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A ‘hybridization’ of a logic, referred to as the base logic, consists of developing the

characteristic features of hybrid logic on top of the respective base logic, both at the level of

syntax (i.e. modalities, nominals, etc.) and of the semantics (i.e. possible worlds). By

‘hybridized institutions’ we mean the result of this process when logics are treated abstractly

as institutions (in the sense of the institution theory of Goguen and Burstall). This work

develops encodings of hybridized institutions into (many-sorted) first-order logic

(abbreviated FOL) as a ‘hybridization’ process of abstract encodings of institutions into

FOL, which may be seen as an abstraction of the well-known standard translation of modal

logic into FOL. The concept of encoding employed by our work is that of comorphism from

institution theory, which is a rather comprehensive concept of encoding as it features

encodings both of the syntax and of the semantics of logics/institutions. Moreover, we

consider the so-called theoroidal version of comorphisms that encode signatures to theories,

a feature that accommodates a wide range of concrete applications. Our theory is also

general enough to accommodate various constraints on the possible worlds semantics as

well a wide variety of quantifications. We also provide pragmatic sufficient conditions for the

conservativity of the encodings to be preserved through the hybridization process, which

provides the possibility to shift a formal verification process from the hybridized institution

to FOL.

1. Introduction

Hybrid logics (Blackburn 2000) are a brand of modal logics that provides appropriate

syntax for the possible worlds semantics in a simple and very natural way through the

so-called nominals. This has several advantages from the point of views of logic and formal

specification. For example, it has been argued (Braüner 2011) that hybrid logics allow for

a better more uniform proof theory than non-hybrid modal logics. Also in specifications

of dynamic systems the possibility of explicit reference to specific states of the model is a

very necessary feature.

Historically, hybrid logic was introduced in Prior (1967) and further developed in works

such as (Areces et al. 2001; Braüner 2011; Passy and Tinchev 1991) etc. Moreover, recently

hybrid logic has been developed (Martins et al. 2011) at an abstract institution theoretic

level. Institution theory (Goguen and Burstall 1992) is a categorical abstract model

theory that arose about three decades ago within specification theory as a response to the

explosion in the population of logics in use there, its original aim being to develop as much
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computing science as possible in a general uniform way independently of particular logical

systems. This has now been achieved to an extent even greater than originally thought, as

institution theory became the most fundamental mathematical theory underlying algebraic

specification theory (in its wider meaning), also being increasingly used in other areas of

computer science. Moreover, institution theory constitutes a major trend in the so-called

‘universal logic’ (in the sense envisaged by Béziau (2006, 2012)) which is considered by

many a true renaissance of mathematical logic.

The ‘hybridization’ development in Martins et al. (2011) and Diaconescu (2013),

which extends the previous work on institution-independent possible worlds semantics

of Diaconescu and Stefaneas (2007) to nominals and multi-modalities, abstracts away the

details, both at the syntactic and semantic levels, that are independent of the very essence

of the hybrid logic idea. This has several benefits. One is a general benefit of institution

theoretic developments, namely that the theoretical development is not hindered by logical

details that are often irrelevant. Another benefit is the applicability of the results to a wide

variety of concrete instances. This hybridization of institutions can be regarded as a generic

and comprehensive (in the sense of addressing both the syntactic and the semantic levels)

form of hierarchical logic combination, when the essential features of a logic are built

on top of another logic. Besides of the work on modalization of institutions (Diaconescu

2013; Diaconescu and Stefaneas 2007; Martins et al. 2011) in the logic and specification

theory literature there are other examples of such hierarchical logic combination, e.g. the

‘temporalization’ method of Finger and Gabbay (1992) or the behavioural extension of

preordered algebras (Diaconescu 2011). However, while in the former case temporal logic

is built on top of an abstract logic, in the latter behavioural logic is built on top of a

concrete logic, namely preordered algebra. We should also emphasize that this form of

hierarchical logic combination is very different in many ways from fibring (Carnielli et al.

2008) (which is the major general theory of logic combination in the mathematical logic

literature), but a discussion comparing them is outside the scope of our paper.

Logic translations or encodings have a long tradition (recently discussed for example

in Mossakowski et al. (2009)). This concept is especially important since in many cases

it may provide a very convenient way to establish logical properties, by ‘borrowing’ or

translating them via a respective encoding rather than by establishing them in a direct

manner. A rather common target for such translations or encoding is FOL; this is because

FOL is by far the most popular logical system, it is very well studied and understood,

it has good semantic and proof theoretic properties (e.g. completeness, interpolation),

and consequently it is supported by a wide variety of formal verification tools. The

focus of our work is on extending the traditional translation of modal logic to FOL van

Bentham (1988) (for the hybrid variant (Blackburn and Seligman 1995)) to encodings of

abstract hybridized institutions into FOL. This may also be regarded as ‘hybridizations’

of encodings into FOL. While the possibility of such generalization of the standard

encoding is hardly surprising, to distill a set of general abstract conditions making this

generalization not only possible, but also widely applicable, is a highly non-trivial task.

As precise mathematical notion for ‘encoding’, in this paper we employ the so-called

‘theoroidal comorphisms’ of Mossakowski (1996) and Goguen and Roşu (2002) which are

just ordinary comorphisms but mapping signatures to theories.
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Concerning practical applications of this work, our hybridization method provides

the foundations for a methodology for the formal specification and verification of

reconfigurable systems Madeira (2013), i.e. systems which behave differently in different

modes of operation (often called configurations) and that shift between the modes in

response to events. From a configuration-as-local-models perspective, models of hybridized

institutions are suitable structures to model reconfigurable systems. On the one hand,

the relational part of the model represents the reconfigurability of the system – each

configuration is represented by a world, each event is represented by a modality and each

reconfiguration by a transition. On the other hand, the behaviour and the functionality of

each particular configuration is modelled by the local model at that particular world. The

ability to adopt a suitable (base) logic for the system in hand is a distinctive aspect of

this approach. The encoding to FOL provides the foundation for the formal verification

side of this methodology.

1.1. Contributions and structure of the paper

The main target of this work are the formal specification experts and theoreticians. At

least some familiarity with the spirit of institution theory would be an advantage to the

reader.

The paper is structured as follows.

1. The first preliminary section of the paper is devoted to the brief review of institution

theoretic notions that are needed by our work.

2. The second preliminary section recalls the process of hybridization introduced in

Martins et al. (2011) and further refined in Diaconescu (2013).

3. The main technical section of the paper develops the actual encoding of the hybridized

institutions to FOL as a general lifting of abstract comorphisms I → FOLpres (with

FOLpres denoting the institutions of the theories of I) to comorphisms HIC → FOLpres

(with HIC denoting here a hybridization of I). This idea to ‘hybridize comorphisms’

has been sketched within a much restricted and rather preliminary form in Martins

et al. (2011), here we extend this in several directions: constrained models, theoroidal

comorphisms (rather than plain comorphisms), and quantified sentences.

4. The next section studies how the conservativity of the base comorphism I → FOLpres

may be inherited by the lifting HIC → FOLpres. Conservativity is a property of special

importance, since it allows to transfer proof tasks from the source to the target logic:

first translate across the comorphism, then perform them in the target logic, and finally

return back the results to the source logic.

5. The final technical section develops a small case study that is meant to illustrate both

the abstract developments of our work and the methodology for specification and

verification of reconfigurable systems that has been mentioned above.

The abstract developments of this paper are illustrated by a series of concrete benchmark

examples.
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2. Institutions

In this section, we present some concepts of institution theory that are needed by our

work. Most of them are rather standard and may be found in many places in the literature,

other constitute more recent developments, while a few of them (i.e. Definition 3.1, 2.6)

are introduced here.

Institution theory is a categorical abstract model theory, hence it is heavily based upon

the category theory, though the level of category theory involved is rather elementary. We

assume the reader is familiar with basic notions and standard notations from elementary

category theory; e.g. see Lane (1998) for an introduction to this subject. Here, we recall

very briefly some of them. By way of notation, |C| denotes the class of objects of a

category C, C(A,B) the set of arrows with domain A and codomain B, and composition is

denoted by ‘;’ and in diagrammatic order. The category of sets (as objects) and functions

(as arrows) is denoted by Set, and CAT is the category of all categories†. The opposite of

a category C (obtained by reversing the arrows of C) is denoted C
op.

2.1. Institutions

Institutions have been defined in Burstall and Goguen (1980), the seminal paper (Goguen

and Burstall 1992) being printed after a delay of many years. Below we recall the concept

of institution which formalizes the intuitive notion of logical system, including syntax,

semantics and the satisfaction between them.

Definition 2.1 (institution). An institution
(
SignI , SenI ,ModI , (|=I

Σ)Σ∈|SignI |
)

consists of

— a category SignI whose objects are called signatures,

— a functor SenI : SignI → Set giving for each signature a set whose elements are

called sentences over that signature,

— a functor ModI : (SignI)op → CAT, giving for each signature Σ a category whose

objects are called Σ-models, and whose arrows are called Σ-(model) homomorphisms,

and

— a relation |=I
Σ⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SignI |, called the satisfaction

relation,

such that for each morphism ϕ : Σ → Σ′ ∈ SignI , the satisfaction condition

M ′ |=I
Σ′ SenI(ϕ)(ρ) if and only if ModI(ϕ)(M ′) |=I

Σ ρ (1)

holds for each M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ).

Notation 2.1. In any institution as above we use the following notations:

— for any M ⊆ |Mod (Σ)|, M∗ denotes {ρ ∈ Sen(Σ) | M |=Σ ρ for each M ∈ M}.
— for any E ⊆ Sen(Σ), E∗ denotes {M ∈ |Mod (Σ)| | M |=Σ ρ for each ρ ∈ E}.
— for any E,E ′ ⊆ Sen(Σ), E |= E ′ denotes E∗ ⊆ E ′∗ and E |=| E ′ denotes E∗ = E ′∗.

† Strictly speaking, this is only a ‘quasi-category’ living in a higher set-theoretic universe.
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— for any E ⊆ Sen(Σ), Mod (Σ, E) is the full subcategory of Mod (Σ) whose objects are

in E∗.

The literature (e.g. Diaconescu 2008; Sannella and Tarlecki 2012) shows myriads of

logical systems from computing or from mathematical logic captured as institutions. In

fact, an informal thesis underlying institution theory is that any ‘logic’ may be captured

by Definition 2.1. While this should be taken with a grain of salt, it certainly applies

to any logical system based on satisfaction between sentences and models of any kind.

Below, we recall a few logics captured as institutions that will also be used in examples

in our paper.

Example 2.1 (FOL, ALG, EQ, REL and PL). Let FOL be the institution of FOL with

equality in its many-sorted form.

Its signatures are triples (S, F, P ) consisting of

— a set of sort symbols S ,

— a family F = {Far→s | ar ∈ S∗, s ∈ S} of sets of function symbols indexed by arities ar

(for the arguments) and sorts s (for the results), and

— a family P = {Par | ar ∈ S∗} of sets of relation (predicate) symbols indexed by arities.

Signature morphisms map the three components in a compatible way. This means that a

signature morphism ϕ : (S, F, P ) → (S ′, F ′, P ′) consists of

— a function ϕst : S → S ′,

— a family of functions ϕop = {ϕop
ar→s : Far→s → F ′

ϕst(ar)→ϕst(s) | ar ∈ S∗, s ∈ S}, and

— a family of functions ϕrl = {ϕrl
ar→s : Par → P ′

ϕst(w) | w ∈ S∗, s ∈ S}.
Models M for a signature (S, F, P ) are first-order structures interpreting each sort

symbol s as a non-empty set Ms, each function symbol σ as a function Mσ from the

product of the interpretations of the argument sorts to the interpretation of the result

sort and each relation symbol π as a subset Mπ of the product of the interpretations of

the argument sorts. By |M| we denote {Ms | s ∈ S} and we call it the universe of M or

the carrier set(s) of M. A model homomorphism h : M → M ′ is an indexed family of

functions {hs : Ms → M ′
s | s ∈ S} such that

— h is an (S, F)-algebra homomorphism M → M ′, i.e. hs(Mσ(m)) = M ′
σ(har(m)) for each

σ ∈ Far→s and each m ∈ Mar, and

— har(m) ∈ M ′
π if m ∈ Mπ (i.e. har(Mπ) ⊆ M ′

π) for each relation π ∈ Par and each m ∈ Mar.

where har : Mar → M ′
ar is the canonical component-wise extension of h, i.e.

har(m1, . . . , mn) = (hs1 (m1), . . . , hsn (mn)) for ar = s1 . . . sn and mi ∈ Msi for 1 � i � n. A

model homomorphism is closed when Mπ = h−1
ar (M ′

π) for each relation symbol π ∈ Par.

For each signature morphism ϕ, the reduct M ′�ϕ of a model M ′ is defined by (M ′�ϕ)x =

M ′
ϕ(x) for each sort, function, or relation symbol x from the domain signature of ϕ.

Sentences are the usual first-order sentences built from equational and relational atoms

by iterative application of Boolean connectives and quantifiers. Sentence translations along

signature morphisms just rename the sorts, function and relation symbols according to

the respective signature morphisms. They can be formally defined by induction on the

structure of the sentences. While the induction step is straightforward for the case of the
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Boolean connectives it needs a bit of attention for the case of the quantifiers. For any

signature morphism ϕ : (S, F, P ) → (S ′, F ′, P ′),

SenFOL(ϕ)((∀X)ρ) = (∀Xϕ)SenFOL(ϕ′)(ρ)

for each finite block X of variables for (S, F, P ). The variables need to be disjoint

from the constants of the signature, also we have to ensure that SenFOL thus defined

is functorial indeed and that there is no overloading of variables (which in certain

situations would cause a failure of the satisfaction condition). These may be formally

achieved by considering that a variable for (S, F, P ) is a triple of the form (x, s, (S, F, P ))

where x is the name of the variable and s ∈ S is the sort of the variable and that two

different variables in X have different names. We often abbreviate variables (x, s, (S, F, P ))

by their name x or by their name and sort qualification like (x : s). Then we let

(S, F + X, P ) be the extension of (S, F, P ) such that (F + X)ar→s = Far→s when ar is

non-empty and (F + X)→s = F→s ∪ {(x, s, (S, F, P )) | (x, s, (S, F, P )) ∈ X} and we let

ϕ′ : (S, F + X, P ) → (S ′, F ′ + Xϕ, P ′) be the canonical extension of ϕ that maps each

variable (x, s, (S, F, P )) to (x, ϕ(s), (S ′, F ′, P ′)).

As a matter of notation, instead of (S, F+X, P ) as above we may also write (S, F, P )+X

and when X is a singleton, i.e. X = {x}, we may simply write x instead of X. We may

also extend these conventions to other institutions.

The satisfaction of sentences by models is the usual Tarskian satisfaction defined

recursively on the structure of the sentences as follows:

— M |=(S,F,P ) t = t′ when Mt = Mt′ , where Mt denotes the interpretation of the (S, F)-term

t in M defined recursively by Mσ(t1 ,...,tn) = Mσ(Mt1 , . . . ,Mtn ).

— M |=(S,F,P ) π(t1, . . . , tn) when (Mt1 , . . . ,Mtn ) ∈ Mπ , for each relational atom π(t1, . . . , tn).

— M |=(S,F,P ) ρ1 ∧ ρ2 when M |=(S,F,P ) ρ1 and M |=(S,F,P ) ρ2, and similarly for the other

Boolean connectives ∨, ⇒, ¬, etc.

— M |=(S,F,P ) (∀X)ρ when M ′ |=(S,F+X,P ) ρ for any (S, F +X, P )-expansion M ′ of M, and

similarly for ∃.

The institution ALG is obtained by FOL by discarding the relational symbols and

the corresponding interpretations in models. The institution EQ is defined as the sub-

institution of ALG where the sentences are just universally quantified equations (∀X) t = t′.

The institution REL is the sub-institution of single-sorted FOL with signatures having

only constants and relational symbols.

The institution PL (of propositional logic) is the fragment of FOL determined by

signatures with empty sets of sort symbols.

Example 2.2 (PA). Here we consider the institution PA of partial algebra as employed

by the specification language CASL (Astesiano et al. 2002).

A partial algebraic signature is a tuple (S, TF, PF), where TF is a family of sets of

total function symbols and PF is a family of sets of partial function symbols such that

TFar→s ∩ PFar→s = � for each arity ar and each sort s. Signature morphisms map the

three components in a compatible way.

A partial algebra is just like an ordinary algebra (i.e. a FOL model without relations)

but interpreting the function symbols of PF as partial rather than total functions. For
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any σ ∈ PFar→s we denote dom(Aσ) = {a ∈ Aar | Aσ(a) defined}. A partial algebra

homomorphism h : A → B is a family of (total) functions {hs : As → Bs | s ∈ S} indexed

by the set of sorts S of the signature such that hs(Aσ(a)) = Bσ(har(a)) for each function

symbol σ ∈ TFar→s ∪ PFar→s and each string of arguments a ∈ Aar for which Aσ(a) is

defined.

The sentences have three kinds of atoms: definedness df(t), strong equality t = t′, and

existence equality t
e
= t′. The definedness df(t) of a term t holds in a partial algebra A

when the interpretation At of t is defined. The strong equality t
s
= t′ holds when both

terms are undefined or both of them are defined and are equal. The existence equality

t
e
= t′ holds when both terms are defined and are equal†. The sentences are formed from

these atoms by Boolean connectives and quantifications over total variables (i.e. variables

that are always defined).

Recall from Tarlecki (1986) and Diaconescu (2008):

Definition 2.2 (internal logic). An institution I has (semantic) conjunctions when for each

signature Σ and any Σ-sentences e1 and e2 there exists a Σ-sentence e such that e∗ = e∗
1 ∩e∗

2.

Usually e is denoted by e1 ∧ e2.

I has (semantic) implications when for each e1 and e2 as above there exists e such that

e∗ = (Mod (Σ) − e∗
1) ∪ e∗

2. Usually e is denoted e1 ⇒ e2.

I has (semantic) existential D-quantifications for a class D of signature morphisms

when for each χ : Σ → Σ′ ∈ D when for each Σ′-sentence e′ there exists a Σ-sentence e

such that e∗ = Mod (χ)(e′∗). Usually e is denoted (∃χ)e′.

In the same style we may extend this list also to other semantic Boolean connectives

disjunction (∨), negation (¬), equivalence (⇔) and to semantic universal quantifications

((∀χ)e′).

2.2. Amalgamation and quantification spaces

We recall the notions of amalgamation and quantification space that are crucial for what

follows. The former is intensely used in institution theory, whereas the latter was introduced

rather recently in Diaconescu (2010). The respective definitions below represent a slight

adaptation of the definitions from the literature to the needs of this paper; in this form

Definitions 2.3 and 2.5 have already appeared in Martins et al. (2011) and Diaconescu

(2013). Definition 2.4 was introduced in Diaconescu (2013).

Definition 2.3 (amalgamation property). A commuting square of functors

A A1
F1��

A2

F2

��

A′

G1

��

G2

��

(2)

† Notice that df(t) is equivalent to t
e
= t and that t

s
= t′ is equivalent to (t

e
= t′) ∨ (¬df(t) ∧ ¬df(t′)).
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is a weak amalgamation square if and only if for each M1 ∈ |A1| and M2 ∈ |A2| such that

F1(M1) = F2(M2), there exists a M ′ ∈ |A′| such that G1(M
′) = M1 and G2(M

′) = M2.

When M ′ is required to be unique, the square is called amalgamation square. The object

M ′ is called an amalgamation of M1 and M2 and when it is unique it is denoted by

M1 ⊗F1 ,F2
M2.

For any functor Mod : Signop → CAT a commuting square of signature morphisms

Σ
ϕ1 ��

ϕ2

��

Σ1

θ1

��
Σ2

θ2

�� Σ′

(3)

is a (weak) amalgamation square for Mod when

Mod (Σ) Mod (Σ1)
Mod (ϕ1)��

Mod (Σ2)

Mod (ϕ2)

��

Mod (Σ′)

Mod (θ1)

��

Mod (θ2)
��

(4)

is a (weak) amalgamation square.

We say that an institution I has the (weak) amalgamation property when each pushout

square of signature morphisms is a (weak) amalgamation square for the model functor

ModI .

Most of the institutions formalizing conventional or non-conventional logics have the

amalgamation property (Diaconescu 2008; Diaconescu et al. 1993). These include our

examples FOL, ALG, PL, REL, PA. Our concept of model amalgamation should not be

confused with single signature and much harder one from conventional model theory (e.g.

Hodges (1997)) which refers to the amalgamation of elementary extensions.

The concept introduced by Definition 2.4 below will be used within the context of our

abstract approach to constraining Kripke models.

Definition 2.4. A sub-functor Mod ′ ⊆ Mod : Signop → CAT reflects (weak) amalgamation

for a class of pushout squares in Sign when each pushout square of that class that is a

(weak) amalgamation square for Mod is a (weak) amalgamation square for Mod ′ too.

Definition 2.5 (quantification space). For any category Sign a subclass of arrows D ⊆ Sign

is called a quantification space if, for any (χ : Σ → Σ′) ∈ D and ϕ : Σ → Σ1, there is a

designated pushout

Σ
ϕ ��

χ

��

Σ1

χ(ϕ)

��
Σ′

ϕ[χ]
�� Σ′

1
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with χ(ϕ) ∈ D and such that the ‘horizontal’ composition of such designated pushouts is

again a designated pushout, i.e. for the pushouts in the following diagram

Σ
ϕ ��

χ

��

Σ1

χ(ϕ)

��

θ �� Σ2

χ(ϕ)(θ)

��
Σ′

ϕ[χ]
�� Σ′

1 θ[χ(ϕ)]
�� Σ′

2

ϕ[χ]; θ[χ(ϕ)] = (ϕ; θ)[χ] and χ(ϕ)(θ) = χ(ϕ; θ), and such that χ(1Σ) = χ and 1Σ[χ] = 1Σ′ .

We say that a quantification space D for Sign is adequate for a functor Mod : Signop →
CAT when the designated pushouts mentioned above are weak amalgamation squares for

Mod .

Our use of designated pushouts as in Definition 2.5 is required by the fact that quantified

sentences ought to have a unique translation along a given signature morphism. The

coherence property of the composition is required by the functoriality of the translations.

Example 2.3 (DFOL). Within the context of Example 2.1 above, the signature extensions

χ : (S, F, P ) ↪→ (S, F +X, P ), where X is a finite block of variables for (S, F, P ) constitute

a quantification space for SignFOL that is adequate for ModFOL. Let us denote it by

DFOL. Given signature morphism ϕ : (S, F, P ) → (S1, F1, P1), then

— χ(ϕ) : (S1, F1, P1) ↪→ (S1, F1 + Xϕ, P1) where Xϕ as defined in Example 2.1, and

— ϕ[χ] is the canonical extension of ϕ that maps each (x, s, (S, F, P )) to (x, ϕst(s),

(S1, F1, P1)) (it corresponds to ϕ′ of Example 2.1).

It is easy to note that these define pushout squares fulfilling the properties of Definition 2.5.

The adequacy for ModFOL follows from the fact that ModFOL preserves all finite limits

(see Diaconescu (2008)).

Other quantification spaces for SignFOL that are also adequate for ModFOL may be

obtained as follows:

1. In the example above we consider infinite blocks of variables instead of finite ones.

2. We consider blocks of second order variables of the form (x, (w, s), (S, F, P )) (function

variables) or of the form (x, w, (S, F, P )) (relation variables) where ar ∈ S∗ and s ∈ S .

Then to any block X of second order variables it corresponds a signature extension

χ : (S, F, P ) → (S, F + Xop, P + Xrl) where X is split as Xop ∪ Xrl with Xop being

the function variables and Xrl the relation variables, and where F + Xop and P + Xrl

extend in the obvious way the definition of F + X from Example 2.1.

Note that these definitions may also apply to REL and ALG. Similar definitions may also

be developed in PA.

The property expressed by Definition 2.6 below will be used as a condition underlying

the main result of this work.

Definition 2.6. For any functors Mod 1,Mod 2 : Sign → CATop and any natural transform-

ation β : Mod2 → Mod1 we say that (χ : Σ → Σ′) ∈ Sign is adequate for β if and only if
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the following square is weak amalgamation square:

Mod1(Σ) Mod2(Σ)
βΣ��

Mod1(Σ
′)

Mod1(χ)

��

Mod2(Σ
′)

βΣ′
��

Mod2(χ)

��

When resorting to a Grothendieck construction it is possible to regard the adequacy

for β of Definition 2.6 as a special case of the adequacy property of Definition 2.5; let us

skip these rather technical details here.

2.3. Comorphisms

In the literature there are several concepts of structure preserving mappings between

institutions. The original one, introduced by Goguen and Burstall (1992), is adequate

for expressing a ‘forgetful’ operation from a ‘more complex’ institution to a structurally

‘simpler’ one. However, the institution mapping which is appropriate for our task here is

that of institution comorphisms (Goguen and Roşu 2002), previously known as ‘plain map’

in Meseguer (1989) or ‘representation’ in Tarlecki (1996, 2000). Institution comorphisms

realize the intuition of ‘embedding’ a ‘simpler’ institution into a ‘more complex’ one, which

is dual to the intuition realized by the institution morphisms.

Definition 2.7 (comorphisms). An institution comorphism (Φ, α, β) : I → I ′ consists of

1. a functor Φ : Sign → Sign ′,

2. a natural transformation α : Sen ⇒ Φ; Sen ′, and

3. a natural transformation β : Φop; Mod ′ ⇒ Mod

such that the following satisfaction condition holds

M ′ |=′
Φ(Σ) αΣ(e) iff βΣ(M ′) |=Σ e

for each signature Σ ∈ |Sign|, for each Φ(Σ)-model M ′, and each Σ-sentence e.

The comorphism is conservative whenever, for each Σ-model M in I , there exists a

Φ(Σ)-model M ′ in I ′ such that M = βΣ(M ′).

The following is a consequence of conservativity, with the important proof theoretic

implication that we may prove things in the source institution by using the proof system

of the target institution in a sound and complete way.

Fact 2.1. Given a conservative comorphism, for any set Γ ⊆ Sen(Σ) and sentence ρ ∈
Sen(Σ),

Γ |=Σ ρ if and only if αΣ(Γ) |=′
Φ(Σ) αΣ(ρ).

2.4. Presentations

Although comorphisms generally express an embedding relationship between institutions,

they can also be used for ‘encoding’ a ‘more complex’ institution I into a ‘simpler’
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one I ′. The latter are especially useful for the borrowing methods; some references are

(Diaconescu 2008, 2012a,b; Petria and Diaconescu 2006). In such encodings the structural

complexity cost is shifted to the mapping Φ on the signatures, thus Φ maps signatures of

I to theories of I ′ rather than signatures. In the literature these are sometimes (Goguen

and Roşu 2002; Mossakowski 1996) called ‘theoroidal’ comorphisms. In the following we

give a general construction which explains this concept as ordinary comorphism.

Definition 2.8 (presentations). In any institution I , a presentation is a pair (Σ, E) consisting

of an I-signature Σ and a set E of Σ-sentences. A presentation morphism ϕ : (Σ, E) →
(Σ′, E ′) is a signature morphism ϕ : Σ → Σ′ such that ϕ(E) ⊆ E ′.

Fact 2.2. Presentation morphisms are closed under the composition given by the compos-

ition of the signature morphisms.

This fact opens the door for the general construction given by the following definition.

Definition 2.9 (the institution of presentations). Let I = (Sign , Sen ,Mod , |=) be any

institution. The institution of the presentations of I , denoted by

Ipres = (Signpres, Senpres,Modpres, |=pres)

is defined by

— Signpres is the category Pres of presentations of I ,

— Senpres(Σ, E) = Sen(Σ),

— Modpres(Σ, E) is the full subcategory of Mod (Σ) of those models which satisfy E, and

— for each (Σ, E)-model M and Σ-sentence e, M |=pres
(Σ,E) e if and only if M |=Σ e .

Fact 2.3. For any institution I , Ipres is indeed an institution.

Note that our definition of presentation morphism is slightly more restrictive than what

is commonly defined in the literature (e.g. Diaconescu (2008)) were the condition ϕ(E) ⊆ E ′

is relaxed to E ′ |= ϕ(E). Under that relaxation the (simple) theoroidal comorphisms of

Mossakowski (1996) and Goguen and Roşu (2002) arise precisely as ordinary comorphisms

I → I ′pres. The reason for our restriction is that in this way, later in the paper, we will

avoid some technical difficulties, in the same time not sacrificing the applications since

almost always the concrete institution encodings in form of theoroidal comorphisms

fulfil rather naturally our restricted definition. Moreover, if we consider infinite sets of

sentences for the presentations we have the possibility to consider E and E ′ to be closed

under semantical consequence, and in such case both versions are equivalent. However of

course this may sacrifice the finitary character of the encodings. The literature abounds

of examples of institution encodings that are presented as comorphisms I → I ′pres; many

of them may be found in Diaconescu (2008).

Example 2.4. Let us briefly recall the emblematic case of the encodings of PA into FOL.

There are several such encodings as follows (details may be found in the literature, e.g.

Diaconescu (2008, 2009), Mossakowski (1996) and Petria and Diaconescu (2006)):

1. Perhaps the best known one encodes partial operations as total operations by adding

for each sort an unary relation symbol standing for the defined values, the target
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presentations consisting of Horn sentences. This comorphism has the benefit of transfer

of initial semantics.

2. The comorphism used in Petria and Diaconescu (2006) and Diaconescu (2012a)

encodes partial operations as (functional) relations and while the target presentations

also consist of Horn sentences, unlike in the previous case the translations of the

sentences (α) is rather complex which meaning that Horn sentences may by translated

to non-Horn sentences. However, this comorphism has the benefit that the sentence

translations are surjective, which allows the transfer of interpolation properties.

3. The encoding recently discovered in Diaconescu (2009) adds a quasi-Boolean sort, like

the first one preserves the Horn presentations, unlike the second one it is not surjective

on the sentence translations but has the benefit of not involving any relation symbols.

3. Hybridized institutions

In this section, we present the institution-independent construction of hybrid logics that

has already been introduced in Martins et al. (2011) and Diaconescu (2013) as an

extension of the previous work (Diaconescu and Stefaneas 2007). Let us consider an

institution I = (SignI , SenI ,ModI , (|=I
Σ)Σ∈|SignI |) with a designated quantification space

DI ⊆ SignI . This will be referred to as the base institution. Below, we recall the method to

enrich I with modalities and nominals, defining a suitable semantics for the enrichment.

Moreover, it is shown that the outcome still defines a class of institutions, the so-called

hybridizations of I .

3.1. The category of HI-signatures

The category of I-hybrid signatures, denoted by SignHI , is defined as the following direct

(Cartesian) product of categories:

SignHI = SignI × SignREL.

The REL-signatures are denoted by (Nom,Λ), where Nom is a set of constants called

nominals and Λ is a set of relational symbols called modalities; Λn stands for the set of

modalities of arity n. General category theory entails:

Proposition 3.1. The projection SignHI → SignI lifts small co-limits.

The existence of co-limits of signatures is one of the properties of institutions of key

practical relevance for specification in-the-large (see Goguen and Burstall (1992)).

Corollary 3.1. SignHI has all small co-limits.

3.2. HI-sentences

Let us fix a quantification space DHI for SignHI such that for each χ ∈ DHI its

projection χSig to SignI belongs to DI . The quantification space DHI is a parameter of

the hybridization process. Whenever DHI consists of identities we say the hybridization
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is quantifier-free. Note that a quantifier-free hybridization does not necessarily mean the

absence of ‘local’ quantification, i.e. placed at the level of base institution I .

Let Δ = (Σ,Nom,Λ). The set of sentences SenHI(Δ) is the least set such that

— Nom ⊆ SenHI(Δ);

— SenI(Σ) ⊆ SenHI(Δ);

— ρ � ρ′ ∈ SenHI(Δ) for any ρ, ρ′ ∈ SenHI(Δ) and any � ∈ {∨,∧,⇒};
— ¬ρ ∈ SenHI(Δ), for any ρ ∈ SenHI(Δ);

— @iρ ∈ SenHI(Δ) for any ρ ∈ SenHI(Δ) and i ∈ Nom;

— [λ](ρ1, . . . , ρn), 〈λ〉(ρ1, . . . , ρn) ∈ SenHI(Δ), for any λ ∈ Λn+1, ρi ∈ SenHI(Δ), i ∈
{1, . . . , n};

— (∀χ)ρ, (∃χ)ρ ∈ SenHI(Δ), for any ρ ∈ SenHI(Δ′) and χ : Δ → Δ′ ∈ DHI .

When χ is a simple extension with variables we may abbreviate it in the quantifications

by the corresponding variables. For example, when χ is an extension of (Σ,Nom,Λ) with

a nominal variable i, instead of (∀χ)ρ we may write (∀i)ρ.

Our set of logical connectors follows mainstream hybrid logic literature (e.g. Braüner

(2011)). However we do not consider here the binder ↓ since it is known to be logically

redundant.

3.3. Translations of HI-sentences

Let ϕ = (ϕSig , ϕNom, ϕMS) : (Σ,Nom,Λ) → (Σ′,Nom′,Λ′) be a morphisms of HI-

signatures.

The translation SenHI(ϕ) is defined as follows:

— SenHI(ϕ)(i) = ϕNom(i);

— SenHI(ϕ)(ρ) = SenI(ϕSig )(ρ) for any ρ ∈ SenI(Σ);

— SenHI(ϕ)(ρ � ρ′) = SenHI(ϕ)(ρ) � SenHI(ϕ)(ρ′), � ∈ {∨,∧,⇒};
— SenHI(ϕ)(¬ρ) = ¬SenHI(ϕ)(ρ);

— SenHI(ϕ)(@iρ) = @ϕNom(i)SenHI(ρ);

— SenHI(ϕ)([λ](ρ1, . . . , ρn)) = [ϕMS(λ)](SenHI(ρ1), . . . , SenHI(ρn));

— SenHI(ϕ)(〈λ〉(ρ1, . . . , ρn)) = 〈ϕMS(λ)〉(SenHI(ρ1), . . . , SenHI(ρn));

— SenHI(ϕ)
(
(∀χ)ρ

)
= (∀χ(ϕ))SenHI(ϕ[χ])(ρ);

— SenHI(ϕ)
(
(∃χ)ρ

)
= (∃χ(ϕ))SenHI(ϕ[χ])(ρ).

The following result may be obtained by recursion on the structure of the sentences

by straightforward calculations (omitted here), the most interesting parts being those

corresponding to the quantifiers ∀ and ∃; in those cases one relies crucially upon the

properties expressed in Definition 2.5.

Proposition 3.2. SenHI is a functor SignHI → Set.

3.4. HI-models

The (Σ,Nom,Λ)-models are pairs (M,W ) where

— W is a (Nom,Λ)-model in REL;
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— M is a function |W | → |ModI(Σ)|.
The carrier set |W | forms the set of the states of (M,W ); {Wn | n ∈ Nom} represents the

interpretations of the nominals Nom, whereas relations {Wλ | λ ∈ Λn, n ∈ ω} represent the

interpretation of the modalities Λ. We denote M(w) simply by Mw .

A (Σ,Nom,Λ)-model homomorphism h : (M,W ) → (M ′,W ′) consists of a pair aggreg-

ating

— a (Nom,Λ)-model homomorphism in REL, hst : W → W ′; i.e. a function hst : |W | →
|W ′| such that for i ∈ Nom, W ′

i = hst(Wi); and, for any w1, . . . , wn ∈ |W |, λ ∈ Λn, and

(w1, . . . , wn) ∈ Wλ, (hst(w1), . . . , hst(wn)) ∈ W ′
λ.

— a natural transformation hmod : M ⇒ M ′ ◦ hst; note that hmod is a |W |-indexed family

of Σ-model homomorphisms hmod = {(hmod)w : Mw → M ′
hst(w) | w ∈ |W |}. In the text

sometimes we may abbreviate (hmod)w by hw .

The composition of HI-model homomorphisms is defined canonically as

h; h′ = (hst; h
′
st, hmod; (h′

mod ◦ hst)).

Fact 3.1. Let Δ be any HI-signature. Then Δ-models together with their homomorphisms

constitute a category, denoted ModHI(Δ).

3.5. Reducts of HI-models

Let Δ = (Σ,Nom,Λ) and Δ′ = (Σ′,Nom′,Λ′) be two HI-signatures, ϕ = (ϕSig , ϕNom, ϕMS)

a morphism between Δ and Δ′ and (M ′,W ′) a Δ′-model. The reduct of (M ′,W ′) along ϕ,

denoted by ModHI(ϕ)(M ′,W ′), is the Δ-model (M,W ) such that

— W is the (ϕNom, ϕMS)-reduct of W ′; i.e.

– |W | = |W ′|;
– for any n ∈ Nom,Wn = W ′

ϕNom(n);

– for any λ ∈ Λ, Wλ = W ′
ϕMS(λ)

;

and

— for any w ∈ |W |, Mw = ModI(ϕSig )(M
′
w).

Theorem 3.1 (Martins et al. (2011)). A pushout square of HI-signature morphisms is a

(weak) amalgamation square (for ModHI) if the underlying square of signature morphisms

in I is a (weak) amalgamation square.

Corollary 3.2. Martins et al. (2011) If DI is adequate for ModI then DHI is adequate for

ModHI .

Below we will see that the satisfaction condition for hybridized institutions relies upon

the adequacy property from the conclusion of Corollary 3.2.

3.6. Constrained models

Often the semantics of modal and hybrid logics may include various constraints on the

models. A well-known example is the uniform interpretation of the ‘rigid’ constants across
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the possible worlds, necessary for the most common form of quantification in first-order

modal logic. The following definition of Diaconescu (2013) captures abstractly the model

constraints.

Definition 3.1. A constrained HI-model functor is a sub-functor ModC ⊆ ModHI such

that it reflects weak amalgamation for the designated pushout squares corresponding to

DI . The models in ModC are called constrained HI-models.

Informally, the meaning of the reflection condition of Definition 3.1 is that in the case of

pushout squares of signature morphisms the amalgamation of constrained models yields

a constrained model.

The following result, which is an immediate consequence of Corollary 3.2, Definitions 3.1

and 2.4, applies often in concrete situations, including all the examples in our paper.

Corollary 3.3. If DI is adequate for ModI then DHI is adequate for any constrained

HI-model functor ModC .

3.7. The satisfaction relation

Given a constrained model functor ModC ⊆ ModHI , for any (M,W ) ∈ |ModC(Σ,Nom,Λ)|
and for any w ∈ |W | we define:

— (M,W ) |=w i iff Wi = w; when i ∈ Nom,

— (M,W ) |=w ρ iff Mw |=I ρ; when ρ ∈ SenI(Σ),

— (M,W ) |=w ρ ∨ ρ′ iff (M,W ) |=w ρ or (M,W ) |=w ρ′,

— (M,W ) |=w ρ ∧ ρ′ iff (M,W ) |=w ρ and (M,W ) |=w ρ′,

— (M,W ) |=w ρ ⇒ ρ′ iff (M,W ) |=w ρ implies that (M,W ) |=w ρ′,

— (M,W ) |=w ¬ρ iff (M,W ) � |=wρ,

— (M,W ) |=w @jρ iff (M,W ) |=Wj ρ,

— (M,W ) |=w [λ](ξ1, . . . , ξn) iff for any (w,w1, . . . , wn) ∈ Wλ we have that (M,W ) |=wi ρi
for some 1 � i � n.

— (M,W ) |=w 〈λ〉(ξ1, . . . , ξn) iff there exists (w,w1, . . . , wn) ∈ Wλ such that and (M,W ) |=wi

ξi for any 1 � i � n.

— (M,W ) |=w (∀χ)ρ iff (M ′,W ′) |=w ρ for any (M ′,W ′) such that ModC(χ)(M ′,W ′) =

(M,W ),

— (M,W ) |=w (∃χ)ρ iff (M ′,W ′) |=w ρ for some (M ′,W ′) such that ModC(χ)(M ′,W ′) =

(M,W ), and

We write (M,W ) |= ρ iff (M,W ) |=w ρ for any w ∈ |W |.

Note that, as expected, we have the semantical equivalence between the sentences

〈λ〉(ρ1, . . . , ρn) and ¬[λ](¬ρ1, . . . ,¬ρn). It is also interesting to note that if the quantification

space allows quantifications with nominal variables, then the binder operator ↓ that

appears in many works on hybrid logic, e.g. Blackburn (2000), Braüner (2005) etc., is

redundant since sentences of the form (↓ i)ρ are semantically equivalent to (∀i)(i ⇒ ρ).

Our general semantics of quantifiers covers various concrete first-order quantifications

from the modal logic literature by letting χ be some concrete finite extensions of signatures
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with first-order variables and by suitable choice of model constraints (ModC). For

example the standard rigid quantification (e.g. Braüner (2011)) is covered when the

models are constrained such that its possible worlds share the same domain and the

same interpretation of a designated set of constants that are marked as ‘rigid’ and when

the first-order variables considered are ‘rigid’. Without such ‘rigid’ constraints we get to

the situation when variables may be interpreted differently across different worlds, which

amounts to the world-line semantics of Schurz (2011). However in the applications the

general technical conditions our main result exclude the latter situation.

3.8. The satisfaction condition

Theorem 3.2 (local satisfaction condition). Diaconescu (2013) Assume DI is adequate for

ModI . Let Δ = (Σ,Nom,Λ) and Δ′ = (Σ′,Nom′,Λ′) be two HI-signatures and ϕ : Δ → Δ′

a morphism of signatures. Given a constrained model functor ModC ⊆ ModHI , for any

ρ ∈ SenHI(Δ), (M ′,W ′) ∈ |ModC (Δ′)|, and w ∈ |W ′|

ModC (ϕ)(M ′,W ′)(= ModHI(ϕ)(M ′,W ′)) |=w ρ if and only if (M ′,W ′) |=w SenHI(ϕ)(ρ).

(5)

Note that in the quantifier-free situation, i.e. when DHI is trivial, then DI may also be

considered trivial and hence the adequacy assumption of Theorem 3.2 holds trivially. Also

in this case the constraint functor may be any sub-functor of ModHI since the designated

pushout squares corresponding to DI are trivial too.

Corollary 3.4 (global satisfaction condition). Diaconescu (2013) (SignHI , SenHI ,ModC, |=)

is an institution.

Let us call the institution (SignHI , SenHI ,ModC, |=) a hybridization of I and let us denote

it by HIC . The hybridization (SignHI , SenHI ,ModHI , |=), that does not constrains models,

is denoted HI and is called the free hybridization of I . Note that in general, because

of the quantifiers, the satisfaction relation |=HIC

of a hybridization HIC with properly

constrained models is not necessarily the restriction of |=HI , the satisfaction relation of

HI . Also hybridizations of institutions constitute an example of the general notion of

stratified institution of Aiguier and Diaconescu (2007).

3.9. Base logic versus hybrid logic

In hybridized institutions, at the level of the sentences of the base institution we may

have two sets of Boolean connectives, those of the hybridization and those of the base

institution (when the base institution has them). The following simple result allows us to

ignore the distinction between the Boolean connectives of a hybridization and those of the

base institution. The result also states the general relationship between the quantification

at the base and at the hybridized level.

Fact 3.2. For any hybridization of I , (SignHI , SenHI ,ModC ⊆ ModHI , |=), let us denote

the Boolean connectives and the quantifiers in the base institution I by ∧© , ∨© , ⇒© ,
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¬© , and ∀© , ∃© , respectively. For any (Σ,Nom,Λ)-model (M,W ), any w ∈ |W |, and any

sentences ρ, ρ′ ∈ SenI(Σ) of the base institution and for each χ ∈ DHI

— (M,W ) |=w ρ � ρ′ iff (M,W ) |=w ρ �© ρ′ for � ∈ {∧,∨,⇒},
— (M,W ) |=w ¬ρ iff (M,W ) |=w ¬© ρ,

— (M,W ) |=w ( ∀© χ)ρ implies (M,W ) |=w (∀(χ, 1Nom, 1Λ))ρ, and

— (M,W ) |=w (∃(χ, 1Nom, 1Λ))ρ implies (M,W ) |=w ( ∃© χ)ρ.

3.10. Embedding the base institution into its free hybridization

One may legitimately wonder about the existence of a canonical embedding of the base

institution I into its hybridization HI in the form of a comorphism (Φ, α, β) : I → HI .

The answer is as follows:

— Φ(Σ) = (Σ, {i},�),

— αΣ(ρ) = @iρ, and

— βΣ(M,W ) = MWi
.

It is easy to show that this is a conservative comorphism.

3.11. Examples

A myriad of examples of hybridization may be generated from our definition above by

considering various instances for the three parameters of our hybridization process: (1)

the base institution I , (2) the quantification space DHI , and (3) the constrained models

(ModC ).

Example 3.1 (hybrid propositional logic H′PL). Applying the quantifier-free version of

the hybridization method described above to PL and fixing Λ2 = {λ} and Λn = � for

each n �= 2, we obtain the institution H′PL of the ‘standard’ hybrid propositional logic

(without state quantifiers): the category of signatures is SignH′PL = Set × Set with objects

denoted by (P ,Nom) and morphisms by (ϕSig , ϕNom);† sentences are the usual hybrid

propositional formulas, i.e. modal formulas closed by Boolean connectives, [λ] denoted

�, 〈λ〉 denoted �, and by the operator @i, i ∈ Nom; models consists of pairs (M,W )

where W consists of a carrier set |W |, interpretations Wi ∈ |W | for each i ∈ Nom, and a

binary relation Wλ ⊆ |W | × |W |, and for each w ∈ |W |, Ms is a propositional model, i.e.

a function Mw : P → {0, 1} which is equivalent to a subset Mw ⊆ P . Note that by virtue

of Fact 3.2 we do not need to make a distinction between the Boolean connectives at the

level of PL and at the level of H′PL.

The T , S4, and S5 versions of hybrid propositional logic are obtained by constraining

the models of H′PL to those models (M,W ) for which Wλ is reflexive, preorder, and

equivalence, respectively.

† Note that by fixing Λ to only one symbol of arity 2 means the restriction to a subcategory of the HPL-

signatures, i.e. SignH′PL ⊆ SignHPL. Then H′PL is the ‘sub-institution’ of HPL determined by this restriction

of the signatures.
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When we relax to arbitrary sets of modalities Λ rather than only λ, we obtain the

‘multi-modal hybrid propositional logic’.

A challenging issue concerns finding suitable quantification spaces to capture versions

of hybrid propositional logic. One choice is the quantifier-free version in which DH′PL

would consist only of identities. However, it would be interesting, along the hybridization

process, to capture a quantifier such as E, where Eρ means that ‘ρ is true in some state

of the model ’ (Areces et al. 2001). Considering as a quantification space the extensions of

signatures with nominal symbols, paves the way to express the following properties:

(M,W ) |=w ((∀i)i) ⇔ ρ iff ρ is satisfied at w iff w is unique in (M,W )

(M,W ) |=w (∃i)@iρ iff (M,W ) |= Eρ

Let us denote this modification of H′PL by H′PLn. A block of nominal variables X for a

H′PLn signature (P ,Nom) is a finite set nominal variables of the form (x, P ,Nom) (like in

the case of FOL variables, x is the name and (P ,Nom) the qualification of the variable)

such that (x, P ,Nom), (x′, P ,Nom) ∈ X implies x = x′. Then DH′PLn may be defined as

consisting of the signature extensions with blocks of nominal variables, i.e. (P ,Nom) ↪→
(P ,Nom ∪ X). For any signature morphism ϕ : (P ,Nom) → (P ′,Nom′) and X block of

nominal variables for (P ,Nom) we define Xϕ = {(x, P ′,Nom′) | (x, P ,Nom) ∈ X}. Then

χ(ϕ) is the extension (P ′,Nom′) ↪→ (P ′,Nom′ ∪ Xϕ) and ϕ[χ] is the canonical extension

of ϕ that maps each (x, P ,Nom) to (x, P ′,Nom′).

When we combine this quantification with the constraints T, S4, S5, etc., then we have

to establish the adequacy condition for the constrained model sub-functor. However in

this case this is almost trivial since we may consider DPL (the quantification space at

the level of the base institution) as being trivial and then reflection condition for the

constrained models gets trivialized too.

Example 3.2 (double layered hybridization H′H′PL). An institution for specification of

hierarchical state transition systems is achieved by a double layered hybridization of PL
(but it could also be extended to any other base institution instead of PL). This means

a hybridization of H′PL (or of any of its variants from Example 3.1). Let us denote

by H′H′PL the quantifier-free hybridization of H′PL. The models of this institution are

‘Kripke structures of Kripke structures’.

Thus the H′H′PL signatures are triples (P ,Nom0,Nom1) with Nom0 and Nom1 denoting

the nominals of the first and second layer of hybridization, respectively. In order to

prevent potential ambiguities, in general we tag the symbols of the respective layers of

hybridization by the superscripts 0 (for the first layer) and 1 (for the second layer). This

convention should include nominals and connectors (�, ∧, etc.); however by Fact 3.2

in the case of the Boolean connectors we may skip this. For instance, the expression

@j1k0 ∧�1ρ is a sentence of H′H′PL where the symbols k and j represent nominals of the

first and second level of hybridization and ρ a PL sentence. On the other hand, according

to this tagging convention the expression @j0k1 ∧ �1ρ would not parse. Our tagging
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convention is extended also to H′H′PL models: a (P ,Nom0,Nom1)-model is denoted by

(M1,W 1) where for any w ∈ |W 1| the models M1
w are denoted by (W 0

w,M
0
w).

We may consider also quantified versions of the double hybridization of PL, and there

are several variants of those depending on the existence of the quantifiers at each layer.

Let us denote these generically by H′(H′PLx)y where x is either empty or n and y is either

empty, n0, n1, or n01. The absence of x and/or y means the absence of quantification at

the base and/or the upper level, respectively. The superscripts 0 and 1 tagged to n denote

the existence of quantification at the upper level with nominals variables from the lower

and upper level of hybridization, respectively. For example H′(H′PLn)n01 would have all

possible quantifications, such as (∀0i0), (∀1i0), (∀1i1) while H′(H′PL)n1 would have only

those of the form (∀1i1).

Let H′H′PL′ denote the double hybridization obtained by constraining the models

(M1,W 1) to those such that for any w,w′ ∈ |W 1| and any i0 ∈ Nom0 we have that

|W 0
w| = |W 0

w′ | and (W 0
w)i0 = (W 0

w′)i0 . The quantified variants of H′H′PL′ would require the

reflection condition of Def. 3.1; however this follows easily.

The layered hybridization construction (together with its associated notational con-

ventions) may be iterated to higher layers of hybridizations, e.g. H3PL, H4PL, ...

The convention on quantified versions carries also forward to such higher layers of

hybridization.

Example 3.3 (hybrid first-order logic HFOL). Through the application of the hybridiza-

tion method to FOL by taking as a quantification space signature extensions both with

FOL variables and variables over nominals, one captures the state-variables quantification

of the multi-modal variant of first-order hybrid logic of Blackburn and Marx (2002). Like

in the case of H′PL, by virtue of the Fact 3.2 note that we do not need to make a

distinction between the Boolean connectives at the level of FOL and those at the level of

HFOL. Moreover, because the carriers of the FOL models are non-empty we may easily

show that in this case the implications of Fact 3.2 about quantifiers may be turned into

equivalences, hence it is also not necessary to distinguish between quantifiers at the base

FOL level and at the hybridized HFOL level.

Example 3.4 (predefined sharing in HREL). Let HREL′ be the hybridization of REL
that constraints the models of HREL to those models (M,W ) such that {Mi | i ∈ |W |}
share the same universe (underlying set) and the same interpretation of the constants. It

is rather easy to note that the amalgamation of models preserves the sharing, hence, the

reflection condition of Definition 3.1 is fulfilled.

DHREL′
consists of the signature extensions with FOL variables (for the states) and

with nominal variables (in the style of DH′PLn1

of Example 3.1).

Note that like for HFOL, in HREL′ we also do not need to distinguish between the

Boolean connectives and the quantifiers at the base and at the hybridized level.

Example 3.5 (user defined sharing in HFOL). The above Example 3.4 may be considered

an example of ‘predefined’ or ‘default’ sharing since the interpretation of all constants

are shared. However in formal specification applications it is also important to consider

‘user defined’ sharing, in which one has the possibility to define at hand the entities to
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be shared. The first-order modal logic institution MFOL of Diaconescu (2008) is such an

example. Its hybrid version HFOLR′ may be developed through the hybridization process

above as follows.

As the base institution of the hybridization we consider the institution FOLR defined

as follows:

— SignFOLR is the category of the MFOL signatures of Diaconescu (2008): its objects

are tuples

(S, S0, F, F0, P , P0) where (S0, F0, P0) and (S, F, P ) are FOL signatures such that

(S0, F0, P0) is a sub-signature of (S, F, P ); the symbols of (S0, F0, P0) are called ‘rigid’,

and signature morphisms ϕ : (S, S0, F, F0, P , P0) → (S ′, S ′
0, F

′, F ′
0, P

′, P ′
0) are just FOL

signature morphisms (S, F, P ) → (S ′, F ′, P ′) that map rigid symbols to rigid symbols,

— SenFOLR(S, S0, F, F0, P , P0) consists of those sentences in SenFOL(S, F, P ) that contain

only quantifiers over rigid variables,

— ModFOLR(S, S0, F, F0, P , P0) = ModFOL(S, F, P ), and

— the satisfaction relation in FOLR is induced canonically from FOL, i.e. |=FOLR
(S,S0 ,F,F0 ,P ,P0)

= |=FOL
(S,F,P ).

We let HFOLR be the hybridization of FOLR with quantifications by nominal and rigid

FOL variables.

For HFOLR′ let us consider the constrained model sub-functor ModC such that

(M,W ) ∈ |ModC(Σ,Nom,Λ)| if and only if for all i, j ∈ |W | and each rigid symbol x in Σ,

(Mi)x = (Mj)x. For any pushout square of signature morphisms in SignHFOLR as below

(Σ,Nom,Λ)
ϕ1 ��

ϕ2

��

(Σ1,Nom1,Λ1)

θ1

��
(Σ2,Nom2,Λ2)

θ2

�� (Σ′,Nom′,Λ′)

let us consider a constrained (Σk,Nomk,Λk)-model (Mk,Wk) for each k ∈ {1, 2} such that

ModC(ϕ1)(M1,W1) = ModC (ϕ2)(M2,W2). We take the amalgamation (M ′,W ′) = (M1,W1)

⊗(M2,W2) according to Theorem 3.1. Then we consider any rigid symbol x of Σ′ and any

i, j ∈ |W ′|. By Proposition 3.1 we have that

Σ
(ϕ1)Sig ��

(ϕ2)Sig

��

Σ1

(θ1)Sig

��
Σ2

(θ2)Sig

�� Σ′

is a pushout square of FOLR signature morphisms. Note that the set of rigid symbols

in Σ′ is the the union of the translations of the rigid symbols from both Σ1 and Σ2

through (θ1)Sig and (θ2)Sig . This means that there exists k ∈ {1, 2} and xk rigid symbol of

Σk such that x = θk(xk). It follows that (M ′
i )x = ((Mk)i)xk and (M ′

j)x = ((Mk)j)xk , hence

(M ′
i )x = (M ′

j)x since ((Mk)i)xk = ((Mk)j)xk (because (Mk,Wk) is a constrained model).
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This proves that (M ′,W ′) is a constrained model, which gives the reflection condition of

Definition 3.1.

The first-order hybrid logic (e.g. Braüner (2011)) appears as a fragment of HFOLR′

when we discard the function symbols but constants and there are no rigid predicates.

Example 3.6 (user defined sharing in hybrid partial algebra). Let PAR be a rigid version

of the partial algebras institution of Example 2.2 that is defined similarly to FOLR,

the rigid version of FOL from Example 3.5. This means we consider signatures of the

form (S, S0, TF, TF0, PF, PF0) with (S0, TF0, PF0) being a sub-signature of ‘rigid symbols’

for a PA signature (S, TF, PF), etc; we skip here the other details that replicate the

corresponding details from the definition of FOLR. Let HPAR be the hybridization of

PAR with quantifications by nominals and PAR variables (i.e. rigid total variables); this

means DHPAR consists of the signature extensions with total rigid (first-order) variables

and with nominals variables. The amalgamation property of PA entails the adequacy of

DPAR for ModPAR. From Corollary 3.2 it follows that DHPAR is adequate for HPAR.

We denote by HPAR′ the hybridization obtained by constraining the model sub-functor

to ModC defined by (M,W ) ∈ |ModC(Σ,Nom,Λ)| if and only if the rigid sorts and total

functions share the same interpretations in all the states and the rigid partial functions

share the domains. This means that for all i, j ∈ |W | and for each symbol x in S0 or

TF0, (Mi)x = (Mj)x and for any σ in PF0 we have that dom((Mi)σ) = dom((Mj)σ). The

reflection condition for ModC is established in this case similarly to the corresponding

reflection condition from Example 3.5.

A version of this example may require that the values of the rigid partial functions are

also shared. Our choice of model constraints for HPAR′ is on the one hand an illustration

of the high flexibility given by the generality of our approach, and on the other hand

constitutes the adequate choice for the logic platform of the case study of Sect. 6. In that

case study we will consider models with two states, queues in one state and stacks in the

other. The partial functions on queues and stacks are defined when these are non-empty

(so the same definition domain), but they may give different values.

Example 3.7 (temporalization of logics). The general method of temporalization of logics

proposed in Finger and Gabbay (1992) is subsumed in a very simple way by our approach

by considering the unconstrained hybridization HI of an abstract institution I with the

quantification space DHI consisting of finite extensions with nominal variables and by

restricting the signatures to those that have only one modality symbol of arity 2. A

concrete example is HPL′n of Example 3.1. Then the generic modal operators ‘since’ and

‘until’ can be expressed by using the hybrid features. For example Until(ρ1, ρ2) can be

expressed (Blackburn and Tzakova 1999) by

(∃y)(�(y ∧ ρ1) ∧ �(�y ⇒ ρ2)).

The linearity of the ‘time flow’ (i.e. the binary relation associated to the modality symbol),

which is necessary for many of developments in Finger and Gabbay (1992) can be

captured in our framework as a model constraint. In this case the reflection condition is

trivial since it is a condition only on the W part of the models and the reducts do not

affect that.
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The following table presents an overview of some of the examples discussed in this

section.

Quantification space
Hybridized Base

institution institution first order Nom Λ Model constraint

H′PL PL
H′PL(T ) PL W reflexive

H′PLn PL �
H′PLn(T ) PL � W reflexive

H′H′PL H′PL
H′(H′PL)n1 H′PL Nom1

H′(H′PLn) H′PLn

H′H′PL′ H′PL |W 0
w| = |W 0

w′ | and (W 0
w)i0 = (W 0

w′)i0

for all w,w′ ∈ |W 1|
HFOL FOL � �
HREL REL � �

HREL′ REL � �
|Mi| = |Mj | and

(Mi)σ = (Mj)σ for each constant σ

HFOLR FOLR rigid �
HFOLR′ FOLR rigid � (Mi)x = (Mj)x for each x in S0, F0, P0

HPAR PAR total & rigid �

HPAR′ PAR total & rigid
� (Mi)x = (Mj)x for each x in S0, TF0,

and dom((Mi)σ) = dom((Mj)σ) for

each σ in PF0

The following graph shows an expressiveness hierarchy for some of the examples in

this section.

H′PL

����������

��
H′H′PL

���������� H′PLn

���������

�� �������������������

H′H′PLn1 H′(H′PLn) HFOL

		�������� HREL

����������

��
HFOLR



�������� HREL′

��

HPAR

��
HFOLR′ HPAR′
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4. Encoding hybridized institutions into FOL

This is the main section of the paper and it is structured as follows:

1. We develop some technical preliminaries that will be used for developing the main

result of our paper.

2. We develop the encoding of hybridized institutions into FOL at the general level; this

may be regarded as a high generalization of the standard translations of hybrid logics

found in the literature (e.g. Blackburn and Seligman (1995); Braüner (2011)).

3. We instantiate the general encoding to a series of examples of concrete encodings.

4.1. Technical preliminaries

In order to ease the burden represented by the complexity of the general encoding of

hybridized institutions into FOL we introduce now a series of notations and develop a

technical lemma. All these concern only FOL, but they will be used immediately after.

Notation 4.1. For any FOL-signature (S, F, P ) we denote by ([S], [F], [P ]) the following

FOL-signature:

— [S] = S ∪ {ST}, where ST is a designated sort not in S ,

— [F]ar→s =

{
Far′→s for any s ∈ S, ar′ ∈ S∗ such that ar = (ST)ar′

� for the other cases;

— [P ]ar =

{
Par′ for any ar′ ∈ S∗ such that ar = (ST)ar′;

�, for the other cases.

For any morphism of FOL signatures ϕ : (S, F, P ) → (S ′, F ′, P ′) we let [ϕ] : ([S],

[F], [P ]) → ([S ′], [F ′], [P ′]) morphism of FOL signatures defined as follows:

— [ϕ]st(ST) = ST,

— [ϕ]st(s) = ϕst(s) for any s ∈ S ,

— [ϕ]op
(ST)ar′→s(σ) = ϕ

op
ar′→s(σ) for any σ ∈ Far′→s, and

— [ϕ]rl(ST)ar′ (π) = ϕrl
ar′(π) for any π ∈ Par′ .

Definition 4.1. For any FOL-signature (S, F, P ) and any new constant x of sort ST we

define the following translation

[ ]x(S,F,P ) : SenFOL(S, F, P ) → SenFOL([S], [F] + x, [P ])

defined by

— [t = t′]x = ([t]x = [t′]x) where [σ(t1, . . . , tn)]
x = σ(x, [t1]

x, . . . , [tn]
x);

— [π(t)]x = π(x, [t]x);

— [ρ1 � ρ2]
x = [ρ1]

x � [ρ2]
x, for � ∈ {∨,∧,⇒};

— [¬ρ]x = ¬[ρ]x;

— [(∀Y )ρ]x = (∀Y )([ρ]x)Y where ([ρ]x)Y is the result of replacing in [ρ]x all occurrences

of y(z) by y for each y in Y .‡

‡ Note that the signature of ρ contains y as constants, hence in [ρ]x each y of Y appears as a unary function

y(x) (since by definition [y]x = y(x)). Then ([ρ]x)Y collapses back each y(x) to the constant y.
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Definition 4.2. Let (S, F, P ) be any FOL-signature.

— For any s ∈ S let us denote by Ds a new designated relation symbol with arity (ST)s;

— For any σ ∈ Fs1 ...sn→s, by Dσ we denote the Horn sentence

(∀y)(∀x1, . . . , xn)
∧

1�i�n

Dsi(y, xi) ⇒ Ds(y, σ(y, x1, . . . , xn))

— DF = {Dσ | σ ∈ Far→s, ar ∈ S∗, s ∈ S}.

Definition 4.3. For any FOL-signature (S, F, P ) and any ([S], [F], [P ])-model M ′ such that

M ′ |= DF , for any w ∈ M ′
ST the (S, F, P )-model M ′|w is defined as follows:

— for each s ∈ S , (M ′|w)s = {m ∈ M ′
s | (w,m) ∈ M ′

Ds
};

— for each σ in F , (M ′|w)σ(m) = M ′
σ(w,m);

— for each π in P , m ∈ (M ′|w)π iff (w,m) ∈ M ′
π .

Let us note that the correctness of the definition of M ′|w , i.e. that for each σ ∈ Far→s and

each m ∈ (M ′|w)ar we have (M ′|w)σ(m) ∈ (M ′|w)s, relies upon the condition that M ′ |= DF .

Notation 4.2. For any (S, F, P )-sentence ρ, by V (ρ) we denote the set of all sentences

(∀x, y)Ds(x, y) for s any sort of a variable in a quantification that occurs in ρ. For any set

E of sentences V (E) denotes ∪{V (ρ) | ρ ∈ E}.

Lemma 1. For any FOL-signature (S, F, P ), any ([S], [F], [P ])-model M ′ with M ′ |= DF ,

any (S, F, P )-sentence ρ, and any w ∈ M ′
ST, if M ′ |= V (ρ) then

M ′|w |=(S,F,P ) ρ if and only if M ′w |=([S ],[F]+x,[P ]) [ρ]x (6)

where M ′w denotes the expansion of M ′ to ([S], [F] + x, [P ]) defined by M ′w
x = w.

Proof. The proof of the lemma is by induction on the structure of ρ as follows.

1. The proof for the case when ρ is t = t′ is an immediate consequence of the following

relation

(M ′|w)t = (M ′w)[t]x , for any term t (7)

which is proved by induction on the structure t as follows:

(M ′|w)σ(t1 ,...,tn)

= (M ′|w)σ((M
′|w)t1 , . . . , (M

′|w)tn ) (definition of evaluation of terms)

= M ′
σ(w, (M

′|w)t1 , . . . , (M
′|w)tn ) (definition of M ′|w)

= M ′
σ(w,M

′w
[t1]x

, . . . ,M ′w
[tn]x

) (induction hypothesis)

= M ′w
σ(x,[t1]x,...,[tn]x)

(M ′w
x = w and definition of term evaluation)

= M ′w
[σ(t1 ,...,tn)]x

(definition of [ ]x).
2. If ρ is π(t1, . . . , tn):

M ′|w |= π(t1, . . . , tn)

iff ((M ′|w)t1 , . . . , (M
′|w)tn ) ∈ (M ′|w)π (definition of FOL-satisfaction)

iff (w,M ′w
[t1]x

, . . . ,M ′w
[tn]x

) ∈ M ′
π (definition of (M ′|w)π and by (7))

iff M ′w |= π(x, [t1]
x, . . . , [tn]

x) (because M ′w
x = w)

iff M ′w |= [π(t1, . . . , tn]
x (definition of [ ]x).
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3. When ρ is ξ1 �ξ2 for � ∈ {∧,∨,⇒} or ρ is ¬ξ, the proof reduces to a plain application

of the induction hypothesis.

4. If ρ is (∀Y )ξ:

M ′|w |= (∀Y )ξ iff M ′ |= ξ for any (S, F + Y , P )-expansion M ′′ of M ′|w, and

M ′w |= (∀Y )([ξ]x)Y iff N ′w |= ([ξ]x)Y for any ([S], [F] + Y + x, [P ])-expansion

N ′w of M ′w.

This case is solved if we proved the equivalence between the right hand sides of the

above two equivalences. This follows by noting the following facts:

— There is a canonical bijection between the ([S], [F] + Y + x, [P ])-expansions N ′w

of M ′w and the (S, F + Y , P )-expansions M ′′ of M ′|w given by M ′′
y = N ′w

y for each

y ∈ Y . This relies upon the fact that (M ′|w)s = M ′
s which follows from M ′ |= V (ρ).

— Each N ′w as above determines an ([S], [F + Y ] + x, [P ])-expansion N ′′w of M ′w by

N ′′w
y (m) = N ′w

y for all m ∈ M ′
ST and each y ∈ Y . Furthermore

N ′′w |= [ξ]x if and only if N ′w |= ([ξ]x)Y . (8)

— Let N ′′ be the reduct of N ′′w to ([S], [F + Y ], [P ]). Then M ′′ = N ′′|w .

— The induction hypothesis gives that M ′′ |= ξ iff N ′′w |= [ξ]x. By (8) it follows that

M ′′ |= ξ iff N ′w |= ([ξ]x)Y .

4.2. The definition of the encoding

Thus, let (SignHI , SenHI ,ModC, |=) be a hybridization of an institution I such that for

all χ ∈ DHI:

— χNom are finite extensions, and

— χMS are identities.

Given any comorphism (Φ, α, β) : I → FOLpres such that for each ϕ : Σ → Σ′ in DI we

have that

— the underlying FOL signature morphism of Φ(ϕ) is in DFOL; and

— the difference between the presentations Φ(Σ′) and Φ(Σ) consists of a finite set Γϕ of

sentences,

we define a comorphism (Φ′C, α′, β′C ) : (SignHI , SenHI ,ModC, |=) → FOLpres in two steps:

1. We define a functor Φ′ : SignHI → SignFOLpres

and natural transformations

α′ : SenHI ⇒ Φ′; SenFOLpres

and β′ : Φ′op; ModFOLpres

⇒ ModHI .

2. We extend the definitions of Φ′ and β′ to Φ′C and β′C respectively and prove the

satisfaction condition for (Φ′C, α′, β′C ).

Definition 4.4 (translation of the signatures). For any HI signature (Σ,Nom,Λ), let

Φ′(Σ,Nom,Λ) = ([SΣ], [FΣ] + Nom, (Ds)s∈SΣ
+ [PΣ] + Λ,ΓΣ ∪ DFΣ

)
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where

— Φ(Σ) = ((SΣ, FΣ, PΣ),ΓΣ), where (SΣ, FΣ, PΣ) is a FOL-signature and ΓΣ is a set of

(SΣ, FΣ, PΣ)-sentences;

— (Nom)ar→s =

{
Nom when ar = �, s = ST,

� for the other cases;

— (Λ)ar =

{
Λn when ar = (ST)n, n ∈ ω

� for the other cases;

— ΓΣ = {∀x [γ]x | γ ∈ ΓΣ} ∪ V (ΓΣ).

Definition 4.5 (translation of the signature morphisms). For any HI signature morphism

ϕ = (ϕSig , ϕNom, ϕMS) : (Σ1,Nom1,Λ1) → (Σ2,Nom2,Λ2) the FOLpres signature morphism

Φ′(ϕ) is the extension of [Φ(ϕSig )] : ([SΣ1
], [FΣ1

], [PΣ1
]) → ([SΣ2

], [FΣ2
], [PΣ2

]) defined by

— Φ′(ϕ)op(n) = ϕNom(n) for each n ∈ Nom1,

— Φ′(ϕ)rl(Ds) = DΦ(ϕSig )st(s) for each sort s ∈ SΣ1
, and

— Φ′(ϕ)rl(λ) = ϕMS(λ) for each λ ∈ Λ1.

Fact 4.1. Φ′(ϕ) of Definition 4.5 is a presentation morphism Φ′(Σ1,Nom1,Λ1) → Φ′(Σ2,

Nom2,Λ2).

In quantified sentences part of the following definition we may assume without any

loss of generality quantifications with only one nominal variable and only one first-order

variable symbol.

Definition 4.6 (translation of the sentences). α′
(Σ,Nom,Λ)(ρ) = (∀x)α′x

(Σ,Nom,Λ)(ρ), where

α′x
(Σ,Nom,Λ) : SenHI(Σ,Nom,Λ) → SenFOL([SΣ], [FΣ] + Nom + x, (Ds)s∈S + [PΣ] + Λ) with x

being a constant of sort ST, is defined by

— α′x(i) = (i = x), i ∈ Nom;

— for each ρ ∈ SenI(Σ), α′x(ρ) = [αΣ(ρ)]x;

— α′x(ρ1 � ρ2) = α′x(ρ1) � α
′x(ρ2), � ∈ {∨,∧,⇒};

— α′x(¬ρ) = ¬α′x(ρ);

— α′x(@iρ) = α′i(ρ);

— α′x([λ](ρ1, . . . , ρn)) = ∀y1, . . . , yn
(
λ(x, y1, . . . , yn) ⇒

∨
1�i�n α

′yi (ρi)
)
;

— α′x(〈λ〉(ρ1, . . . , ρn)) = ∃y1, . . . , yn
(
λ(x, y1, . . . , yn) ∧

∧
1�i�n α

′yi (ρi)
)
;

— α′x
(Σ,Nom,Λ)((∀i)ρ) = (∀i)α′x

(Σ,Nom+i,Λ)(ρ) for ρ ∈ SenHI(Σ,Nom + i,Λ);

— α′x
Δ ((∀χ)ρ) = (∀y)

(
ΓχSig

∪ {Dy} ⇒ α′x
Δ′(ρ)

)
y

for ρ ∈ SenHI(Δ′)

(where χ = (χSig , 1Nom, 1Λ) : Δ = (Σ,Nom,Λ) → Δ′ = (Σ′,Nom,Λ) and Φ(χSig ) extends

the signature of Φ(Σ) with the variable y and the presentation Φ(Σ) with the finite set

of sentences ΓχSig
).

Note that in the definition of the translations of quantified sentences, for the sake of clarity

and without any loss of generality, we have treated quantification by nominals and by

base institution signature morphisms separately and we have considered single variables

instead of finite blocks of variables. We have also omitted the case of the existential

quantifications which get a translation that replicates that of the universal quantifications.

From the naturality of α it follows:
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Fact 4.2. α′ is natural transformation.

Definition 4.7 (translation of the models). For any HI signature (Σ,Nom,Λ) and any

Φ′(Σ,Nom,Λ)-model M ′ we define β′
(Σ,Nom,Λ)(M

′) = (M,W ) where

— W is the reduct M ′�({ST},Nom,Λ), i.e. |W | = M ′
ST, Wi = M ′

i for each i ∈ Nom, and

Wλ = M ′
λ for each λ in Λ, and

— M : |W | → |ModI(Σ)| is defined for each w ∈ |W | by Mw = βΣ(M ′|w) where M ′|w
denotes here the abbreviation (M ′�([SΣ],[FΣ],[PΣ]))|w .

Lemma 2. Definition 4.7 is correct, in the sense that for each w ∈ |W |, M ′|w |= ΓΣ.

Proof. Since M ′ |= V (ΓΣ) ∪ DFΣ
we may apply the conclusion of Lemma 1 from the

right to the left for each γ ∈ ΓΣ. In order to do this we have just to note that because of

M ′ |= ΓΣ, we have that M ′ |= (∀x)[γ]x for each γ ∈ ΓΣ, hence M ′w |= [γ]x for all w and

for each γ ∈ ΓΣ.

Definition 4.8. A functor C is matches Φ′ when the diagram below commutes

SignHI Φ′
��

C

��

SignFOLpres

U

��
SignFOLpres

U
�� SignFOL

where U denotes the forgetful functor.

For C matching Φ′ we let

— Φ′C denote the functor that represents the componentwise union of the corresponding

presentations, i.e. Φ′C(Δ) is the union of Φ′(Δ) and C(Δ), and

— β′C : Φ′C; ModFOLpres

⇒ ModHI denotes the corresponding (componentwise) restric-

tion of β′.

Theorem 4.1. Assume a functor C matching Φ′ such that

1. For any HI-signature Δ = (Σ,Nom,Λ) and for any Σ-sentence ξ we have

Φ′C(Δ) |= V (αΣ(ξ)). (9)

2. Each signature morphism (χ : Δ → Δ′) ∈ DHI with χNom = 1Nom

— is adequate for β′C ; and

— satisfies

C(Δ′) |=| C(Δ) ∪ {(∀z1, z2)y(z1) = y(z2) | y ∈ Y } (10)

(where the signature of Φ(χSig ) adds the finite block of variables Y to the signature

of Φ(Σ)).

Then, for any Δ = (Σ,Nom,Λ) ∈ |SignHI |, ρ ∈ SenHI(Δ), M ′ ∈ |ModFOLpres

(Φ′C(Δ))| and

w ∈ M ′
ST,

β′C
Δ (M ′) |=w

Δ ρ if and only if M ′w |=Φ′(Δ)+x α′x
Δ (ρ), (11)

where (like in Lemma 1) M ′w denotes the expansion of M ′ to Φ′(Δ) + x defined by

M ′w
x = w.
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Proof. The proof is by induction on the structure of ρ. Let us denote β′C
Δ (M ′) by

(M,W ).

1. If ρ = i for some i ∈ Nom:

(M,W ) |=w
Δ i

iff Wi = w (definition of |=w
Δ)

iff M ′
i (= M ′w

i ) = M ′w
x (by definition of β′ and of M ′w)

iff M ′w |=Φ′(Δ)+x i = x (definition of FOLpres-satisfaction)

iff M ′w |=Φ′(Δ)+x α′x(i) (definition of α′x).

2. If ρ ∈ SenI(Σ):

(M,W ) |=w
Δ ρ

iff Mw |=I ρ (definition of |=w
Δ)

iff βΣ(M ′|w) |=Σ ρ (definition of β′)

iff M ′|w |=Φ(Σ) αΣ(ρ) (by the satisfaction condition of (Φ, α, β))

iff M ′w |=Φ′(Δ)+x [αΣ(ρ)]x (by (9) and Lemma 1)

iff M ′w |=Φ′(Δ)+x α′x(ρ) (by definition of α′x).

3. If ρ = ξ ∨ ξ′:

(M,W ) |=w
Δ ξ ∨ ξ′

iff (M,W ) |=w
Δ ξ or (M,W ) |=w

Δ ξ′ (definition of |=Δ)

iff M ′w |=Φ′(Δ)+x α′x(ξ) or M ′w |=Φ(Δ)+x α′x(ξ′) (by induction hypothesis)

iff M ′w |=Φ′(Δ)+x α′x(ξ) ∨ α′x(ξ′) (definition of |=FOLpres

)

iff M ′w |=Φ′(Δ)+x α′x(ξ ∨ ξ′) (by definition of α′x).

The proofs for the cases when ρ = ξ ∧ ξ′, ρ = ξ ⇒ ξ′, ρ = ¬ξ, etc. are analogous.

4. If ρ = @iξ:

(M,W ) |=w
Δ ρ

iff (M,W ) |=Wi

Δ ξ (by definition of |=Δ)

iff M ′Wi |=Φ′(Δ)+x α′x(ξ) (by induction hypothesis)

iff M ′ |=Φ′(Δ) α
′i(ξ) (because M ′Wi

x = Wi = M ′
i )

iff M ′w |=Φ′(Δ)+x α′i(ξ) (by the satisfaction condition in FOL)

iff M ′w |=Φ′(Δ)+x α′x(@iξ) (by definition of α′x).
5. If ρ = [λ](ξ1, . . . , ξn) with λ ∈ Λn+1:

(M,W ) |=w
Δ [λ](ξ1, . . . , ξn)

iff for any (w,w1, . . . , wn) ∈ Wλ there exists 1 � i � n

such that (M,W ) |=wi ξi
(by definition of |=Δ)

iff for any (w,w1, . . . , wn) ∈ Wλ there exists 1 � i � n

such that M ′wi |=Φ′(Δ)+yi α
′yi (ξi)

(by induction hypothesis)

iff M ′ww1 ...wn |=Φ′(Δ)+x+y1+···+yn λ(x, y1, . . . , yn) ⇒
∨

1�i�n α
′yi (ξi)

for all w1, . . . , wn

iff M ′w |=Φ′(Δ)+x ∀y1, . . . , yn λ(x, y1, . . . , yn) ⇒
∨

1�i�n α
′yi (ξi)

(by the Rule of Generalization in FOL)

iff M ′w |=Φ′(Δ)+x α′x([λ](ξ1, . . . , ξn))

(by definition of α′x).
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6. If ρ = (∀i)ξ:

(M,W ) |=w
Δ (∀i)ξ

iff (M,W ′) |=w
Δ+i ξ for each (Nom + i,Λ)-expansion W ′ of W

iff Nw |=Φ′(Δ)+i+x α′x
Δ+i(ξ) for each (Φ′(Δ) + i)-expansion N of M ′

(by the induction hypothesis)

iff M ′w |=Φ′(Δ)+x (∀i)α′x
Δ+i(ξ)

iff M ′w |=Φ′(Δ)+x α′x
Δ ((∀i)ξ) (by the definition of α′x

Δ ).
7. If ρ = (∀χ)ξ:

Let χ : Δ = (Σ,Nom,Λ) → Δ′ = (Σ′,Nom,Λ). We have to prove that

(M,W ) |=w
Δ (∀χ)ξ if and only if M ′w |=Φ′(Δ)+x (∀y)

(
ΓχSig

∪ {Dy} ⇒ α′x
Δ′ (ξ)

)
y
.

⇒ Let N ′ be any (Φ′(Δ) + x)-expansion of M ′. We have to prove that

N ′w |=Φ′(Δ)+x+y

(
ΓχSig

∪ {Dy} ⇒ α′x
Δ′ (ξ)

)
y

which is equivalent to proving that

N ′′w |=Φ′(Δ′)+x ΓχSig
∪ {Dy} ⇒ α′x

Δ′(ξ)

where N ′′ is the Φ′(Δ′)-expansion of M ′ defined by N ′′
y (z) = N ′

y . Let us assume that

N ′′w |= ΓχSig
∪ {Dy}. We have the following:

— N ′′ |= ΓχSig
∪ {Dy} because Γχ and Dy are Φ′(Δ′)-sentences;

— N ′′ |= Φ′C(Δ) because N ′′ is an expansion of M ′ and M ′ |= Φ′C(Δ); and

— N ′′ |= (∀z1, z2)y(z1) = y(z2).

From these three satisfactions and from (10) it follows that N ′′ |= Φ′C(Δ′). Consequently

β′C
Δ′ (N ′′)�χ = β′C

Δ (N ′′�Φ′(χ)) = β′C
Δ (M ′) = (M,W )

hence β′C
Δ′ (N ′′) |= ξ. By the induction hypothesis it follows that N ′′w |= α′x

Δ′ (ξ).

⇐ Let (N,W ) be a χ-expansion of (M,W ). We have to prove that (N,W ) |=w
Δ′ ξ. By

the adequacy hypothesis there exists a Φ′C(Δ′)-model N ′′ such that (N,W ) = β′C
Δ′ (N ′)

and M ′ = N ′′�Φ′C (χ). By the induction hypothesis is suffices to prove that N ′′w |=Φ′(Δ′)+x

α′x
Δ′(ξ).

We let N ′ be the (Φ′(Δ)+y)-expansion of M ′ defined by N ′
y = N ′′

y (z). This definition is

correct because N ′ |= C(Δ′) which by (10) implies that N ′′
y (z) is invariant with respect

to z. Since N ′w is an expansion of M ′w , by hypothesis it follows that

N ′w |=Φ′(Δ)+y+x (ΓχSig
∪ {Dy} ⇒ α′x

Δ′ (ξ))y,

which implies

N ′′w |=Φ′(Δ′)+x ΓχSig
∪ {Dy} ⇒ α′x

Δ′(ξ).

The desired conclusion follows now from the fact that N ′′, as a Φ′C(Δ′)-model, satisfies

the condition of the implication above.
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Corollary 4.1 (satisfaction condition for (Φ′C, α′, β′C )). If in addition to the conditions of

Theorem 4.1 above we also have that

β′
Δ(M ′) ∈ |ModC(Δ)| for each HI-signature Δ and each M ′ ∈ |ModFOLpres

(Φ′C(Δ))|

then (Φ′C, α′, β′C ) is comorphism (SignHI , SenHI ,ModC, |=) → FOLpres, i.e. for any Δ ∈
|SignHI |, ρ ∈ SenHI(Δ) and M ′ ∈ |ModFOLpres

((Φ′C)(Δ))|,

β′C
Δ (M ′) |=Δ ρ if and only if M ′ |=Φ′C (Δ) α

′
Δ(ρ).

4.3. Examples

Example 4.1. Let us consider the case of T hybrid propositional logic (H′PLn(T ), see

Example 3.1). The base comorphism (Φ, α, β) is the canonical embedding of PL into FOL
determined by embedding of the PL signatures as FOL signatures. This means the D’s and

the Γ’s are empty. The quantification space for the hybridization consists of extensions

with nominal variables. The functor C is such that each C(P ,Nom) is the presentation

containing the sentence (∀x)λ(x, x). Note that Φ′C maps any signature (P ,Nom) to the

FOL-presentation

(({ST},Nom, [P ] + λ), (∀x)λ(x, x)).

The conditions (9) and (10) of Theorem 4.1 are vacuously satisfied, and so is also the

adequacy condition for β′C (of the same theorem).

Example 4.2. In the case of the encoding of H′H′PL (from Example 3.2) the base

comorphism is the embedding of the free hybridization of PL into FOL; hence (see

Example 4.1) we have

Φ(P ,Nom0) = ({ST0},Nom0, [P ] + λ0)

(we use λ0 and λ1 to distinguish the relations underlying �0 and �1 respectively). Thus

Φ′(P ,Nom0,Nom1) = ({ST0, ST1}, [Nom0] + Nom1, DST0 + [[P ]] + λ0 + λ1, D
Nom0).

As expected, we have now a sort of states for each level of hybridization, i.e. [{ST0}] =

{ST0, ST1}. The predicate DST0 : (ST1)(ST0) plays the role of a ‘sub-state-relation’. A

nominal i0 of Nom0 is interpreted as an operation i0 : ST1 → ST0 (of [Nom0]) and

similarly the base modality λ0 by a predicate λ0 : (ST1)(ST0)(ST0). Also D
Nom0 =

{(∀y)DST0(y, i0(y)) | i0 ∈ Nom0}. In order to get the condition (9) of Theorem 4.1 fulfilled,

since for any ρ ∈ SenH′PL(P ,Nom0) the sentence α(P ,Nom0)(ρ) is ST0-quantified, we take

C(P ,Nom0,Nom1) = {(∀x, y)DST0(x, y)}. (12)

Note that since C(P ,Nom0,Nom1) |= D
[Nom0]

we may define

Φ′C(P ,Nom0,Nom1) =

({ST0, ST1}, [Nom0] + Nom1, DST0 + [[P ]] + λ0 + λ1, {(∀x, y)DST0(x, y)}).
Because of the absence of quantifications, the adequacy condition on β′C and the condition

(10) of Theorem 4.1 hold trivially.
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With respect to the quantified versions of H′H′PL the situation is as follows.

— The condition (10) of Theorem 4.1 holds trivially for the quantifications (∀0n0) and

(∀1n1). (In the former case χ is identity and in the latter case χSig is identity.)

— In the presence of quantifications (∀1n0), χSig adds n0 to the HPL signature and

consequently Φ(χSig ) adds n0 as a new constant of sort ST0. The condition (10) of

Theorem 4.1 can be fulfilled only for the constrained versions from the H′(H′PL′x)y

family. In these cases C has to reflect the sharing of sub-states domains by the

sentences {(∀x, y, z)DST0(x, z) ⇔ DST0(y, z)} and the sharing of the interpretations of

the base nominals by the sentences {(∀x, y)i(x) = i(y) | i ∈ [Nom0]}. Since the former

are consequences of (12), we have that

C(P ,Nom0,Nom1) = {(∀x, y)DST0(x, y)} ∪ {(∀x, y)i(x) = i(y) | i ∈ [Nom0]}).

Example 4.3. Let us consider the free hybridization of FOL only with quantification

over nominal variables (HFOL of Example 3.3). The base comorphism (Φ, α, β) is identity,

hence the Γ’s are empty. Hence we have that

Φ′((S, F, P ),Nom,Λ) = ([S], [F] + Nom, (Ds)s∈S + [P ] + Λ, DF ).

In order to get the condition (9) of Theorem 4.1 fulfilled we define

C((S, F, P ),Nom,Λ) = {(∀x, y)Ds(x, y) | s ∈ S}.

Note that C((S, F, P ),Nom,Λ) |= DF hence we may write

Φ′C((S, F, P ),Nom,Λ) = ([S], [F] + Nom, (Ds)s∈S + [P ] + Λ, {(∀x, y)Ds(x, y) | s ∈ S}).

Because in this case, we allow only quantifications with nominal variables the condition

(10) of Theorem 4.1 is vacuously fulfilled and so is also the adequacy condition for β′C

(of the same theorem).

The variant of this example when the base institution is quantifier-free fragment of

FOL rather that the whole of FOL, has the C ’s empty, and hence Φ′C = Φ′.

The variant of the above variant that considers quantification with first-order variables

at the level of the hybridization, in order to get the condition (10) of Theorem 4.1 fulfilled,

requires

C((S, F, P ),Nom,Λ) |= {(∀z1, z2)y(z1) = y(z2) | y ∈ F→s, s ∈ S}.
However because the hybridization is free (in particular because constants are not

interpreted uniformly across possible worlds) there is no way to get the adequacy condition

for β′C , hence in this case we cannot build the encoding comorphism.

Example 4.4. When encoding HREL′ (of Example 3.4) the base comorphism (Φ, α, β)

is the canonical embedding of REL into FOL determined by embedding of the REL
signatures as FOL signatures. Hence the Γ’s are empty. Thus:

Φ′((C, P ),Nom,Λ) = (({ST, �}, [C] + Nom, {D�} + [P ] + Λ), DC ).

The sharing of the underlying universe requires that the C ’s contain (∀x, y, z)D�(x, z) ⇔
D�(y, z). However in order to get the condition (9) of Theorem 4.1 fulfilled (∀x, y)D�(x, y)

https://doi.org/10.1017/S0960129514000383 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000383


R. Diaconescu and A. Madeira 776

is also needed. Since the latter sentence implies the former and also implies DC , we can

do only with (∀x, y)D�(x, y). Finally, the sharing of the interpretations of the constants

requires {(∀x, y)σ(x) = σ(y) | σ ∈ C}. This also meets the requirement of condition (10)

of Theorem 4.1. Hence:
Φ′C((C, P ),Nom,Λ) =

(({ST, �}, [C] + Nom, {D�} + [P ] + Λ), {(∀x, y)D�(x, y)} ∪ {(∀x, y)σ(x) = σ(y) | σ ∈ C}).
It remains to check the adequacy condition for β′C , which is a very easy enterprise. Let Δ

denote the HREL signature ((C, P ),Nom,Λ). For any block Y of variables for the REL
signature (C, P ), for any HREL′-model (N,W ) for Δ+Y , and any Φ′C(Δ)-model M ′ such

that (N,W )�Δ = β′(M ′),

ModHREL′
(Δ) ModFOLpres

(Φ′C(Δ))
β′C

Δ��

ModHREL′
(Δ + Y )

��

ModFOLpres

(Φ′C(Δ + Y ))

��

β′C
Δ+Y

��

the amalgamation of M ′ and (N,W ) is the Φ′C(Δ + Y )-expansion N ′ of M ′ defined by

N ′
y(z) = (Ns)y ∈ Ms for any z ∈ M ′

ST = |W | and any s ∈ |W |. This definition does

not depend on s because the underlying universe and the interpretation of the constants

are shared. Note also that N ′ satisfies indeed the sentences of Φ′C(Δ + Y ) since by the

satisfaction condition in FOL it satisfies the sentences of Φ′C(Δ) and it also satisfies

(∀z1, z2)y(z1) = y(z2) for each y ∈ Y .

Example 4.5. In the case of the encoding of HFOLR′ (see Example 3.5) the quantification

space DHFOLR consists of extensions with nominal variables and rigid first-order variables.

The base comorphism (Φ, α, β) is defined as follows:

1. Φ is the forgetful functor SignFOLR → SignFOL that maps a signature (S, S0, F,

F0, P , P0) to (S, F, P ),

2. α(S,S0 ,F,F0 ,P ,P0) is the inclusion SenFOLR(S, S0, F, F0, P , P0) ⊆ SenFOL(S, F, P ) (the differ-

ence is given by the quantification which in FOLR is restricted to the rigid symbols),

and

3. β(S,S0 ,F,F0 ,P ,P0) is the identity on ModFOL(S, F, P ).

This is a comorphism mapping signatures to signatures, hence the Γ’s are empty. Thus

Φ′((S, S0, F, F0, P , P0),Nom,Λ
)

= ([S], [F] + Nom, D + [P ] + Λ, DF )

The specification of the model constraints requires that C
(
(S, S0, F, F0, P , P0)

)
contains

the following sentences:

1. for each s ∈ S0, (∀x, y, z)Ds(x, z) ⇔ Ds(y, z),

2. for each σ in F0, (∀x, y, Z)σ(x, Z) = σ(y, Z), and

3. for each π in P0, (∀x, y, Z)π(x, Z) ⇔ π(y, Z).

Note that these already cover the condition (10) of Theorem 4.1. For the condition (9)

of Theorem 4.1 we have to add also the sentences (∀x, y)Ds(x, y) for each s ∈ S0, which

are stronger than (∀x, y, z)Ds(x, z) ⇔ Ds(y, z). All these together define the functor C that
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specifies the constraints. Finally, the adequacy condition for β′C may be checked easily in

the same way as in Example 4.4; therefore we omit this here.

Example 4.6. In the case of the encoding of HPAR′ (see Example 3.6) the base

comorphism (Φ, α, β) extends canonically the first encoding comorphism PA → FOLpres

mentioned in Example 2.4 to a comorphism PAR → FOLpres as follows:

1. Φ maps each signature (S, S0, TF, TF0, PF, PF0) to the presentation(
(S, TF + PF, (Defs)s∈S ),Γ(S,TF,PF)

)
where Γ(S,TF,PF) axiomatizes the definability of terms through the new predicates

(Defs)s∈S as follows:
Γ(S,TF,PF) = {(∀X)Defs(σ(X)) ⇒ Defar(X) | σ ∈ (TF + PF)ar→s, ar ∈ S∗, s ∈ S} ∪

{(∀X)Defar(X) ⇒ Defs(σ(X)) | σ ∈ TFar→s, ar ∈ S∗, s ∈ S}
(where Defar(X) denotes

∧
(x : s)∈X(Defs(x))).

2. α(S,S0 ,TF,TF0 ,PF,PF0) is recursively defined as follows:

— α(t
e
= t′) = Defs(t) ∧ (t = t′);

— α((∀X)ρ) = (∀X)(Defar(X) ⇒ α(ρ));

— α commutes with Boolean connectives ∧, ∨, ⇒, etc.

3. β(S,S0 ,TF,TF0 ,PF,PF0) maps any
(
(S, TF + PF, (Defs)s∈S ),Γ(S,TF,PF)

)
model M to the partial

algebra β(M) where:

— for any s ∈ S , β(M)s = MDefs ;

— for any σ ∈ TFar→s, β(M)σ(m) = Mσ(m);

— for any σ ∈ PFar→s, β(M)σ consists of the restriction of Mσ to MDefar
such that

dom(β(M)σ) = {x ∈ MDefar
| Mσ(x) ∈ MDefs}.†

The encoding to FOLpres obtained as instance of the general encoding presented above

yields

Φ′((S, S0, TF, TF0, PF, PF0),Nom,Λ
)

=(
([S], [TF + PF] + Nom, (Ds)s∈S + [(Defs)s∈S ] + Λ), DTF+PF ∪ Γ(S,TF,PF)

)
.

For any HPAR signature ((S, S0, TF, TF0, PF, PF0),Nom,Λ),

C((S, S0, TF, TF0, PF, PF0),Nom,Λ) =
{(∀x, z)Ds(x, z) | s ∈ S0} ∪
{(∀x, y, Z)σ(x, Z) = σ(y, Z) | σ in TF0} ∪
{(∀x, y, Z)Defs(x, (σ(x, Z)) ⇔ Defs(y, (σ(y, Z)) | σ ∈ (PF0)ar→s, ar ∈ S∗, s ∈ S}.

Note that the first component in the definition of C covers both the condition (9) of

Theorem 4.1 and the condition on the interpretation of the rigid sorts while the condition

(10) of Theorem 4.1 is entailed by the second component of C . Finally, the adequacy

condition for β′C may be checked easily in the same way as in Example 4.4; therefore we

omit this here.

† Here MDefar denotes MDefs1
× · · · × MDefsn for ar = s1 . . . sn.
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5. Conservativeness

In this section, we give a general method to lift the conservativity property from the base

comorphism (Φ, α, β) : I → FOLpres to the comorphism (Φ′C, α′, β′) : HIC → FOLpres.

For this, we assume the conditions and the notations of Theorem 4.1 above.

Proposition 5.1. Let us assume for each I-signature Σ a mapping

δΣ : |ModI(Σ)| → |ModFOLpres

(Φ(Σ))|

such that for each Σ-model A, βΣ(δΣ(A)) = A. For each HI signature Δ = (Σ,Nom,Λ)

and each model (M,W ) ∈ |ModHI(Δ)| if a sort s of some variable that occurs in some

quantification of some sentence in Φ(Σ), for any w,w′ ∈ |W |, we have that

δΣ(Mw)s = δΣ(Mw′)s (13)

then there exists a Φ′(Δ)-model δ′
Δ(M,W ) such that β′

Δ(δ′
Δ(M,W )) = (M,W ).

Proof. Let Φ(Σ) = ((SΣ, FΣ, PΣ),ΓΣ). We define the Φ′(Δ)-model δ′
Δ(M,W ) = M ′ as

follows:

— M ′
ST = |W |,

— M ′
i = Wi for each i ∈ Nom,

— M ′
λ = Wλ for each modality symbol λ in Λ,

— for each s ∈ SΣ we define M ′
s =

⋃
w∈|W | δΣ(Mw)s and M ′

Ds
= {(w,m) | m ∈ δΣ(Mw)s},

— for each σ ∈ (FΣ)ar→v we define M ′
σ(w,m) =

{
δΣ(Mw)σ(m), when m ∈ δΣ(Mw)ar;

any y ∈ δΣ(Mw)v, otherwise.

Note that the correctness of this definition relies upon our basic hypothesis that the

FOL-models have non-empty carriers.

— For each π in PΣ we define M ′
π = {(w,m) | m ∈ δΣ(Mw)π}.

Now, we have to prove that M ′ satisfies the sentences of Φ′(Δ). That M ′ |= DFΣ
follows

immediately from the definitions of M ′
Ds

and of M ′
σ . Also from the hypothesis (13) we

have that M ′ |= V (ΓΣ). For each w ∈ |W | we let M ′|w be defined like in Definition 4.7

and Lemma 1. Note that

for each w ∈ |W |, M ′|w = δΣ(Mw). (14)

Since δΣ(Mw) |= ΓΣ, from (14) and Lemma 1 it follows that M ′w |= {[γ]x | γ ∈ ΓΣ}, (where

M ′w denotes the expansion of M ′ to the signature extended with the constant x such that

M ′w
x = w). From the latter relation we deduce that M ′ |= ΓΣ.

That β′(M ′) = (M,W ) may be noted immediately with the help of the relation (14).

Corollary 5.1. Within the framework of Proposition 5.1, any comorphism like in Corol-

lary 4.1 such that for each constraint model (M,W ) ∈ |ModC (Δ)|
1. (M,W ) satisfies the condition (13), and

2. δ′
Δ(M,W ) |= C(Δ)

is conservative.
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Example 5.1. The encoding of T hybrid propositional logic of Example 4.1 is conservative

according to Corollary 5.1 as follows:

— δΣ are identities,

— the condition (13) of Proposition 5.1 is vacuously fulfilled (the Γ’s are empty), and

— obviously for each T HPL′ model (M,W ), δ′
Δ(M,W ) |= (∀x)λ(x, x).

Example 5.2. Let as characterize the conservativity of encodings discussed in Example 4.2.

For that, let us rename to δ0 the output δ′ of Proposition 5.1 applied to the encoding

H′PL → FOL (see Example 5.1)

δ0
(P ,Nom0)

: ModH′PL(P ,Nom0) → ModFOL({ST0},Nom0, [P ] + λ0).

Then by applying again Proposition 5.1 with δ0 in the role of δ we obtain δ1 in the role

of δ′:

δ1
(P ,Nom0 ,Nom1)

: ModH′H′PL(P ,Nom0,Nom1) →
ModFOL(({ST0, ST1}, [Nom0] + Nom1, DST0 + [[P ]] + λ0 + λ1)).

Note, however that there are models (M,W ) such that δ′1
Δ (M,W ) �|= (∀x, y)DST0(x, y), hence

for the encoding of H′H′PL Proposition 5.1 does not get the conservativity property. But if

we consider the constrained cases H′(H′PL′x)y with the sharing of the substates universes

and of the base nominals then we get the conservativity property through Proposition 5.1

and Corollary 5.1.

Example 5.3. The encoding of the quantifier free hybridization of FOL of Example 4.3

is not conservative. Although the condition (13) of Proposition 5.1 is vacuously fulfilled

(the Γ’s are empty) the example fails on the condition introduced by Corollary 5.1 since

there are models (M,W ) such that δ′
Δ(M,W ) �|= (∀x, y)Ds(x, y).

However the variant of the example that considers the quantifier free fragment of FOL
as base institution is conservative because in this case the C ’s are empty (see Example 4.3)

and thus the condition introduced by Corollary 5.1 is vacuously fulfilled.

Example 5.4. The encoding of the hybridization HREL′ of REL of Example 4.4 is

conservative according to Corollary 5.1 as follows:

— δΣ are identities,

— the condition (13) of Proposition 5.1 is vacuously fulfilled (the Γ’s are empty), and

— for each HREL′ model (M,W ), δ′
Δ(M,W ) satisfies C(Δ) since for all w,w′ ∈ |W | we

have that

δΣ(Mw)x = (Mw)x = (Mw′)x = δΣ(Mw′)x

for each sort symbol or constant x.

Example 5.5. The encoding of the hybridization of FOLR of Example 4.5 is conservative

according to Corollary 5.1 by arguments similar to those presented in Example 5.4 above.

Example 5.6. Let us show how the encoding of the hybridization HPAR′ of Example 4.6

is conservative according to Corollary 5.1. For each Σ = (S0, S , TF0, TF, PF0, PF)-model

M, δΣ(M) is defined as follows:

https://doi.org/10.1017/S0960129514000383 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000383


R. Diaconescu and A. Madeira 780

— for any s ∈ S , δΣ(M)s = Ms ∪ {⊥} where ⊥ is a new element; and δΣ(M)Defs = Ms

— for any σ ∈ (TF + PF)ar→s,

δΣ(M)σ(m) =

{
Mσ(m), if m ∈ δΣ(M)Defar

and Mσ(m) is defined

⊥, otherwise.

It is easy to check that δΣ(M) |= Γ(S,TF,PF) and that βΣ(δΣ(M)) = M.

The condition (13) of Proposition 5.1 is satisfied as follows. For each (M,W ) ∈
|ModHPAR′

(Δ)| and each rigid sort s (since all quantifications with first-order variables

are taken over rigid sorts) and any w,w′ ∈ |W | we have

δΣ(Mw)s = (Mw)s ∪ {⊥} (definition of δ)

= (Mw′)s ∪ {⊥} ((Mw)s = (Mw′)s because s is rigid )

= δΣ(Mw′)s (definition of δ).

The justification that for each HPAR′ model (M,W ), δ′
Δ(M,W ) |= C(Δ) goes as follows:

1. for each s ∈ S0, δ
′
Δ(M,W ) |= (∀x, z)Ds(x, z) means that for each w ∈ |W | and each

m ∈ δ′
Δ(M,W )s we have that (w,m) ∈ δ′

Δ(M,W )Ds
which according the definition of

δ′
Δ(M,W )Ds

from the proof of Proposition 5.1 means m ∈ δΣ(Mw)s. But δ′
Δ(M,W )s =

δΣ(Mw)s because s is rigid (which according to an argument above implies that for all

w,w′ ∈ |W |, δΣ(Mw)s = δΣ(Mw′)s).

2. for each σ in TF0, δ′
Δ(M,W ) |= (∀x, y, Z)σ(x, Z) = σ(y, Z) holds because of the

following facts:

— for each rigid sort s and each w ∈ |W |, δ′
Δ(M,W )s = δΣ(Mw)s;

— since σ is rigid and total, for each w,w′ ∈ |W |, (Mw)σ = (Mw′)σ;

— for each w ∈ |W |, δ′
Δ(M,W )σ(w,m) = δΣ(Mw)σ(m) because δ′

Δ(M,W )s = δΣ(Mw)s.

3. For all ar ∈ S∗, s ∈ S and σ ∈ (PF0)ar→s, δ
′
Δ(M,W ) |= (∀x, y, Z)Defs(x, (σ(x, Z)) ⇔

Defs(y, (σ(y, Z)) means that for all w,w′ ∈ |W |, δ′
Δ(M,W )σ(w,m) ∈ δΣ(Mw)Defs =

(Mw)s if and only if δ′
Δ(M,W )σ(w

′, m) ∈ δΣ(Mw′)Defs = (Mw′)s. But (Mw)s = (Mw′)s
and δ′

Δ(M,W )σ(w,m) = δΣ(Mw)σ(m) and δ′
Δ(M,W )σ(w

′, m) = δΣ(Mw′)σ(m). Thus the

property is equivalent to the fact that (Mw)σ(m) is defined if and only if (Mw′)σ(m) is

defined, which holds by the rigidity of σ, i.e. (Mw)σ and (Mw′)σ have the same domain.

6. A case study

In this section, we present an example of a HPAR′ (see Example 3.6) specification and a

formal verification using the encoding of Example 4.6.

6.1. A plastic buffer specification

For our HPAR′ specification, as notation, we use an extension of the language CASL

(Astesiano et al. 2002) as follows:

— The fields nom and modal are used for the definition of the constants (denoting the

nominal symbols) and predicates (denoting the modalities symbols), respectively, of
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elemmem

read

new

write

del

Fig. 1. Plastic Buffer PAR signature.

the REL-part of the hybrid signature. The arities of the predicates is given by natural

numbers.

— That a symbol is rigid is marked by R at the end of its declaration.

The case study that we address consists of a specification of a reconfigurable data

structure that may be very briefly described as follows.

A ‘plastic’ buffer has two distinct modes of execution: in one of them it behaves as a stack; in the

other as a queue. The alternation of configurations is triggered by an event ‘shift’.

The system has two different modes of execution denoted by the nominals fifo (for the

queue mode) and lifo (for the stack mode), respectively. The modes reconfiguration is

denoted by the modality symbol shift . These symbols make up the REL component of

the hybrid signature and support the expression of the specification of the dynamics of

our hybrid models.

The local behaviours of the system is specified through a PAR (which is the so-called

base institution in this case; see Example 3.6) signature with mem denoting the sort for

the stacks/queues and elem for the elements of those. A total operation write denotes the

‘push/enqueue’ operation while read denotes the ‘top/front’ operations on stack/queues.

A partial operation del denotes the ‘pop’ operation. Since we intend to use the same

elements in both modes and moreover the buffer should contain the same data in both

modes, elem and mem are declared rigid. The operation write is also rigid and since

it is total it means it has the same effect in both modes. The operations read and del

play different roles in each mode of the system. However, they are also declared as rigid

because they are partial and in HPAR this means that while their interpretation might

differ according to the actual mode, their domains should not vary according to the mode.

In this case, both read and del are defined on non-empty stacks/queues.

The PAR part of the signature is presented in Figure 1 in a ADJ-style diagram style,

where the partiality and rigidity of operations is marked by a circle and a forked source,

respectively.

nom fifo

lifo

modal shift : 1

sorts mem R

elem R

ops new : → mem R

write : mem × elem → mem R
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del : mem →? mem R

read : mem →? elem R

The operators @ are used to express the properties that should be satisfied just in

particular states of the system by considering the standard PA axiomatization of stacks

and queues tagged by the respective nominals:

∀© e : elem; ∀© m : mem;

%(stack properties)%

• @lifodel (write(m, e))
e
= m

• @liforead (write(m, e))
e
= e

%(queue properties)%

• @fiforead (write(new, e))
e
= e

• @fifodel (write(new, e))
e
= new

• @fifo read(m)
e
= read(m) ⇒ read (write(m, e))

e
= read (m)

• @fifo read(m)
e
= read(m) ⇒ del (write(m, e))

e
= write(del (m), e)

Note that the quantification of the sentences of the specification is local which means

that this happens at the level of the base institution PAR (hence ∀© ; see Fact 3.2). For

example the first sentence of the specification reads as @lifo( ∀© e)( ∀©m)del(write(m, e))
e
= m.

The following axiom expresses a ‘no-junk’ condition, that there are no other possible

worlds apart of those denoted by the nominals:

• lifo ∨ fifo

Finally, we have to specify the dynamics of the hybrid model, i.e. the transitions:

• @fifo〈shift〉lifo ∧ @lifo〈shift〉fifo

A model. In the following, we provide an example of a model (M,W ) for the above

specification. The REL part of the signature is interpreted as follows:

— |W | = {sfifo, slifo};
— Wlifo = slifo and Wfifo = sfifo;

— Wshift = {(sfifo, slifo), (slifo, sfifo)}.
The buffers are lists (strings) of elements of a fixed set A, with concatenation denoted

. . The set of the lists over A is denoted A∗ and the empty list is denoted ε.

— (Msfifo)elem = (Mslifo)elem = A;

— (Msfifo)mem = (Mslifo)mem = A∗;

— (Mslifo)new = (Mslifo)new = ε;

— (Msfifo)write(L, a) = (Mslifo)write(L, a) = L.a;

— (Mslifo)del(L) = J if L = J.a for J ∈ A∗, a ∈ A and is undefined otherwise;

— (Msfifo)del(L) = J if L = a.J for J ∈ A∗, a ∈ A and is undefined otherwise;

— (Mslifo)read(L) = a if L = J.a, for J ∈ A∗, a ∈ A and is undefined otherwise;

— (Msfifo)read(L) = a if L = a.J , for J ∈ A∗, a ∈ A and is undefined otherwise;
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It is not difficult to prove that (M,W ) is initial in the class of the models of the

specification that interpret the elements by A.

The following are properties of the model (M,W ):

(∀e, m, m′) [shift](m′ = write(e, m)) ⇔ (m′ = write(e, m)). (15)

(∀e, m, m′) 〈shift〉(m′ = write(e, m)) ⇔ (m′ = write(e, m)). (16)

(∀m,m′)
(
(∃m1)(m

′ = del(m1)) ∧ [shift](m1 = del(m))
)

(17)

⇔(
(∃m2)([shift](m′ = del(m2)) ∧ (m2 = del(m))

)
.

6.2. Encoding the example in FOL

Now, we proceed with the encoding of our HPAR′ specification into the respective

FOL specification according to Example 4.6. For that, let start with the definition of the

signature:

logic CASL.FOL

spec PlasticBufferFOL =

sorts ST ;

mem;

elem

ops fifo : ST ;

lifo : ST ;

new : ST → mem;

write : ST × mem × elem → mem;

read : ST × mem → elem;

del : ST × mem → mem

preds shift : ST × ST ;

Def mem : ST × mem;

Def elem : ST × elem;

D mem : ST × mem;

D elem : ST × elem

Note that Def encode the partiality (coming from the encoding of PA into FOL) while D

encode the domains of the different worlds (coming from our general encoding).

The Γ(S,TF,PF):

∀ e : elem; w : ST ; m : mem

• Def mem(w, new (w ))

• Def mem(w, m) ∧ Def elem(w, e) ⇔ Def mem(w, write(w, m, e))

• Def mem(w, del (w, m)) ⇒ Def mem(w, m)

• Def elem(w, read (w, m)) ⇒ Def mem(w, m)
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• D mem(w, m)

• D elem(w, e)

The specification of the DTF+PF -sentences is redundant as they are all consequences of the

V (Γ) (i.e. the previous two sentences). So, let us skip this. The same happens for the first

two sentences determined by the constraint functor C . The other sentences determined by

the constraint functor C are as follows:

∀ e : elem; w, v : ST ; m : mem

• new (w ) = new (v )

• write(w, m, e) = write(v, m, e)

• Def mem(w, del (w, m)) ⇔ Def mem(v, del (v, m))

• Def elem(w, read (w, m)) ⇔ Def elem(v, read (v, m))

and finally, the translation of the specification:

∀ e : elem; m : mem

• Def mem(lifo, m) ∧ Def elem(lifo, e)

⇒ Def mem(lifo, m) ∧ del (lifo, write(lifo, m, e)) = m

• Def mem(lifo, m) ∧ Def elem(lifo, e)

⇒ Def elem(lifo, e) ∧ read (lifo, write(lifo, m, e)) = e

• Def elem(fifo, e)

⇒ Def elem(fifo, e) ∧ read (fifo, write(fifo, new (fifo), e)) = e

• Def elem(fifo, e)

⇒ Def mem(fifo, new (fifo)) ∧ del (fifo, write(fifo, new (fifo), e)) = new (fifo)

• Def mem(fifo, m) ∧ Def elem(fifo, e)

⇒ Def elem(fifo, read (fifo, m)) ∧ read (fifo, m) = read (fifo, m)

⇒ Def elem(fifo, read (fifo, m)) ∧ read (fifo, write(fifo, m, e)) = read (fifo, m)

• Def mem(fifo, m) ∧ Def elem(fifo, e)

⇒ Def elem(fifo, read (fifo, m)) ∧ read (fifo, m) = read (fifo, m)

⇒ Def mem(fifo, write(fifo, del (fifo, m), e)) ∧
del (fifo, write(fifo, m, e)) = write(fifo, del (fifo, m), e)

∀ w : ST • w = fifo ∨ w = lifo %(no junk)%

∃ y, z : ST • (shift(fifo, y) ∧ y = lifo) ∧ (shift(lifo, z ) ∧ z = fifo)

end

6.3. Formal verification

The formal verification of properties (15)–(17) is performed as follows:

1. We translate the properties by using the HPAR′ instance of our general encoding (as

given in Example 4.6);

2. By the conservativity property of the encoding of HPAR′ (see Example 5.6), according

to the general result of Fact 2.1 it is enough to prove that the translations of the

properties are a consequence of the translation of the specification. The corresponding
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proofs are performed by using SPASS (Weidenbach et al. 2002) automatic FOL prover

through the Hets system (Mossakowski et al. 2007).

Unlike the translation of the specification, the translation of the considered properties

involves the full complexity of the general translation of Definition 4.6 because the

properties contain quantifications at the level of the hybridization, and because the base

encoding is a proper theoroidal comorphism. Moreover the equalities involved in these

properties are strong rather than existence equalities, which adds a further complexity to

the result of the translations. Hence the results of the translations look rather complex

when compared with the inputs. For example the translation of (15) is as follows:

∀ e : elem; m, m’ : mem; x : ST

• (∀ z : ST • Def elem(z, e) ∧ Def mem(z, m) ∧ Def mem(z, m’ )

∧ D elem(z, e) ∧ D mem(z, m) ∧ D mem(z, m’ ))

⇒ ((∀ y : ST • shift(x, y) ⇒ (Def mem(y, m’ ) ∧ m’ = write(y, m, e))

∨ (¬ Def mem(y, m’ ) ∧ ¬ Def mem(y, write(y, m, e))))

⇔ (Def mem(x, m’ ) ∧ m’ = write(x, m, e))

∨ (¬ Def mem(x, m’ ) ∧ ¬ Def mem(x, write(x, m, e))))

7. Conclusions

In this paper, we have developed a hybridization process for abstract institutions encodings

into FOL expressed as theoroidal comorphisms. This provides a generic encoding of

hybridized institutions into FOL, with the hybridized institutions being considered rather

generally through abstract treatments of the base logic, of the constraints on the possible

worlds, of the quantifiers. Moreover, we have provided sufficient and pragmatic conditions

for these encodings of hybridized institutions into FOL be to conservative, which

implies preservation and reflection of the semantic deduction relation. Consequently

formal verifications may be shifted from the level of concrete hybridized institutions

(which may constitute appropriate specification logics for various kinds of dynamic

systems) to FOL, with the benefit of using the rather powerful and rich theorem

proving tool support available for FOL. We have illustrated this with a small case

study.

This work opens up two main avenues for further research. One consists of investigations

of the possibility to ‘borrow’ logical properties from FOL to hybridized institutions through

the encoding comorphisms developed here, in the style of works such as (Cerioli and

Meseguer 1997; Diaconescu 2012a) etc. Important target properties would be interpolation

and initial semantics, both of them relevant within the formal specification and verification

contexts. The other further research avenue consists of developing tool support for formal

verifications of system specifications based on hybridized institutions, especially through

integration within the Hets environment (Mossakowski et al. 2007). First important steps

have already been undertaken in Neves et al. (2013) where a hybridization of CASL has

been integrated into Hets and a generic parser (parameterized by the base institution

parser) has been implemented.
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