

|AT
p Ap | is relevant with |AT

pAp|. If |AT
pAp| is scalar linear with

regard to only one physical parameter (or combination of physical parameters),
Jj Sj S

T
p AppAT

p SnT
Q̇a

|AT
p Ap | will

be linear in a set of physical parameters.
For parallel robots with several “legs” connected by rotation joints, the relationship between the

speed of the end-effector and the angular velocities of the joint angles in the ith “leg” could be treated
like a serial robot with the same number of linkages, then

ẋ = q̇i1 (pi1 × ri1) + . . . + q̇ij

(
pij × rij

) + . . . + q̇ik (pik × rik) , (7)

where pij is the direction vector of angular velocity for j th rotation joint, i.e., q̇ij , and rij is the
position vector from j th joint to (j + 1)th joint. Given rij = lij εij , with εij and lij denoting the
direction vector and length of rij , pij × rij = lij fij and fij is a (3 × 1) vector function of measurable
variables qij and the azimuth angles of the joint axis. Substituting pij × rij = lij fij into Eq. (7) leads
to

ẋ = q̇i1li1fi1 + . . . + q̇ij lij fij + . . . + q̇iklikfik

= (
li1fi1, . . . , lij fij , . . . , likfik

) (
q̇i1, . . . , q̇ij , . . . , q̇ik

)T = Jiq̇i . (8)

Based on its definition in ref. [1], Ap can be rewritten as

Ap =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l1p1 f1p1x
· · · l1pp f1ppx l2p1 f2p1x

· · · l2pp f2ppx

l1p1 f1p1y
· · · l1pp f1ppy l2p1 f2p1y

· · · l2pp f2ppy

l1p1 f1p1z
· · · l1pp f1ppz l2p1 f2p1z

· · · l2pp f2ppz

l1p1 f1p1x
· · · l1pp f1ppx l3p1 f3p1x

· · · l3pp f3ppx

l1p1 f1p1y
· · · l1pp f1ppy l3p1 f3p1y

· · · l3pp f3ppy

l1p1 f1p1z
· · · l1pp f1ppz l3p1 f3p1z

· · · l3pp f3ppz

...
...

...
. . .

l1p1 f1p1x
· · · l1pp f1ppx lnp1 fnp1x

· · · lnpp fnppx

l1p1 f1p1y
· · · l1pp f1ppy lnp1 fnp1y

· · · lnpp fnppy

l1p1 f1p1z
· · · l1pp f1ppz lnp1 fnp1z

· · · lnpp fnppz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where lipl
corresponds to the length of a link starting from a passive (driven) joint in the ith leg,

fiplx
, fiply

, fiplz
are the first, second and third elements of vector function fipl

. p is the number of
passive joints in one “leg” and assume all “legs” have the same number of passive joints. Then,
np = N − nT denotes the number of all the passive joints.

To get the properties of
∣∣AT

pAp

∣∣, first AT
pAp needs to be calculated. The calculation process and

results of AT
pAp are shown below.

The component of matrix AT
pAp in row 1, column 1 is

AT
pAp (1, 1) = n

(
l2
1p1

f 2
1p1x

+ l2
1p1

f 2
1p1y

+ l2
1p1

f 2
1p1z

)
= l2

1p1
f1,1.

The same operation is applied to other components of matrix AT
pAp. And to simplify the expression,

unify the sequence number, namely, l1p1 = l1, . . . , l1pp
= lp, l2p1 = lp+1, . . . , l2pp

= l2p, . . . , lnpp
=

lnp, then AT
pAp will be converted into

The analysis of the properties of |AT
pAp| can be implemented through the knowledge of AT

pAp

above.

https://doi.org/10.1017/S0263574714002410 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714002410


4
U

ncertain
parallelrobotadaptive

backstepping
control

AT
p Ap =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l1l1f1,1 · · · l1lpf1,p l1lp+1f1,p+1 · · · l1l2pf1,2p l1l2p+1f1,2p+1 · · · l1l3pf1,3p · · · l1l(n−1)p+1f1,(n−1)p+1 · · · l1lnpf1,np

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

. · · ·
.
.
.

. . .
.
.
.

lpl1fp,1 · · · lplpfp,p lplp+1fp,p+1 · · · lpl2pfp,2p lpl2p+1fp,2p+1 · · · lpl3pfp,3p · · · lpl(n−1)p+1fp,(n−1)p+1 · · · lplnpfp,np

lp+1l1fp+1,1 · · · lp+1lpfp+1,p lp+1lp+1fp+1,p+1 · · · lp+1l2pfp+1,2p

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

l2pl1f2p,1 · · · l2plpf2p,p l2plp+1f2p,p+1 · · · l2pl2pf2p,2p

l2p+1l1f2p+1,1 · · · l2p+1lpf2p+1,p l2p+1l2p+1f2p+1,2p+1 · · · l2p+1l3pf2p+1,3p

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

l3pl1f3p,1 · · · l3plpf3p,p l3pl2p+1f3p,2p+1 · · · l3pl3pf3p,3p

.

.

.
.
.
.

.

.

.
. . .

l(n−1)p+1l1f(n−1)p+1,1 · · · l(n−1)p+1lpf(n−1)p+1,p l(n−1)p+1l(n−1)p+1f(n−1)p+1,(n−1)p+1 · · · l(n−1)p+1lnpf(n−1)p+1,np

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

lnpl1fnp,1 · · · lnplpfnp,p lnpl(n−1)p+1fnp,(n−1)p+1 · · · lnplnpfnp,np

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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If n ≥ 3, which applies for parallel robots with no less than three “legs”,∣∣AT
pAp

∣∣ = l2
1 . . . l2

npF1

F1 is a scalar function of measurable variables qij and the azimuth angles of the joint axis.
For n = 2, which applies for parallel robots with two “legs”,∣∣AT

pAp

∣∣ = l2
1 l

2
2 . . . l2

2pF2

F2 is also a scalar function of measurable variables qij and the azimuth angles of the joint axis.
Therefore, |AT

pAp| is linear in a combination of physical parameters θ4 = l2
1 l

2
2 . . . l2

np(n ≥ 2), and
1

|AT
p Ap | is also linear in a combination of physical parameters θ5 = 1

l2
1 l2

2 ...l2
np

. Thus

∣∣AT
pAp

∣∣ = Y4 (q, Qa) θ4 and
1∣∣AT

pAp

∣∣ = Y5 (q) θ5 (9)

Bring Eq. (9) back into Eq. (5),

JjSjS
T
p AppAT

pSnT
Q̇a∣∣AT

pAp

∣∣ = Y3
(
q, Q̇a

)
θ3Y5 (q) θ5 = Y6

(
q, Q̇a

)
θ6 (10)

where Y6(q, Q̇a) is the regressor matrix and θ6 is the collection of physical parameters in θ3 and θ5.
The second part of Eq. (3), i.e., JjSjS

T
p A+

p AdSnT
Q̇a is linear in a set of physical parameters

θ6 = (θ61, θ62, . . . , θ6m6 ) Substituting Eqs. (10) and (5) into Eq. (3) yields

ẋ = JT Q̇a = Y2
(
q, Q̇a

)
θ2 + Y6

(
q, Q̇a

)
θ6 = Y7

(
q, Q̇a

)
θ7, (11)

where Y7(q, Q̇a) is the regressor matrix and θ7 is the collection of physical parameters in θ2 and θ6.
Hence, the kinematics functions (or the kinematic model) of the proposed parallel robot is linear

in a set of physical parameters θ7 = (θ71, θ72, . . . , θ7m7 ).

2.2. Dynamics analysis
The dynamic model of a parallel robot with uncertain parameters is:

τ = M1 (q) q̈a + C1 (q, q̇) q̇a + G1 (q) (12)

where q̈a and q̇a are the angular acceleration and angular velocity of the active joints, M1(q) ∈ Rn×n

is the inertia matrix, C1(q, q̇)q̇a ∈ Rn is a vector function containing Coriolis and centrifugal forces
and G1(q) ∈ Rn is a vector function consisting of gravitational forces.

There are several properties for the dynamic equation:

Property 1: The inertia matrix M1(q) is symmetric and uniformly positive-definite for all q ∈ Rn.

Property 2: The matrix ( 1
2Ṁ1 (q) − C1 (q, q̇)) is skew-symmetric so that vT ( 1

2Ṁ1 (q) −
C1 (q, q̇))v = 0 for all v ∈ Rn.

Property 3: The dynamic model as described by (10) is linear in a set of physical parameters
θ1 = (θ11, θ12, . . . , θ1m1 )T as

M1 (q) q̈a + C1 (q, q̇) q̇a + G (q) = Y1 (q, q̇, q̇a, q̈a) θ1

where Y1(q, q̇, q̇a, q̈a) ∈ Rn×m is called the dynamic regressor matrix.
Therefore, for the parallel robots proposed in this paper, namely, a parallel robot connected by

rotational joints and with the same number of linkages in each “leg”, both their kinematic and dynamic
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6 Uncertain parallel robot adaptive backstepping control

models are linear in sets of physical parameters or sets of combination of physical parameters. Since
all uncertain parameters in both dynamics and kinematics are those physical parameters, they can
be separated and arranged into uncertain parameters vectors. Uncertain parameters in dynamics are
collected in vector θ1 and uncertain parameters in kinematics are collected in vector θ7. Adaptive
control can then be applied to estimate those uncertainties and compensate for them. And the designed
controller would have robust performance with regard to uncertain dynamics and kinematics.

3. Adaptive Backstepping Control for Parallel Robot with Uncertainties in Kinematics and
Dynamics
This part of this paper is focused on designing a controller that gives an asymptotical tracking result in
task-space for the proposed parallel robot while it is robust to kinematics and dynamics uncertainties.

3.1. Lyapunov based design of the controller
Let e, x, xd denote the tracking error of the end-effector, the position of the end-effector and the
destination position of the end-effector. And for simplicity, replace Y7 (q, q̇a) with Y7. Then

e = x − xd. (13)

Taking the time derivative of both sides of Eq. (13) and substituting Eq. (11) into it

ė = ẋ − ẋd

= JT q̇a − ẋd

= Y7θ7 − ẋd

. (14)

Here, backstepping control is introduced through adding and subtracting ĴT q̇a and ĴT q̇d on the right
side of Eq. (14). ĴT is the estimate of the Jacobian matrix of the parallel robot, where all uncertain
elements of θ7 in the Jacobian matrix JT are replaced by corresponding elements in θ̂7, which are the
estimators of those uncertain elements in θ7. ĴT q̇a = Y7θ̂7. q̇d is a value which can be designed to
achieve specified goals. And Eq. (14) is transformed into

ė = Y7θ7 − ĴT q̇a + ĴT q̇a − ĴT q̇d + ĴT q̇d − ẋd

= Y7θ7 − Y7θ̂7 + ĴT ρ + ĴT q̇d − ẋd

= Y7θ̃7 + ĴT ρ + ĴT q̇d − ẋd

, (15)

where θ̃7 = θ7 − θ̂7 is the error between the set of physical parameters θ7 and the estimator of the same
set of physical parameters θ̂7; ρ = q̇a − q̇d , and take the derivative of ρ resulting in ρ̇ = q̈a − q̈d .

Now q̇d can be designed as q̇d = Ĵ−1
T (ẋd − k1e)

ė = Y7θ̃7 + ĴT ρ + ẋd − k1e − ẋd = Y7θ̃7 + ĴT ρ − k1e. (16)

Substituting ρ = q̇a − q̇d and ρ̇ = q̈a − q̈d into the dynamics function of the parallel robot, i.e.,
Eq. (12)

τ = M1 (q) q̈a + C1 (q, q̇) q̇a + G (q) = M1 (q) (ρ̇ + q̈d ) + C1 (q, q̇) (ρ + q̇d ) + G (q)

= M1 (q) ρ̇ + C1 (q, q̇) ρ + M1 (q) q̈d + C1 (q, q̇) q̇d + G (q) . (17)

Applying Property 3 to Eq. (17)

τ = M1 (q) ρ̇ + C1 (q, q̇) ρ + Y1 (q, q̇, q̇d , q̈d ) θ1 (18)

Eq. (18) can be reformulated as

M1 (q) ρ̇ = −C1 (q, q̇) ρ − Y1 (q, q̇, q̇d , q̈d ) θ1 + τ (19)
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θ̃1 = θ1 − θ̂1 is defined as the error between the set of physical parameters θ7 and the estimator of the
same set of physical parameters θ̂1. The Lyapunov candidate is selected as

V = 1

2
eT e + 1

2
ρT M1 (q) ρ + 1

2
θ̃ T

1 β1θ̃1 + 1

2
θ̃ T

7 β2θ̃7. (20)

The derivative of the Lyapunov candidate is

V̇ = eT ė + ρT M1 (q) ρ̇ + 1

2
ρT Ṁ1 (q) ρ + θ̃ T

1 β1
˙̃θ1 + θ̃ T

7 β2
˙̃θ7. (21)

Substituting Eqs. (16) and (18) into Eq. (21) and apply Property 2

V̇ = eT
(
Y7θ̃7 + ĴT ρ − k1e

) + ρT (−C1 (q, q̇) ρ − Y1 (q, q̇, q̇d , q̈d ) θ1 + τ ) + 1

2
ρT Ṁ1 (q) ρ

+ θ̃ T
1 β1

˙̃θ1 + θ̃ T
7 β2

˙̃θ7

= eT Y7θ̃7 + eT ĴT ρ − eT k1e + ρT (−Y1 (q, q̇, q̇d , q̈d ) θ1 + τ ) + ρT

(
1

2
Ṁ1 (q) − C1 (q, q̇) ρ

)
ρ

+ θ̃ T
1 β1

˙̃θ1 + θ̃ T
7 β2

˙̃θ7

= eT Y7θ̃7 + eT ĴT ρ − eT k1e + ρT (−Y1 (q, q̇, q̇d , q̈d ) θ1 + τ ) + θ̃ T
1 β1

˙̃θ1 + θ̃ T
7 β2

˙̃θ7 (22)

The input controller τ is designed as

τ = Y1 (q, q̇, q̇d , q̈d ) θ̂1 − Ĵ T
T e − k2ρ. (23)

Substituting Eq. (23) into Eq. (22)

V̇ = eT Y7θ̃7 + eT ĴT ρ − eT k1e + ρT
(−Y1 (q, q̇, q̇d , q̈d ) θ1 + Y1 (q, q̇, q̇d , q̈d ) θ̂1 − Ĵ T

T e − k2ρ
)

+ θ̃ T
1 β1

˙̃θ1 + θ̃ T
7 β2

˙̃θ7

= eT Y7θ̃7 − eT k1e − ρT Y1 (q, q̇, q̇d , q̈d ) θ̃1 − ρT k2ρ − θ̃ T
1 β1

˙̂θ1 − θ̃ T
7 β2

˙̂θ7. (24)

For simplicity, replace Y7(q, q̇, q̇d , q̈d) with Y7. The adaptation laws for ˙̂θ1 and ˙̂θ7 are proposed as

˙̂θ1 = − 1

β1
YT

1 ρ (25)

˙̂θ7 = 1

β2
YT

7 e (26)

where β1 and β2 are designed positive numbers.
Substituting Eqs. (25), (26) into Eq. (24)

V̇ = eT Y7θ̃7 − eT k1e − ρT Y1θ̃1 − ρT k2ρ + θ̃ T
1 YT

1 ρ − θ̃ T
7 YT

7 e

= −eT k1e − ρT k2ρ
, (27)

where V̇ is a negative semi-definite function.
Barbalate’s Lemma Corollary (sufficient condition): If a scalar function V = V (t, x), is such

that
� V = V (t, x) is lower bounded by zero
� V̇ (t, x) ≤ −g2(t)
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8 Uncertain parallel robot adaptive backstepping control

� g(t) ∈ L2 and g(t) is uniformly continuous in time
Then g (t) → 0, as t → ∞.

It has already been proven that V̇ is a negative semi-definite function along the trajectories of
ẋ = f (t, x) and V is a positive definite function, which mean V is decreasing and the value of V is
always bigger than 0. Therefore, V could be lower bounded by 0. Moreover

{
V is positive definite

V̇ is negative semi - definite
⇒ V εL∞ (28)

Under the reasonable assumption that V (0)εL∞, it can be deduced from Eq. (28) that

V (t) − V (0) =
∫ t

0

(
1

2
ete + 1

2
ρT M1(q)ρ + 1

2
θ̃ T

1 β1θ̃1 + 1

2
θ̃ T

7 β2θ̃7

)
dω ∈ L∞

⇒

⎧⎪⎨
⎪⎩

e ∈ L2

ρεL2

θ̃1εL2

θ̃7εL2

and

⎧⎪⎨
⎪⎩

e ∈ L∞
ρεL∞
θ̃1εL∞
θ̃7εL∞

(29)

Equation (27) could then be rewritten as

V̇ = −eT k1e − ρT (d − Dsgn (ρ)) − ρT k2ρ ≤ −eT k1e = −g2,

where g = √
k1e. Take the derivative of g and substitute Eq. (16) into the derivative

ġ =
√

k1ė =
√

k1
(
Y7θ̃7 + ĴT ρ − k1e

)
.

According to the results in Eq. (29)

ġ =
√

k1
(
Y7θ̃7 + ĴT ρ − k1e

)
εL∞ ⇒ g is uniformly continuous

e ∈ L2 ⇒ g =
√

k1e ∈ L2

Consequently, (1) V is lower bounded by 0; (2) V̇ ≤ −g2 = −eT k1e; and (3) g = √
k1e ∈ L2

and g is uniformly continuous. All the conditions in Barbalate’s Lemma Corollary are satisfied.
Applying Barbalate’s Lemma Corollary to the Lyapunov candidate V in Eq. (21) leads to the
conclusion g = √

k1e → 0, as t → ∞, i.e., e → 0, as t → ∞.
The designed controller could achieve asymptotical tracking for the proposed parallel robot.

3.2. Verification on the implementation of the controller
Assume ẋd is a given desired value and ẋdεL∞. θ1 and θ7 are the sets of some constant uncertain
physical parameters and would never expand to infinity, thus, θ1, θ7εL∞. Singularities in kinematics
and dynamics could be avoided by the selection of the working area, which guarantees Y1, Y7 ∈ L∞,
JT ∈ L∞. Apply the conclusions from Eq. (29) to Eqs. (25), (26), θ̃1 = θ1 − θ̂1,θ̃7 = θ7 − θ̂7, q̇d =
Ĵ−1

T (ẋd − k1e), ρ = q̇a − q̇d and ẋ = JT q̇a = Y7θ7 gives the following results

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e ∈ L∞
ρεL∞
θ̃1εL∞
θ̃7εL∞
ẋdεL∞

⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

θ̂1 ∈ L∞
θ̂7 ∈ L∞
˙̂θ1 ∈ L∞
˙̂θ7 ∈ L∞
q̇aεL∞
q̇dεL∞

⇒ ĴT ∈ L∞.
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Fig. 1. 2-DOF parallel robot.

Introducing the above results into the equation τ = Y1θ̂1 − Ĵ T
T e − k2ρ

τ ∈ l∞

.
Therefore, all those designed and measured values have been proven to be bounded.
Since, e could be measured and Y1, Y7 are made of measurable parameters, from Eq. (26), ˙̂θ7

is achievable. Through integration of ˙̂θ7, θ̂7 is obtained. The value of ĴT can be acquired from
the equation ĴT q̇a = Y7θ̂7. ẋd is a given desired value and known, q̇d can be calculated through
q̇d = Ĵ−1

T (ẋd − k1e) and q̈d is calculated by taking the derivative of q̇d . q̇a is measurable, then ρ is

available from ρ = q̇a − q̇d . Using Eq. (25), the value of ˙̂θ1 is accessible, and the integration of ˙̂θ1

gives θ̂1.
Consequently, all elements of the control input τ can be constructed. All designed and

measured values are bounded and the control input τ is implementable. Therefore, the controller
is implementable.

4. Simulations

4.1. Simulation model and its parameters
In this section, simulation results are presented to illustrate the performance of the adaptive
backstepping controller. For simplicity, consider a 2-DOF parallel robot. The structure of the robot is
shown in Fig. 1

A, B, C, D, E are the five revolute joints of the robot, with A and E the active joints and mounted
on the ground and B and D the passive joints. C is the joint where the end-effector is located. AB,
BC, CD, DE are four links of the robot with the length of l11, l12, l22, l21 and weight of m1, m2, m3,
m4. The distance between A and E is 2l0. And qa1, qp1, qp2, qa2 shown in Fig. 1 are the four angles
to locate the direction of the AB, BC, CD, DE links.

The structure parameters of the 2-DOF parallel robot in the simulation are designed as

m1 = 0.21kg, m2 = 0.19kg, m3 = 0.21kg, m4 = 0.2kg

l11 = 0.18m, l12 = 0.19m, l22 = 0.2m, l21 = 0.21m, 2l0 = 0.21m
. (a)

For this simulation implementation, the parameter estimates are initialized as

m1 = m2 = m3 = m4 = 0.2kg

l11 = l12 = l22 = l21 = 2l0 = 0.2m
. (b)

The Jacobian Matrix mapping from the angular velocities of the active joints A, E to the velocity
of the end-effector is
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JT =

[
−l11 sin qa1 − l11 sin qp1 sin(qa1−qp2)+l11 sin qp2 sin(qa1−qp1)

sin(qp2−qp1) − l21 sin qa2 − l21 sin qp1 sin(qp2−qa2)+l21 sin qp2 sin(qp1−qp2)
sin(qp2−qp1)

]
[
l11 cos qa1 + l11 cos qp1 sin(qa1−qp2)+l11 cos qp2 sin(qa1−qp1)

sin(qp2−qp1) l21 sin qa2 + l21 cos qp1 sin(qp2−qa2)+l21 cos qp2 sin(qp1−qa2)
sin(qp2−qp1)

]

Separating the kinematic uncertain physical parameters and collecting them in the vector θ7

JT q̇a = Y7 (q, q̇a) θ7,

where

θ7 =
[

l11

l21

]

Y7 (q, q̇a) =

⎡
⎢⎢⎣

−q̇a1

(
sin qa1 + sin qp1 sin(qa1−qp2)+sin qp2 sin(qa1−qp1)

sin(qp2−qp1)

)
− q̇a2

(
sin qa2 + sin qp1 sin(qp2−qa2)+sin qp2 sin(qp1−qa2)

sin(qp2−qp1)

)

q̇a1

(
cos qa1 + cos qp1 sin(qa1−qp2)+cos qp2 sin(qa1−qp1)

sin(qp2−qp1)

)
q̇a2

(
cos qa2 + cos qp1 sin(qp2−qa2)+cos qp2 sin(qp1−qa2)

sin(qp2−qp1)

)
⎤
⎥⎥⎦ .

The dynamic model of the proposed 2-DOF parallel robot manipulator without friction is given as

M1 (q) q̈a + C1 (q, q̇) q̇a + G (q) = T .

According to Property 3

M1 (q) q̈a + C1 (q, q̇) q̇a + G (q) = Y1 (q, q̇, q̇d , q̈d ) θ1,

where

θ1 =
[

m1l
2
11 m2l

2
11 m3l

2
11 m2l11l21 m3l11l21 m1l11 m2l11 m3l11 m2l

2
21 m3l

2
21

m4l
2
21 m2l21 m3l21 m4l21

]T

Y1 (q, q̇, q̇a, q̈a) =
[

y11 y12 y13 y14 y15 y16 y17 y18

y24 y25 y29 y210 y211 y212 y213 y214

]

with all the details of the elements in Y1 (q, q̇, q̇a, q̈a) shown in the Appendix.
The coefficients are tuned with the value β1 = β2 = k1 = k2 = 1 which gives an acceptable control

result. The adaptive backstepping controller is then designed as

˙̂θ7 =
[

˙̂l11
˙̂l21

]
= YT

7 e, with θ̂7 (0) =
[

0.2
0.2

]
m

ĴT =

⎡
⎢⎢⎣

−l̂11 sin qa1 − l̂11 sin qp1 sin(qa1−qp2)+l̂11 sin qp2 sin(qa1−qp1)
sin(qp2−qp1) − l̂21 sin qa2 − l̂21 sin qp1 sin(qp2−qa2)+l̂21 sin qp2 sin(qp1−qa2)

sin(qp2−qp1)

l̂11 cos qa1 + l̂11 cos qp1 sin(qa1−qp2)+l̂11 cos qp2 sin(qa1−qp1)
sin(qp2−qp1) l̂21 cos qa2 + l̂21 cos qp1 sin(qp2−qa2)+l̂21 cos qp2 sin(qp1−qa2)

sin(qp2−qp1)

⎤
⎥⎥⎦

q̇d = Ĵ−1
T (ẋd − e)

˙̂θ1 = −YT
1 ρ, with θ̂1 (0)

= [
0.008 0.008 0.008 0.008 0.008 0.04 0.04 0.04 0.008 0.008 0.008 0.04 0.04 0.04

]T

× (
unit in kg∗m2 or kg∗m

)
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Fig. 2. Simulation block diagram for 2-DOF parallel robot controlled by adaptive backstepping controller with kinematics and dynamics uncertainties in MATLAB Simulink.
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Fig. 3. Simulation block diagram for the adaptive backstepping controller.
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Fig. 4. Destination point and tracking trajectories for both controllers (set point tracking).

Fig. 5. Tracking errors for both controllers (set point tracking).

τ = Y1θ̂1 − ĴT e − ρ.

These steps were followed and a controller was built in MATLAB SimMechanics. The simulation
block of the 2-DOF parallel robot controlled by the adaptive backstepping controller is shown in
Fig. 2 and the controller block is shown in Fig. 3.
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14 Uncertain parallel robot adaptive backstepping control

Fig. 6. Tracking speeds of the end-effector for both controllers (set point tracking).

Fig. 7. The value of qa1 for both controllers (set point tracking).

4.2. Simulation process and result
In this paper, set point tracking control is implemented. The assignment for the controller is to adjust
the input torques on the active joints so that the end-effector could eventually reach the destination
point. As a contrast, set point control using the controller designed in ref. [7] is carried out on the
same 2-DOF parallel robot.

Set point tracking control and trajectory tracking control are performed on the 2-DOF parallel
robot with the proposed adaptive backstepping control. The desired point for set point tracking
is given as (0.1, 0.28) m. The desired trajectory function for trajectory tracking control is given

https://doi.org/10.1017/S0263574714002410 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714002410


Uncertain parallel robot adaptive backstepping control 15

Fig. 8. The value of qa2 for both controllers (set point tracking).

Fig. 9. The angular velocities of qa1 for both controllers (set point tracking).

as x = 0.1 + 0.05 cos (t) , y = 0.05 sin (t). For set point tracking control, the destination point and
tracking trajectories for the controller proposed in this paper and the contrast controller are displayed
in Fig. 4. Corresponding tracking errors between the end-effector and the destination point during
this process are shown in Fig. 5. The speeds of the end-effector for both controllers are shown in
Fig. 6. For both controllers, the value of the angles qa1, qa2, the angular velocities q̇a1, q̇a2 and the
input torques at the revolute joints A and E are shown in Figs. 7–12. For trajectory tracking control,
the destination trajectory and tracking trajectories for both controllers are displayed in Fig. 13.
Corresponding tracking errors between the end-effector and the destination trajectory are shown in
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16 Uncertain parallel robot adaptive backstepping control

Fig. 10. The angular velocities of qa2 for both controllers (set point tracking).

Fig. 11. Input torques at revolute joint A for both controllers (set point tracking).

Fig. 14. The speeds of the end-effector for both controllers are shown in Fig. 15. For both controllers,
the value of tqa1, qa2, the angular velocities q̇a1, q̇a2 and input torques at the revolute joints A and E
are shown in Figs. 16–21.

From the simulation results for both the adaptive backstepping controller and the controller in ref
[7], it can be seen that the performance of the adaptive backstepping controller is comparable with
the controller in ref. [7]. Both the adaptive backstepping controller and the contrast controller can
give asymptotic tracking results. As shown in the plots of the tracking errors in Fig. 5, the adaptive
backstepping controller in this paper works better for set point tracking as the tracking error converges
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Fig. 12. Input torques at revolute joint E for both controllers (set point tracking).

Fig. 13. Destination trajectory and tracking trajectories for both controllers (trajectory tracking).

to 0 faster. As shown in Figs. 6, 9 and 10, the working state of the system was more stable for the
proposed controller, because there is less oscillation in the value of the speed of the end-effector and
the angular velocities of qa1 and qa2 for the proposed controller. Meanwhile, the control output for
the proposed controller in this paper is better than the contrast controller since the input torques at
revolute joints A and E for the proposed controller in this paper are much smoother according to the
plots in Figs. 11 and 12. For trajectory tracking, the tracking error for the contrast controller converges
to 0 faster than the proposed controller based on Fig. 14. However, from Figs. 15, 18 and 19, the
working state of the system for the proposed controller was more stable as there is less oscillation in
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Fig. 14. Tracking errors for both controllers (trajectory tracking).

Fig. 15. Tracking speeds of the end-effector for both controllers (trajectory tracking).

the value of the speed of the end-effector and the angular velocities of qa1 and qa2 for the proposed
controller. And the control output for the proposed controller is better than the contrast controller
according to Figs. 20 and 21. Therefore, for trajectory tracking control, the proposed controller will be
more desirable when relative stable working process is required and the demands on the performance
of the executive system need to be reduced.
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Fig. 16. The value of qa1 for both controllers (trajectory tracking).

Fig. 17. The value of qa2 for both controllers (trajectory tracking).

5. Conclusion
In this paper, a new adaptive backstepping controller is proposed for parallel robots with uncertainties
in kinematics and dynamics. Kinematic analysis on a parallel robot is carried out based on ref.
[13], and leads to linearity in physical parameters for a parallel robot connected by revolute joints.
Estimations are then made for both kinematic and dynamic uncertain parameters instead of just
dynamic uncertainties. The backstepping variable structure and uncertain estimator are designed
through Lyapunov-based analysis. Therefore, the stability of the close-loop system is guaranteed
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Fig. 18. The angular velocities of qa1 for both controllers (trajectory tracking).

Fig. 19. The angular velocities of qa2 for both controllers (trajectory tracking).

and proven. The asymptotic result can be drawn through Barbalate’s Lemma. From the simulation
result for our proposed controller and the contrast controller in ref. [7], the adaptive backstepping
controller proposed in this paper indeed gives asymptotic tracking results. The designed controller in
this paper gives better results for set point tracking control as it takes less time for the tracking errors
to converge to 0. And the control output for the proposed controller in this paper is better than the
contrast controller in ref [7]. The contrast controller in ref. [7] provides faster convergence speed for
trajectory tracking control, but the state of the working process for the proposed controller is more
stable. The control output for the proposed controller for trajectory tracking control is also better

https://doi.org/10.1017/S0263574714002410 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714002410


Uncertain parallel robot adaptive backstepping control 21

Fig. 20. Input torques at revolute joint A for both controllers (trajectory tracking).

Fig. 21. Input torques at revolute joint E for both controllers (trajectory tracking).

than the contrast controller in ref. [7], which could reduce the demands on the executive system. The
controller designed in this paper could have good performance in position control of the end-effector
for parallel and serial robots even if their structure parameters are not known. It has great potential
for fast and accurate position control.
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Appendix
The details of the elements in Y1(q, q̇, q̇a, q̈a)

y11 = 1

3
q̈d1, y12 = q̈d1 + y12(1) + q̇d1

sin(qp2 − qp1)
(y12(2) + y12(3) − y12(4)),

y13 = q̈d1sin
2(qa1 − qp1)

3 sin2(qp2 − qp1)
+ q̇d1(y13(1) + y13(2))

3 sin3(qp2 − qp1)

y14 = q̈d2

sin(qp2 − qp1)
y14(1) + q̇d2

sin(qp2 − qp1)
(y14(2) + y14(3) − y14(4)),

y15 = y15(1) + q̇d2(y15(2) + y15(3))

3 sin3(qp2 − qp1)
, y16 = 1

2
gcosqa1

y17 = gcosqp1sin(qa1 − qp2)

2 sin(qp2 − qp1)
+ gcosqa1, y18 = gcosqp2 sin(qa1 − qp1)

2 sin(qp2 − qp1)
,

y29 = y29(1) + q̇d2(y29(2) + y29(3))

3 sin3(qp2 − qp1)
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y210 = q̈d2 + q̈d2

sin(qp2 − qp1)
y210(1) + q̇d2

sin(qp2 − qp1)
(y210(2) + y210(3) − y210(4))

y211 = 1

3
q̈d2, y24 = y24(1) + q̇d1(y24(2) + y24(3))

3 sin3(qp2 − qp1)
,

y25 = q̈d1

sin(qp2 − qp1)
y25(1) + q̇d1

sin(qp2 − qp1)
(y25(2) + y25(3) − y25(4))

y212 = gcosqp1 sin(qp2 − qa2)

2 sin(qp2 − qp1)
, y213 = gcosqp2 sin(qp1 − qa2)

2 sin(qp2 − qp1)
+ gcosqa2, y214 = 1

2
gcosqa2

y12(1) = q̈d1

sin(qp2 − qp1)

(
1

2
cos(qp1 − qa1)sin(qa1 − qp1) + sin2(qa1 − qp2)

3 sin(qp2 − qp1)

)

y12(2) = q̇a1

(
1

2
cos(qp1 − qa1) cos(qp2 − qa1) + sin(qa1 − qp2) cos(qp2 − qa1)

3 sin(qp2 − qp1)

)

y12(3) = q̇p1

(
sin(qa1 − qp1) sin(qa1 − qp2)

3 sin2(qp2 − qp1)
+ cos(qa1 − qp2) sin(qa1 − qp2)

6 sin(qp2 − qp1)

)

y12(4) = q̇p2

(
cos(qp1 − qa1) sin(qa1 − qp1)

2 sin(qp2 − qp1)
+ sin(qa1 − qp2) sin(qa1 − qp1)

3 sin2(qp2 − qp1)

)
y13(1) = q̇a1 sin(qa1 − qp1) cos(qp1 − qa1) sin(qp2 − qp1)

y13(2) = q̇p1 sin(qa1 − qp1) sin(qa1 − qp2) − q̇p2sin
2(qa1 − qp1) cos(qp2 − qp1)

y14(1) = 1

2
cos(qp1 − qa1) sin(qp2 − qa2) + sin(qa1 − qp2) sin(qp2 − qa2)

3 sin(qp2 − qp1)

y14(2) = −q̇a2

(
1

2
cos(qp1 − qa1) cos(qp2 − qa2) + sin(qa1 − qp2) cos(qp2 − qa2)

3 sin(qp2 − qp1)

)

y14(3) = q̇p1

(
sin(qa1 − qp1) sin(qp2 − qa2)

3 sin2(qp2 − qp1)
+ cos(qa1 − qp2) sin(qp2 − qa2)

6 sin(qp2 − qp1)

)

y14(4) = q̇p2

(
cos(qp1 − qa1) sin(qp1 − qa2)

2 sin(qp2 − qp1)
+ sin(qa1 − qp2) sin(qp1 − qa2)

3 sin2(qp2 − qp1)

)

y15(1) = q̈d2 sin(qa1 − qp1) sin(qp1 − qa2)

3 sin2(qp2 − qp1)
,

y15(2) = −q̇a2 sin(qa1 − qp1) cos(qp1 − qa2) sin(qp2 − qp1)

y15(3) = q̇p1 sin(qa1 − qp1) sin(qp2 − qa2) − q̇p2sin(qa1 − qp1) cos(qp2 − qp1) sin(qp1 − qa2)

y29(1) = q̈d2sin
2(qp2 − qa2)

3 sin2(qp2 − qp1)
, y29(2) = −q̇a2 sin(qp2 − qa2) cos(qp2 − qa2) sin(qp2 − qp1)

y29(3) = q̇p1 sin2(qp2 − qa2) cos(qp2 − qp1) − q̇p2 sin(qp2 − qa2) sin(qp1 − qa2)

y210(1) = 1

2
cos(qa2 − qp2)sin(qp1 − qa2) + sin2(qp1 − qa2)

3 sin(qp2 − qp1)
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y210(2) = −q̇a2

(
1

2
cos(qa2 − qp2) cos(qp1 − qa2) + sin(qp1 − qa2) cos(qp1 − qa2)

3 sin(qp2 − qp1)

)

y210(3) = q̇p1

(
cos(qa2 − qp2) sin(qp2 − qa2)

2 sin(qp2 − qp1)
+ sin(qp1 − qa2) sin(qp2 − qa2)

3 sin2(qp2 − qp1)

)

y210(4) = q̇p2

(
cos(qp1 − qa2) sin(qp1 − qa2)

6 sin(qp2 − qp1)
+ sin(qp2 − qa2) sin(qp1 − qa2)

3 sin2(qp2 − qp1)

)

y24(1) = q̈d1 sin(qp2 − qa2) sin(qa1 − qp1)

3 sin2(qp2 − qp1)
,

y24(2) = q̇a1 sin(qp2 − qa2) cos(qp2 − qa1) sin(qp2 − qp1)

y24(3) = q̇p1 sin(qp2 − qa2) cos(qp2 − qp1) sin(qa1 − qp2) − q̇p2sin(qp2 − qa2) sin(qa1 − qp1)

y25(1) = 1

2
cos(qa2 − qp2) sin(qa1 − qp1) + sin(qp1 − qa2) sin(qa1 − qp1)

3 sin(qp2 − qp1)

y25(2) = q̇a1

(
1

2
cos(qa2 − qp2) cos(qp1 − qa1) + sin(qp1 − qa2) cos(qp1 − qa1)

3 sin(qp2 − qp1)

)

y25(3) = q̇p1

(
cos(qa2 − qp2) sin(qa1 − qp2)

2 sin(qp2 − qp1)
+ sin(qp1 − qa2) sin(qa1 − qp2)

3 sin2(qp2 − qp1)

)

y25(4) = q̇p2

(
cos(qp1 − qa2) sin(qa1 − qp1)

6 sin(qp2 − qp1)
+ sin(qp2 − qa2) sin(qa1 − qp1)

3 sin2(qp2 − qp1)

)
.

https://doi.org/10.1017/S0263574714002410 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714002410

