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SUMMARY

It is common in robot tracking control that controllers are designed based on the exact kinematic
model of the robot manipulator. However, because of measurement errors and changes of states in
practice, the original kinematic model is often no longer accurate and will degrade the control result.
An adaptive backstepping controller is designed here for parallel robot systems with kinematics
and dynamics uncertainties. Backstepping control is used to manage the transformation between the
errors in task space and joint space. Adaptive control is utilized to compensate for uncertainties in
both dynamics and kinematics. The controller demonstrated good performance in simulation.
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Tracking control; Uncertainty.

1. Introduction

Robot manipulators are highly nonlinear in their dynamics and kinematics. More nonlinearity typically
appears in parallel robot manipulators than serial robot manipulators. In order to have a good tracking
performance of parallel robot manipulators, many try to compensate for the nonlinearities and use
feedback PD control to minimize the tracking error. In refs. [1] and [2], a nonlinear PD controller
was proposed by using the nonlinear terms in robot dynamics as nonlinear feedback to cancel those
terms and PD feedback to control the tracking error. This controller is very sensitive to uncertainties
in the robot model as it needs very accurate knowledge of the robot dynamics to cancel the nonlinear
terms in the system. To make the controller robust to the dynamic uncertainties of the parallel robot
manipulator, adaptive control, high gain control and high frequency control methods are introduced.
In refs. [3] and [4], an adaptive controller was created with an estimator for the dynamic parameters
of the robot to compensate for the uncertainties. And in ref.[5], sliding mode control method is
applied to decentralize uncertain dynamic parameters of the robot manipulator to get a more robust
performance. Those controllers work well with parallel robots having uncertainties in dynamics.
However, since there are no estimators to predict the uncertain parameters in kinematic functions and
the decentralization method is not applied to uncertain terms appearing in the kinematics, they are
not robust to kinematic uncertainties. In refs. [6] and [7], adaptive controllers are proposed to make
the whole system resistant to uncertainties in both dynamics and kinematics through the design of an
estimator to predict and compensate the uncertain terms in both dynamic and kinematic functions.
The controllers give good control results. Nevertheless, the researchers produce integrated controllers
to compensate for both dynamics and kinematics uncertainties. As the kinematics uncertainties are
decoupled from the control input, much more mathematical analysis and structure complexity are
required for the controllers. A robust backstepping controller is proposed in ref. [8]. The design needs
less effort, but its Lyapunov analysis is based on the slow varying assumption on some parameters,
which means the robot is not influenced by potentially arbitrarily large and fast external torques,
and this is a bad assumption for parallel robot manipulators, where arbitrarily large and fast external
torques can appear due to geometric constraints on the links of the robot.
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2 Uncertain parallel robot adaptive backstepping control

In this paper, the mathematical analysis of the Jacobian matrix of a parallel robot helps to conclude
that it is linear in physical parameters. And then through the implementation of backstepping control
and adaptive control, a controller which is robust to uncertainties in dynamics and kinematics is
constructed. With the application of backstepping control, massive mathematical analysis according
to the decoupling of control input and kinematics uncertainties is avoided. And the adaptive control
has a good performance for the parallel robot with arbitrarily large and fast dynamics caused by
geometric constraints.

2. Kinematics and Dynamics Analysis of Parallel Robot

2.1. Kinematics analysis

Here, a kinematic structure that has a rigid base connected to a rigid end-effector by means of n serial

kinematic chains in parallel is discussed. Each set of a serial kinematic chain is defined as a “leg”. The

ith “leg” has n; degrees of freedom, g; 1, ..., gi »,, collected in a n; x 1 vector g;. Let N be the total

number of joints: N = Y __, nj, and Q be the N x 1 vector of all joint angles: 0 = (qIT coghHT.
The definition of the corresponding terms in this section can be found in ref. [9]. According to

ref. [9]

Jr=J;S;(Q"...Q") = J;S;P, (1)

where Jr is the Jacobian matrix for which x = Jrq,, and x is the velocity of the end-effector, ¢,
is vector containing angular velocities of the active (or driving) joint. P is the dependency matrix
defined as p = ¢, — g4, with Q' the N x 1 vector of all joint velocities when the ith driving joint is
given a unit speed and all other (ny — 1) driving joints are kept motionless.

The rest of this section discussed the linearity property of the Jacobian matrix for the proposed
parallel robot.

From the definition of selection matrices Sz, S, and §;, the dependency matrix P, A; and A, in
ref. [1], Eq. (1) can be transformed into

Jr= 138 (0" . 0) = 1ySSE () (83)") = i8Sy A A ()" (55))

= J;S;SySn, — J;S;Sp AT AaS,, (2)
where A;,“ is the Moore—Penrose pseudo-inverse of A, and S,,, is a ny x ny matrix. Usually with
proper arrangement of g, in Qu and Q Sur = Dnpxng-

It can be derived that

X =JrQa=1J;5;S] S, Qu—J;S;STATAySy, Q. 3)

The following theoretical analysis is focused on exploring the linearity properties of Eq. (3).

The conclusion that Sy, S,, Si, S, A,, Aq and J; are all linear in physical parameters is obtained
from their descriptions in ref. [13].

The first component of Eq. (3),1.e., J;S; SdT Sy Q. is therefore linear in a set of physical parameters

0, = (621,022, ..., bo,)

J;8; 85 Sn, Qa = Y2 (9. Qa) 62, 4)

where Y> (g, Q,) is the regressor matrix.
The linearity exploration of the second part of Eq. (3), i.e., J;S; S;A;;AdSnT Q. requires more
mathematical analysis. .
According to the definition of the Moore—Penrose pseudo-inverse, J;S; S;A;Ad Sy, Qa could be
transformed as follows:

T;S;STApATS,, Qq

Y

J;S;STAYAgSu, 00 = 1;S;ST (ATA,) T ALS,, 0, =
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Uncertain parallel robot adaptive backstepping control 3

where A, = (AIT,A,,)’1|A}T,AP|. (JijS;AppAiS,,T Q,) is linear in a set of physical parameters
93 = (831’ 9327 ) 03”13)

J]S]S]Y;APPA;S”T Qa = Y3 (Q7 Qa) 937 (6)

where Y3(g, Q,) is the regressor matrix.
J;S; ST A pp AL Sur Qu

Then the linearity of AT A, ]

is relevant with |ATA,|. If |ATA,| is scalar linear with

. S . JiSiSTAppAT S, Q.
regard to only one physical parameter (or combination of physical parameters), % will
PP
be linear in a set of physical parameters.
For parallel robots with several “legs” connected by rotation joints, the relationship between the
speed of the end-effector and the angular velocities of the joint angles in the ith “leg” could be treated

like a serial robot with the same number of linkages, then

X =G (pin X ri) + ...+ Gij (pij X rij) + - -« + Gik (Pix X rit) » @)
where p;; is the direction vector of angular velocity for jth rotation joint, i.e., g;;, and r;; is the
position vector from jth joint to (j + 1)th joint. Given r;; = l;;€;;, with €;; and [;; denoting the
direction vector and length of r;;, p;; X r;; = I;; fij and f;; is a (3 x 1) vector function of measurable

variables g;; and the azimuth angles of the joint axis. Substituting p;; x r;; = l;; fi; into Eq. (7) leads
to

x=qinlnfio+...+qijlij fij + ..+ qiclix fix
. . . T .
= (lnfirs oo bijfipe o L fie) Gins - Qi -2 Gik) - = Jidii. 3)

Based on its definition in ref. [1], A, can be rewritten as

-llpl f]pl,[ llp,,flp,” 12[71 f2p1x lZp,,pr,,X 7]
lip, Ipiy =77 tlppJlppy bp, . 2p1y T 2pp J2ppy
llPl Ipiz T Lpp J1pp: lzPl 2p1z 2pp J2pp:
Lpifipe =+ lipy fippe Bp fape - By S3ppe
llpl flpl). llp,,flp],)- l3p1 f3p]y l3p],f3p],y

Ap= | hp fip; - lipySip, Bp fap. = Bpyp fapp:

llPl f_lpl.v T lll’p f_lﬁpx ln])l fn])]x e lnpl, f{zpm
llpl Ipyy " llp,, 1ppy npyJnpyy npp Jnppy

_llm Ipiz =70 HppJlpp: nprJnpiz 7 bapp Jnpp: |

where /;,, corresponds to the length of a link starting from a passive (driven) joint in the ith leg,
Sipies fipy» Jip. are the first, second and third elements of vector function f;),. p is the number of
passive joints in one “leg” and assume all “legs” have the same number of passive joints. Then,
np = N — ny denotes the number of all the passive joints.

To get the properties of |A£A |, first AgA p» needs to be calculated. The calculation process and

results of A7 A, are shown below.
The component of matrix AIT)A p inrow 1, column 1 is

A,T)Ap A, 1y=n <112P1f12mx + llszlzm,v + 112171 flzmz) - llszl’l'

The same operation is applied to other components of matrix AIT7 A . And to simplify the expression,
unify the sequence number, namely, [y, =11, ..., Ly, =lp, bp, =lpt1, .. lp, =lop, oo lyp, =
Ly, then AT A, will be converted into

The analysis of the properties of |AIT,A p»| can be implemented through the knowledge of AIT,A »
above.
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Uncertain parallel robot adaptive backstepping control 5
If n > 3, which applies for parallel robots with no less than three “legs”,
ATA,|=17... 1}, Fy

Fi is a scalar function of measurable variables g;; and the azimuth angles of the joint axis.
For n = 2, which applies for parallel robots with two “legs”,

T 272 2
|ATA,| =115...15,F,
F, is also a scalar function of measurable variables g;; and the azimuth angles of the joint axis.

Therefore, |A7 A, | is linear in a combination of physical parameters 6, = [}13 ... 1} ,(n > 2), and
1

IAT_IA\ is also linear in a combination of physical parameters 65 = . Thus
papr 1°2+*np
AT A,| = Y4(q. Qu)aand —— = Ys(q) 65 ©)
rr o AT A
Bring Eq. (9) back into Eq. (5),
J;S:STA, ATS, O, . .
L P 0 — Y5 (q, Q4) 65Ys5 (@) 65 = Yo (g, Q) bs (10)

A A,
where Ys(g, Q) is the regressor matrix and 6 is the collection of physical parameters in 65 and 6s.

The second part of Eq. (3), i.e., J;S; S;A;AdS,,T Q, is linear in a set of physical parameters
06 = (B61, 62, - - -, Bome) Substituting Eqs. (10) and (5) into Eq. (3) yields

X=JrQs=Y>(q. Qu) 02+ Y5 (q. Q) 06 = Y7 (. Qu) 67, (11)

where Y7(q, Qa) is the regressor matrix and 67 is the collection of physical parameters in 8, and 6.
Hence, the kinematics functions (or the kinematic model) of the proposed parallel robot is linear
in a set of physical parameters 87 = (071, 672, . . ., O7m,).

2.2. Dynamics analysis
The dynamic model of a parallel robot with uncertain parameters is:

T=Mi(q)Ga+Ci(q.9)4a + G1(q) (12)
where ¢, and ¢, are the angular acceleration and angular velocity of the active joints, M,(g) € R"*"
is the inertia matrix, C;(q, ¢)q, € R" is a vector function containing Coriolis and centrifugal forces
and G(g) € R" is a vector function consisting of gravitational forces.
There are several properties for the dynamic equation:

Property 1: The inertia matrix M;(g) is symmetric and uniformly positive-definite for all ¢ € R".

Property 2: The matrix (%Ml (@) —Ci(g,q)) is skew-symmetric so that vT(%Ml (q9)—
Ci(g,q))v =0forall v e R".

Property 3: The dynamic model as described by (10) is linear in a set of physical parameters
01 = (611,612, ..., O1m,)T as

Ml (Q)Qa + Cl (q, Q)C]a + G (Q) = Yl (q7 q.a qaa éja)gl
where Y(q, 4, Ga, Go) € R™*™ is called the dynamic regressor matrix.

Therefore, for the parallel robots proposed in this paper, namely, a parallel robot connected by
rotational joints and with the same number of linkages in each “leg”, both their kinematic and dynamic
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6 Uncertain parallel robot adaptive backstepping control

models are linear in sets of physical parameters or sets of combination of physical parameters. Since
all uncertain parameters in both dynamics and kinematics are those physical parameters, they can
be separated and arranged into uncertain parameters vectors. Uncertain parameters in dynamics are
collected in vector #; and uncertain parameters in kinematics are collected in vector 6;. Adaptive
control can then be applied to estimate those uncertainties and compensate for them. And the designed
controller would have robust performance with regard to uncertain dynamics and kinematics.

3. Adaptive Backstepping Control for Parallel Robot with Uncertainties in Kinematics and
Dynamics

This part of this paper is focused on designing a controller that gives an asymptotical tracking result in
task-space for the proposed parallel robot while it is robust to kinematics and dynamics uncertainties.

3.1. Lyapunov based design of the controller

Let e, x, x4 denote the tracking error of the end-effector, the position of the end-effector and the

destination position of the end-effector. And for simplicity, replace Y7 (¢, ¢,) with Y7. Then
e=Xx—Xx4. (13)

Taking the time derivative of both sides of Eq. (13) and substituting Eq. (11) into it

e=Xx—Xg4
= Jrq4a — Xa. (14)
= Y7607 — x4

Here, backstepping control is introduced through adding and subtracting Jr¢, and Jrq, on the right
side of Eq. (14). Jr is the estimate of the Jacobian matrix of the parallel robot, where all uncertain
elements of 67 in the Jacobian matrix Jr are replaced by corresponding elements in 67, which are the
estimators of those uncertain elements in 6;. JTqa = Y50,. qaq 1s a value which can be designed to
achieve specified goals. And Eq. (14) is transformed into

e =Y70; — JTqa + JTqu — Jrga + Jrqa — x4
= Y707 — Y797 + JTP + Jrda — %4 , (15)
= Y707 + Jrp + Jrga — %4
where ; = 6; — 6, is the error between the set of physical parameters 67 and the estimator of the same
set of physical parameters 6;; p = ¢, — G4, and take the derivative of p resulting in p = g, — Gg.
Now ¢4 can be designed as ¢; = fT_l()'cd —kie)

6 =Y:0; 4+ Jrp+ %4 —kie — xg = Y707 4+ Jrp — kye. (16)

Substituting p = g, — g4 and p = ¢, — ¢4 into the dynamics function of the parallel robot, i.e.,
Eq. (12)

T=Mi(q)Ga+Ci1(q.9)ga+ G (q) = Mi(q) (p+Ga)+Ci(q,9)(p+ qa) + G (q)
=M (@) p+Cilg.9)p+M(q)ga+Ci(q.9)qa+ G (q). a7)

Applying Property 3 to Eq. (17)
t=Mi(@)p+Ci(q.9)p+Y1(q.q9.9a.4a) 01 (18)

Eq. (18) can be reformulated as

Mi(@)p=-Ci(qg.9)p—Y1(q,9,9a,4a) 01 + T (19)
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Uncertain parallel robot adaptive backstepping control 7

G, = 0, — 0, is defined as the error between the set of physical parameters 87 and the estimator of the
same set of physical parameters 6;. The Lyapunov candidate is selected as

P (PR
V:Ee e+§p M, (q)p+591 ,31914-597 Ba207. (20)

The derivative of the Lyapunov candidate is

v _ T T . [ T o 5 5T o ;5
V=ee+p M (q)p+5p My (q) p + 0; B161 + 67 Ba07. (21)

Substituting Eqs. (16) and (18) into Eq. (21) and apply Property 2

. A . o |
V=e" (Y70 +Jrp—kie)+p" (—=Ci(q.9)p — Y1 (4.4, Ga. Ga) 01 +T) + EPTMI (@) p
+9~1T/319;1 +9~7Tﬂzé7
T ~ T = T T . . .. T 1 ¥ .
=e Y0, +e Jrp—e kie+p (=Y1(q,9,94,94)01 +T)+ p EMl @) —=Cilg.pp|p
+0] 16, + 07 B0,
= e"Ys0; + " Jrp — e"kie + pT (~Y1(q. 4. da. Ga) 61 + T) + O] B161 + 07 pabs (22)
The input controller 7 is designed as
T =Y1(q,q, G4 4a) 0 — e —kap. (23)
Substituting Eq. (23) into Eq. (22)
V=e"Yi0 4+ e Jrp—e"kie+ p" (=Y1(q. 4. 4a. G) 01 + Y1 (q. G 4a. Ga) 01 — Jf e — kap)
+ 6] 161 + 67 .67
=e' Y10, —e"kie — p"Y1(q, 4, Ga, Ga) 01 — p kap — 6] 161 — 67 P26 (24)

For simplicity, replace Y7(q, ¢, g4, g4) with Y. The adaptation laws for é 1 and é7 are proposed as

2 1
br=——YTp (25)
1
b= Lyr (26)
=—Ye
T

where 8 and 3, are designed positive numbers.
Substituting Egs. (25), (26) into Eq. (24)

V=e"Y:0; —eTkie — p" Y10, — pThkap + 6 Y p — 07 Y e
T T , (27)
=—e' kie—p kp
where V is a negative semi-definite function.
Barbalate’s Lemma Corollary (sufficient condition): If a scalar function V = V (¢, x), is such
that

e V = V(z, x) is lower bounded by zero
« V(t,x) < =)
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8 Uncertain parallel robot adaptive backstepping control

* g(t) € L, and g(¢) is uniformly continuous in time
Then g (t) — 0, as t — oo.

It has already been proven that V is a negative semi-definite function along the trajectories of
X = f(t,x)and V is a positive definite function, which mean V is decreasing and the value of V is
always bigger than 0. Therefore, V could be lower bounded by 0. Moreover

{ V is positive definite | Lo (28)

V is negative semi - definite

Under the reasonable assumption that V (0)e Lo, it can be deduced from Eq. (28) that

L, P
Vit)— V() = 5664‘5,0 Ml(q)p-i-E@l ,3191+§97 Br07 |dw € Ly
0

eel, e € Lo
peL, p€ Lo

= QIGLZ and 9:1€Loo (29)
0976L2 97ELOO

Equation (27) could then be rewritten as
V=—c"kie—p" (d — Dsgn(p) — p"kop < —e" ke = —g°,

where g = +/kje. Take the derivative of g and substitute Eq. (16) into the derivative

¢ =vVkie = ki (Y16, + Jro — kie).
According to the results in Eq. (29)

g= \/kT (Y7§7 + pr — kle) € Lo, = g is uniformly continuous

e€L2:>g=\/ki|e€L2

Consequently, (1) V is lower bounded by 0; (2) V < —g> = —e’kje; and (3) g = ke € L,
and g is uniformly continuous. All the conditions in Barbalate’s Lemma Corollary are satisfied.
Applying Barbalate’s Lemma Corollary to the Lyapunov candidate V in Eq. (21) leads to the
conclusion g = v/kje — 0,ast — 00, i.e.,e — 0,ast — 0o.

The designed controller could achieve asymptotical tracking for the proposed parallel robot.

3.2. Verification on the implementation of the controller

Assume x4 is a given desired value and X € L. 61 and 67 are the sets of some constant uncertain

physical parameters and would never expand to infinity, thus, 6;, 67€ L. Singularities in kinematics

and dynamics could be avoided by the selection of the working area, which guarantees Y, Y7 € Loo,

JT E Loo. Apply the conclusions from Eq. (29) to Egs. (25), (26), 6, = 6, — 0,,0; = 6; — b5, qa =
Jy V&g = kye), P =qq — qq and x = Jyq, = Y6, gives the following results

é] € Ly
e El{/oo é\7 c Loo
gé * é] € Lo 2
€Ly = - = Jr € Ly
é7ELoo 07 € Lo
Xg€Lso Ga€Loo
62(1€Lc>o
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Uncertain parallel robot adaptive backstepping control 9

Fig. 1. 2-DOF parallel robot.

Introducing the above results into the equation T = Y 0, — fTT e—kyp

T €ly

Therefore, all those designed and measured values have been proven to be bounded. .
Since, e could be measured and Y, ¥7 are made of measurable parameters, from Eq. (26), 0,

is achievable. Through 1ntegrat10n of 95, 6, is obtained. The value of Jr can be acquired from
the equatlon JTqa =Y70,. x; is a given desired value and known, qd can be calculated through
qa = JT (x4 — k1e) and g, is calculated by taking the der.lvatlve of ¢4. q, 1s measurable, then p }s

available from p = ¢, — ¢4. Using Eq. (25), the value of 6, is accessible, and the integration of 0,
gives 6.

Consequently, all elements of the control input t can be constructed. All designed and
measured values are bounded and the control input t is implementable. Therefore, the controller
is implementable.

4. Simulations

4.1. Simulation model and its parameters
In this section, simulation results are presented to illustrate the performance of the adaptive
backstepping controller. For simplicity, consider a 2-DOF parallel robot. The structure of the robot is
shown in Fig. 1

A, B, C, D, E are the five revolute joints of the robot, with A and E the active joints and mounted
on the ground and B and D the passive joints. C is the joint where the end-effector is located. AB,
BC, CD, DE are four links of the robot with the length of /1, /12, I2, [; and weight of m, m,, ms,
my. The distance between A and E is 2ly. And g41, g1, §p2, ga2 shown in Fig. 1 are the four angles
to locate the direction of the AB, BC, CD, DE links.

The structure parameters of the 2-DOF parallel robot in the simulation are designed as

my = 0.21kg, my, = 0.19kg, m3 = 0.21kg, my = 0.2kg @)
11 =0.18m,1l1p =0.19m, [, = 0.2m, L =0.21m, 2l = 0.21m " a

For this simulation implementation, the parameter estimates are initialized as

m; =my =msz = my = 0.2kg (b)
111 = 112 = 122 = 121 = 21() =0.2m"

The Jacobian Matrix mapping from the angular velocities of the active joints A, E to the velocity
of the end-effector is
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11 singp1 sin(ga1—qp2)+1 singp sin(ga1—qp1)
sin(gp2—qp1)

Iy singp1 sin(gp2—qa2)+la1 singpy sin(gp1 —qu):l

— Ly sin qa2 — sin(gp2—qp1)

[—111 Simdgq —
JT -
111 cos gp1 sin(ga1—qp2)+11 €05 4p2 sin(qa1—qp1)
sin(gp2—ap1)

by singqo +

Iy1 cos gp1 sin(gp2—qa2)+la1 cos gpa sin(gp _LMZ):I
sin(gp2—ap1)

[l 11 COS qq1 +
Separating the kinematic uncertain physical parameters and collecting them in the vector 6,

JTQa = Y7 (q7 Qa)e%

where

singp1 sin(qa1 =g p2)+singpo sin(ga1 —gp1)
Si“(qu —dpl )

singp1 sin(gp2—qa2)+sin g2 sin(gp1—qa2) )

—qal (Sil’l a1 + ) —qa2 (Sin qa2 + T pr—)
Y7(q,q4a) =
05 1 5in(ga1 =4 p2)+c0s g2 sin(ga1 =gp1)

08 g p1 5in(gp2—qa2)+¢0s 42 sin(gp1 —qa2) )
sin(gp2—qp1)

sin(gp2—qp1)

Gal (COS Ga1 + ) Ga2 (COS Ga2 +

The dynamic model of the proposed 2-DOF parallel robot manipulator without friction is given as

M, (q)Qa + C (q’ (’i)q.a +G(Q) =T.

According to Property 3

M] (Q)Qa +Cl (q,Q)C?a +G(Q) = Yl (('I7q.vq.ds(:jd)017

where

2 2 2 2 2 7T
mily, molyy mslyy moluly malily miln molyn msln moly, msls,
l =

2
myly,  malyy msly myly

S Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18
Y b 9, b ==
194 Ga 4a) [ Y24 Y25 Y29 Y210 Y211 Y212 Y213 y214i|

with all the details of the elements in Y| (¢, ¢, 44, 4,) shown in the Appendix.
The coefficients are tuned with the value 8; = B, = k; = k, = 1 which gives an acceptable control
result. The adaptive backstepping controller is then designed as

&:PJ:ﬁz\m1@@=Bﬂm

I

D1 singp1 sin(qpa—ga2)+l1 singpa sin(gp1—qa2)
sin(gp2—qp1)

I singp1 sin(ga1 —qp2)+11 sin g2 sin(ga1—qp1)
sin(gp2—qp1)

— by singqn —

—l1singq) —

~ ] Iy cos sin — +1p1 cos sin —
f11 cos g1 + 21 €08 ¢ p1 sin(qp2—qa2)+a1 cos qpa sin(gp1 —qa2)

sin(gp2—qp1)

11 €08 g p1 8in(ga1 —qp2) 11 €08 42 sin(ga1—qp1)
sin(gp2—qp1)

i21 €0Sqa2 +

Ga=J;' Gia—e)

6, =-Y!p, with 8, (0)

[0.008 0.008 0.008 0.008 0.008 0.04 0.04 0.04 0.008 0.008 0.008 0.04 0.04 0.04]T

x (unitin kg*m? or kg*m)
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Fig. 2. Simulation block diagram for 2-DOF parallel robot controlled by adaptive backstepping controller with kinematics and dynamics uncertainties in MATLAB Simulink.
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set point tracking control for both controllers
0.37 T T

tracking trajectory for this proposed controller
0.36 —tracking trajectory for the contrast controller
- destination point

0.35- \ 8

0.34r

~ 033

S
>~ 0.32

031 NS 1

0.3 AN

0.29+ \ 4
\

0.075 0.08 0.085 0.09 0.095 0.1 0.105
X(m)

Fig. 4. Destination point and tracking trajectories for both controllers (set point tracking).

tracking errors for both controllers
0.08 . . —

------- trac'léing error for this propbsed“cor_ltro.ll.ér"
5 G?\ —tacking error for the contrast controller

tracking error(m)
o o o
: 5 5

o
[=]
w
T
o
1

o
(S
T
L

time(s)
Fig. 5. Tracking errors for both controllers (set point tracking).
T = Ylél — fTe — pP.

These steps were followed and a controller was built in MATLAB SimMechanics. The simulation
block of the 2-DOF parallel robot controlled by the adaptive backstepping controller is shown in
Fig. 2 and the controller block is shown in Fig. 3.
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tracking speed of the end-effector for both controllers
0.12 . :

------ end-effector velbcity for this proposed.cor-ltroll.er
end-effector velocity for the contrast controller

I
0.1 ]

0.08

al |

0.04F ' ﬁ. 4

end-effector velocity(m/s)

S,
0 1 2 3 4 5 6 7 8 9 10
time(s)

Fig. 6. Tracking speeds of the end-effector for both controllers (set point tracking).

q, for both controllers

1.95, : : : : . : .
@a1 value for this proposed controller|
@41 value for the contrast controller
1.9+
i
il
1.85/ P
;j'
iy F
2
= 1.8
L
=
=
-
—1.75- J
=
1.7
1.65/
i
1 6’1 | | 1 1 L
o 1 2 3 4 5 6 7 8 9 10
time(s)

Fig. 7. The value of g,; for both controllers (set point tracking).

4.2. Simulation process and result
In this paper, set point tracking control is implemented. The assignment for the controller is to adjust
the input torques on the active joints so that the end-effector could eventually reach the destination
point. As a contrast, set point control using the controller designed in ref. [7] is carried out on the
same 2-DOF parallel robot.

Set point tracking control and trajectory tracking control are performed on the 2-DOF parallel
robot with the proposed adaptive backstepping control. The desired point for set point tracking
is given as (0.1, 0.28) m. The desired trajectory function for trajectory tracking control is given
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a2 for both controllers
16 ; , -

[ da> value for this proposed'cor-ltrollér.

ioak (a2 value for the contrast controller

ga2 value(rad)

1.25+

time(s)
Fig. 8. The value of ¢,, for both controllers (set point tracking).

angular velocity of gal for both controllers

0.9 T T T T T I I X

ga1 angular velocity for this proposed controller
0.8] — g, angular velocity for the contrast controller |
07 4
0.6

0.5

ga1 angular velocity (rad/s)

- L L 1 Il L Il J
0'10 1 2 3 4 5 6 7 8 9 10

time(s)

Fig. 9. The angular velocities of g,; for both controllers (set point tracking).

as x = 0.1 4+0.05cos(t), y = 0.05sin (¢). For set point tracking control, the destination point and
tracking trajectories for the controller proposed in this paper and the contrast controller are displayed
in Fig. 4. Corresponding tracking errors between the end-effector and the destination point during
this process are shown in Fig. 5. The speeds of the end-effector for both controllers are shown in
Fig. 6. For both controllers, the value of the angles ¢,i, ¢4, the angular velocities ¢,1, .2 and the
input torques at the revolute joints A and E are shown in Figs. 7-12. For trajectory tracking control,
the destination trajectory and tracking trajectories for both controllers are displayed in Fig. 13.
Corresponding tracking errors between the end-effector and the destination trajectory are shown in
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angular velocity of g,, for both controllers
01 T T T T T T T T

d,> angular velocity (rad/s)
| I
.

-0.5/1 :

-0/ = g4 angular velocity for this proposed controller | _
—— (42 angular velocity for the contrast controller

07 1 2 3 4 5 6 78 9 10

time(s)
Fig. 10. The angular velocities of g,, for both controllers (set point tracking).

input torque at A for both controllers

0.5
0.4
0.3

0.2}

torque(N*m)
(=]

0 = -
0.1} 4
-0.2} i
-0.3f 1

--------- input torque at A for this proposed controller
=0A —input torque at A for contrast controller 1
- L 1 1 L L L L 1 L J
0'50 1 2 3 4 5 6 7 8 9 10

time(s)

Fig. 11. Input torques at revolute joint A for both controllers (set point tracking).

Fig. 14. The speeds of the end-effector for both controllers are shown in Fig. 15. For both controllers,
the value of tq,;, g2, the angular velocities ¢,1, ¢,» and input torques at the revolute joints A and E
are shown in Figs. 16-21.

From the simulation results for both the adaptive backstepping controller and the controller in ref
[71, it can be seen that the performance of the adaptive backstepping controller is comparable with
the controller in ref. [7]. Both the adaptive backstepping controller and the contrast controller can
give asymptotic tracking results. As shown in the plots of the tracking errors in Fig. 5, the adaptive
backstepping controller in this paper works better for set point tracking as the tracking error converges
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input torque at E for both controllers

fnput torque at E for this proposed controller
0.51 — input torque at E for contrast controller

0.4 1

0.3 8

0.2 1

torque(N*m)
(=)

-0.4 \"-*\.,,,_M
“’W\%
_05 i | i il L L A L 1 —r
0 1 2 3 4 5 6 7 8 9 10

time(s)
Fig. 12. Input torques at revolute joint E for both controllers (set point tracking).

trajectory tracking control for both controllers

0.36, . : : : ;
-------- tracking trajectory for this proposed controller|
tracking trajectory for the contrast controller
054 | destination trajectory |
0.32- 4
03~ 4
g
o~
0.28- 4
0.26|
0.24- 4
0204 0.06 0.08 01 o012 0.14 0.16

X(m)

Fig. 13. Destination trajectory and tracking trajectories for both controllers (trajectory tracking).

to O faster. As shown in Figs. 6, 9 and 10, the working state of the system was more stable for the
proposed controller, because there is less oscillation in the value of the speed of the end-effector and
the angular velocities of g, and g,» for the proposed controller. Meanwhile, the control output for
the proposed controller in this paper is better than the contrast controller since the input torques at
revolute joints A and E for the proposed controller in this paper are much smoother according to the
plots in Figs. 11 and 12. For trajectory tracking, the tracking error for the contrast controller converges
to O faster than the proposed controller based on Fig. 14. However, from Figs. 15, 18 and 19, the
working state of the system for the proposed controller was more stable as there is less oscillation in
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tracking errors for both controllers
0.12 . .

| ——tracking error for this proposed controller
[—tacking error for the contrast controller

tracking error(m)
o o
8 8

o
£

0.02- \ 1

0 5 10 5 il e .
time(s)

Fig. 14. Tracking errors for both controllers (trajectory tracking).

tracking speed of the end-effector for both controllers
0.12 : .

' end-effector vélbcity for this propose}:l. controller|
—end-effector velocity for the contrast controller |
0.14 B
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o
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[=2]
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=)
o
B

0.02f3 | 1

|

1
00 5 10 15 20 25 30
time(s)

Fig. 15. Tracking speeds of the end-effector for both controllers (trajectory tracking).

the value of the speed of the end-effector and the angular velocities of ¢,; and g, for the proposed
controller. And the control output for the proposed controller is better than the contrast controller
according to Figs. 20 and 21. Therefore, for trajectory tracking control, the proposed controller will be
more desirable when relative stable working process is required and the demands on the performance
of the executive system need to be reduced.
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ga1 for both controllers

23 T T

2t

ga1 value(rad)
°

— (g1 value for this proposed controller
~ ga1 value for the contrast controller

15 20 25 30

Fig. 16. The value of ¢, for both controllers (trajectory tracking).

g,> for both controllers

16 . . - . — :
o2 value for this proposed controller
— @,2 value for the contrast controller
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141"
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813t
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o]
>
.20
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1 -
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time(s)

Fig. 17. The value of ¢, for both controllers (trajectory tracking).

5. Conclusion

19

In this paper, a new adaptive backstepping controller is proposed for parallel robots with uncertainties
in kinematics and dynamics. Kinematic analysis on a parallel robot is carried out based on ref.
[13], and leads to linearity in physical parameters for a parallel robot connected by revolute joints.
Estimations are then made for both kinematic and dynamic uncertain parameters instead of just
dynamic uncertainties. The backstepping variable structure and uncertain estimator are designed
through Lyapunov-based analysis. Therefore, the stability of the close-loop system is guaranteed
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angular velocity of g, for both controllers
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Fig. 18. The angular velocities of g,; for both controllers (trajectory tracking).

angular velocity of g, for both controllers
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Fig. 19. The angular velocities of g,, for both controllers (trajectory tracking).

and proven. The asymptotic result can be drawn through Barbalate’s Lemma. From the simulation
result for our proposed controller and the contrast controller in ref. [7], the adaptive backstepping
controller proposed in this paper indeed gives asymptotic tracking results. The designed controller in
this paper gives better results for set point tracking control as it takes less time for the tracking errors
to converge to 0. And the control output for the proposed controller in this paper is better than the
contrast controller in ref [7]. The contrast controller in ref. [7] provides faster convergence speed for
trajectory tracking control, but the state of the working process for the proposed controller is more
stable. The control output for the proposed controller for trajectory tracking control is also better
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input torque at A for both controllers

1:2

torque(N*m)
o o
B [=2]

o
)

~-input torque at A for this proposed controller
——input torque at A for contrast controller

Fig. 20. Input torques at revolute joint A for both controllers (trajectory tracking).

torque(N*m)

input torque at E for both controllers

~--input torque at E for this proposed controller
—input torque at E for contrast controller

T

=

1 1 J
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time(s)

Fig. 21. Input torques at revolute joint E for both controllers (trajectory tracking).

than the contr

ast controller in ref. [7], which could reduce the demands on the executive system. The

controller designed in this paper could have good performance in position control of the end-effector
for parallel and serial robots even if their structure parameters are not known. It has great potential

for fast and accurate position control.
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Appendix
The details of the elements in Y,(q, ¢, 44, Ga)

1. .. 7
Vi = zdat, ¥i2 = Gar 4 y() + —(3152) + y12(3) — yia(4),
3 sin(gp2 — qp1)
s = Garsin*(qar — qp) . qai(i3(1) + y13(2))
3sin®(gp2 — gp1) 3sin®(gp2 — gp1)
Yia = .Lym(l) + .L(ym(z) + y14(3) — y1s(4)),
Sln(sz - qpl) Sln(qu - (/Ipl)
dax(y15(2) 4+ y15(3))
yis = yis(1) + ——— s Yi6 = 58€08qal
3sin’(gp2 — qp1) 2
gcosq,8in(ga1 — q,2) gcosq o sin(qa1 — gp1)
yi7 = D1 Gal — 902 4 ocosqar,  yis = p2 T al — dp1

2sin(gp — qp1) 2sin(gp2 — qp1)
qa2(y20(2) + y29(3))

3 Sin3(¢]p2 - qu)

y29 = y2o(1) +
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i da2 da>
10 = Gaz + —————»10(1) + ————————(210(2) + ¥210(3) — y210(4))
Sln(qu - Qpl) Sln(CIpZ - CIpl)
1. qa1(y24(2) + y24(3))
Y211 = 5qa2, Yy = ya(l) + — ,
3 3sin’(gp2 — qp1)
dai qai
Vos = ———Yos(1) + —————————(325(2) + y25(3) — y25(4))
Sln(Clpz - qpl) Sln(sz - qpl)
8cosqp1 Sin(gp2 — qa2) 8Cosqp Sin(gp1 — qa2) 1
Y212 = . s Y213 = - + 8€0Sqa2, Y214 = 58€0Sqqa2
2sin(gp2 — qp1) 2sin(gp2 — qp1) 2

da 1 .
yi2(1) = ——— 5 cos(gp1 — qa1)sin(ga1 — gp1) +

sin®(qa1 — qp2) )
Sin(CIpZ - qpl) 2

3 Sin(qu - q;)l)
sin(ga1 — gp2) €os(qp2 — qul))
3 Sin(qu - Qpl)

e
y12(2) = qa1 (5 co8(gp1 — qa1) €OS(gp2 — qa1) +

sin(qq1 — Qpl) sin(qq1 — QpZ) cos(qa1 — QpZ) sin(qq1 — QpZ))

3= g (0 ~
y123) = qp1 38in2(gp2 — qp1) 6sin(gp2 — qp1)

cos(qp1 — Ga1) 8in(ga1 — qp1) . sin(ga1 — qp2) sin(gq; — qp1)>

yi24) = g2 ( . .
P 2sin(gp2 — qp1) 3sin%(gp2 — qp1)
Y13(1) = Gq1 510(ga1 — qp1) €08(gp1 — Ga1) SIN(gp2 — Gp1)

Y13(2) = Gp1 8in(qar — @p1) SINGa1 — Gp2) — §p25in(qar — qp1) c0S(qp2 — qp1)

sin(gq1 — gp2) Sin(gp2 — qa2)
3sin(gp2 — gp1)
sin(ga1 — gp2) cos(qp2 — qaz)>
3sin(gp2 — gp1)

1 )
yia(1) = 3 cos(qp1 — qa1) Sin(gp2 — qa2) +

(1
y14(2) = —qa> (5 cos(gp1 — Ga1) €0S(gp2 — qa2) +

) sin(ga1 — gp1) Sin(Gp2 — Ga2) . €08(ga1 — qp2) SIN(Gp2 — Ga2)
y14(3) = Gp1 ( . b N ! ! - £ -

3sin%(gp2 — qp1) 6sin(g,2 — gp1)
. COS(f]pl - qal) Sin(qpl - QaZ) Sin(Qal - sz) Sin(q;ﬂ - qa2)
yia4) = g2 . —
251“(‘]172 _Qpl) 3sin (CIpZ _CIpl)

Ga2 Sin(qa1 — qp1) Sin(gp1 — qa2)
3 Siﬂz(qu - qu)
Y15(2) = —qa2 sin(qa1 — qp1) cos(gp1 — qa2) Sin(gp2 — qp1)

yis5(1) =

’

Y15(3) = Gp1 8in(ga1 — qp1) SIN(Gp2 — Ga2) — 4p25in(qar — qp1) €0S(qp2 — qp1) SIN(Gp1 — Ga2)

GarSin*(qp> — qa2)
3 Siﬂz(qu - Qpl) ’

yao(l) = ¥20(2) = —qa2 Sin(qp2 — ga2) 08(qgp2 — qa2) Sin(gp2 — qp1)

¥20(3) = §p1 SIN*(@p2 — Gu2) COS(qp2 — qp1) — Gp2 SIN(Gp2 — Ga2) SIN(Gp1 — Gu2)

Sinz(qu - qaZ)

1
1) = = cos(ga — ] Tqa2) T3
ya10(1) 3 (a2 = qp2)sin(qp1 — ga2) + 3sin(gp2 — gp1)
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1 sin(g,1 — ga2) cos(gp1 — qaz)>

2) = —¢q — COS — cos — + -
¥210(2) = —qa2 (2 (qa2 — qp2) €OS(gp1 — qa2) 3,2 — 1)

coS(ga2 — qp2) Sin(qp2 — qa2)  sin(g,1 — gq2) sin(gy — qaz))

0 i (22 .
Y210 p1 2sin(q 2 — qp1) 3sin*(gp2 — gp1)

COS(Qpl - %2) Sin(q;;l - %2) Sin(sz - (*IaZ) Sin(Qpl - Qa2)>

4) = g ( - ;
y210(4) = G2 6si0(qy2 — dp1) 3sin*(gp2 — gp1)

a1 Sin(gp2 — qa2) Sin(qa1 — qp1)
3 Sinz(qu - qpl)
¥24(2) = Gq15in(gp2 — ga2) €OS(qp2 — Ga1) SIN(Gp2 — Gp1)

y2(l) = ,
¥24(3) = Gp1 5in(gp2 — Ga2) €OS(gp2 — qp1) SiN(Ga1 — Gp2) — Gp25in(gp2 — Ga2) SiN(Ga1 — Gp1)

Sin(qu - QaZ) Sin(Qal - Qpl)
3 Sin(@pz - Qpl)

1 .
y25(1) = 2 cos(ga2 — gp2) Sin(ga1 — gp1) +

sin(gp1 — ga2) c0S(qp1 — qal))

1
2)=qu | = a2 — ~ 4a i
¥25(2) = qa (2 cos(gaz — ¢p2) €08(qp1 — ga1) + 3sin(gp2 — qp1)

. [ coS(qa2 — qp2) Sin(qa1 — qp2)  Sin(gp1 — ga2) Sin(qa1 — qp2)
y25(3) =dqp ( a )4 a )4 )4 a a p

ZSin(CIpZ - CIpl) 3 Sin2(Qp2 - qu)

cos(gp1 — qa2) Sin(qa1 — gp1) . sin(gp2 — ga2) Sin(qa1 — qpl))

25 qp2 65in(gpm — 4p1) 3sin*(gp2 — gp1)
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