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We study the development and the breaking process of standing waves at the interface
between two miscible fluids of small density contrast. In our experiment, a subharmonic
wave is generated by a time-periodic vertical acceleration via the Faraday instability. It
is shown that its wavelength may be selected not only by the linear process predicted by
the Floquet theory and favouring the most unstable modes allowed by the tank geometry,
but also by a nonlinear mode competition mechanism giving the preference to subcritical
modes. Subsequently, as the standing wave amplitude grows, a secondary destabilization
process occurs at smaller scales and produces turbulent mixing at the nodes. We explain
this phenomenon as a subcritical parametric resonance instability. Different approaches
derived from local and global stability analysis are proposed to predict the critical wave
steepness. These theories are then assessed against various numerical and experimental
data varying the frequencies and amplitudes of the forcing acceleration.
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1. Introduction

The triggering of waves at the interfaces between fluids of different densities by vertical
vibrations is a well known phenomenon first observed by Faraday (1831) and extensively
reviewed in Miles & Henderson (1990). It constitutes a classical example of parametric
instability in fluids, and it has greatly helped the understanding of pattern formation
in nonlinear systems (Edwards & Fauve 1994; Kudrolli & Gollub 1996; Godrèche &
Manneville 2005; Kahouadji et al. 2015). In this context, a considerable number of
studies successfully characterized the instability onset using linear Floquet theory. We
mention here only the major contributions of Benjamin & Ursell (1954) and Kumar &
Tuckerman (1994). In addition, the development of new weakly nonlinear approaches
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was of paramount importance to predict the saturation amplitudes of the Faraday waves
(Douady 1990; Zhang & Viñals 1997; Chen & Viñals 1999; Skeldon & Rucklidge 2015),
to disentangle the multimodal interactions leading to spatiotemporal chaos (Ciliberto &
Gollub 1985; Meron & Procaccia 1986; Gollub & Ramshankar 1991) or to evidence
the bifurcations and hysteresis phenomena (Rajchenbach & Clamond 2015; Périnet et al.
2016).

By contrast, the Faraday instability in the turbulent regime has been less studied. On
the one hand, this is possibly due to a lack of theoretical tools as strong nonlinearities still
lie ‘almost entirely outside the realm of available analytical techniques’, as commented
by Miles & Henderson (1990). On the other hand, there are few Faraday experiments
dedicated to the subject as most of them are conducted in small apparatus with high
viscosity fluids to better control the dissipation process (Bechhoefer et al. 1995). In any
case, the turbulent regime has been investigated, in particular for miscible fluids with
small density contrast (see Zoueshtiagh, Amiroudine & Narayanan 2009; Amiroudine,
Zoueshtiagh & Narayanan 2012) where it is observed that the turbulent mixing layer driven
by vertical vibrations grows and eventually saturates. This indeed occurs as the natural
frequencies of the system decrease with the enlargement of the layer and are no longer
parametrically excited by the periodic forcing. By retaining only the nonlinear interactions
of turbulence with the mean flow (Gréa 2013), the final size of the turbulent mixing layers
can be predicted analytically (Gréa & Ebo Adou 2018). Recently, this prediction has been
confirmed experimentally in Briard, Gostiaux & Gréa (2020).

Concerning more specifically the transition to turbulence in the Faraday problem, it
is known since Ciliberto & Gollub (1985) and Meron (1987) that chaotic behaviours
often appear for parameters in the vicinity of the neutral branch intersections of the
stability diagram. The experiments presented in Briard et al. (2020) postulate several
scenarios of transition to turbulence. For instance, due to the large dimensions of the tank
allowing viscous effects to be negligible, harmonic and subharmonic modes can interact
to generate mixing at small scales as also reported in numerical simulations (Briard, Gréa
& Gostiaux 2019). However, this experimental campaign also evidences that turbulence
can result from the breaking process of a single Faraday mode. This phenomenon is
illustrated in figure 1 (see also supplementary movies available at https://doi.org/10.1017/
jfm.2021.1124), showing a growing subharmonic primary Faraday wave subjected to a
destabilization process occurring at the nodes and rapidly producing turbulent mixing.
The objective of this work is to investigate and explain this mechanism.

The breaking of Faraday waves at free surfaces is known to appear at the wave crest
and leads to the formation of jets (as shown by Jiang, Perlin & Schultz 1998; Wright,
Yon & Pozrikidis 2000; Longuet-Higgins 2001; Kalinichenko 2009). This comes from
the modulation of the primary wave interacting with its first temporal harmonics. More
generally, the crests of the waves in the ocean are also subject to destabilization. Due
to its importance, this topic is well documented, shedding light on the many instability
mechanisms that can develop (Banner & Peregrine 1993; Kiger & Duncan 2012). Yet the
breaking process of free surface waves differs sensitively from the observations reported in
figure 1. By contrast, our problem presents very close similarities with the destabilization
of standing waves described by Thorpe (1968), also in the context of miscible fluids with
small density variations. While the primary wave in Thorpe’s experiment is generated
not by vertical vibrations but by lateral plungers, a vortex is still produced at the wave
node as in figure 1. More precisely, several phases can be identified for the instability
with a ‘blurring’ of the interface preceding its ‘roll-up’. Kalinichenko (2005) has also
observed and investigated experimentally the breaking process of a Faraday wave between
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Figure 1. The breaking of a Faraday wave in the FARAMIX experiment. (a) Visualization showing the tank
geometry and the configuration (also presented in Briard et al. 2020). (b) Time series images from the camera
zooming on one wavelength and presenting two oscillation periods of the primary wave. This illustrates the
different stages of the wavebreaking, with first a ‘blurring’ of the interface at the node followed by a ‘roll-up’.
This case corresponds to the b5 experiment whose parameters are detailed in table 1. (c) Visualization of the
interface at wavebreaking in the direct numerical simulation DNSd3 (the parameters are given in table 2). The
reference frame as well as the acceleration direction are also indicated.

miscible or immiscible fluids. In particular, he reported that the secondary instability
starts for wave steepness ka ∼ 0.4, with k the wavenumber and a the amplitude of the
Faraday wave. The Rayleigh–Taylor type instability does not seem to play a role in the
process as the acceleration induced by the primary wave displacement is not sufficient
to invert the gravity. Thorpe (1968) and Kalinichenko (2005) suggest instead that a
sort of Kelvin–Helmholtz instability, ‘although not in a simple form’, is at work. Due
to the strong time dependence of this configuration, evaluating locally the Richardson
number at the node cannot be sufficient to assess the importance of the shear instability.
Additionally, in the context of internal gravity waves, the role of subharmonic secondary
parametric instabilities in the breaking process has been explored (McEwan & Robinson
1975; Bouruet-Aubertot, Sommeria & Staquet 1995; Benielli & Sommeria 1998; Staquet
& Sommeria 2002; Sutherland 2010; Yalim, Lopez & Welfert 2020). Can this mechanism
also apply to Faraday waves?

This paper is organized as follows. We give in § 2 a brief description of the experiments
and numerical simulations used for this study. In § 3, we analyse the characteristics of
the primary Faraday wave, emphasizing in particular the mode selection mechanism.
Section 4 is dedicated to the wavebreaking process, with two theoretical approaches
proposed and shedding light on the importance of a subharmonic secondary instability.
We then detail our methodology in order to measure the wavebreaking amplitudes in § 5.
Finally, the analysis and discussion of the results in view of the theoretical predictions are
provided in § 5.3.
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2. Generalities

This work, dedicated to the wavebreaking of Faraday waves, relies on several experiments
already presented in Briard et al. (2020) and initially designed to study the turbulent
mixing driven by vertical vibrations. First, we detail the configuration used and the
parameters considered. Next, we present the direct numerical simulations that allow us
to explore an even broader range of parameters and to identify how the transition to
turbulence takes place.

2.1. Experimental set-up and parameters
The experimental set-up is now introduced briefly since the details can be found in Briard
et al. (2020). We fill a cuboidal tank of inner length W = 94.6 cm, width D = 11 cm,
and height H = 67 cm, with salt and fresh water (see figure 1). The salt water density
takes the values ρ1 = 1030, 1060 or 1090 kg m−3, while for the fresh water we get ρ2 =
998 kg m−3. This corresponds to various Atwood numbers expressing the density contrast:
A = (ρ1 − ρ2)/(ρ1 + ρ2) ∈ {0.015, 0.03, 0.045}. The heavier salt water layer is initially
placed at the bottom. It is separated from the lighter fresh water by a thin diffuse interface
of thickness δ = 0.5–1.5 cm located at half the height of the tank. This thickness may
vary due to the filling procedure of the tank. The values of δ can be measured either by
the initial image from the camera or by the vertical density profiles obtained from a probe
before the experiment starts.

A hexapod oscillates the tank along the z (vertical) direction (for the horizontal
directions, x corresponds to the length W, and y is along the width D of the tank).
This generates a well-controlled time-dependent vertical acceleration of intensity G(t) =
G0(1 + F cosωt). Here G0 = 9.81 m s−2 is the usual gravitational acceleration, ω is the
frequency, and F is the forcing parameter. This forcing parameter is related to the vertical
displacement amplitude of the hexapod, ah, as F = ahω

2/G0. In the experiments, the
acceleration does not change sign since F < 1, although the displacement amplitude of
the vessel can be as large as ah = 45 cm.

We select in Briard et al. (2020) the experiments with sharp initial interfaces and
developing a single Faraday wave. The cases exhibiting different modes appearing
simultaneously are not considered. Therefore our study is based on 18 experiments shown
in table 1, and grouped by values of A.

The primary standing Faraday waves observed in these experiments are characterized
by a horizontal wavenumber, km,n =

√
k2

x + k2
y , associated with the mode index in the

x and y directions, respectively, m = kxW/π and n = kyD/π. So, for instance, m = 2
corresponds to a wavelength equalling the width W of the tank. As the primary wave
is ‘two-dimensional’, this implies a zero mode index n = 0. It can be seen in table 1 that
configurations with odd and even modes have been investigated.

2.2. Direct numerical simulations
In this work, we also provide direct numerical simulations (DNS) in order to explore a
broader panel of parameters and to investigate the inner mechanisms of wavebreaking.

These simulations solve numerically the Navier–Stokes equations under the Boussinesq
approximation. They express the dynamics of the incompressible fluid velocity U(x, t)
and the concentration of heavy fluid C(x, t). Here for miscible fluids with small Atwood
number, the dimensionless concentration C(x, t) ∈ [0 1] is related to the density as
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Series Number A F ω (rad s−1) km,n (m−1) Mode (m, n) δ (cm)

EXPa 1 0.015 0.30 2.555 13.28 (4, 0) 1.3∗
2 0.015 0.30 2.953 16.60 (5, 0) 0.8
3 0.015 0.30 3.462 23.25 (7, 0) 1.0
4 0.015 0.30 3.924 33.21 (9, 0) 1.1
5 0.015 0.40 2.457 13.28 (4, 0) 1.7
6 0.015 0.40 3.462 23.25 (7, 0) 0.6
7 0.015 0.40 3.942 29.89 (9, 0) 0.6
8 0.015 0.50 3.142 19.93 (6, 0) 1.4
9 0.015 0.50 3.924 26.57 (8, 0) 0.5

EXPb 1 0.03 0.30 4.524 19.93 (6, 0) 0.6∗
2 0.03 0.40 3.462 9.96 (3, 0) 0.8
3 0.03 0.50 4.524 19.93 (6, 0) 0.8
4 0.03 0.69 4.290 16.60 (5, 0) 0.4∗
5 0.03 0.69 4.290 16.60 (5, 0) 0.5∗
6 0.03 0.69 4.290 19.93 (6, 0) 0.5∗

EXPc 1 0.045 0.50 3.066 6.64 (2, 0) 1.2
2 0.045 0.69 4.290 13.28 (4, 0) 0.3∗
3 0.045 0.69 4.290 13.28 (4, 0) 0.7∗

Table 1. Label (series and number), Atwood number, forcing parameter and frequency considered for the
experiments in this work. The wavenumbers and mode types corresponding to the primary Faraday wave are
also indicated. The initial interface thickness δ is measured either by a probe when available or directly from
the camera (labelled with ∗).

ρ(x, t) = ρ2 + (ρ1 − ρ2)C(x, t). In the reference frame attached to the container, this
leads to the classical system of equations

∂tU + U · ∇U = −∇Π − 2AG(t)Cez + ν ∇2U, (2.1a)

∂tC + U · ∇C = D∇2C, (2.1b)

∇ · U = 0. (2.1c)

In (2.1a)–(2.1c), Π refers to a reduced pressure, and ν,D are the kinematic viscosity
and molecular diffusion coefficients, respectively. This set of equations constitutes our
theoretical framework in order to predict the wavebreaking. It also describes reasonably
well the flow dynamics at large scale in the experiments, despite the variations of the
viscosity and diffusion coefficients, <20 %, between fresh and salt water.

The simulations are performed in a triply periodic cubic box of size W (or 2W) using the
code already described in Briard et al. (2019, 2020). Therefore we do not seek to reproduce
the tank’s walls, which do not play a direct role in the wavebreaking phenomenology
(although the walls can play a decisive role in the final transition to turbulence). The code
is based on a pseudo-spectral collocation method with two-thirds rule dealiasing. The
time advancement is realized through a third-order low-storage strong-stability-preserving
Runge–Kutta scheme, with implicit viscous terms. All the simulations use a 10243 grid box
with a pencil decomposition on either 1024 or 2048 cores. Due to the vertical periodicity,
a thin penalization layer is applied to freeze the velocity and concentration fields at the
top and bottom of the computational domain. This method is described extensively in
appendix B of Briard et al. (2020). Several tests varying the width of the penalization
band have been conducted in order to ensure that this vertical treatment has no impact
on the dynamics of the interface. In all the simulations presented, the amplitude of the
Faraday wave is less than half of the vertical height of the non-penalized domain.
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Series Number A F ω (rad s−1) Mode (m, n) r ε/ε1 (cm) δ = 3σ (cm)

DNSa 1 0.015 0.70 3.500 (6, 0) — 1.5 0.9
2 0.030 0.60 2.800 (2, 0) — 1.5 0.9
3 0.030 0.80 2.340 (2, 0) — 1.5 0.9
4 0.030 0.80 2.800 (2, 0) — 1.5 0.9
5 0.030 1.00 2.340 (2, 0) — 1.5 0.9
6 0.045 0.50 4.900 (4, 0) — 1.5 0.9
7 0.045 0.69 3.200 (2, 0) — 1.5 0.9
8 0.045 0.694 4.29 (4, 0) — 1.5 0.9

DNSb∗ 1 0.03 0.8 2.4 (2, 0)/(3, 0) 0.5 1.5 1.8
2 0.03 0.8 2.5 (2, 0)/(3, 0) 0.5 1.5 1.8
3 0.03 0.8 2.6 (2, 0)/(3, 0) 0.5 1.5 1.8
4 0.03 0.8 2.7 (2, 0)/(3, 0) 0.5 1.5 1.8
5 0.03 0.8 2.8 (2, 0)/(3, 0) 0.5 1.5 1.8
6 0.03 0.8 2.9 (2, 0)/(3, 0) 0.5 1.5 1.8
7 0.03 0.8 3.07 (2, 0)/(3, 0) 0.5 1.5 1.8

DNSc∗ 1 0.03 0.8 3.07 (2, 0)/(3, 0) 0.1 1.5 1.8
2 0.03 0.8 3.07 (2, 0)/(3, 0) 0.1 3 1.8
3 0.03 0.8 3.07 (2, 0)/(3, 0) 0.25 3 1.8
4 0.03 0.8 3.07 (2, 0)/(3, 0) 0.5 3 1.8
5 0.03 0.8 3.07 (2, 0)/(3, 0) 1 3 1.8

DNSd 1 0.045 0.5 4.29 (4, 0) — 1.5 0.9
2 0.045 0.694 4.29 (4, 0) — 1.5 0.9
3 0.045 1 4.29 (4, 0) — 1.5 0.9
4 0.045 1.5 4.29 (4, 0) — 1.5 0.9
5 0.045 2 4.29 (4, 0) — 1.5 0.9
6 0.045 2.5 4.29 (4, 0) — 1.5 0.9
7 0.045 3 4.29 (4, 0) — 1.5 0.9
8 0.045 3.5 4.29 (4, 0) — 1.5 0.9
9 0.045 4 4.29 (4, 0) — 1.5 0.9

10 0.045 4.5 4.29 (4, 0) — 1.5 0.9
11 0.045 5 4.29 (4, 0) — 1.5 0.9

DNSe 1 0.03 0.3 2.8 (2, 0) — 1.5 1.8
DNSf 1 0.045 1 4.29 (4, 0) — 1.5/0.015 0.9

Table 2. Label (series and number) and parameters in physical units (Atwood number, forcing parameter and
frequency) taken for the direct numerical simulations presented in this work. The cases DNSa, DNSd and
DNSe correspond to the wavebreaking detection. The series DNSb and DNSc are dedicated to the competition
between modes (2, 0) and (3, 0), where the selected mode appears underlined. The parameter r expresses the
initial amplitude ratio (r = 0 corresponding to a pure (2, 0) mode). The initial amplitude ε of the interface
perturbation and the y-spanwise perturbation amplitude ε1 for DNSf, together with the interface thicknesses
δ, are also detailed. The computation domain is of cubic size with length W = 94.6 cm or 2W for the series
labelled with ∗. All the DNS have a 10243 grid resolution.

The simulations parameters are presented in table 2. In order to have a well-resolved
flow field, the viscosity and diffusion are fixed at ν = D = 2.26 × 10−6 m2 s−1. This
corresponds to roughly twice the real viscosity of water but largely overestimates the
molecular diffusion (the Schmidt number is 1 instead of 700 for salt water). Due to the
dimensions of the tank, this limitation does not prevent us from properly capturing at least
the first stages of secondary instabilities developing on the Faraday wave.

We now detail the initial conditions taken in the simulations. While the initial
velocity is U = 0 in the simulations, the initial concentration profile is taken as
two-dimensional (2-D) of the form (for the DNSa, DNSd and DNSe series and outside the
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penalization band)

C(x, z) = 1
2

(
1 + tanh

[
z − ξ(x)
σ

])
, with ξ(x) = ε sin(km,0x). (2.2)

The parameter σ in (2.2) sets the initial width δ of the interface (δ ≈ 3σ ). The function
ξ(x) indicates the initial perturbed interface position of sinusoidal shape, with wavelength
k and of small amplitude ε = 1.5 cm. Therefore the initial interface is slightly more
diffused and has a larger amplitude in the simulations compared to the experiments. This
is to have at least 20 grid points across the interface layer and to ensure grid convergence
of the simulations.

Without ambiguity, the initial wavenumber km,0 for DNSa, DNSd and DNSe also
corresponds to the observed wavenumber at later times indicated in table 2 and
characterizing the subharmonic Faraday wave. This is due to our choice for the forcing
frequency taken as nearly twice the value of the dispersion relationship of an inviscid
interface ω = 2

√AG0km,0.
In order to explore more broadly the effect of mode selection, we also propose

simulations DNSb and DNSc with an initial interface position defined as

ξ(x) = ε[r cos(k3,0x)+ (1 − r) cos(k2,0x)]. (2.3)

Here, the parameter r thus expresses the initial ratio amplitude between the modes (3, 0)
and (2, 0). These simulations are conducted in a computational domain twice the size of
the tank, 2W, in order to allow the development of odd modes otherwise forbidden due to
the periodic boundary conditions. Also, the interface thicknesses δ are doubled to keep at
least 10 grid points across the interface, while the viscosity and diffusion coefficients are
still multiplied by 4 to ensure grid convergence of these simulations.

In the simulation series DNSa–DNSe, the flow remains two-dimensional even after the
secondary instability starts. In order to study the full transition to turbulence, we consider
simulations DNSf where the interface position is slightly perturbed in the spanwise
direction y. Introducing the normalized white noise function f , the interface position is
given by

ξ(x, y) = ε sin(km,0x)+ ε1 f ( y). (2.4)

In practice, the y disturbance amplitude is set such that ε1 = 10−2ε. However, we have
also tested various simulations varying the ε1 parameter, not presented as exhibiting the
same phenomenology as DNSf. The breaking of the spanwise symmetry invariance in
DNSf can also be produced by the lateral boundary layers in the experiments. Therefore
various simulations mimicking the lateral boundary layers were also conducted using the
penalization method introduced in Briard et al. (2020). These simulations (not presented)
give results similar to those for DNSf, which will be discussed in § 5.3.3.

3. Mode selection mechanism of the Faraday wave

In this section, we discuss the primary wave characteristics and figure out which – linear
or nonlinear – mechanism eventually selects the dominant wavelength of the instability in
the experiments.

3.1. Linear theory
It is well-known since Benjamin & Ursell (1954) that when modelling the Faraday
instability, the amplitudes, ηk, for the interface modes of wavenumber k are ruled by a
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Mathieu equation

η̈k + 2 γ (k) η̇k +Ω2(k) (1 + F cosωt)ηk = 0. (3.1)

In (3.1), we define the inviscid frequency of the diffuse interface Ω and the viscous
damping term γ , both of which depend on the horizontal wavenumber k. Note that the
decoupling of each inviscid mode is true only in the limit of small damping. However, the
full analysis of this problem can be performed using the method proposed by Kumar &
Tuckerman (1994).

The inviscid frequency Ω(k) within the deep-water approximation is thus a growing
function of k and can be evaluated for a given vertical density profile; see, for instance,
Briard et al. (2020) for a piecewise linear profile

Ω(k) =
( AG0k

1 + kδ/2

)1/2

. (3.2)

For small wavenumbers, i.e. kδ � 1 with δ the thickness of the interface, the classical
dispersion relationship for an interface within the deep-water approximationΩ = √AG0k
is recovered. In the large wavenumber limit, kδ 	 1, the interface mode reduces to
Ω(k) = √

2AG0/δ, corresponding to the local buoyancy or Brunt–Väisälä frequency at
the interface.

The viscous dissipation term, γ (k), expressing the small interfacial mode damping,
can have different origins. The damping coming from the bulk flow for a sharp interface
takes the form γb(k) = 2νk2 (Lamb 1945; Landau & Lifshitz 2013). However, due to the
velocity gradients, significant damping can also occur within the thin layer separating
the two fluids. Assuming a piecewise linear vertical density profile, Briard et al. (2020)
obtained the expression γδ(k) = AG0νk2/Ω2δ ≈ νk/δ for kδ � 1. In this linear theory,
we wish also to account for the damping generated by the boundary layers at the various
walls (top, bottom and laterals) existing in the experiments. The boundary layer widths in
the experiment can be evaluated using δw = (2ν/Ω)1/2. This gives values δw ∼ 1–2 mm
using the parameters of the experiments, showing that the boundary layer widths are much
smaller than the characteristics wavelengths of the instability and the size of the tank. In
this condition, Keulegan (1959) and Miles & Benjamin (1967) have derived an expression
for the damping of free surface waves in a rectangular basin due to the laminar boundary
layers. This result has also been generalized to our problem by Thorpe (1968) as detailed
in Appendix B, and leads to the following expression for the damping coefficient:

γw ≈ ν

Dδw
=

√
νΩ√
2D

. (3.3)

Here, (3.3) thus expresses the dominant contribution of the lateral walls (in the z–x plane)
to the damping.

We gather in table 3 the numerical values of the damping coefficients originating from
the bulk, the interfacial layer separating the fluids, and the boundary layers at the walls.
It can be shown that these values do not vary by more than several per cent if we account
for the viscosity contrast between fresh and salt water. Therefore it clearly indicates that
the dissipation occurs essentially in the viscous layers at the walls, as γw is larger than
the other contributions. The damping γw indeed scales like ν1/2 in (3.3), while it is linear
in ν for the dissipation γb or from the interfacial layer γδ . Bechhoefer et al. (1995) have
extensively discussed this aspect and they suggest using fluids with high viscosity in order
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The subcritical transition to turbulence

Mode (2, 0) (3, 0) (4, 0) (5, 0) (6, 0) (8, 0)

γw = 9.75 × 10−3 1.08 × 10−2 1.15 × 10−2 1.22 × 10−2 1.28 × 10−2 1.36 × 10−2

γb = 1.16 × 10−4 2.60 × 10−4 4.62 × 10−4 7.22 × 10−4 1.04 × 10−3 1.85 × 10−3

γδ = 1.74 × 10−3 2.61 × 10−3 3.48 × 10−3 4.35 × 10−3 5.22 × 10−3 7.27 × 10−3

Table 3. Values for the damping coefficients, γw, γb, γδ , in s−1 and evaluated for the largest wavelengths
developing in the experiment. We assume here that the Atwood number is A = 0.03 and the thickness of the
interfacial layer is δ = 0.5 cm. Here, the top boundary is taken as a wall to evaluate γw (the values would be
nearly the same for a free surface).

to better control the dissipation in experiments dedicated to the study of the instability
threshold. By contrast, our study is focused on the wavebreaking mechanism, explaining
why we favour the use of low-viscosity fluids. Note that for larger wavenumber k, the
contributions from the interface layer regain importance and cannot be neglected.

The stability diagram corresponding to the first subharmonic tongue is represented in
figure 2. It is plotted for the different large-scale modes of the tank and derived using the
damping γw from (3.3) and γδ (the latter contribution being smaller). The neutral curves
of (3.1) are computed using the method proposed by Kumar & Tuckerman (1994) and
also used in Briard et al. (2020) assuming different Atwood number values A and an
initial interface thickness δ = 1 cm. For a given mode k, the minimum forcing Fth able to
destabilize the interface occurs at the frequency corresponding to the first subharmonic
resonance, Ω(k) = ω/2. The classical asymptotic theory of the Mathieu equation, in
the limit of small damping, allows the derivation of the threshold as Fth = 8γ /ω (see
Rajchenbach & Clamond (2015), for instance). The threshold Fth varies very weakly for
the different modes presented in figure 2. Indeed, the contribution due to the damping from
the viscous layer at the walls scales like γw ∼ ω1/2, leading to a decrease of Fth at larger
ω. However, this effect is compensated at larger k by the contribution from the damping at
the interface scaling like γδ ∼ ω2.

The parameters taken in the experiments with F � 0.3, also indicated in figure 2, are
situated in unstable regions well above the viscous thresholds determined by the linear
Floquet theory. As a consequence, at least two or more modes can be simultaneously
subharmonically unstable in these experiments.

3.2. Linear or nonlinear mode selection?
In this subsection, we investigate the mechanisms leading to the mode selection of the
primary wave. As shown in figure 2 and due to the large acceleration forcing F, several
modes can be linearly unstable and play a role in the interface dynamics. Surprisingly, a
single mode, corresponding nearly always to the smallest unstable wavelength, emerges
from this process; there is a clear tendency to favour the modes pertaining to the right
unstable tongues in figure 2 (the mode reported in table 1 is also indicated by the colour
of the symbol in figure 2). In addition, the selection mechanism does not apparently
discriminate between the even and odd modes of the tank as both can be observed in
the experiments.

One would expect the modes with the largest linear growth rates to be selected first;
this is why only the modes in the first subharmonic band are considered here, as the
higher resonance regions exhibit much smaller amplification rates. For a given mode,
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ω/�AG0k2,0

Figure 2. Stability diagram for (3.1) in a non-dimensional frequency ω/
√AG0k2,0 and forcing F plane. The

coloured regions correspond to the first subharmonic instability band associated with the different modes of
the tank (the mode number is indicated in the figure). The diagram is obtained using the damping coefficient
γ = γδ + γw at three different Atwood numbers A, and considering an interface thickness δ = 1 cm. The
neutral curves (thick plain lines) have a slight dependence on the Atwood number, explaining why they are not
completely superimposed. The symbols correspond to the parameters taken in the experiment in table 1. The
shapes indicate the Atwood number, and the colours reveal which mode is eventually selected.

the Floquet theory shows that the maximum amplification occurs for parameters close
to the subharmonic resonance frequency located at the centre of the instability tongue.
However, the results in figure 2 reveal that in many cases, the selected mode does not
have the largest linear growth rate. Moreover, some of the observed modes are hardly
unstable and should have very small growth rate from linear theory (such as EXPa1, for
instance). This statement stands even if we account for some experimental uncertainties
in term of Atwood number (±0.001) or initial interface width (±0.5 cm). It can be shown
that these effects only slightly modify the instability tongues of figure 2. In particular, a
larger interface thickness would slightly left-shift the instability tongues of figure 2 as the
natural frequencies Ω are decreased (the damping dominated by the viscous layer at the
wall remains unchanged). In any case, we have checked that the hexapod movement is
well controlled and remains sinusoidal. Therefore it is unlikely to have spurious forcing
frequencies in the system that may change the linear stability of the problem.

The initial perturbation of the interface may also play a role in the mode selection
mechanism. A large initial amplitude on a given mode can explain why it appears even
if it does not have the largest growth rate during the linear phase. This would suggest that
an initial condition at small scales is at work in the experiments, although we have not
observed such a disturbance and could not identify a source able to generate it. In any
case, this cannot shed light on the appearance of linearly stable modes.

By contrast, Faraday experiments with immiscible fluids have revealed the ability of
nonlinearities to select modes and generate transient chaotic regimes (see, for instance,
Ciliberto & Gollub 1984, 1985). Using weakly nonlinear approaches, Meron & Procaccia
(1986) and Meron (1987) have already detailed how the mode suppression phenomenon
can occur. Considering two modes close to the first subharmonic resonance, the nonlinear
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The subcritical transition to turbulence

cubic coupling terms in each amplitude equation have a sign determined by the detuning
parameter Δ = Ω2/ω2 − 1/4. Here, the detuning parameter for a given mode expresses
the departure of the forcing frequency from the first subharmonic resonance. Therefore,
when two modes are in competition, their respective detuning parameters Δ generally
have opposite signs because the forcing frequency ω lies between the two subharmonic
resonance frequencies (see figure 2). This explains the mode suppression since one mode
can develop, even being linearly stable, by pumping energy from the other one. The theory
indeed shows that the vanishing mode, Δ < 0, is supercritical as the nonlinear coupling
damps the instability while the dominant one,Δ � 0, is subcritical as it is being reinforced
by the nonlinearities. As the wave amplitude grows, the frequency of the wave tends to
diminish (Thorpe 1968) as well as the detuning parameter of each mode (Godrèche &
Manneville 2005). Hence this left-shifts the instability bands of figure 2 and favours the
subcritical modes at smaller wavelength.

3.3. Numerical analysis of the mode competition
At this stage, the mode suppression due to a nonlinear coupling between competing modes
can explain the mode selection evidenced in figure 2. In any case, the mode amplitude is
no longer negligible compared to its wavelength when the selection process is at work,
suggesting that the nonlinear effects are an important ingredient to account for. We wish
to assess further this hypothesis by the mean of direct numerical simulations (DNS) with
well-characterized initial conditions. Two series of DNS have been performed using 10243

grid points (series DNSb and DNSc in table 2), with A = 0.03. The frequency ω and the
forcing F taken in the simulations are also represented in the phase diagram of figure 3. It
is important to stress here that the phase diagram does not account for the wall damping as
simulations are performed in a triply periodic box. The two series of DNS start from the
same location in the phase diagram (point A) with F = 0.8 and ω = 3.07 (or equivalently
ω/

√AG0k2,0 = 2.2). This corresponds to parameters with the two unstable modes having
nearly the same exponential growth rate as ∼ eλωt. Indeed, the Floquet exponent λ takes
the value 0.09 for mode (3, 0), and 0.07 for mode (2, 0). We fix the forcing parameters in
one series and vary the amplitude ratio r. In the other series, the relative amplitude is set
at r = 0.5 and we decrease the forcing frequency ω in order to explore more deeply the
(2, 0) subharmonic instability tongue. The simulations are stopped when the wavebreaking
occurs and we report which of the (2, 0) and (3, 0) modes prevails at this moment in
figure 3. This procedure is performed both visually and by computing the Fourier modes
of the interface.

The simulations clearly evidence the mode suppression phenomenon to the benefit of the
modes with the smallest wavelength. The results reported in figure 3 show the dominance
of mode (3, 0) even starting from a small initial amplitude (transition occurs at r = 0.1)
or developing in a region where it is linearly stable (for small ω). The phenomenon can be
scrutinized in more detail in the snapshots extracted from the two series in figure 4, where
the mode (3, 0) emerges from cases with initial r = 0.25, 0.5 or with the frequencies
ω = 2.6, 2.8. Indeed, in the last row of figure 4, one can observe that mode (2, 0) prevails
only forω = 2.4 (ω/

√AG0k2,0 = 1.72), and for largerω, sayω = 2.6 (orω/
√AG0k2,0 =

1.86), mode (3, 0) is visible despite being linearly stable. As a consequence, the mode
competition greatly enhances the sensitivity to initial conditions in the experiment. As
importantly, this process breaks the symmetry of the primary wave, as can be seen in both
the experiments (figure 1) and the simulations (figure 4).
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Figure 3. Parameters of the DNS (symbols) in the stability diagram ω–F. The coloured areas correspond to the
subharmonic instability tongues for the modes (2, 0) and (3, 0) accounting for viscosity and diffused interface
δ = 1.8 cm (as no walls are present in the DNS, the damping coefficient γ ≈ γδ and critical thresholds Fth are
very small). The symbols’ colours indicate which mode emerges from the simulation; mixed colours express
that both modes can be observed. Two series of DNSb, DNSc (see table 2) are presented here, starting from
point A. In the DNSb group, the initial amplitude ratio r between modes (3, 0) and (2, 0) is set at r = 0.5 and
we decrease the forcing frequency ω. In the DNSc group, the frequency and forcing are fixed and we vary r.
The point corresponding to DNSe is also placed.

r = 0.1 r = 0.25 r = 0.5

t

ω = 2.4 ω = 2.6 ω = 2.8

t

(a) Cases with r varying (b) Cases with ω varying

Figure 4. Mode selection in six DNS of figure 3. (a) Cases corresponding to DNSc (see table 2) with r
varying and A = 0.030, ω = 3.07, F = 0.8. The amplitude of the interface deformation is ε = 3 cm. (b) Cases
corresponding to DNSb (see table 2) with ω varying and A = 0.030, F = 0.8, r = 0.5, ε = 1.5 cm. We put
the slices of width W of the concentration field at four instants starting from the initial interface at t = 0 and
ending when the wavebreaking occurs; pure fluids remain in white, while mixed fluid with C = 0.5 ± 0.15 is
in black.
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The subcritical transition to turbulence

Some specificities of the mode suppression in our Faraday experiment with miscible
fluids are now addressed. We have not observed oscillations between two specific modes
as in Ciliberto & Gollub (1984, 1985) or similarly Yalim, Welfert & Lopez (2019) in
the context of a stable stratification. This is notably because, at large forcing parameter,
the interface grows irreversibly, allowing continuously new modes to be destabilized. The
modes can change in our experiment, as already reported in Briard et al. (2020). But
there is always a correspondence to a one-way transition from large to small wavelength
for interface modes. The more complex transitions evidenced in figure 14 of Briard et al.
(2020), for instance, refer to modes not pertaining to the same instability band or being of
different natures. The irreversible mixing produced by the rapid breaking of the primary
waves also explains this aspect.

Another difference with past Faraday immiscible experiments conducted in a shallow
basin is that in our case the dominant waves correspond to those with the smallest
wavelength, as already discussed. Noticeably, this point clearly agrees with the nonlinear
theory of mode suppression. It can be shown that within the deep-water approximation, the
subcritical modes are indeed those with small wavelength; see Rajchenbach & Clamond
(2015) for details.

In this section, it has been evidenced that the mode selection of the primary wave may
result from a complex nonlinear mode competition process. When this is the case, the
subcritical mode is eventually selected. In the following, we try to explain the breakdown
of the Faraday waves.

4. Modelling the breakdown of Faraday waves

We now present two heuristic models dedicated to the breakdown of Faraday waves
initiating the transition to turbulent mixing. The objective is to evaluate the critical wave
steepness at which the breakdown may occur. By emphasizing two simple approaches,
we aim to explore various frameworks for the breakdown and to disentangle the inner
mechanisms responsible for the instability.

Both models, although relying on different assumptions, suggest that the breakdown
results from a subharmonic secondary instability at small scales. Therefore one key
ingredient in these approaches is to account for the unsteadiness of the primary wave. This
aspect differs from secondary instability analysis relying on a frozen base flow used, for
instance, in the context of Kelvin–Helmholtz instability (Salehipour, Peltier & Mashayek
2015).

The first approach, hereafter referred as global, is based on the fact that the breakdown
of the Faraday waves changes the monotony of horizontally averaged density profiles
(this point is more specifically detailed later, in § 5.2). We therefore seek to identify the
conditions for a small disturbance to develop around the mean profile characterizing a
Faraday wave of given amplitude (see figure 5). By contrast, the second model proposed
relies on the local analysis of small perturbations at the interface node of the primary wave
(see also figure 5).

4.1. The global approach

4.1.1. A simple model equation
In order to derive a simple model for the breakdown of Faraday waves, the concentration
and velocity fields are decomposed into a mean and a fluctuating part as C = C̄ + c and
U = Ū + u. A mean quantity ∗̄ is obtained by averaging along the horizontal x and y
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Figure 5. Frameworks applied to model the wavebreaking of the primary wave (a) and detailed in § 4. For the
global approach (b), we consider the stability of the horizontally averaged concentration profiles. For the local
approach (c), we study the development of small perturbations of wavenumber kwb at the node of the primary
wave.

directions. The system (2.1) is classically averaged also in order to find the equations
for the mean flow and its fluctuations. It can be shown directly that the mean velocity is
zero, Ū = 0, due to the symmetries and the incompressibility condition. The mean vertical
concentration profile C̄(z, t) evolves principally due to the vertical buoyancy flux wc as

∂tC̄ + ∂zwc = D∂2
zzC̄. (4.1)

In this global approach, the primary Faraday wave is thus embedded in the mean vertical
concentration profile C̄(z, t) but also has fluctuation components satisfying (4.1).

Further simplifications are now made in order to obtain a more tractable model. We
seek a ‘rapid’ secondary instability occurring at small scales and located at z = 0. In this
context, the rapid acceleration theory initially developed by Hunt & Carruthers (1990) and
applied to turbulent mixing layers in Gréa (2013) provides a convenient framework for
expressing the dynamics of small-scale disturbances. We thus discard all the dissipative
and nonlinear terms, except for the coupling between the fluctuations and the mean
concentration field. In addition, the small-scale disturbance sees only a uniform mean
concentration gradient at z = 0 determined by the length L = −1/∂zC̄(0, t). Within this
quasi-homogeneous approximation, the small-scale fluctuating quantities and pressure p
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are determined by

∂tu = −∇p − 2AG(t) cez, (4.2a)

∂tc = w
L(t)

, (4.2b)

∇ · u = 0. (4.2c)

One recognizes in (4.2) the classical equations for an internal gravity wave, except
that it is driven by a time-varying acceleration and mean density gradient. When it is
uniform across the layer, this mean gradient can be evaluated from the mixing layer length
Lint = 6

∫ +∞
−∞ C̄(1 − C̄) dz introduced by Andrews & Spalding (1990) and previously used

in Briard et al. (2020) for the fully turbulent regime. However, this property is lost when
the flow takes the form of a single laminar wave. In this case, the inverse concentration
gradient is maximum at z = 0, and we will discuss in a later section different ways to
evaluate it.

These waves depend on their orientations, but for this heuristic model we focus only on
waves with a wavevector in the horizontal plane. Differently oriented modes are thought
to be less relevant in the secondary instability partly because they are less likely to modify
the mean concentration profile; the feedback of the fluctuations to the mean concentration
profile is indeed controlled by the vertical buoyancy flux term wc, which is weaker for
vertically oriented modes. Eliminating w in (4.2), we obtain the following Mathieu-like
equation (see a more detailed derivation in Gréa & Ebo Adou 2018):

c̈ + L̇
L

ċ + 2AG(t)
L

c = 0. (4.3)

The concentration fluctuations c are therefore fully determined by L, expressing the
amplitude of the primary Faraday wave. We need to determine the condition on L for
which the perturbations may develop. Indeed, the rise of the perturbation foreshadows the
breaking process of the primary wave and the onset of turbulence. More precisely, (4.3)
exhibits the buoyancy frequency defined as ΩB = (2AG0/L)1/2 and a damping term L̇/L
expressing the variations of ΩB as the mixing zone width L evolves. As will be seen in
§ 4.2, the ΩB frequency is relevant for the secondary instability because the shear at the
nodes of the primary wave is driven directly by the wave amplitude.

We now detail the implications of this model equation regarding the wavebreaking
phenomenology as observed in figure 1.

4.1.2. The subcritical nature and the criterion for the wavebreaking
The stability of the model equation (4.3) has been extensively discussed in Gréa & Ebo
Adou (2018) and Briard et al. (2020), allowing the prediction of the final widths of
the turbulent mixing zones. This saturation criterion evaluates when the subharmonic
instability stops, or equivalently when the inner frequencies of the layer are no longer
in resonance with the forcing. Thus it did not seek to account for the unsteadiness of L.
Conversely, we wish to interpret the wavebreaking as the development of a secondary
subharmonic instability at small scales. For a small disturbance characterized by the
buoyancy frequency ΩB, we thus aim to find when it becomes parametrically unstable
as the result of both the forcing and the primary wave oscillations. The enlargement of the
primary wave amplitude determines not only the instability threshold, but also the later
amplification of the secondary instability growth rate. This explains why the secondary
instability develops rapidly at the interface, and sheds light on the subcritical nature of this
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Figure 6. Stability analysis of (4.3) with L(t) = L0(1 + β cos(ωt)) and represented in the Ω2
0B/ω

2–F plane
(with Ω0B = (2AG0/L0)

1/2). The two coloured areas indicate the first subharmonic tongues with β = 0 and
β = 0.7, respectively. The dashed blue lines correspond to the approximation (4.4), while the red dashed dotted
lines correspond to (B9).

secondary instability. This peculiarity is indeed well-known for nonlinear Mathieu systems
such as (4.3) as detailed in Soliman & Thompson (1992) or Godrèche & Manneville
(2005).

In order to derive an analytic criterion for the wavebreaking, we consider the inverse
mean concentration gradient L having the simple form L(t) = L0(1 + β cos(ωt)). The
length L is thus expected to be proportional to the amplitude ηp of the primary Faraday
wave, L(t) ∼ |ηp| in the laminar phase. Here, the proportionality coefficient depends on
the shape of the nonlinear primary wave. Also, the parameter β expresses the relative
amplitude of the Faraday wave oscillations while L0 is the mean over one oscillation
period. This expression does not account for the primary mode growth, which is assumed
small over an oscillation period. It also expresses that for a subharmonic instability,
L oscillates at frequency ω while ηp oscillates at frequency ω/2. However, the higher
temporal harmonics of L(t) or ηp for the primary wave are discarded. In addition, it
is important to note that the primary Faraday mode amplitude is in phase with the
acceleration G(t).

In this context, we use the Floquet analysis detailed in Appendix B to find the secondary
subharmonic instability onset. The results are represented in the stability diagram of
figure 6, exhibiting the instability tongues for β = 0 and β = 0.7. Note that the case
β = 0 indeed corresponds to the classical stability diagram of a Mathieu equation. In this
representation, the right-hand sides of the neutral branches (solid black lines of figure 6)
determine the critical amplitude of the primary wave and the beginning of the secondary
instability as L0 grows. This gives a critical threshold Lcrit that should be close to the
one characterizing the wavebreaking Lwb if the instability develops quickly (we still have
Lcrit � Lwb).

An analytical approximation for the critical threshold Lcrit is also derived in Appendix B,
leading to

Lcrit ≈ (4 − 2F)
1 + β/2

2AG0

ω2 , for F � 1 and β � 1. (4.4)
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As shown in figure 6 (blue dashed lines), the criterion (4.4) slightly underestimates
Lcrit at small F and large β while being reasonably correct for the parameters taken
in the experiment. However, it becomes very bad at large F, even leading to negative
values for F � 2. Despite being more complicated, a better approximation can be derived
corresponding to (B9) and shown by the red dashed dotted lines of figure 6.

In (4.4), we see that the forcing F together with the movement of the primary wave
characterized by β contribute to the destabilization of the primary wave. In particular,
even without acceleration forcing (F = 0), the secondary instability can be triggered by
the primary wave oscillations. This also leads to striking differences in terms of growth
rates. For instance, for the subharmonic resonance at F = 0.7 we find a Floquet exponent
λ = 0.09 for β = 0 (also corresponding to the growth of the primary wave), while λ =
0.2 for the case with β = 0.7. Therefore the acceleration induced by the primary wave
increases sensibly (but not drastically) the growth rate of the secondary modes. This effect
explains why the breakdown occurs in a time scale much shorter than the growth of the
primary wave.

4.2. The local approach
The previous global approach has the main advantage of being relatively simple through
relying on the horizontal averaging process. The drawback, however, is losing track of the
physical mechanism responsible for the secondary instability. Also, it assumes that the
secondary instability mode results only from the interaction with the mean component of
the primary wave. This assumption may appear excessive, and it motivates us to propose
a complementary method. We therefore perform a stability analysis of the flow generated
at the node of the primary wave.

The equations driving the evolution of an interfacial perturbation amplitude, η, at the
node of the primary wave, are given in the inviscid limit (see the derivation in Appendix C)
by

η̈ − 2iAkwbUη̇ + (AG(t) kwb − kwb
2U2 − iAkwbU̇)η = 0. (4.5)

In (4.5), kwb represents the wavevector modulus of the perturbation, and U is the oscillating
tangential velocity induced by the primary wave at the node. Not surprisingly, we recover
the equation in the Boussinesq limit first derived by Kelly (1965), expressing the dynamics
of an oscillating sheared interface. In fact, supposing the instability amplitude and
wavelength are small, respectively kη � 1 and κ = kwb/k 	 1, this allows us to neglect
the interface tilting at the node and to assume the quasi-homogeneity of the perturbation.
Note that often at least two vortices may appear in the experiments at the node of the
primary wave during the breaking process, suggesting the validity of the homogeneity
assumption.

Many works have been dedicated to the stability analysis of (4.5) in the case of G
constant and U oscillating at a single frequency ω. In addition to the parametric resonance
modes that Kelly (1965) identified, Lyubimov & Cherepanov (1987) and Khenner et al.
(1999) have shown and derived a criterion for the existence of Kelvin–Helmholtz type
modes at the interface. These latter modes generate a longwave instability observed in
most experiments, which may exhibit frozen wave patterns at high forcing frequency (Wolf
1970; Wunenburger et al. 1999; Yoshikawa & Wesfreid 2011; Gaponenko et al. 2015;
Lyubimov et al. 2017; Gréa & Briard 2019). Noticeably, frozen waves are completely
steady structures analogous to the inclined equilibrium positions of a strongly and
horizontally oscillated pendulum.
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The local analysis emphasizes the importance of the shear in the breakdown process of
the primary wave. Although the works of Thorpe (1968) and Kalinichenko (2005) have
early recognized this aspect, the nature of the instability – either Kelvin–Helmholtz (KH)
or parametric resonance (PR) type – has not been fully identified in this Faraday wave
context. The results of Kelly (1965) and Khenner et al. (1999) do not apply to our specific
configuration where the acceleration oscillates at frequency ω while the shear velocity is
subharmonic with frequency ω/2. We thus reconsider the problem of (4.5) by taking a
primary wave of the form ηp(t) = a cos(ωt/2) leading to

U(t) = −ωa
2

sin(ωt/2) and U2 = ω2a2

8
(1 − cosωt) = 1

2
AG0k

1 + 4Δ
a2(1 − cosωt),

(4.6a,b)

where in the last expression, the subharmonic resonance condition ω2 = 4AG0k/(1 +
4Δ) for an inviscid interface is used. In order to study the stability of (4.5), it is further
convenient to introduce the new variable Y defined as η = Y exp(

∫ t
0 iAkwb U(t′) dt′) giving

(at leading order in A)

Ÿ + (AG(t) kwb − kwb
2U2)Y = 0. (4.7)

Due to the change of variable expression and the fact that U oscillates at ω/2, the response
in ηwill be also subharmonic. However, for small Atwood number, η ≈ Y and the response
can be also nearly synchronous. Indeed, by substituting the expression for U(t) into (4.7),
we obtain a simple Mathieu equation of the form

Ÿ + (P + Q cos(ωt)) Y = 0,

with P = AG0k
(
κ − 1

2(1 + 4Δ)
κ2(ka)2

)
and

Q = AG0k
(
κF + 1

2(1 + 4Δ)
κ2(ka)2

)
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.8)

In figure 7, we show the stability diagram of (4.8) in a κ–ka plane (the subharmonic
resonance condition for the primary wave is used again). The instability tongue
corresponding to the KH type modes appears for P � 0, which stands as the classical
criterion for the inviscid KH instability, kwbU2 � AG0 (Chandrasekhar 1961). The
parametric resonance zones start for P � 0 but also have a continuation in the opposite
half-plane. Remarkably, the instability zones exhibit a very weak dependence on κ for
κ 	 1. Therefore, at given κ and as the primary wave amplitude grows, the perturbation
passes through the successive instability zones, first the PR types then later the KH one.
The growth rates can be computed with the Floquet exponent and show a maximum
approximately in the middle of each zone. The KH and PR1 growth rates are larger
compared to the other instability zones. Therefore the breakdown of the Faraday wave
is expected to occur when the wave steepness, ka, lies in the instability KH or PR1 zones.
This local theory is inviscid, which explains why the growth rates are higher at large κ . Of
course, the viscosity and the thickness δ of the interface should play a role and moderate
this aspect.

Similarly to the global approach, we can propose an approximation for the critical
wave steepness corresponding to the onset of the PR1 instability. Using the asymptotic
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Figure 7. Stability curve of (4.8) for F = 0.7 and Δ = 0 in the κ–ka plane or the P–Q plane (insert)
corresponding to the classical representation of the Mathieu equation. The blue coloured areas show the
Kelvin–Helmholtz (KH) and parametric resonance (PR) instability regions. The dashed curve corresponds
to P = 0. The area corresponding to P < 0 is located above the dashed curve in the κ–ka representation. The
critical wave steepness value indicated by the black dotted curve corresponds to criterion (4.9).

expression for the neutral curves of the Mathieu equation in the limit P → −∞, Q → +∞
detailed in Abramowitz & Stegun (1965), we obtain

kacrit ≈ 1
3 (1 + 4Δ)(1 + F). (4.9)

This simple expression (4.9) corresponds indeed to the plateau (it does not depend on κ)
separating the PR1 and PR2 bands in the small perturbation wavelength limit κ 	 1 as
shown in figure 7 (black dotted line).

At this stage, two theoretical approaches have been proposed to study the breaking
process of Faraday waves. Before assessing the validity of these approaches, it is first
necessary to detail how we detect the wavebreaking in both the experiments and the
simulations.

5. Data analysis of the experiments and simulations

In this section, we detail the methodology used in order to measure the primary wave
amplitudes and the inverse mean density gradients. We then investigate various strategies
to detect the instants at which the wavebreaking occurs. In the last subsection we discuss
the validity of the global and local wavebreaking theories against the data from the
experiments and DNS.

5.1. Primary wave amplitude and inverse mean density gradient
The global and local approaches detailed in § 4 rely on different scales characterizing the
primary wave. These correspond respectively to the inverse mean concentration gradient
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L(t) at the rest interface position z = 0 and the wave amplitude ηp(t) (see also figure 5).
It is therefore important to link these two quantities in order to compare the global and
local theories in the experiments. As already remarked, we can expect the proportionality
between the inverse mean gradient and the wave amplitude, L(t) = κL|ηp(t)|. This assumes
that the shape of the primary wave is frozen, which also determines the coefficient κ .
By considering the position ξp(x, t) = ηp(t) sin kx of a sharp sinusoidal interface, as for
the standing wave in Appendix C, we can easily show that κL = π (the wave amplitude
is supposed larger than the interface thickness δ). This choice is also motivated by the
expression for the finite amplitude standing wave profile given by Thorpe (1968) in
deep-water approximation, showing that the higher-order corrections are negligible even
at moderate wave steepness.

The global theory assumes an inverse density gradient oscillating as L(t) = L0(1 +
β cosωt), while in the local theory the primary wave amplitude evolves as ηp =
a cosωt/2. By expanding |ηp(t)| in Fourier series and truncating at leading order, we
simply get L0 = 2κLa/π and β = 2/3. This allows us to express the results from the
global theory in terms of critical steepness, as for the local theory. In particular, the critical
wave steepness for the global theory expressed by (4.4) in the limit of small F, using the
resonance condition and taking κL = π (sinusoidal interface), gives

kacrit = 3
8 (2 − F)(1 + 4Δ). (5.1)

We now detail how to measure the inverse local gradient L and the wave amplitude ηp
in practice in the experiments. The inverse local gradient is a difficult quantity to obtain
directly from the mean concentration profile. The latter, resulting from the post-processing
of the images of the camera as detailed in Briard et al. (2020), can be a bit noisy,
particularly when the secondary instabilities start at the node. The quantity |ηp| can be
obtained either from the crest-to-crest amplitude of the wave on the raw camera images, or
from an arbitrary threshold on the mean concentration (here taking the height where 0.1 �
C̄ � 0.9). Again this method suffers from being sensitive to small variations in the mean
concentration profile. Therefore we find it more convenient to measure these quantities
indirectly using the integral length Lint previously introduced in § 4.1.1. By assuming
that the shape of the concentration profiles is frozen, we can deduce all the characteristic
lengths from Lint, which for a sinusoidal interface gives Lint = 2.4|ηp| = 0.76L.

To ensure that these relations apply in our problem, we have measured the amplitude
|ηp| at a local maximum just before the wavebreaking using the threshold method on C̄,
the inverse mean concentration gradient L, and the integral length Lint. In figures 8(a) and
8(b), we see that the sinusoidal profile is a good fit for the interface position and provides a
good evaluation of the mean concentration profile. If the amplitude is too small, however,
the fit is less satisfactory, probably because the interface thickness should be accounted
for in the evaluation of the mean concentration profile. The method shows that the inverse
mean concentration gradient is maximum at the centre of the layer z = 0, in accordance
with the fact that the wavebreaking starts at the nodes of the primary wave. In any case,
we recover the expected relation between L and the wave amplitude |ηp|. Therefore the
different lengths L and |ηp| can be evaluated correctly from Lint. In figure 8(c), we further
check that the relation between Lint and |ηp| holds on multiple experimental data before
but close to the wavebreaking. The correlation is thus satisfactory and gives us confidence
in our method to extract the amplitudes and the inverse concentration gradients necessary
to explore the wavebreaking phenomenon.
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Figure 8. (a) Visualization of the interface in experiment EXPa7 (see table 1) at the amplitude maximum just
before the wavebreaking and compared to a sinusoidal profile (red line). (b) Mean concentration profile from
experiment and sinusoidal interface. (c) Lint plots as a function of |ηp| at a maximum amplitude just before
the wavebreaking for all the experiments of table 1. The values for |ηp| are evaluated from the crest-to-crest
distance of the wave measured directly on the images or using the mean concentration profiles. The two arrows
correspond to the EXPa7 case shown in (a,b).

5.2. Wavebreaking detection
In this subsection, we detail the strategy in order to identify the instants corresponding to
the wavebreaking in the experiments and the simulations.

The wavebreaking phenomenon can be defined as a local overturning of the interface
at the node. This can be observed directly in the images from the camera by noticing the
appearance of vortices giving birth to a mushroom-like structure (see figure 9). Since
this visual criterion is somewhat subjective, we also propose an automated detection
procedure using a simple algorithm based on the Thorpe displacement (introduced by
Thorpe 1977). Indeed, this displacement characterizes the distance that a parcel of fluid
has to move vertically in order to be in stable equilibrium with the surrounding water.
Hence a completely stable profile would have zero displacements, whereas the existence of
some local overturns generates non-zero Thorpe displacements. Accordingly, we compute
for each one-dimensional vertical transect the displacements δT = z∗ − z, where z is the
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Figure 9. Procedure for the wavebreaking detection. (a) Visual criterion from the calibrated camera image.
(b) The Thorpe displacements δT evaluated by sorting the concentration field in each vertical transect of the
calibrated image. The colourbar indicates the displacement in mm.

position of a fluid parcel on the instantaneous concentration field, and z∗ is the position of
the same parcel on the vertically sorted concentration field (see figure 9). We detect when
this displacement |δT | exceeds a certain threshold (here |δT | > 5–12 px = 5.5–13.2 mm)
chosen a bit smaller than the initial interface widths. For a given experiment, this algorithm
provides almost the same image (and thus same time and value for L) as the one chosen by
eye only (see figure 9). However, it is not possible to detect from this method the beginning
of the ‘blurred’ region as defined in Thorpe (1968), indicating the secondary instability
onset leading to the wavebreaking at the nodes.

The Thorpe displacement can also be used to measure the vortex size at wavebreaking
and thus gives the ratio κ = kwb/k necessary for the local theory. To determine kwb, we take
the maximum displacement δT evaluated at the image given by the Thorpe displacement
method. By construction, this measurement cannot be smaller than the arbitrary threshold
chosen for the wavebreaking detection. In practice, δT exceeds this value by more than
three times. As a summary, we illustrate in figure 10 the whole procedure allowing for
the wavebreaking detection and the measurements of the wave amplitudes and inverse
concentration gradients.

The time evolution of the integral length Lint in a simulation revealing the subharmonic
oscillations (thus Lint oscillates at frequency ω) and the growth of the primary wave are
presented in figure 10(a). The instant corresponding to wavebreaking is determined by
evaluating the Thorpe displacement. This corresponds to the apparition of the vortices at
the nodes. In addition, we show the evolution of the integral length Lint,s computed from
the sorted concentration profiles as in Briard et al. (2019). This quantity expresses the
evolution of irreversible mixing by distinguishing the available and background potential
energies (see also, for instance, Winters et al. 1995; Peltier & Caulfield 2003; Davies
Wykes & Dalziel 2014). Noticeably, we observe that the growth of the irreversible mixing
starts just after the wavebreaking time. In figure 10(a), we verify further that this process
is due to wavebreaking as the curve of Lint,s gets detached from the interface width Lint,d,
expressing the thickening of the interface by pure diffusion. However, the slow evolution
of Lint,s would make it difficult to build a wavebreaking detection criterion from it. In
figure 10(b), we also present the different mean concentration profiles before and after the
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Figure 10. Time evolution of the mixing zone width and the mean concentration profiles at different instants
extracted from DNSd2 (see parameters in table 2). (a) Evolution of the integral lengths Lint and Lint,s computed
from the mean and sorted concentration profiles, respectively, as a function of ωt. The green dotted line
corresponds to the integral scale Lint,d expressing the thickening of the interface by diffusion only. The star
symbol at ωt = 17.75 indicates the wavebreaking detected by the Thorpe displacement. The horizontal lines
correspond to the theoretical wavebreaking predictions, here converted in terms of integral length. (b) Mean
concentration profiles at different times corresponding to the local maxima of Lint in (a) and renormalized by
the integral mixing zone width Lint. The inserted images illustrate the state of the interface at the same instants.

wavebreaking time and renormalized by Lint. This confirms that the mean concentration
profiles can be considered as frozen and well represented by a sinusoidal interface before
the wavebreaking. This aspect is important in order to link the inverse concentration
gradient to the wave amplitude and to compare the global and local approaches. At and
after the wavebreaking, the mean concentration profiles are drastically distorted, and
exhibit inversions of the stratification due to the roll-up of the interface. The predictions
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Figure 11. Parametric instability bands (coloured regions) and experimental data (symbols) corresponding to
the wavebreaking in a κ–ka representation. The parameters for the experiments are detailed in table 1. Panels
(a) and (c) correspond to the local theory (PR1 instability band). Panels (b) and (d) are associated with the
global theory. We place the theoretical instability zones with Δ = 0 in the (a,b) panels, and Δ = 0.04 for
the (c,d) panels, both with F = 0.3 and F = 0.7. The symbol colours successively indicate (a) the forcing
parameter F, (b) the Atwood number A, (c) the detuningΔ and (d) the primary wave mode in the experiments.

from the local and global theories are also plotted in figure 10(a), showing a good
agreement with the measured amplitude at the wavebreaking. Again this is expected to
have Lwb > Lcrit for both theories. We discuss this point more thoroughly in the next
subsection.

5.3. Results and discussion

5.3.1. Critical steepness values
We now analyse the experimental and numerical measurements of wavebreaking in order
to assess the global and local theories presented in § 4. The instants corresponding to the
wavebreaking are detected using the procedure detailed in § 5.2. They are usually close but
not necessarily exactly located at a maximum of the primary wave. Therefore we perform
a linear interpolation between two successive maxima in order to evaluate the amplitude
a at the wavebreaking (thus deduced from the integral scale Lint as explained in § 5.1). In
figures 11 and 12, the wavenumber ratio κ and the wave steepness ka corresponding to the
wavebreaking are reported and superimposed onto the stability curves obtained from the
local and global approaches.
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Figure 12. Same as figure 11 but for the DNS data corresponding to the series DNSa (see table 2).

The wave steepness measured at the wavebreaking detection is roughly ka ∼ 0.75
from the experiments and the DNS. These values are thus located inside the parametric
resonance instability band PR1 above the thresholds provided by the local and global
approaches. Some points are slightly below the critical steepness provided by the global
theory atΔ = 0.04 in figures 11(d) and 12(d), but it corresponds to negative detuning cases
that have a lower critical steepness value. For the moderate F parameters investigated in
this work, both theories predict roughly the same critical steepness value, kacrit ∼ 0.5.
This result clearly gives strong credit to a wavebreaking process due to a secondary
subharmonic instability appearing when the primary wave reaches a critical amplitude;
it is therefore subcritical. Conversely, we have conducted a simulation (DNSe case, see
table 2 and figure 3) with parameters close to the neutral curve and where the primary
wave reaches a saturation amplitude below the critical steepness value. This kind of wave
does not experience wavebreaking as expected from the theory.

A tendency emerges from figure 11, that the critical wave steepness slightly decreases
at large wavenumber ratio κ . This observation stands despite the difficulty of evaluating
κ in the experiments, but is less obvious in the DNS results of figure 12. Although
the neutral curves depend very weakly on κ (they do not depend on it with the global
theory), the instability growth rates evaluated from Floquet theory increase when the small
perturbation wavelength κ becomes large in the local theory. This result is characteristic
of classical inviscid theories such as for the KH instability. It is therefore not surprising to
see that the wavebreaking occurs earlier, i.e. at smaller ka, when the secondary instability
is initiated at smaller wavelengths. Also, one cannot exclude the possibility that the
unstable modes from the higher parametric bands (PR2, for instance) play a role in the

934 A34-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
24

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1124


M. Cavelier, B.-J. Gréa, A. Briard and L. Gostiaux

destabilization process of the primary wave. More precisely it may explain the blurring
of the interface already observed by Kalinichenko (2005) well before the wavebreaking at
ka ∼ 0.4. These PR bands are, however, expected to be seriously damped by the viscosity
in addition to having a lower growth rate. Conversely, the growth rates of the PR1 modes as
computed in the local theory are very large compared to the primary Faraday wave growth
rates. Indeed, we find Floquet exponents λ varying between 2 and 8, corresponding to an
amplification �500 over one oscillation period (by contrast the primary wave has Floquet
exponents around 0.08). This is due to the additional forcing generated by the primary
wave and explains why the breaking process develops over one or two oscillation periods.
It also seems justified to neglect in the theory the growth of the primary wave amplitude
for these parameters. By contrast, the growth rates evaluated by the global approach are
much more modest (∼0.2). This point is probably due to the assumption linking the
local mean concentration gradient to the amplitude of the primary wave detailed in § 5.1.
Indeed, as soon as the secondary instability develops, the shape of the mean concentration
profile is distorted due to the perturbation feedback. This aspect is well demonstrated
in the simulation result of figure 10. It eventually leads to a local change of sign in the
stratification, which would in return considerably increase the instability growth rate.
However, this effect is not accounted for in the present global approach, which remains
effective at predicting the secondary instability onset.

A large range of κ values has been found in the experiments and simulations, which
comes equally from the primary and secondary wavelength measurements. Noticeably, the
simulations provide larger κ (up to 110 in figure 12) partly because the primary wavelength
is large. Therefore an important question raised is how the wavenumber kwb is selected.
Neither the global theory (which does not depend on kwb) nor the local theory (which relies
on the analysis of an infinitely thin interface) can explain this aspect. When the interface
thickness reaches comparable size with the secondary instability wavelength, the natural
frequency becomes bounded and the instability growth rate is expected to be limited. By
analogy, the pure KH instability (represented by the Taylor–Goldstein equation) has a
maximum growth rate kwbδ ∼ 1 at low Richardson number. This also depends on the shear
and density profiles considered for the analysis (see, for instance, Taylor 1931; Hazel 1972;
Caulfield 1994). The same process for the PR mode seems at work in our experiments
as suggested by the measurements of kwb. This has also been evidenced theoretically
by Poulin, Flierl & Pedlosky (2003) on oscillatory uniform shear layer configurations.
However, the local analysis accounting for the interface thickness is rendered complex
by the coupling between the internal layer modes induced by the time-varying shear and
acceleration.

5.3.2. Exploring further the forcing parameter effect
Despite performing well for the parameters corresponding to the experiments, the local
and global approaches differ sensitively in their dependence on the forcing parameter.
While the critical wave steepness grows linearly in F in the local theory as shown by (4.9),
the F dependence in the global criterion is more complex, even exhibiting a diminution of
the wave steepness at small F as stated by (5.1). In order to investigate this dependence,
we show in figure 13 the results from the simulations corresponding to the DNSd cases
(see table 2). These simulations are conducted using the same initial conditions and
frequency ω, varying only the forcing parameter F. The results show a critical wave
steepness globally evolving linearly with F. This trend seems reasonably well predicted
by the local approach although underestimating the wavebreaking at large F. By contrast,
the global approach clearly underestimates the critical wave steepness. As an explanation,
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0 1 2 3 4 5
F

0

0.5

1.0

1.5

2.0

2.5

kawb

kawb DNSd
kacrit local (4.9)
kacrit global (B9)

Figure 13. Wave steepness at wavebreaking as a function of the forcing parameter F for the DNSd cases
(symbols) with ω = 4.29 rad s−1 and A = 0.045 (see table 2). The dashed and dotted curves correspond
respectively to the local and global criteria. Inserts: visualizations of the concentration fields in DNSd3 and
DNSd11 just after the wavebreaking.

it should be stated that both the global and local approaches become limited when F
is large because the growth of the primary wave amplitude a cannot be neglected over
one oscillation period. In the DNSd cases of figure 13, the wavebreaking occurs during
the first oscillation for F � 3, when the sign of gravity is inverted. Therefore at large
F the secondary instability is expected to change nature as becoming triggered more by
the growth of the primary wave than its oscillations. In that respect, the wavebreaking
process is no longer parametric but becomes of KH type similar to that appearing in
Rayleigh–Taylor instability (Birkhoff 1962; Daly 1967; Baker, Caflisch & Siegel 1993).

5.3.3. The final transition to turbulence
So far, we have not demonstrated that the secondary instability developing at the node of
the primary wave triggers the full transition to a turbulent regime. Indeed, the simulations
with a 2-D interface initialization are unable to develop the cascading process leading
to turbulence. We thus provide as an example the simulation DNSf where the 2-D
initialization is perturbed by a small random white noise in the spanwise y direction.

In figure 14, we compare, at different times, the simulations DSNf and DNSd3 using the
same parameters (see table 2) but having a simple 2-D initial condition.

Both simulations evolve similarly until wavebreaking (here at ωt = 14.5). This means
also that the critical amplitude is not modified by the small spanwise y perturbation,
hardly visible since its amplitude is two orders of magnitude smaller than that of the x
2-D perturbation. This feature has been reproduced on other simulations at different ε1
parameters or in simulations where the spanwise invariance is broken by the presence
of lateral walls (not presented for the sake of conciseness). After wavebreaking, the
simulations differ sensitively as DNSf (or simulations with the spanwise invariance
broken) exhibits a rapid transition to turbulent mixing. The process is so violent that
turbulence does not stay bounded to the node of the Faraday wave and spreads around the
whole layer. The images of figure 14 at ωt = 25.7 (see also supplementary movie of DNSf)
reveal that the final mechanism leading to turbulent mixing is related to the merging and
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ω t = 0

ω t = 8.6

ω t = 15.8

ω t = 25.7

ω t = 34.3

(a) (b)

Figure 14. Visualization of the interface at different times of DNSd3 (a) and DNSf (b) corresponding to the
parameters in table 2. The wavebreaking is detected at ωt = 14.5 for both simulations.

stretching of the secondary vortices at the node forced by the oscillations of the Faraday
wave.

In order to identify the specificity of this transition, we evaluate the Reynolds
and bulk Richardson numbers as classically introduced for the Kelvin–Helmholtz
instability (Caulfield 2021). Taking σ for the interface half-width and U = aω/2 for the
half-shear-velocity, we find Re = Uσ/ν = 313 at the wavebreaking ωt = 14.5. For the
bulk Richardson number we obtain Ri = AG0σ/U2 = 0.023. While the low value of
the Richardson number is consistent with the existence of a strong shear instability, the
Reynolds number is unexpectedly small for a mixing transition. This is probably being
underestimated due to the blurring of the interface before the wavebreaking. Perhaps the
fact that the transition does not result from a convective secondary instability inside the
vortices, as often observed for the Kelvin–Helmholtz instability (Salehipour et al. 2015),
may explain this aspect. By contrast, we can consider a global Reynolds number based
on the width and velocity of the layer. This gives Re = a2ω/ν ∼ 104 and agrees with a
mixing transition criteria of Re > 104 proposed by Dimotakis (2005).

934 A34-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
24

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1124


The subcritical transition to turbulence

6. Conclusion

In this work, we have studied experimentally, numerically and theoretically the
wavebreaking mechanism leading to turbulence of growing Faraday waves at the interface
between miscible fluids of small density contrast. The Floquet linear theory reveals that
several subharmonic modes can be unstable simultaneously due to the quantification
induced by the tank geometry and the large forcing accelerations considered. It is
shown that by accounting for the viscous damping at the walls and from the bulk
flow, the parameters in our experiments are located well above the instability threshold,
suggesting that the inviscid theory provides a good first approximation for this problem.
We have evidenced that the mode selection of the Faraday wave results not only from a
linear process but also from a nonlinear competition favouring the modes with smaller
wavelength. More precisely, the natural frequencies of the system decrease as the mode
amplitude grows. Therefore the subcritical modes are those with positive detuning, which
are favoured when the primary wave amplitude has reached a critical value. By contrast,
those with negative detuning are supercritical and become damped as being less in
parametric resonance with the forcing frequency. This mode competition phenomenology
also explains the sensitivity to initial conditions and the symmetry breaking of the
dominant mode that has been observed in our experiments.

The idea of considering the nonlinear mode interaction as a linear process but with a
time-evolving reference state was first introduced successfully to describe the saturation
of turbulent Faraday waves. In addition to using it for describing the mode competition
phenomena, we also employ this approach to explain the breakdown of the primary wave
as the appearance of a secondary subharmonic instability at small wavelengths. This
theory, referred to here as ‘global’ as resulting from a horizontal averaging process, reveals
that the secondary instability is principally due to the oscillations of the primary wave,
thus explaining why it develops very rapidly compared to the growth rate of the primary
Faraday wave. We then also propose a criterion giving the critical steepness of the primary
wave at which the wavebreaking is expected to appear. Due to its simplicity, this theory
cannot explain why the secondary instability occurs at the node of the primary wave, nor
how it depends on its wavelength. This is why we study the flow in a local frame attached
to the node of the primary wave leading to a local approach. This reveals the importance of
the shear in the development of the secondary instability leading to the wavebreaking. It is
shown from a stability analysis that the unstable modes can be of either Kelvin–Helmholtz
or parametric resonance type, the latter occurring earlier during the growth of the primary
wave.

In order to assess the global and local theories, we evaluate the primary wave
amplitudes in the experiments and in the numerical simulations, together with the
wavenumbers associated with the wavebreaking phenomenon. This is done using the
Thorpe displacement indicating a local overturning of the interface, as well as extracting
the background density profiles evolving due to an irreversible mixing. The results reveal
the subcritical nature of the wavebreaking detected roughly for wave steepnesses ka ∼
0.75. These values are consistently larger than ka ∼ 0.4 reported by Kalinichenko (2005)
but associated with the earlier ‘blurring’ stage of the instability. Remarkably, both theories
indicate that this should correspond to a parametric resonance subharmonic instability
developing when the primary wave amplitude reaches a critical value. Therefore the
present mechanism for Faraday waves presents similarities with the breaking process of
internal gravity waves. However, when the forcing parameter is increased, our approaches
come to a limitation as the wavebreaking process changes in nature, resulting more
from the amplitude growth of the primary wave than its oscillations. In this case,
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the phenomenon becomes similar to the secondary vortices appearing in the classical
Rayleigh–Taylor instability.

Simulations with 2-D initial conditions perturbed along the spanwise direction evidence
that the final transition to turbulence originates from the secondary instability at the node
of the Faraday wave. The stretching and merging of the secondary vortices driven by the
oscillations of the primary wave is an efficient mechanism to produce mixing, differing
sensitively with the transition scenarios observed in the context of the Kelvin–Helmholtz
instability.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.1124.
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Appendix A. The damping of a gravity wave in a rectangular tank

In this appendix, we evaluate the contributions from the walls to the damping of an
interfacial wave in a rectangular tank. The geometry corresponds to the experiment
detailed in § 2.2. We consider a wave with horizontal wavenumber k and a small amplitude
a, oscillating at the frequencyΩ (the damping is thus supposed to be very small). The rest
interface position is located in the middle of tank, and we study the two cases depending
on whether the top boundary is a wall or a free surface. This result has already been
established by Keulegan (1959) in the context of a free surface wave, and generalized
by Thorpe (1968) for two fluids configurations. The objective here is to disentangle
the various contributions from the walls, in particular to show that the damping comes
principally from the lateral boundaries in our experiment.

We assume potential flow away from the walls. If the viscous boundary is very thin,
then the potential φ for the wave can be expressed by

φ = − aG0

Ω cosh kH/2
cosh k(z + H/2) cos kx cosΩt, for z < 0,

= − aG0

Ω cosh kH/2
cosh k(z − H/2) cos kx cosΩt, for z > 0. (A1)

Hence the 2-D velocity field (for z < 0) is given by u0 = ∇φ:

u0 = −akG0

Ω

cosh k(z + H/2)
cosh kH/2

sin kx cosΩt,

w0 = akG0

Ω

sinh k(z + H/2)
cosh kH/2

cos kx cosΩt.

⎫⎪⎪⎬
⎪⎪⎭

(A2)

For z > 0 one obtains the same expression but using z − H/2 in the cosh and sinh for u0
and w0 respectively.
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The subcritical transition to turbulence

Classically (Landau & Lifshitz 2013), the damping coefficient can be evaluated from the
total mechanical energy of the system as

γ = 〈Ėmech〉
2〈Emech〉 , (A3)

where Emech is the sum of kinetic and potential energies, and the symbol 〈·〉 corresponds
to the mean over one oscillation period of the wave.

In an oscillating system, the mean mechanical energy is provided by twice the mean
kinetic energy. Therefore, using that kinetic energy comes principally from the potential
flow, we have

〈Emech〉 =
∫

V
ρ

(〈
u2

0

〉
+

〈
w2

0

〉)
dV. (A4)

In the limit of small Atwood number, the mechanical energies in the upper and lower parts
of the tank are the same so we can restrict the integration over the lower part of the tank.
Also, taking the mean over a period of time of cos2(Ωt) brings a factor one-half, and we
get

〈Emech〉 = ρWD
(

akG0

Ω cosh kH/2

)2 sinh kH
4k

. (A5)

In order to compute the damping coefficient, we determine the mean value of the energy
dissipation due to the walls. To this aim, it is necessary to evaluate the velocity field in the
Stokes layers, which should match the potential solution u0,w0 oscillating at frequency
Ω away from the walls. Following Landau & Lifshitz (2013), we use the fact that the
oscillations of a viscous liquid around a solid body are equivalent to the oscillations of a
solid body immersed in a viscous liquid. Hence each wall can be assimilated to a plate
oscillating in its own plane.

The mean mechanical energy dissipated in the layers adjacent to the wall is equal to the
mean kinetic energy dissipated in those layers. For this, we use that the wavelength and
dimensions of the tank are large compared to the Stokes layer thickness δw = √

2ν/Ω .

A.1. Contribution from the vertical walls at y = 0 and y = D
First, we consider the vertical wall at y = 0 with z � 0. The fluid velocities in the viscous
layer are given by

u = akG0

Ω

cosh k(z + H/2)
cosh kH/2

sin kx
[
e−y/δw cos(Ωt − y/δw)− cosΩt

]
,

w = −akG0

Ω

sinh k(z + H/2)
cosh kH/2

cos kx
[
e−y/δw cos(Ωt − y/δw)− cosΩt

]
.

⎫⎪⎪⎬
⎪⎪⎭

(A6)

So the velocity is zero at the wall and we recover the potential solution u0 away from it.
The wall contribution to the mean dissipation of mechanical energy can be expressed as

〈
Ė1

〉 = ρν
Ω

2π

∫ 0

−H/2

∫ W

0

∫ ∞

0

∫ 2π/Ω

0
[(∂yu)2 + (∂yw)2]dt dy dx dz. (A7)

Taking the square of the y-derivative, we get at leading order in 1/δw,

〈
Ė1

〉 = ρ
ν

2δw
W

(
akG0

Ω cosh kH/2

)2 sinh kH
4k

. (A8)
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Therefore the full contribution to the mean mechanical energy dissipation of the two
vertical walls along x, summing the bottom and upper parts, leads to

〈
Ėmech

〉 = 4
〈
Ė1

〉
. So

the damping coefficient γw1 corresponding to the two lateral walls at y = 0 and y = D is
simply given by

γw1 = ν

δwD
. (A9)

A.2. Vertical walls x = 0 and x = W
Similarly, near the vertical wall at x = 0 and z � 0, the velocity in the viscous layer is
given by

u = 0,

w = −akG0

Ω

sinh k(z + H/2)
cosh kH/2

[
e−x/δw cos(Ωt − x/δw)− cosΩt

]
.

⎫⎬
⎭ (A10)

The amount of energy dissipated on this wall is

〈
Ė2

〉 = ρν

δ2
w

(
akG0

Ω cosh kH/2

)2 ∫ ∞

0
e−2x/δw dx

∫ D

0
dy

∫ 0

−H/2
sinh2 k(z + H/2) dz

= ρνD
2δw

(
akG0

Ω cosh kH/2

)2 (
sinh kH

4k
− H

4

)
. (A11)

Again considering the upper part of the tank and the opposite wall at x = W, we obtain
a dissipation of 4

〈
Ė2

〉
. This gives the damping coefficient

γw2 = ν

δwW

(
1 − kH

sinh kH

)
. (A12)

A.3. Bottom and upper walls at z = −H/2, H/2
Considering the bottom wall at z = −H/2, the fluid velocities in the viscous layer are

u = akG0

Ω cosh kH/2
sin kx

[
exp(−(z + H/2)/δw) cos(Ωt − (z + H/2)/δw)− cosΩt

]
,

w = 0.

⎫⎬
⎭

(A13)
At leading order in 1/δw we obtain the energy loss as

〈
Ė3

〉 = ρν

δ2
w

(
akG0

Ω cosh kH/2

)2 ∫ ∞

−H/2
exp(−2(z + H/2)/δw) dz

∫ D

0
dy

∫ W

0
sin2 kx dx

= ρν

4δw
WD

(
akG0

Ω cosh kH/2

)2

. (A14)

The same amount of energy is dissipated on the upper walls z = H/2. So the damping
coefficient accounting for the bottom and the upper wall is

γw3 = ν

δw

k
sinh kH

or, (A15a)

= ν

2δw

k
sinh kH

for a free surface. (A15b)
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Summing all the contributions from the wall, we finally obtain the damping coefficient
γw = γw1 + γw2 + γw3.

Appendix B. Stability analysis of the global approach equation

In this part, we detail the Floquet analysis of (4.3). After choosing L(t) = L0(1 +
β cosωt), one gets

(1 + β cos(τ )) c̈ − β sin(τ ) ċ + Ω2
0B
ω2 (1 + F cos(τ )) c = 0, (B1)

with τ = ωt and Ω2
0B = 2AG0/L0.

The Floquet theorem states that the solution of (B1) is of the form

c =
+∞∑

n=−∞
Yn exp((λ+ i(n + α))τ ), (B2)

with λ the real Floquet exponent characterizing the growth rate of the instability, and
α = 0 or 1/2 depending on whether the instability is harmonic or subharmonic. By setting
λ = 0, we can determine the neutral branches of the instability. Inserting the solution in
(B1), we get

+∞∑
n=−∞

[
−(n + α)2

(
1 + β

2
(eiτ + e−iτ )

)
Ynei(n+α)τ − β

2
(eiτ − e−iτ )(n + α)Ynei(n+α)τ

]

+
+∞∑

n=−∞
s
(

1 + F
2
(eiτ + e−iτ )

)
Ynei(n+α)τ = 0, (B3)

introducing s = Ω2
0B/ω

2. Reorganizing the sums, we obtain for each n:

Yn(n + α)2 + β

2

[
Yn−1(n − 1 + α)(n + α)+ Yn+1(n + 1 + α)(n + α)

]

= s
[

Yn + F
2
(Yn−1 + Yn+1)

]
. (B4)

This constitutes a generalized eigenvalues problem of the form AX = sBX, where X
is constructed from the real and imaginary parts of the vector Y . Following Kumar &
Tuckerman (1994), to express the condition for c being real and truncating the solution,
we restrict the problem to 0 � n � N leading to (2N + 2)× (2N + 2) matrix sizes for A
and B. Furthermore, we focus on the subharmonic instability corresponding to α = 1/2.
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In this case, the pentadiagonal matrices A and B are written as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d+
0 0

β

2
b0 0

0 d−
0 0

β

2
b0

. . .

β

2
a1 0 d1 0

. . .
. . . 0

0
β

2
a1 0 d1

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . . dN−1 0
β

2
bN−1 0

. . .
. . . 0 dN−1 0

β

2
bN−1

0 . . .
β

2
aN 0 dN 0

0
β

2
aN 0 dN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B5)

and

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + F
2

0
F
2

0

0 1 − F
2

0
F
2

. . .

F
2

0 1 0
. . .

. . . 0
0

F
2

0 1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . . 1 0
F
2

0
. . .

. . . 0 1 0
F
2

0 . . .
F
2

0 1 0

0
F
2

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B6)

with an = (n − 1 + α)(n + α), bn = (n + 1 + α)(n + α). For the diagonal terms in
matrix A, we have dn = (n + α)2 for all n > 0, and for n = 0 we have d±

0 = α2 ± (β/2)a0.
In order to get a simple analytic approximation for the neutral branch for F and β � 1

in figure 6, we take N = 0 and solve[
1/4 − β/8 − s(1 + F/2) 0

0 1/4 + β/8 − s(1 − F/2)

] [
Yr

0
Yi

0

]
= 0, (B7)

with one of the desired solutions given by

Lcrit = 2Ag
ω2

(4 − 2F)
1 + β/2

. (B8)
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However, this expression is not completely satisfactory to approximate the neutral
branch corresponding to the onset of the subharmonic instability for larger β and F as
shown in figure 6. A better expression can be found with N = 1, which leads to

Lcrit = 2Ag
ω2

4F2 + 8F − 16
F(9 + 3β)− (β + 20)+ M

,

with M =
√

9(13 + 8β)F2 − 6(48 + β(17 + 4β))F + 256.

⎫⎪⎪⎬
⎪⎪⎭

(B9)

Appendix C. Derivation of the local approach equations

In this part, we detail the derivation of (4.5), recalling first the flow field generated by the
primary wave and then the equations for a perturbation at the node.

C.1. The flow induced by the primary wave at the node
The equations describing the field generated by an inviscid interfacial wave of small
amplitude can be found in many classical textbooks (see, for instance, Sutherland 2010).
We recall briefly the procedure, expressing a 2D incompressible velocity disturbance by
its stream function as (up,wp) = (−∂zψp, ∂xψp). Seeking modal solutions on the form
ψp(x, z, t) = Ap(t) ψ̂p(z) eikx, and for the interface deformation ξp(x, t) = ηp(t) eikx, we
thus obtain the degenerate Rayleigh equation

∂2
zzψ̂p − k2ψ̂p = 0, (C1)

leading to ψ̂p = e±kz on each side of the interface.
Discarding the second-order terms, the condition expressing the interface dynamics is

wp = ikψp = Dξp

Dt
= ξ̇p, (C2)

giving the continuity of ψp across the interface and ikAp = η̇p The equation for the
horizontal momentum (again discarding the quadratic terms) is

∂tup = −∂2
tzψp = − 1

ρ1,2
ikp. (C3)

We turn our attention to continuity of pressure on each side:

− ρ1 G(t) ξp + ρ1
∂2

tzψp

ik
= −ρ2 G(t) ξp + ρ2

∂2
tzψp

ik
, (C4)

leading to
η̈p + AG(t) kηp = 0. (C5)

For a standing wave, we thus have

ξp(x, t) = ηp(t) sin kx, wp(x, t) = η̇p(t) e∓kz sin kx,

ψp(x, t) = − η̇p(t)
k

e∓kz cos kx and up(x, t) = ±η̇p(t) e∓kz cos kx.

⎫⎬
⎭ (C6)

At this stage, we wish to perform the stability analysis of this flow in the vicinity of
the node, x = 0, z = 0. We thus rescale the dimensions with the typical wavenumber kwb
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of the secondary instability. Therefore, in the small perturbation wavelength limit of κ =
kwb/k 	 1, the flow induced by the primary wave simply reduces to an horizontal interface
subjected to a discontinuous tangential velocity

ξp = 0, up = ±η̇p = ±U and wp = 0. (C7a–c)

C.2. Secondary instability
We perform the linear stability analysis of the base flow coming from the primary wave and
defined by (C7a–c). We consider the small velocity perturbation (u,w) = (−∂zψ, ∂xψ).
Again, seeking modal solutions of the form ψ±(x, z, t) = A±(t) ψ̂±(z) eikwbx, and for the
interface deformation ξ(x, t) = η(t) eikwbx, we obtain the degenerate Rayleigh equation

∂2
zzψ̂

± − k2
wbψ̂

± = 0. (C8)

Using boundary conditions this gives ψ̂+ = e−kwbz and ψ̂− = ekwbz. The condition at
z = 0 is therefore

w = ikwbψ = Dξ
Dt

= ξ̇ ± Uikwbξ, (C9)

such that

A+ = η̇

ikwb
+ Uη, (C10a)

A− = η̇

ikwb
− Uη. (C10b)

At the interface, the continuity of pressure gives

p+ − ρ1 G(t) η = p− − ρ2 G(t) η. (C11)

The momentum equation for u can be written as

−ikwbp+ = ρ2(kwbȦ+ + ikwb
2UA+), (C12a)

−ikwbp− = ρ1(−kwbȦ− + ikwb
2UA−). (C12b)

By combining the previous conditions, we obtain the equation already derived by Kelly
(1965) and here expressed in the Boussinesq limit:

η̈ − 2iAkwbUη̇ +
(
AGkwb − kwb

2U2 − iAkwbU̇
)
η = 0. (C13)

It should be stressed that this equation is derived in the context of a small primary wave
amplitude, kη � 1, and small perturbation wavelength, κ 	 1, in order to consider the
primary wave solution corresponding to (C7a–c).
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