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Abstract

Background:Targeted drug development efforts in patients with CHDare needed to standardise
care, improve outcomes, and limit adverse events in the post-operative period. To identify
major gaps in knowledge that can be addressed by drug development efforts and provide a
rationale for current clinical practice, this review evaluates the evidence behind the most
common medication classes used in the post-operative care of children with CHD undergoing
cardiac surgery with cardiopulmonary bypass. Methods: We systematically searched PubMed
and EMBASE from 2000 to 2019 using a controlled vocabulary and keywords related to
diuretics, vasoactives, sedatives, analgesics, pulmonary vasodilators, coagulation system
medications, antiarrhythmics, steroids, and other endocrine drugs. We included studies of
drugs given post-operatively to children with CHD undergoing repair or palliation with cardio-
pulmonary bypass. Results:We identified a total of 127 studies with 51,573 total children across
medication classes.Most studies were retrospective cohorts at single centres. There is significant
age- and disease-related variability in drug disposition, efficacy, and safety. Conclusion: In this
study, we discovered major gaps in knowledge for each medication class and identified areas
for future research. Advances in data collection through electronic health records, novel trial
methods, and collaboration can aid drug development efforts in standardising care, improving
outcomes, and limiting adverse events in the post-operative period.

CHD is the most common birth defect with an incidence of 75 per 1000 live births and a preva-
lence of more than 2 million patients in the United States of America, excluding bicuspid aortic
valves.1,2 Many children will require surgical repair in infancy and early childhood with younger
and more complex patients surviving hospital discharge due to advances in diagnosis, monitor-
ing, and surgical and perfusion techniques.3–6 Post-operative care has also improved with
advances attributed to modifying factors such as case volume and creating dedicated pediatric
cardiac ICUs.4,7,8

Advances in drug development in this population have not kept pace, leading to a paucity
of dosing guidance, as well as safety and efficacy standards.5,6,9–12 A lack of clear medication
guidelines leaves treatment decisions up to clinical experience, findings from small observatio-
nal studies, and extrapolation from adult data rather than relying on robust clinical trial
evidence.13,14 This exponentiates variation in post-operative medical management, and the lack
of definitive data to support medication use puts children at risk for adverse events and denies
them potential therapeutic benefits.15–17 Clear medication guidelines may help minimise prac-
tice variation and ultimately improve the quality of care these children receive.

Drug trials in critically ill infants and children with CHD are challenging due to a limited
number of eligible patients and the need to address substantial pathophysiologic and age-related
variability in drug disposition, efficacy, and safety.9,14,18,19 Legislative and scientific initiatives in
the United States of America, such as the Best Pharmaceuticals for Children Act and the
Pediatric Research Equity Act, and in Europe, such as requirement of the Pediatric
Investigation Plan, have encouraged paediatric drug development, but have had limited success
in the CHD population.9,20 This lack of success may be due to a limited ability to extrapolate
adult efficacy data, necessitating population-specific trials, which are challenging to conduct.5,11

Recently, the United States of America Food and Drug Administration has recognised the ben-
efit of real-world data collected routinely from a variety of sources, such as the electronic health
record, to generate real-world evidence that can guide clinical practice.21 While randomised
controlled trials remain the gold standard, practical approaches using RWD to generate
RWE in the CHD population can inform targeted drug development efforts.22–24
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In combination, these efforts will lead to more robust evidence,
which may inform medication use guidelines and clinical practice.

In order to identify major gaps in knowledge that can be
addressed by drug development efforts and provide a rationale
for current clinical practice, we aim to systematically evaluate
the evidence behind the most common medication classes used
post-operatively in children with CHD undergoing surgery with
cardiopulmonary bypass. We intend this article to serve as a broad
overview with in-depth analyses of each medication class provided
in subsequent articles.

Methods

Search strategy

We searched PubMed and EMBASE (2000–2019) to identify
papers that studied medication use in the post-operative
period in children with CHDundergoing cardiopulmonary bypass.
Search terms were developed in conjunction with a Duke
University Medical Center librarian. We defined our patient
population by using a controlled vocabulary and keywords related
to post-operative care, heart surgery, and cardiopulmonary bypass
in the paediatric population (birth to 18 years). We then searched
this population for each medication class: “steroid,” “diuretic,”
“anticoagulant OR thrombin inhibitor,” “analgesics OR sedation,”
“anesthetics,” “vasodilator agents OR vasorelaxant,” “cardiotonic
agent OR inotrope OR cardiac stimulants,” “hypoglycemic agent
OR insulin OR thyroid OR calcium,” “anti-arrhythmia agents
OR antiarrhythmic.” Animal studies, pre- or intra-op medication
administration, studies in languages other than English, and case
reports, letters, editorials, and comments were excluded. The
search strategies are shown in the Appendix. References from
searched articles were also considered and cited if they met the
aforementioned criteria.

Study selection

The final search results were compiled and imported into EndNote
(Clarivate Analytics, Philadelphia, PA, United States of America).
Studies were deemed eligible if they focused on medication admin-
istration in the post-operative period for children undergoing
cardiopulmonary bypass. Two reviewers independently screened
and reviewed titles and study abstracts to assess their eligibility.
Full-text articles were retrieved if the abstract provided insufficient
information to establish eligibility or if the article passed the first
eligibility screening.

Data extraction and synthesis

A standardised data collection form was used to extract the
relevant data from each eligible study. The following data were
collected: key characteristics of the study (e.g. study year, study
design), characteristics of the study population (e.g. age, cardiac
defect), intervention, and findings.

Results

Our literature search resulted in 2594 studies across all medication
classes, of which 127met inclusion criteria. This included 9 diuretic
studies, 31 vasoactive studies, 13 sedative studies, 14 analgesic
studies, 15 antiarrhythmic studies, 24 studies regarding pulmonary
vasodilators, 7 studies about the coagulation system, 10 steroid
studies, and 4 studies about other endocrine drugs. A total of

51,573 patients were included in these studies over the 19-year time
period.

Diuretics

Out of the 110 records retrieved by the systematic search in
PubMed and EMBASE, 9 studies met the inclusion criteria and
included a total of 624 patients (Table 1). There were five retro-
spective studies, two prospective randomised controlled studies,
one open-label prospective study, and one post hoc analysis of a
randomised controlled study.25–33 Medications included in these
studies were loop diuretics (furosemide [89%], ethacrynic acid
[22%]), vasopressin antagonists (tolvaptan [22%]), aldosterone
antagonists (spironolactone [22%]), carbonic anhydrase inhibitors
(acetazolamide [11%]), and methylxanthines (aminophylline
[11%]).

All included studies were single centre and at least partly
studied furosemide. While electrolyte abnormalities were
described, such as hypokalaemia or metabolic alkalosis, all
medications studied were safe with regard to haemodynamics.
Furosemide pharmacokinetics has been studied in children, but
there continues to be a lack of consensus on the nuances of dosing
in the post-cardiopulmonary bypass setting, particularly regarding
intermittent versus continuous diuretic infusion, and whether to
start at higher doses of diuretic and titrate down, or start low
and increase the dose. Response to diuretics also may predict
outcomes – two studies showed that children who responded to
diuretics were less likely to develop post-operative morbidities,
such as acute kidney injury, fluid overload >15%, and need for
peritoneal dialysis, prolonged mechanical ventilation, and
prolonged hospitalisation – although the response to diuretics is
likely confounded by several operative and post-operative
characteristics.26,32 Some studies suggest that ethacrynic acid
may be a better alternative to furosemide in obtaining negative
fluid balance with less drug.27,28 Medications such as acetazolamide
or tolvaptan may be beneficial to augment diuretic effects
post-operatively.31–33 There are a lack of multicentre randomised
trials to determine optimal dosing and efficacy of post-operative
diuretics.

Vasoactives

Overall, 423 records retrieved by the systematic search in PubMed
and EMBASE, 31 studies met the inclusion criteria and included
a total of 1866 children (Table 2).34–64 Due to different pharmaco-
logic properties, we classified vasoactive medications into two
groups: inotropes and systemic vasodilators.

Inotropes

There were a total of 26 inotrope studies that included
1467 children.34–48,51–61 All but two studies were single centre.
There were nine retrospective cohort studies; nine prospective,
randomised, blinded studies; five prospective open-label studies;
and three prospective observational studies. Three studies included
a placebo arm. Inotropes included in these studies were adrenergic
modulators (dobutamine [12%], docarpamine [4%], epinephrine
[4%], dopamine [4%]), vasopressin (31%), calcium modulators
(levosimendan [35%]), cyclic guanosine monophosphate modula-
tors (nesiritide [3%]), and cyclic adenosine monophosphate
modulators (milrinone [42%]).

The optimal dose for these medications remains unknown: only
48% of children were in the therapeutic range with milrinone, and
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Table 1. Characteristics of post-operative diuretic studies and study populations

Authors Study design Year studied Primary intervention n Study population Findings

van der Vorst et al25 Prospective open-label,
single centre

Continuous furosemide
Intravenous
0.1 mg/kg/hour starting dose

12 <12 months
Clinical signs of

volume overload
and requiring
inotropic support

Well tolerated
Nine children required an increase in rate to 0.2 mg/kg/hour on
POD2, consider starting at a higher dose and titrate down

Effect of furosemide on urine output increases with decreasing
creatinine

Borasino et al26 Retrospective cohort,
single centre

2012–2015 Furosemide
Intravenous
0.8–1.4 mg/kg

90 <90 days UOP response to furosemide after bypass predicted peak fluid
overload of >15%, and prolonged mechanical ventilation, PD, and
hospitalisation

Ricci et al27 Prospective randomised,
double-blind, controlled,
single centre

2012–2013 Continuous furosemide versus
ethacrynic acid

Intravenous
0.2 mg/kg/hour furosemide
equivalent starting dose

74 <12 months
Clinical signs of fluid

overload

Shorter time to negative fluid balance and higher cardiac index with
ethacrynic acid compared to furosemide

30% less diuretic was needed with ethacrynic acid to achieve a
similar urine output

Hypokalaemia (91 episodes with furosemide, 88 episodes with
ethacrynic acid) and metabolic alkalosis (70% of furosemide, 74%
of ethacrynic acid) were frequent in both groups

Both furosemide and ethacrynic acid were safe in terms of renal
function

Haiberger et al28 Post hoc analysis of
prospective randomised,
double-blind, controlled,
single centre

2012–2013 Continuous furosemide versus
ethacrynic acid

Intravenous
0.2 mg/kg/hour furosemide
equivalent starting dose

67 <12 months
Clinical signs of fluid

overload

Infants require higher diuretic doses with less urine output in the
early post-operative period

Increased cross-clamp time was associated with higher diuretic dose
Blood pH at the end of POD0 was associated with lower diuretic
dose

Onder et al29 Retrospective cohort,
single centre

2007–2013 Aminophylline versus
furosemide

Intravenous
Furosemide 1 mg/kg/dose
Aminophylline 5 mg/kg/dose

200 <21 years
Intraoperative

oliguria

Intraoperative aminophylline increased urine output at 8 hours
compared to intraoperative furosemide, but this effect was not
maintained at 48 hours

Elevated CVP was associated with increased risk of AKI, death, and
need for RRT, but aminophylline was protective against these
outcomes

Kwiatkowski et al30 Prospective randomised
unblinded controlled,
single centre

2011–2015 PD versus furosemide
Intravenous
1 mg/kg/dose every 6 hours
starting dose

73 <6 months
Post-operative

oliguria

No difference in obtaining a net negative fluid balance on POD1
between PD and furosemide

PD had less prolonged mechanical ventilation, fewer inotropic
requirements, and fewer electrolyte abnormalities

Katayama et al31 Retrospective cohort,
single centre

2013–2016 Furosemide þ spironolactone
þ/−tolvaptan

Enteral
Tolvaptan 0.45 mg/kg/dose
Furosemide 0.67–1 mg/kg/
dose every 8 hours

Spironolactone
0.67–1 mg/kg/dose every
8 hours

43 <18 years
Simple congenital

left-to-right shunts

A single dose of tolvaptan in addition to furosemide and
spironolactone led to higher cumulative urine output, less of a
decrease in CVP, and required less additional intravenous diuretic
doses compared to those receiving furosemide and spironolactone
alone
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there was patient variability over time.44 A prospective, double-
blind, placebo-controlled, multiple-arm, multicentre trial of differ-
ent milrinone dosing regimens suggest high-dose milrinone is
associated with reduced risk of low cardiac output syndrome in
children with biventricular repairs, although other studies have
shown the need for higher inotropic support with high-dose
milrinone in children with pulmonary hypertension.41,45 The
nuances of disease-specific alterations in drug disposition make
general dosing guidelines difficult, possibly support age- and
disease-specific dosing guidelines, and highlight the need for
studies to uncover what drives variability in drug disposition.
Levosimendan appears to have some beneficial effects including
improved cardiac output and lower heart rates, when compared
to other inotropes, such as milrinone or dobutamine,51,52,54

However, other endpoints, such as lactate, central venous pressure,
and LCOS, showed no difference between medications.53,56 There
is conflicting evidence regarding the association of inotropic
medications and tachyarrhythmias.45,48,60

The majority of studies used mean arterial pressure, central
venous pressure, and lactate as endpoints to evaluate the efficacy
of vasoactive medications. Other endpoints were studied, such
as occurrence of LCOS, but varied widely, which makes compar-
isons across studies difficult. While there were some studies that
evaluated different dosing regimens and compared one or two
inotropes, there continues to be a lack of validated endpoints for
evaluating inotropic efficacy and a lack of multicentre randomised
controlled trials comparing different classes of inotropes.

Systemic vasodilators

There were a total of 5 studies of systemic vasodilators that met
inclusion criteria and included 399 children.49,50,62–64 All studies
were single centre. Four studies were retrospective cohort studies,
and one study was a prospective observational study. Medications
included in these studies were adrenergic modulators (phenoxy-
benzamine [20%], phentolamine [20%]), calcium channel blockers
(nicardipine [20%]), and cyclic guanosine monophosphate modu-
lators (nesiritide [20%], nitroprusside [40%]).

Systemic vasodilators are used to manage hypertension in
the post-operative period. Most studies used a decrease in mean
arterial pressure as an endpoint. Overall, the systemic vasodilators
were well tolerated post-operatively. Themost common side effects
were hypotension, and nitroprusside led to toxic cyanide levels in
11% of children.50 Only one study compared medications in this
class, and no studies were multicentre.

Sedatives

Out of the 316 records retrieved by the systematic search in
PubMed and EMBASE, 13 studies met the inclusion criteria and
included a total of 726 children (Table 3).65–77 All studies were
single centre. There were four retrospective cohort studies; one
retrospective case–control study; one prospective cohort study;
two prospective open-label PK/pharmacodynamics studies, and
two prospective, randomised controlled studies. All medications
studied were alpha-2 adrenoreceptor agonists (dexmedetomidine
[80%], clonidine [10%]) and benzodiazepines (midazolam
[40%]). The majority of studies evaluated the use of sedatives in
conjunction with an analgesic, such as an opioid.

Children receiving dexmedetomidine receive concomitant
sedation or analgesic medications 98% of the time.68

Dexmedetomidine may reduce the amount of concomitant benzo-
diazepine needed, but there is conflicting evidence if there is aTa
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Table 2. Characteristics of post-operative vasoactive studies and study populations including inotropes and systemic vasodilators

Inotropes

Authors Study design
Year
studied Primary intervention n Study population Findings

Agrawal et al34 Prospective open-label, single centre 2008 AVP
Intravenous
0.0005 U/kg/minute starting
dose

12 <10 years old
Refractory vasodilatory
shock

Total inotrope requirement decreased after starting
AVP

MAPs increased significantly after starting AVP
No changes in heart rate, UOP, bicarbonate, Na level
Thrombocytopenia that resolved after stopping AVP
was noted

Alten et al35 Retrospective cohort, single centre 2008–2010 AVP
Intravenous
0.0003 U/kg/minute starting
dose

37 <28 days
Norwood or ASO

Less inotropic support in children receiving AVP
Quicker to net negative fluid balance with AVP
No difference in CVP, UOP, MAP, maximum lactate
between groups, length of ventilation, or ICU stay

Lower sodium with AVP

Burton et al36 Retrospective cohort, single centre 2007–2010 AVP
Intravenous
0.0003 U/kg/minute starting
dose

29 <28 days
Refractory vasodilatory
shock

Increase in UOP, PaO2, SBP, and CVP after start of AVP
Decrease in serum lactate, PaCO2 with AVP
Lower sodium in AVP group, 35% received at least one
hypertonic saline infusion

Davalos et al37 Retrospective cohort, single centre 2009–2010 AVP
Intravenous
0.0003–0.002 U/kg/minute

76 <6 years Serum sodium decreased more quickly and to a
greater extent in children receiving AVP, without
serious adverse events

Higher UOP, heart rate, serum lactate, and inotrope
requirement in those receiving AVP

Lechner et al38 Retrospective cohort, single centre 2003–2005 AVP
Intravenous
0.0001 U/kg/minute starting
dose

17 3–12 days
Refractory vasodilatory
shock

Increase in systolic and diastolic blood pressure and
UOP with AVP

Decrease in inotrope requirement
No change in sodium

Lu et al39 Retrospective cohort, single centre 2013–2015 AVP
Intravenous
0.2–2 mcg/kg/minute

70 <15 years
Vasodilatory shock

Increase in blood pressure at 2 hours after AVP
initiation

Decreased fluid requirement and lactate, increased
UOP with AVP

Mastropietro et al40 Retrospective cohort, single centre 2009–2010 AVP
Intravenous
0.3–2 U/kg/minute

34 ≤6 years
Haemodynamic instability

AVP led to hemodynamic improvement in 50% of
children

Later initiation, after the first post-operative night, was
associated with haemodynamic improvement, likely
related to endogenous AVP concentrations

Barnwal et al41 Prospective randomised, double-
blind, single centre

Milrinone
Intravenous
Low-dose 0.375 mcg/kg/minute
Medium dose
0.5 mcg/kg/minute
High-dose 0.75 mcg/kg/minute

90 6 weeks–12 years
Pulmonary hypertension

No difference in MAP, oxygenation index, or CVP
between groups

High-dose group needed higher inotropic support

Chu et al42 Prospective observational, single
centre

Milrinone
Intravenous
Loading dose of 20 mcg/kg
followed by 0.2 mcg/kg/
minute

10 <6 months
Tetralogy of Fallot and
pulmonary
hypertension

Decrease in PAP/SBP ratio 15 minutes after milrinone
infusion that persisted during infusion

(Continued)
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Table 2. (Continued )

Inotropes

Authors Study design
Year
studied Primary intervention n Study population Findings

Duggal et al43 Prospective open-label, single centre 2001–2003 Milrinone
Intravenous
0.3–0.6 mcg/kg/minute

15 0.2–16 months
LCOS

Milrinone improved biventricular myocardial function

Garcia Guerra et al44 Prospective open-label, single centre 2007–2009 Milrinone
Intravenous
0.5 mcg/kg/minute

63 ≤2 years Only 48% of children in the therapeutic range at
standard dosing and there was within-patient
variability over time

Hoffman et al45 Prospective double-blind, placebo-
controlled, multiple-arm trial,
multicentre

Placebo versus low-dose
milrinone versus high-dose
milrinone

Intravenous
Low-dose 25 mcg/kg bolus
then 0.25 mcg/kg/minute
over 35 hours

High-dose 75 mcg/kg bolus
then 0.75 mcg/kg/minute
over 35 hours

238 <6 years
Biventricular repair

High-dose milrinone was associated with reduced risk
of LCOS

No difference in thrombocytopenia in the groups,
tachyarrhythmias were rare

Cavigelli-Brunner
et al46

Prospective randomised, double-
blind, single centre

Milrinone versus dobutamine
Intravenous
Milrinone 50 mcg/kg bolus
followed by 0.75 mcg/kg/
minute

Dobutamine 6 mcg/kg/minute
24 hours

50 <15 years
Risk of LCOS

Milrinone and dobutamine are equally effective in
preventing LCOS

Dobutamine required more sodium nitroprusside
suggesting that milrinone promotes more systemic
vasodilation

De Souza et al47 Prospective observational, single
centre

Dobutamine
Intravenous
Low-dose
5 mcg/kg/minute
High-dose 10 mcg/kg/minute

10 <8 years Intramucosal pH increased in the high-dose group at
12 and 24 hours but was not statistically significant

Costello et al48 Prospective randomised, double-
blind, placebo-controlled, multi-arm
parallel-group, single centre

2007–2013 Milrinone versus nesiritide
versus placebo

Intravenous
Milrinone 50 mcg/kg bolus
followed by 0.5 mcg/kg/
minute

Nesiritide 2 mcg/kg bolus
followed by 0.015 mcg/kg/
minute

106 <16 years
Fontan

Milrinone was frequently discontinued due to
hypotension

Arrhythmias were nearly twice as common in those
receiving milrinone

Ebade et al51 Prospective randomised, open-label,
single centre

2011–2012 Levosimendan versus
dobutamine

Intravenous
Levosimendan 15 mcg/kg
loading then 0.1–0.2 mcg/kg/
minute

Dobutamine 4–10 mcg/kg/
minute

50 <3 years
Septal defects and
pulmonary
hypertension

Both drugs reduced PAP and improved cardiac index
PAP was lower and cardiac index was higher in
children who received levosimendan compared to
dobutamine
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Table 2. (Continued )

Lechner et al52 Prospective randomised, double-
blind, single centre

2007–2009 Levosimendan versus milrinone
Intravenous
Levosimendan
0.1 mcg/kg/minute
Milrinone 0.5 mcg/kg/min

37 <12 months No difference in cardiac index in the first 48 hours,
inotrope requirement, or urine output

Levosimendan had an increase in cardiac output over
time while cardiac output remained stable for
milrinone

Momemi et al53 Prospective randomised, double-
blind, single centre

2008–2009 Levosimendan versus milrinone
Intravenous
Levosimendan 0.05 mcg/kg/
minute

Milrinone 0.4 mcg/kg/minute

36 <5 years Levosimendan had lower rate pressure index
(surrogate for myocardial oxygen demand)

No difference in lactate levels

Pellicer et al54 Prospective randomised, double-
blind, single centre

2009–2010 Levosimendan versus milrinone
Intravenous
Levosimendan 0.1 mcg/kg/
minute increased to 0.2 mcg/
kg/minute at 2 hours

Milrinone 0.5 mcg/kg/minute
increased to 1.0 mcg/kg/
minute at 2 hours

20 <35 days Milrinone had higher lactate, higher inotrope
requirement, and lower pH at 6 hours, and higher
inotrope requirement at 12 hours

Levosimendan had lower heart rates

Amiet et al55 Retrospective cohort, single centre 2005–2013 Levosimendan
Intravenous
0.1 mcg/kg/minute for 48
hours, then 0.2 mcg/kg/
minute for 24 hours

62 <14 years
LCOS

Diuresis, central venous oxygen saturation improved at
24 hours, lactate significantly decreased

Osthaus et al56 Retrospective cohort, single centre 2006–2007 Levosimendan
Intravenous
12 mcg/kg loading dose
followed by 0.2 mcg/kg/
minute

7 <9 months
High risk for LCOS

Lactate decreased and central venous oxygenation
increased at 24 and 48 hours

Levosimendan did not affect heart rate, MAP, or CVP

Ricci et al57 Prospective randomised, open-label,
single centre

2008–2010 Levosimendan þ standard
inotropic support or
standard inotropic support
alone

Intravenous
0.1 mcg/kg/minute

63 <30 days Levosimendan had lower lactate levels and required
less inotropes

No difference in rates of LCOS

Thorlacius et al58 Prospective randomised, double-
blind, controlled, multicentre

2014–2017 Levosimendan versus milrinone
Intravenous
Levosimendan 12 mcg/kg bolus
then 0.1 mcg/kg/minute

Milrinone 48 mcg/kg bolus then
0.4 mcg/kg/minute

71 ≤12 months
Tetralogy of Fallot, AVCD,
or VSD

No difference in rates of acute kidney injury, inotropic
support, lactate, or fluid overload

Wang et al59 Prospective randomised, double-
blind, placebo-controlled, single
centre

2018–2019 Levosimendan versus placebo
Intravenous
0.05 mcg/kg/minute

187 <48 months old No difference in duration of mechanical ventilation,
LCOS, 90-day mortality

No adverse events
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Table 2. (Continued )

Inotropes

Authors Study design
Year
studied Primary intervention n Study population Findings

McFerson et al60 Retrospective cohort, single centre 2008–2012 Dopamine, AVP, epinephrine,
milrinone

Intravenous
Dopamine 0–10 mcg/kg/minute
AVP 0–0.0012 U/kg/minute
Epinephrine 0–0.5 mcg/kg/
minute

Milrinone 0.5–1.0 mcg/kg/
minute

66 <30 days
Norwood

50% of children had post-operative tachyarrhythmias
Higher doses of milrinone and longer duration of
epinephrine was associated with tachyarrhythmias

Watarida et al61 Prospective observational, single
centre

Docarpamine while weaning
dopamine

Enteral
40 mg/kg every 8 hours

11 Children Dopamine was able to be weaned from 5 mcg/kg/
minute to off in 8 hours

Mean right atrial pressures decreased 4 hours after
docarpamine administration

Mixed venous saturation increased after docarpamine
No changes in heart rate, systolic or diastolic blood
pressure

Systemic vasodilators

Author Study design
Year
studied Primary intervention n Study population Findings

Simsic et al49 Prospective observational,
single centre

Nesiritide
Intravenous
1 mcg/kg followed by 0.01 mcg/kg/minute ×

6 hours then 0.02 mcg/kg/minute ×
18 hours

17 <15 years MAP decreased by 7% after loading dose
No significant haemodynamic compromise

Moffett et al50 Retrospective cohort,
single centre

2002 Nitroprusside
Intravenous
0.1–4.1 mcg/kg/minute

63 <19 years Toxic cyanide levels were found in 11% of children
Mean dose of nitroprusside is the best predictor of elevated
cyanide levels

Stone et al62 Retrospective cohort,
single centre

2010–2015 Nicardipine
Intravenous
0.5 mcg/kg/minute starting dose

68 <18 years
Post-operative
hypertension

13% of children had hypotension
No difference in blood pressure, length of stay, or duration
of mechanical ventilation in children <6 months or >6
months

Furck et al63 Retrospective cohort,
single centre

1996–2007 Nitroprusside versus phentolamine
Intravenous
Nitroprusside 1.5–2 mcg/kg/minute
Phentolamine 0.9 mcg/kg/minute

146 <60 days
Norwood

Phentolamine had lower MAP and coronary perfusion
pressure compared to nitroprusside

De Oliviera
et al64

Retrospective cohort,
single centre

1996–2002 Phenoxybenzamine
Intravenous
0.25 mg/kg loading then 0.5–1 mg/kg for 24

hours

105 <6 months
Norwood

Phenoxybenzamine was associated with a decrease in
sudden circulatory collapse

ASO = arterial switch operation; AVCD = atrioventricular canal defect; AVP = arginine vasopressin; CVP = central venous pressure; LCOS = low cardiac output syndrome; MAP=mean arterial pressure; PAP = pulmonary artery pressure; SBP = systolic blood
pressure; UOP = urine output; VCD = ventricular septal defect
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Table 3. Characteristics of post-operative sedative studies and study populations

Authors Study type Year studied Primary intervention n Study population Findings

Chrysostomou et al65 Retrospective cohort,
single centre

2004–2007 DEX versus DEXþ sedatives/
analgesics versus DEX þ
fentanyl þ sedatives/
analgesics

Intravenous
DEX 0.1–1.25 mcg/kg/hour

80 <12 months Fentanyl did not decrease DEX dose, no change in rescue meds
needed

No difference in DEX dose between intubated or extubated children
Infants require higher doses than neonates
Pain, sedation, SBP, and ABGs were similar between groups

Garisto et al66 Prospective randomised,
open-label, controlled,
single centre

2012–2015 DEX þ opioid þ
benzodiazepine versus opioid
þ benzodiazepine

Intravenous
DEX 0.5 mcg/kg/hour

48 1–24 months No difference in haemodynamics between the two groups
No difference in length of mechanical ventilation
Less withdrawal symptoms with DEX

Hasegawa et al67 Retrospective cohort, single
centre

2011–2013 DEX þ midazolam versus
midazolam

Intravenous
DEX 0.4–0.6 mcg/kg/hour

40 <12 months
VSD

DEX reduces concomitant midazolam, heart rate, and lactate levels
No adverse events with DEX

Horvath et al68 Retrospective cohort, single
centre

2010–2011 DEX
Intravenous
0.12–2 mcg/kg bolus then
0.1–2.2 mcg/kg/hour

107 <18 years 98% received a concomitant medication (opioid, benzos)
Adverse events of bradycardia and hypotension were associated
with higher bolus doses (1 mcg/kg versus 0.2 mcg/kg)

No significant difference in children with trisomy 21
Older infants receive higher doses than neonates (0.77 versus 0.56
mcg/kg/hour)

Can have withdrawal if infusion >72 hours

Hosokawa et al69 Prospective cohort, single
centre

2006–2007 DEX versus standard sedation
Intravenous
0.4–0.6 mcg/kg/hour

141 ≤15 years DEX resulted in adequate sedation and shorter time to extubation
DEX had more bradycardia and hypotension but less respiratory
events

Kleiber et al70 Retrospective cohort, single
centre

2011–2013 Clonidine versus clonidine þ
opioid

Intravenous
Clonidine 2 mcg/kg loading
dose then 0.5 mcg/kg/hour

23 <2 months Clonidine was haemodynamically tolerated, consider as an
alternative to midazolam

Potts et al71 Prospective open-label,
single-centre PD analysis

DEX
Intravenous
1–4 mcg/kg single dose over 10
minutes

29 ≤14 years Single bolus dose produces a biphasic effect on MAP: there is an
initial and transient increase in MAP with the bolus dose related to
high plasma concentrations than a delayed decrease in MAP when
the drug reaches the central nervous system

Prasad et al72 Prospective randomised,
double-blind, controlled,
single centre

DEX versus fentanyl
Intravenous
DEX 0.5 mcg/kg/hour
Fentanyl 1 mcg/kg/hour

60 1–14 years Similar levels of sedation and haemodynamics
Earlier extubation after stopping infusion with DEX

(Continued)
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Table 3. (Continued )

Authors Study type Year studied Primary intervention n Study population Findings

Su et al73 Prospective, open-label
dose escalation PK/PD
study

2004–2006 DEX
Intravenous
Low dose: 0.35 mcg/kg loading
dose then 0.25 mcg/kg/hour

Medium dose: 0.7 mcg/kg
loading dose then
0.5 mcg/kg/hour

High dose: 1 mcg/kg loading
dose then 0.75 mcg/kg/hour

32 1–24 months 97% of children were able to be extubated while on DEX
No significant haemodynamic or respiratory alterations in the dose
range

DEX provides adequate sedation while reducing supplemental
analgesic requirements

Tokuhira et al74 Retrospective cohort, single
centre

2003–2006 DEX versus standard sedation
Intravenous
0.1–1 mcg/kg/hour

14 ≤14 years
Fontan

DEX caused the need for pacing (HR < 90) than the standard
sedation regimen

DEX had no evidence of increase partial pressure of arterial carbon
dioxide compared to the control group

There was no significant difference in hypotensive events in the
two groups

Serum lactate levels were reduced in the DEX group

Kleiber et al75 Retrospective case–control,
single centre

2011–2013 Pre-emptive midazolam versus
targeted sedation

Intravenous
Midazolam 60 mcg/kg/hour

66 <6 months Routine sedation may not prevent LCOS, targeted sedation did not
compromise haemodynamic stability and may reduce sedative
exposure

Penk et al76 Prospective randomised,
open-label, controlled,
single centre

2014–2016 Intermittent morphine and
midazolam versus
continuous þ intermittent
morphine and midazolam

Intravenous
Midazolam 0.05 mg/kg every
hour or 0.03 mg/kg/hour

Morphine 0.05 mg/kg every
2 hours or

0.03 mg/kg/hour

60 3 months – 4
years

No difference in sedation or pain scores or total amount of bolus
doses required

Continuous and intermittent dosing resulted in higher total amount
of medication received, longer hospital length of stay, and more
positive fluid balance

Rigby-Jones et al77 Prospective cohort, single
centre

2003–2005 Midazolam and remifentanil
Intravenous
Midazolam 50 mcg/kg/hour
Remifentanil 0.8 mcg/kg/minute

26 <10 years Younger and smaller children require higher remifentanil infusion
rates due to enhanced clearance rates

This combination provides satisfactory sedation

DEX = dexmedetomidine; LCOS = low cardiac output syndrome; MAP=mean arterial pressure; PD = pharmacodynamics; PK = pharmacokinetics; VSD = ventricular septal defect
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reduction in the amount of concomitant sedation or length of
mechanical ventilation.66–68,72,73 Multiple studies showed that
infants require higher doses than neonates.68,78 These medications
were well tolerated as continuous infusions, but higher dose
boluses led to hypotension and bradycardia, and long-term
(>72 hours) exposure led to withdrawal.68 One study related seda-
tion to clinical outcomes (LCOS) and showed that pre-emptive
midazolam did not prevent LCOS, but that targeted use of
midazolammay reduce total sedative exposure.75 While intraoper-
ative anaesthetics, particularly volatile agents, have been linked to
lower neurodevelopmental outcome scores in children undergoing
cardiopulmonary bypass, there is a paucity of data regarding
anaesthetic or sedative management in the post-operative period
and how this may be related to long-term outcomes.79

Analgesics

Out of the 308 records retrieved by the systematic search in
PubMed and EMBASE, 14 studies met the inclusion criteria and
included a total of 1672 children (Table 4). All but one study
was single centre. There were seven retrospective cohort studies;
two prospective PD studies; two retrospective case–control studies;
two prospective, randomised studies; and one post hoc analysis of a
prospective observational cohort study.80–93 Medications included
in these studies were opioids (morphine [43%], fentanyl [29%],
hydromorphone [7%], remifentanil [7%]), and non-steroidal
anti-inflammatory drugs (ketorolac [36%], acetaminophen [7%]).

Opioid medications are well tolerated with the most common
side effects being vomiting, pruritus, and (rarely) respiratory
depression.82,83,87 Fentanyl is the most commonly prescribed
opioid post-operatively used in as many as 90% of patients.84

There is wide dose variation in children to achieve optimal pain
management, and most children receive concomitant sedative
medications.80–84 Two studies studied the effect of opioid medica-
tion in children with Down syndrome and found no difference in
opioid requirements for those with Down syndrome compared to
those without, with no difference in PK or PD.85,86 Ketorolac is a
non-steroidal anti-inflammatory drug that is used as an adjunct for
post-operative pain control. Multiple studies found no increase in
adverse renal or haematologic events except when ketorolac was
administered in conjunction with aspirin, even in children
<6 months old, although there was evidence of platelet
dysfunction.88–92 In addition to pain control, acetaminophen
may be protective against acute kidney injury.93

Antiarrhythmics

Out of the 96 records retrieved by the systematic search in PubMed
and EMBASE, 15 studies met the inclusion criteria and included a
total of 1744 children (Table 5).78,94–107 All studies were single
centre. There were nine retrospective cohort studies and one retro-
spective case–control study. The other five were prospective: one
randomised, two randomised, and placebo-controlled, one case-
controlled, and one observational. Medications included were
potassium channel blockers (amiodarone [40%]), sodium channel
blockers (flecainide [7%]), alpha 2 adrenoreceptor agonists
(dexmedetomidine [27%]), selective beta 1 adrenoreceptor antag-
onists (landiolol [27%]), and magnesium (7%).

Overall, amiodarone was well tolerated, significantly decreased
the rate and severity of junctional ectopic tachycardia, and
improved haemodynamics in post-operative children whether
used as prophylaxis or treatment.94–98 Similarly, a study of
flecainide showed efficacy without adverse events in 7/7 cases.100

Landiolol shows promise for the treatment of tachyarrhythmias
with rare adverse events.103–106 Dexmedetomidine, while typically
used as a sedative, has also been studied in preventing tachyar-
rhythmias. Evidence is conflicting regarding its efficacy for
treating tachyarrhythmias.78,99,102 However, dexmedetomidine
is also known to cause bradyarrhythmias in a dose-dependent
fashion.99,102

Because of the generally low incidence of post-operative
arrhythmias, quality studies to provide conclusive evidence
for medication use are challenging. However, post-operative
arrhythmias can lead to haemodynamic instability, longer ICU
stays, longer hospitalisations, and increased mortality.100

Therefore, studies should continue to evaluate the efficacy, optimal
dosing regimen, and adverse events in the post-cardiopulmonary
bypass population through multisite, longitudinal pragmatic trials.

Pulmonary vasodilators

Out of the 271 records retrieved by the systematic search in
PubMed and EMBASE, 24 studies met the inclusion criteria and
included a total of 40,960 children (Table 6).108–131 The majority
of studies were prospective (63%), and two trials were multicentre
(8%). Medications included were inhaled nitric oxide (50%),
inhaled prostacyclin analogs (iloprost [21%]), phosphodiesterase
inhibitors (sildenafil [33%], milrinone [8%]), and endothelin
receptor antagonists (BQ123 [4%]).

Due to its delivery, inhaled nitric oxide acts locally without
systemic effects,117 decreasing mean pulmonary artery pressures
at low doses, without further effect at higher doses.108 In addition,
inhaled nitric oxide has been associated with a shorter duration of
mechanical ventilation and ICU stays, with decreased mortality for
those with severe pulmonary hypertension.108–110,113–116 Several
smaller studies showed shorter hospital stays with inhaled nitric
oxide, although a large retrospective cohort found that inhaled
nitric oxide was associated with an increased length of hospital
stay.111,112 Inhaled nitric oxide in combination with other medica-
tions may have an additive effect.117,118 Iloprost is appealing
because it can be administered via inhalation; however, studies
have shown unfavourable haemodynamics and pulmonary
congestion.119–123 Systemic medications such as sildenafil and
BQ123 lower pulmonary vascular resistance, but also cause
systemic effects such as hypotension.127–131

Pulmonary hypertension is a significant post-operative
complication that can have high mortality.113 Nevertheless, large
prospective studies in this population are difficult to complete,
as evidenced by a multicentre randomised, double-blind,
placebo-controlled trial evaluating three doses of intravenous
sildenafil in children <17 years for the treatment of post-operative
pulmonary hypertension that terminated early due to slow patient
accrual.127 Novel trial designs are needed to improve post-
operative outcomes.

Coagulation system

Out of the 383 records retrieved by the systematic search in
PubMed and EMBASE, 7 studies met the inclusion criteria and
included a total of 1297 children (Table 7).132–138 All studies were
single centre. There were three retrospective cohort studies;
one prospective observational study; one prospective cohort with
historical controls; and two prospective, randomised controlled
studies. Medications included were vitamin K antagonists
(warfarin [43%]), thromboxane inhibitors (aspirin [14%]), factor
Xa inhibitors (heparin [29%]), and fibrinogen concentrate (14%).
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Table 4. Characteristics of post-operative analgesic studies and study populations

Authors Study type Year studied Primary intervention n Study population Findings

Bueno et al80 Retrospective cohort, single
centre

2001–2005 Continuous fentanyl,
intermittent morphine or
dipyrone

Intravenous
Fentanyl 2–3 mcg/kg/hour
Morphine 0.08 mg/kg
Dipyrone 24.4 mg/kg

30 <28 days 80% received continuous analgesia with fentanyl
Most infants had significant dose variation in fentanyl dose
70% received concomitant sedation
Continuous administration is preferred as it reduces variation in

serum concentration

Elkomy et al81 Prospective open-label, single-
centre PD analysis

Morphine
Intravenous
Loading 0.15 mg/kg then 0.02
mg/kg to increase by 0.01
mg/kg as needed by NCA

20 <6 years
Two ventricles

Morphine doses >0.1 mg/kg did not increase tolerable pain
durations

Time to remedication is a useful endpoint for assessing
analgesia

Iodice et al82 Retrospective cohort, single
centre

2006–2007 Morphine via PCA or NCA
Intravenous
10–30 mcg/kg/hour and
50 mcg/kg boluses as needed

54 6 months–18 years
Fast track
management

Median infusion time was 29 hours
89% of children also received paracetamol and NSAIDs
Side effects of pain regimen included vomiting (42%) and itching

(2%), no cases of respiratory depression

Naguib et al83 Retrospective cohort, single
centre

2008–2011 Fentanyl
Intravenous
0.5 mcg/kg by NCA þ/− basal
rate of 0.5 mcg/kg/hour and
naloxone 0.25 mcg/kg/hour

33 ≤90 days
Hybrid stage 1 for
HLHS

Children extubated in the OR has shorter courses of fentanyl use
15% of children received concomitant DEXmedetomidine and

required less fentanyl
Adverse events noted in 9% of children: pruritis, excessive

sedation, respiratory depression

Naguib et al84 Retrospective cohort, single
centre

2008–2011 Fentanyl, morphine,
hydromorphone

Intravenous
Fentanyl 0.5 mcg/kg NCA þ/
− 0.5 mg/kg/hour

Morphine 20 mcg/kg NCAþ
20 mcg/kg/hour

Hydromorphone 4 mcg/kgþ
4 mcg/kg/hour

57 <15 months
CS2 or bidirectional
Glenn for HLHS

Fentanyl was the most commonly prescribed opioid (95%)
Children undergoing CS2 had higher opioid requirements than

those undergoing Glenn

Valkenburg et al85 Prospective observational,
single-centre PK/PD study

2012 Morphine PK/PD in Down
syndrome

Intravenous
Loading dose 100 mcg/kg then
40 mcg/kg/hour

38 ≤36 months No evidence that PK or PD is different for morphine in Down’s
children

Van Driest et al86 Retrospective cohort, single
centre

Standard of care opioid
regimen

Intravenous
0.1 mg/kg/hour morphine dose
equivalents

121 ≤17 years No difference in cumulative opioid doses in the first 24 hours
post-operatively or in the first 96 hours post-operatively
between those with Down syndrome and those without

Age, bypass time, benzodiazepines, neuromuscular blockade
were associated with higher opioid doses
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Table 4. (Continued )

Xiang et al87 Prospective randomised,
single centre

2011–2012 Remifentanil versus fentanyl
NCA

Intravenous
Remifentanil 0.07 mcg/kg/
minute with 0.25 mcg/kg
boluses

Fentanyl 0.1 mcg/kg/minute
with 1 mcg/kg bolus dose

50 1–3 years
Simple septal
defects

Similar pain control but remifentanil had fewer adverse events

Dawkins et al88 Retrospective case–control,
single centre

2004–2007 Ketorolac
Intravenous
0.4–0.63 mg/kg every 6–8 hours

38 <6 months No difference in renal impairment or haematologic
complications

Ketorolac did not decrease standard analgesic use

Gupta et al89 Prospective randomised,
single centre

2003 Standard of care þ/− ketorolac
Intravenous
0.5 mg/kg/dose every 6 hour

70 <16 years No increased risk of bleeding complications with ketorolac

Kim et al90 Post hoc analysis of
prospective observational,
single centre

2014–2015 Ketorolac
Intravenous

53 <17 years All who received ketorolac had platelet dysfunction by TEG with
platelet mapping compared to 8% of those who did not

Moffett et al91 Retrospective case–control,
single centre

2007–2011 Ketorolac
Intravenous
Mean 0.48 mg/kg/dose in cases
versus 0.49 mg/kg/dose in
controls

56 <6 months Risk factors for AKI included concomitant use of ketorolac and
aspirin, and undergoing bidirectional Glenn procedure

Moffett et al92 Retrospective cohort, single
centre

2005 Ketorolac
Intravenous
Mean 0.4 mg/kg/dose every
6 hours

53 <6 months Ketorolac was not associated with any adverse renal or
haematologic effects

Ketorolac was effective for moderate post-operative pain control

Van Driest et al93 Retrospective cohort,
multicentre

2008–2016 Acetaminophen
Intravenous, enteral, or rectal
Low total dose< 40 mg/kg
Moderate total dose
40–80 mg/kg

High total dose> 80 mg/kg

999 28 days–18 years Lower incidence of AKI with any acetaminophen
Cumulative dose-dependent reduction in AKI

AKI = acute kidney injury; CS2 = comprehensive stage 2; HLHS = hypoplastic left heart syndrome; NCA = nurse-controlled analgesia; NSAIDs = non-steroidal anti-inflammatory drugs; PCA = patient-controlled analgesia; TEG = thromboelastography
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Table 5. Characteristics of post-operative antiarrhythmic studies and study populations

Authors Study Design Year studied Primary intervention n Study population Findings

Amrousy et al94 Prospective randomised,
single centre

2011–2015 Prophylactic amiodarone versus
placebo

Intravenous
5 mg/kg loading dose then

10–15 mcg/kg/minute

117 ≤24 months Prophylactic amiodarone decreased the incidence and
severity of JET and shortened ICU and hospital stay

No significant adverse events with prophylactic
amiodarone

Haas and
Camphausen95

Retrospective cohort,
single centre

1995–2005 Amiodarone
Intravenous
5 mg/kg loading dose then

10–20 mg/kg/day infusion

71 <15 years
JET

After 1 hour, there was a significant decrease in heart rate,
increase in blood pressure, and decrease in filling
pressures

Amiodarone allowed catecholamine dose to be decreased

Imamura et al86 Retrospective case–
control, single centre

2005–2009 Prophylactic amiodarone versus
control

Intravenous
2 mg/kg/day infusion

63 ≤14 months
Tetralogy of Fallot

Prophylactic amiodarone was associated with less JET
No adverse events from amiodarone

Kovacikova et al97 Prospective cohort,
single centre

1998–2007 Amiodarone
Intravenous
2 mg/kg loading dose then

10–15 mcg/kg/minute

40 ≤12 years
JET

Amiodarone as first line treatment was effective in 45% of
children

Failure was associated with higher arteriovenous oxygen
saturation difference and lower body temperature

Laird et al98 Retrospective cohort,
single centre

1992–2000 Amiodarone
Intravenous
5 mg/kg loading dose then

10–20 mg/kg/day infusion

11 ≤8 years
JET

After 1 hour, there was a decrease in heart rate and
increase in blood pressure

One patient required pacing due to bradycardia

El-Shmaa et al99 Prospective randomised,
placebo-controlled,
single centre

2010–2014 Prophylactic amiodarone versus
DEX versus placebo

Intravenous
Amiodarone 5 mg/kg loading then

10–15 mcg/kg/hour
DEX 1 mcg/kg loading then

0.5 mcg/kg/hour

90 2–18 years Incidence of JET was reduced and shorter ICU and
hospital stay in both children receiving amiodarone and
DEX compared to placebo

Both medications were well tolerated

Bronzetti et al100 Retrospective cohort,
single centre

2000–2001 Flecainide
Intravenous
1–2 mg/kg bolus then

0.4 mg/kg/hour

7 <30 days
JET

Flecainide was effective in restoring sinus rhythm in all
children

Flecainide decreased heart rate and filling pressure and
increased blood pressure

No adverse events

Chrysostomou et al78 Retrospective cohort,
single centre

2006–2007 DEX
Intravenous
1 mcg/kg loading dose then

1 mcg/kg/hour

14 ≤12 months Arrhythmias included JET, JAR, SVT, AET
DEX controlled rate/rhythm in 93% of children
Adverse events included hypotension and transient AV

block

Ortmann et al101 Retrospective cohort 2010–2014 DEX
Intravenous

309 < 6 months No difference in post-operative tachyarrhythmias in those
receiving DEX and those not

Increased need to treatment for arrhythmias in those not
receiving DEX

Shuplock et al102 Prospective
observational, case–
control, single centre

2007–2013 DEX versus control
Intravenous
0.7 mcg/kg/hour

936 <18 years Dose-dependent risk of bradyarrhythmias with DEX
No difference in tachyarrhythmias with DEX

Miyake et al103 Retrospective cohort,
single centre

2007–2011 Landiolol
Intravenous
4.7 mcg/kg/minute

10 <11 years
Tachyarrhythmias after
Fontan

Arrhythmias included sinus tachycardia, JET, SVT
Decrease in heart rate 1 hour after start of treatment, rate

control in all children
No adverse events
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Regardless of medication used, the studies included here show
that younger children have more variability in how they respond to
anticoagulants and highlight the need for further investigation into
age-related dosing guidelines.135–137 After single-ventricle pallia-
tion with shunt placement, 80% of neonates and infants were
resistant to aspirin based on thromboelastography in the immedi-
ate post-operative period.135 Starting warfarin early post-opera-
tively in children with mechanical valves or Fontan circulation
was associated with supratherapeutic international normalised
ratio, but there were no reports of thrombotic events while waiting
for warfarin to become therapeutic.133,137 Variations in enteral
absorption may contribute to variable responses in different age
groups in the post-operative period, which should be further stud-
ied. For catheter-associated thrombus, heparin at low doses was
safe, but did not decrease the incidence.136 Both fresh frozen
plasma and fibrinogen concentrate were effective to decrease
post-operative bleeding.134

Steroids

Out of the 267 records retrieved by the systematic search in
PubMed and EMBASE, 10 studies met the inclusion criteria and
included a total of 604 children (Table 8).139–148 All studies were
single centre. There were six retrospective cohort studies and four
prospective, randomised, double-blind, placebo-controlled stud-
ies. Steroids included in these studies were hydrocortisone
(90%), methylprednisolone (30%), and dexamethasone (20%).

Hydrocortisone was themost common steroid given to children
post-operatively, either prophylactically or for the treatment of
unfavourable haemodynamics.139,141,144,145 There were no
increased rates of infection and hyperglycaemia was only seen in
neonates.146 Most children respond positively to steroids; this
response was more likely in children found to have some degree
of adrenal insufficiency.141,143–145,148,149 Those who do not respond
have higher mortality.144 Longer duration of steroids is associated
with lower vasopressin levels.142 While there have been multiple
prospective, randomised, double-blind, placebo-controlled trials
regarding steroids, there is still a need to a priori define a patient
population that will benefit the most from steroids.

Other endocrine medications

Out of the 162 records retrieved by the systematic search in
PubMed and EMBASE, 4 studies met the inclusion criteria and
included a total of 2080 children (Table 9).150–153 Most studies were
multicentre (75%), and all studies were prospective, with one being
a post hoc analysis of a prospective, randomised controlled trial.
Medications included were insulin to maintain tight glycemic con-
trol (75%) and triiodothyronine (25%).

Tight glycemic control was robustly studied in prospective,
randomised, large, multicentre trials.150–152 Although hyperglycae-
mia has been associated with worse outcomes and tight glycemic
control is easy to achieve, it has not been shown to meaningfully
improve outcomes and is associated with a higher incidence of
iatrogenic hypoglycaemia.150–152 Overall, older children had higher
blood glucose and required more insulin per kg.150–152 Other stud-
ies have shown derangements in pituitary hormones such as
growth hormone and thyroid hormone after cardiopulmonary
bypass.154,155 One study evaluated the effects of triiodothyronine
in children after bypass and showed an increase in contractility
and cardiac index.153 Endocrine medications have the potential
to significantly alter post-operative outcomes and should be inves-
tigated further.Ta
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Table 6. Characteristics of post-operative pulmonary vasodilator studies and study populations

Authors Study design Year studied Primary intervention n Study population Findings

Gothberg et al108 Prospective cohort, single
centre

iNO
Inhaled
Start at 5 ppm, increase to
10 ppm, 20 ppm, 40 ppm

Start at 3 ppm, increase to
10 ppm, 30 ppm, 80 ppm

12 <13 months
mPAP> 20 mmHg or mPAP/mean
systemic artery pressure >0.25

iNO decreased mPAP and increased PaO2 after
initiation of iNO at 3 or 5 ppm

Uptitration of iNO did not show further improvement
No adverse events

Miller et al109 Prospective randomised,
double-blind, placebo-
controlled, single centre

iNO versus placebo
Inhaled
10 ppm

124 <12 months
mPAP> 25 mmHg or pulmonary
pressure > half systemic pressure
by echo

Lower PVRi, fewer pulmonary hypertension crises,
and shorter time intubated with iNO

Morris et al110 Prospective randomised,
cross-over, single centre

iNO or hyperventilation,
then iNO and
hyperventilation

Inhaled
5 ppm for 15 minutes then
40 ppm

Hyperventilation to
pH> 7.5

12 <18 years
mPAP> 25 mmHg
biventricular repair

mPAP decreased with iNO and hyperventilation but
PVRi had no change compared to monotherapy

Hyperventilation and iNO and hyperventilation alone
decreased cardiac index and increased SVRi

Tominaga et al111 Retrospective cohort, single
centre

2010–2016 iNO during intubation
versus iNO during and
after intubation

Inhaled
20 ppm

38 <5 years
Fontan

Shorter duration of intubation and improved UOP at
6 hours, less fluid requirement, and shorter hospital
stay in those receiving iNO after intubation

Wong et al112 Retrospective cohort,
multicentre

2004–2015 iNO
Inhaled

40,194 ≤17 years In those with pulmonary hypertension, iNO was
associated with increased length of stay and
mortality

In those without pulmonary hypertension, iNO was
associated with increased length of stay, no
mortality difference

Journois et al113 Retrospective cohort, single
centre

1984–1994 iNO or NMB and
isoproterenol
þ/− prostacycline

Inhaled
25 ppm

64 <35 years
mPAP/systemic pressure >0.7 and
decrease in arterial oxygen
saturations

AVCD

Reduced 30-day mortality with iNO
Mortality benefit was only seen in those with severe
pulmonary hypertension

Yoshimura et al114 Retrospective cohort, single
centre

1996–2001 iNO
Inhaled
5–30 ppm

47 ≤16 years
Fontan

CVP and TPG decreased with iNO, SVRi increased
No improvement in children with CVP< 15 mmHg or
TPG< 8 mmHg

No iNO toxicity

Agarwal et al115 Retrospective cohort, single
centre

2000–2003 iNO
Inhaled
20–40 ppm

16 ≤12 months
Glenn pressures > 20 mmHg

Improvement in Glenn pressures, decreased inotropic
support, improved oxygenation index at 1 and
3 hours in 79%

Those who didn’t respond required repeat surgery

Georgiev et al116 Retrospective cohort, single
centre

iNO
Inhaled
10–20 ppm

14 <10 years
Glenn or Fontan
Glenn pressures >16 mmHg or
hypoxemia

iNO improved PaO2 within 1 hour, decreased Glenn
pressure and TPG at 6–24 hours
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Table 6. (Continued )

Stocker et al117 Prospective randomised,
single centre

iNO and sildenafil
Inhaled and intravenous
iNO 20 ppm for 20 minutes
then sildenafil
0.35 mg/kg

Sildenafil 0.35 mg/kg then
iNO 20 ppm

15 <12 months
VSD or AVCD

mPAP decreased when iNO added first, no further
decrease with sildenafil although systemic
pressures decreased

mPAP and systemic pressures decreased with
sildenafil first, iNO further decreased mPAP but
not systemic pressures

Sildenafil increased oxygenation index and decreased
PaO2

Cardiac index remained stable throughout

Cai et al118 Prospective open-label,
randomised, controlled,
single centre

iNO versus milrinone
versus iNO and milrinone

Inhaled and intravenous
iNO 1–20 ppm
Milrinone 0.5 mcg/kg/
minute

46 <10 years
TPG> 10 mmHg or CVP> 15 mmHg
and hypoxemia after Fontan

Children receiving iNO and milrinone and iNO alone
had lower CVP and TPG, increased systemic
pressures, and improved PaO2/FiO2

At 24 hours, iNO and milrinone improved TPG and
PaO2/FiO2 more than iNO alone

Loukanov et al119 Prospective open-label,
randomised, single centre

2003–2008 iNO versus iloprost
Inhaled
iNO 10 ppm
Iloprost 0.5 mcg/kg every 2
hour

15 <9 months
mPAP> 25 mmHg with left-to-right
shunt, biventricular repair

No difference in frequency of pulmonary
hypertensive crises, mPAP, or duration of
mechanical ventilation

No adverse events

Limsuwan et al120 Prospective open-label,
single centre

2004–2005 Iloprost
Inhaled
500 ng/kg to increase to a
max of 2000 ng/kg every
30 minutes up to 5 times

8 ≤13 years
Refractory pulmonary hypertension

Decrease in mPAP and increase in oxygen saturations
25% of children developed pulmonary congestion
requiring iloprost to be discontinued

Vorhies et al121 Retrospective cohort, single
centre

2010–2011 Iloprost
Inhaled
1.25–10 mcg depending on
weight every 2 hour

7 <19 months
mPAP> 25 mmHg on iNO

No change in mPAP
Systemic arterial blood pressure decreased after the
transition to iloprost alone

Xu et al122 Prospective randomised,
placebo-controlled, single
centre

2010 Low versus high-dose
iloprost versus placebo

Inhaled
Low-dose 30 ng/kg/minute
×10 minutes every 2h

High-dose 50 ng/kg/minute
×10 minutes every
2 hour

22 <13 years
>25 mmHg or mPAP > 25 mmHg or
pulmonary pressure > half
systemic pressure, biventricular
repair

Lower mPAP/systemic blood pressure ratio compared
to placebo regardless of dose

67% of those receiving iloprost had no pulmonary
hypertensive crises

No additional benefit from high dose, better
haemodynamics with low dose

Onan et al123 Prospective randomised,
controlled, single centre

Iloprost versus standard of
care

Inhaled
2 ng/kg/minute
continuously

27 ≤15 months
mPAP> 25 mmHg, left-to-right
shunt

No difference in frequency of pulmonary
hypertensive crises, mPAP, duration of mechanical
ventilation, ICU stay, mortality

Peiravian et al124 Prospective randomised,
controlled, single centre

2002–2004 Sildenafil versus standard
of care

Enteral
0.3 mg/kg every 3 hours

42 <15 years
Pulmonary artery/aortic
pressure > 0.7, large septal
defects

Less pulmonary hypertensive crises, shorter duration
of mechanical ventilation, lower pulmonary artery/
aortic pressure ratio with sildenafil

No difference in length of ICU stay
No significant hypotension with sildenafil

(Continued)

Cardiology
in

the
Young

723

https://doi.org/10.1017/S1047951121001463 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1047951121001463


Table 6. (Continued )

Authors Study design Year studied Primary intervention n Study population Findings

Lee et al125 Retrospective cohort, single
centre

2003–2004 Sildenafil
Enteral
0.3 mg/kg every 6 hours

7 ≤21 months
Failure to wean iNO

Able to wean iNO after sildenafil initiation in all
children

No significant hypotension

Nemoto et al126 Prospective open-label,
cohort, single centre

2003–2008 Sildenafil
Enteral
0.5 mg/kg increased up to
2 mg/kg every 4–6 hours

100 <18 years old
Persistent pulmonary hypertension

Decrease in mPAP after reaching goal dose of
sildenafil in 82% of children

TPG decreased in cavopulmonary shunts
No significant hypotension

Fraisse et al127 Prospective double-blind,
placebo-controlled, dose
range, multicentre

2003–2005 Sildenafil low, medium,
high dose versus placebo

Intravenous
40, 120, or 360 ng/ml

17 <15 years old
Pulmonary artery/Aortic pressure
>0.5

Lower mPAP, shorter duration of mechanical
intubation, shorter ICU stay with sildenafil

Study terminated early due to slow patient accrual

Farah et al128 Prospective stratified and
partially randomised,
controlled, single centre

2008–2010 Milrinone versus sildenafil
versus milrinone and
sildenafil

Intravenous and enteral
Milrinone 0.75 mcg/kg/
minute

Sildenafil 0.3 mg/kg every
3 hours

48 ≤12 years
Pulmonary artery/Aortic pressure
>0.6, left-to-right shunt

Pulmonary artery/aortic pressure ratio lower in
milrinone alone group at 24 hours but significant
rise in mPAP after drug discontinuation

Shorter ICU stay with milrinone alone
No difference in rate of hypotension

Giordano et al129 Retrospective cohort, single
centre

2008–2012 Sildenafil versus standard
of care

Enteral
0.35 mg/kg every 4 hour

30 <7 years
Fontan

No children had preoperative pulmonary
hypertension

Lower mPAP, lower inotropic requirement, shorter
duration of mechanical intubation and ICU stay
with sildenafil

Mendoza et al130 Prospective interventional
study with historical
comparison cohort, single
centre

2000–2013 Sildenafil versus standard
of care

Enteral
4.6 mg/kg/day divided
every 8 hours

48 <10 years
Fontan

No difference in haemodynamics, duration of
mechanical ventilation, ICU stay, or mortality

Schulze-Neick
et al131

Prospective open-label,
single centre

BQ123
Intravenous
0.1 mg/kg

7 <15 months
Left-to-right shunt

Decrease in PVRi, mPAP, and systemic pressures with
BQ123

Left atrial endothelin levels correlated to PVRi
No change in cardiac index

AVCD = atrioventricular canal defect; CVP = central venous pressure; iNO = inhaled nitric oxide; mPAP=mean pulmonary artery pressure; PaO2 = arterial partial pressure of oxygen; PVRi = indexed pulmonary vascular resistance; SVRi = indexed systemic
vascular resistance; TPG = transpulmonary gradient; UOP = urine output; VSD = ventricular septal defect
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Table 7. Characteristics of post-operative anticoagulation studies and study populations

Authors Study design Year studied Primary intervention n Study population Findings

Al-Metwali et al132 Prospective cohort with historical
controls, single centre

2015–2016 Warfarin weight-based dosing
versus individualised genotype-
based dosing

Enteral

10 <10 years
Mechanical valve
placement or Fontan

Individualised dosing took longer to achieve the first
therapeutic INR but less time to achieve stable
anticoagulation

Lowry et al133 Retrospective cohort, single
centre

2006–2011 Warfarin
Enteral
0.2 mg/kg (0.1 mg/kg if Fontan)

59 <45 years
Mechanical valve
placement

Median time to reach INR ≥2 was 2 days
Most variability in those < 5 years old
Those on a heparin bridge took longer to
reach INR of 2

No thrombotic events, significant bleeding was
uncommon

Masoumi et al134 Prospective randomised,
controlled, open-label, single
centre

2014–2015 Fibrinogen concentrate versus FFP
Intravenous
Fibrinogen concentrate 70 mg/kg
FFP 10 ml/kg

90 <24 months
Fibrinogen <200 mg/dl
and bleeding

Fibrinogen and FFP reduced chest tube output
Fibrinogen lead to higher plasma fibrinogen levels at
24 hours

Mir et al135 Prospective observational, single
centre

Aspirin
Enteral
20 mg

20 ≤75 days
Single ventricle

80% of children were aspirin resistant using TEG
Aspirin may not be adequate for shunt prophylaxis in
the immediate post-operative period

Schroeder et al136 Prospective randomised, double-
blind, placebo-controlled, single
centre

Heparin or placebo
Intravenous
10 U/kg/hour

90 <1 year Heparin infusion did not reduce catheter-related
thrombus but was safe

More pronounced increase in PTT in neonates

Thomas et al137 Retrospective cohort, single
centre

2009–2012 Warfarin
Enteral
0.07 mg/kg

32 <5 years
Fontan

Supratherapeutic INR occurred in 12.5% of children
Supratherapeutic INR occurred more often in children
starting warfarin earlier

No thromboembolic events
Clinically significant bleeding associated with
supratherapeutic INR

Vorisek et al138 Retrospective cohort, single
centre

2016–2017 Heparin
Intravenous
Low dose< 15 U/kg/hour
High dose ≥15 U/kg/hour

996 <18 years Higher risk of bleeding and thrombus with high-dose
heparin than low dose or no anticoagulation

FFP = fresh frozen plasma; INR = international normalized ratio; PTT = partial thromboplastin time; TEG = thromboelastography
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Table 8. Characteristics of post-operative steroid studies and study populations

Authors Study design Year studied Primary intervention n Study population Findings

Ando et al139 Prospective double-blind,
randomised, controlled,
single centre

2002–2004 HC versus placebo
Intravenous
0.18 mg/kg/hour for 3 days,
0.09 mg/kg/hour for 2 days,
0.045 mg/kg/hour for 1 day

20 <28 days
Biventricular repair

Higher cortisol levels, improved LV
shortening fraction, lactate, and 3-day
fluid balance with HC

No increased infection rate

Dilal et al140 Prospective blinded,
randomised, single centre

Methylprednisolone versus
no drug

Intravenous 30 mg/kg

100 ≤15 years
Tetralogy of Fallot

Increased hyperglycaemia with
methylprednisolone

No difference in length of stay or
mechanical ventilation duration

No increased rate of infection

Maeda et al141 Retrospective cohort,
single centre

2004 HC in infants with and without
adrenal insufficiency

Intravenous
4 mg/kg/day divided every 6 hours
for 2 days then 2 mg/kg/day
divided every 6 hours for
2 days then 1 mg/kg/day divided
every 6 hours × for 2 days

32 <3 months 22% of infants had adrenal insufficiency
HC increased MAP and urine output in those
with adrenal insufficiency only

Mastropietro et al142 Retrospective cohort,
single centre

2008–2009 HC, dexamethasone,
methylprednisolone versus no
steroids

Intravenous
HC 1.5 mg/kg every 6 hours
Dexamethasone 0.5 mg/kg every
6 hours

Methylprednisolone 10 mg/kg every
12 hours

69 <18 years
HC for haemodynamic compromise,

dexamethasone periextubation,
methylprednisolone post-
transplant

Half received some steroids in the first 48
hours’ post-op

Increased duration of steroid therapy
associated with lower AVP levels

Millar et al143 Retrospective cohort,
single centre

2001–2003 HC, dexamethasone,
methylprednisolone

Intravenous
4 mg/kg/day of HC equivalents

51 <12 years
Glucocorticoids for hypotension

Less inotrope and fluid requirement,
increased MAP and urine output with
steroids

44% of children responded with improved
haemodynamics

No gastrointestinal bleeding or
hyperglycaemia

Neunhoeffer et al144 Retrospective cohort,
single centre

2000–2010 HC
Intravenous
100 mg/m2/day

166 <17 years
Refractory hypotension

All children >1 year responded to
hydrocortisone with increased MAP, urine
output, decreased lactate, and inotropic
support

82% of children <1 responded
Non-responders had higher mortality
No hyperglycaemia

Robert et al145 Prospective randomised,
double-blind, placebo-
controlled, single centre

2012–2013 HC versus placebo
Intravenous
50 mg/m2 then 50 mg/m2/day
infusion

40 <28 days Decreased LCOS, shorter time with inotropic
support, improved urine output and fluid
balance with HC

No difference in duration of mechanical
ventilation or ICU stay

24% of placebo group required steroid
rescue for refractory hypotension

No adverse events
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Table 9. Characteristics of other post-operative endocrine studies and study populations

Authors Study design Year studied Primary intervention n Study population Findings

Agus et al150 Prospective randomised, two centres 2006–2012 Tight glycemic control (BG 80–100 mg/dl)
versus standard of care

980 ≤36 months No change in rate of infections, mortality,
length of stay, organ failure

Glucose control is easily achieved with
low rates of hypoglycaemia

Agus et al151 Post hoc analysis of a prospective
randomised, two centres

2006–2012 Tight glycemic control (BG 80–100 mg/dl)
versus standard of care

980 ≤36 months Tight glycemic control may lower risk of
infection in children >60 days old

Kanthimathinathan
et al152

Prospective randomised, controlled,
mutlicentre

2008–2011 Tight glycemic control (BG 72–126 mg/dl)
versus standard of care

80 <16 years Older children had higher BG and
required more insulin per kg

Bettendorf et al153 Prospective randomised, double-blind,
placebo-controlled, single centre

1994–1995 Triiodothyronine versus placebo
Intravenous
2 mcg/kg on day 1, then 1 mcg/kg daily

40 <11 years
Receiving post-
operative
dopamine

Plasma triiodothyronine levels were low
after bypass

Cardiac index increased more in the
treatment group

No delay in thyroid function recovery
No adverse events

BG = blood glucose

Table 8. (Continued )

Suominen et al146 Prospective randomised,
double-blind, placebo-
controlled, single centre

2012–2014 HC versus placebo
Intravenous
0.2 mg/kg/hour for 2 days then
0.1 mg/kg/hour for 2 days then
0.05 mg/kg/hour for 1 day

40 <28 days Lower inotrope requirements and earlier
sternal closure with steroids

No difference in length of stay or
mechanical ventilation duration

Increased hyperglycaemia with steroids

Teagarden and
Mastropietro147

Retrospective cohort,
single centre

2011–2013 HC
Intravenous
1 mg/kg every 6 hours

24 <21
HC for haemodynamic instability

58% had a positive response to HC
Those that responded had lower cortisol
levels prior to HC

Verweij et al148 Retrospective cohort,
single centre

2005–2008 HC
Intravenous
45 mg/m2 × 4 if cortisol
<100 nmol/L

48 mg/m2 × 4 if cortisol
>100 nmol/L

62 <7 years
HC for resistant LCOS

Increased MAP and urine output, decreased
inotrope requirement and lactate with HC

No difference between low or normal
cortisol

AVP = arginine vasopressin; HC = hydrocortisone; ICU = intensive care unit; LCOS = low cardiac output syndrome; LV = left ventricular; MAP=mean arterial pressure
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Discussion

Current knowledge gaps

We identified 127 studies in 51,573 children across all medication
classes. Overall, most studies were small, single-centre cohorts
without standardised endpoints. A lack of standardised endpoints
makes comparisons between studies difficult. For example, ino-
tropic study endpoints included various combinations of central
venous pressure, urine output, lactate levels, mean arterial pres-
sure, partial pressure of arterial oxygen, oxygenation index, cardiac
index, and LCOS.Which endpoints translate tomeaningful clinical
outcomes are unknown, and acceptable endpoint values may vary
by age and disease state.156

In all medication classes, drug dose and interval varied
widely, in part due to lack of label or other consensus-based
recommendations. This complicates the evaluation of dose–
efficacy and dose–safety relationships in this population.157 For
example, with diuretics, there is a lack of consensus of starting
low or high dose, or as continuous versus intermittent intravenous
dosing. Because fluid overload has been associated with increased
mortality, optimal dosing may have a significant impact on
outcomes.158

In an attempt to overcome limited enrolment, many studies
include patients of different ages and with varying cardiac lesions.
While information from combined populations may be helpful
to guide overall practice, significant physiologic differences
(e.g. between infants with systemic right versus left ventricles)
may induce biases that, if left unadjusted, obscure drug efficacy
or safety signals. While studies of frequently used medications,
such as vasoactives, may enrol sufficient numbers to identify
age- and disease-related differences, other less commonly used
drugs, such as antiarrhythmics or pulmonary vasodilators, require
innovative approaches. These may include studies that use avail-
able RWD, such as dosing and demographic information from
the electronic health record, combined with standardised master
protocols and advanced PK/PD modeling to inform drug
dose–exposure–response relationships. These studies may identify
age- and disease-related factors that affect drug disposition, and
decrease the number of patients needed for prospective validation,
safety, and efficacy trials.159,160

Limitations

Our study is not without limitations. In order to broadly classify
post-operative medication management, our inclusion criteria
were narrow. Studies investigating medications in all critically ill
children (not just those with CHD undergoing repair or palliation
with cardiopulmonary bypass) were excluded. Trials in children
without CHD may offer important insight into the impact the
disease has on drug disposition and should be explored further.
Additionally, we only included studies published from 2000
to 2019. This potentially biases our search towards newer medica-
tions, as evidenced by few studies of epinephrine or dopamine,
two of the more commonly used vasoactive medications. However,
it is important to compare newermedications with older, “standard
of care” drugs, to continue to investigate how older drugs are
affected by development and disease process, and to ensure safety
and efficacy of these drugs in the context of modern perioperative
management. Therefore, we hope that the years included in
our systematic literature review have appropriately captured
studies that are reflective of our patient population in the context
of current practice.

Future directions

To close existing knowledge gaps in post-operative pharmaco-
therapy, novel approaches that facilitate enrolment in meaningful
clinical trials or alternative evidence generation methods are
needed. One major limitation in the current body of evidence is
the inability to definitively conclude the efficacy or safety of med-
ications due to inconsistent, non-validated endpoints and variable
inclusion and exclusion criteria.

Hard clinical endpoints, such as cardiac output or mortality,
are difficult to measure or require large sample sizes to identify
a treatment effect. In paediatric trials, surrogate or composite
endpoints are an attractive alternative,14 but are not always
validated. With the increase in the collection of haemodynamic
data post-operatively and availability of biomarkers, surrogate
endpoints are more readily available. Studies validating these data
as surrogate endpoints are needed so that feasible, clinically
meaningful endpoints can be included in trial design.9 Consistent
inclusion and exclusion criteria that are broad enough to account
for age- and disease-related effects on drug disposition, but narrow
enough to not obscure efficacy or safety signals should also be
defined.161

The infrastructure and flexibility of master protocols combined
with RWD collection may be one way to remedy the current
challenges of post-operative pharmacotherapy trials. Master
protocols consist of a standardised trial network infrastructure,
and the use of a common protocol.162 While this requires upfront
planning and resources, it allows for a long-term standardised
protocol structure that is easily translatable to multiple diseases
or medications. This could be implemented alongside current
collaborations, such as the Pediatric Cardiac Critical Care
Consortium (PC4) and the Pediatric Acute Care Cardiology
Collaborative (PAC3), whose data collection platforms and site
penetration may provide the numbers needed to study relatively
rare disease processes while minimising duplicate data collection
efforts. These valuable collaborations have already highlighted
the variation in care across centres and even suggest that collabo-
ration and transparency play a role in improving outcomes.163,164

Additionally, the post-operative setting generates innumerable
RWD points including laboratory values and haemodynamic
parameters that, when collected in an accessible manner, can pro-
vide valuable evidence for clinical trials. A master protocol geared
towards the post-operative setting could easily be tailored to
drug-, disease-, or age-specific parameters and use the data already
collected post-operatively to inform clinical practice. Drug
development efforts using novel trial design should focus on this
complex, heterogeneous population so that drugs can be used
efficaciously and safely in the high-risk post-operative period.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S1047951121001463.
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