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Abstract
Video monitoring is an important means of ship traffic supervision. In practice, regulators often need to use
an electronic chart platform to determine basic information concerning ships passing through a video feed. To
enrich the information in the surveillance video and to effectively use multimodal maritime data, this paper
proposes a novel ship multi-object tracking technology based on improved single shot multibox detector (SSD)
and DeepSORT algorithms. In addition, a night contrast enhancement algorithm is used to enhance the ship
identification performance in night scenes and a multimodal data fusion algorithm is used to incorporate the ship
automatic identification system (AIS) information into the video display. The experimental results indicate that the
ship information tracking accuracies in the day and night scenes are 78·2% and 70·4%, respectively. Our method
can effectively help regulators to quickly obtain ship information from a video feed and improve the supervision of
a waterway.

1. Introduction

Inland waterways are important components of waterway transportation. A vessel traffic transit service
(VTS) can effectively supervise the fixed waters of an inland waterway in real time, playing an important
role in improving navigation efficiency and ensuring the navigation safety of vessels (Can, 2017); as such,
it is a key research field in the shipping industry. As one important means of VTS supervision, maritime
video surveillance primarily relies on humans to analyse and determine ship movement information in a
video feed; however ship information obtained from such videos is extremely limited. A ship’s automatic
identification system (AIS) can collect a large number of spatial position data generated during ship
navigation to provide intelligent ship management. The integration of AIS technology and ship VTS
will provide a safe navigation system for maritime transportation (Kartika et al., 2018).

Augmented reality (AR) technology has been developing rapidly in recent years. This technology
can be used to register virtual information (e.g., text, symbols and pictures) with objects in a real
scene and, at the same time, achieve enhanced information tracking of real objects. As more and more
intelligent algorithms are applied in maritime affairs, marine ship navigation and waterway supervision
are gradually moving toward the field of AR. Researchers are committed to adding more navigation
information to ship navigation videos to aid pilots. Frydenberg et al. (2018) developed a shipborne AR
deployment scheme from the ship driving environment, human movements and illumination factors, and
provided additional environment and navigation information for ship pilots by superimposing graphics
and audio. Hugues et al. (2014) proposed an image analysis algorithm capable of detecting the horizon in
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maritime scenes, creating an indirect visual function in an AR system for ships. Oh et al. (2016) analysed
current shipboard equipment, such as radar and electronic charts, to design an AR user interface that
integrates the visual view in front of a ship with virtual images and navigation information and presents
it to the pilot via an independent computer screen.

With the continuous development of communication technology, the utilisation rate of AIS will be
continuously improved in the future (Liu et al. 2020). Based on the massive parallel computing power
of graphics processing units (GPUs), Huang et al. (2020) compacted the massive AIS tracks to realise
visualisation. To obtain additional ship information, some researchers have tried to incorporate AIS
information to enable visual support for AIS information. Lee et al. (2016) calculated the ship attitude
by detecting an image ahead of the ship and then used image analyses and AIS data to detect the ship
position and generate an enhanced display of that information. Based on AIS data, An et al. (2019)
designed a visual analysis platform for global shipping routes that can display multiple aspects of the
AIS data and generate a display of the entire sea route. Lukas et al. (2014) developed a multi-signal
fusion monitoring method that combines electronic charts, radar and AIS information with the video
feed, so that users can touch a screen to obtain all the ship information from the video.

Although researchers are increasingly incorporating AR technology in maritime applications.
However, there are limited AR studies concerning inland waterway monitoring, which is often of higher
application value in some important sections. This paper focuses on the special scenes of inland rivers
and proposes innovations in improving the accuracy of ship detection, night image enhancement and
maritime information fusion. In this paper, based on AIS data and combined with computer vision anal-
ysis methods, virtual information is registered with real images and an identification and tracking system
for ship information suitable for inland waterway supervision is constructed, providing a convenient
method for waterway supervisors to obtain ship information.

2. Related computer vision research

2.1. Object detection

Target detection is an important research direction of computer vision, which is used to lock the target
position in a single-frame image. Research on ship detection began in 2002, code-named ‘Spartan scout,’
in the form of a project to self-control a pilotless ship. The ship was equipped with a ship detection
system that could detect and track ship objects at sea (Rao et al., 2014). Later, Guang et al. (2011)
proposed a method of region segmentation to extract the features of different segmentation regions;
then, a machine-learning algorithm was used to detect the ships in each region of the image. Kim et al.
(2010) used background estimation to enable ship detection and merged with AIS to implement relevant
ship information matching. Liu (2010) detected ships in an inland waterway by separating the sky–water
line and incorporating the average ship features in the region of interest.

In recent years, deep learning has been developing rapidly and is widely used in the field of object
detection. Object detection algorithms are divided into two categories: object detection models based
on classification, including region-based convolutional neural network (R-CNN) (Girshick et al., 2014),
Fast R-CNN (Girshick, 2015) and Faster R-CNN (Ren et al., 2017), and detection models based on
regression, including the YOLO (Redmon et al., 2016) and single shot multibox detector (SSD) (Liu
et al., 2016) series.

Object detection methods based on deep learning have been widely used in various fields, including
ship detection. Betti et al. (2020) constructed a YOLOv3 detector based on the Keras application
programming interface to detect four types of ships: cargo ships, warships, oil tankers and tugboats.
He et al. (2019) designed a method based on the combination of a Gabor filter and Faster R-CNN to
effectively improve the accuracy of ship object detection in satellite images. Wang et al. (2017) proposed
a ship detection method based on the SSD algorithm and transfer learning according to different image
input sizes; two models, SSD-300 and SSD-500, were designed to test the detection performance.
Guo et al. (2020) proposed a rotational Libra CNN method and introduced the concept of a balanced
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feature pyramid to improve the detection effect for different sizes of ships. At present, deep-learning
algorithms are widely used in ship object detection. However, in real circumstances, the types of ships
are diverse, their sizes are different and the water traffic environment is complex; in addition, it is
necessary to consider recognition under night visual conditions, which poses a huge challenge to water
object detection.

2.2. Object tracking

Object tracking is a key technology used to solve the real-time locking of moving objects in video
feeds. Classic object-tracking algorithms include mean shift, particle filter and correlation filter. These
methods mainly model the current object region and then find similar regions in the next image.
Well-known correlation filtering algorithms include circulant structure tracking with kernels (CSK)
(Henriques et al., 2012) and kernelised correlation filter (KCF) (Henriques et al., 2015), both of which
determine the moving direction of an object by finding the relationship between two adjacent frames.

Compared to general motion environments, water traffic environments are more complex, including
the partial or complete occlusion of adjacent ships, attitude and illumination changes, sudden scale
changes and motion blur (Chen et al., 2014; Li and Zhu, 2014; Li et al., 2018). Chen et al. (2017)
used the difference in the grey peak to detect the position of a ship and tracked ships based on the
mean-shift algorithm. Dong et al. (2019) designed an object-tracking algorithm based on an improved
KCF, in which a Kalman filter module was added to predict the position of the ship tracking object
in the next frame, and the concept of object-tracking critical probability was used to evaluate whether
the object tracking was abnormal. However, in maritime video feeds, because of occlusion, ships are
often not detected. Cheng et al. (2019) improved the KCF algorithm by adding a scale-transform frame
and tracking-effect detection method to solve the object occlusion problem or tracking failures caused
by object detection. Chen et al. (2020) proposed an enhanced ship-tracking framework based on KCF
and a curve-fitting algorithm and used a data anomaly detection and correction program to correct the
positions of occluded ships.

With the development of deep-learning algorithms, such algorithms have been applied to object
tracking. This method trains a CNN model to predict the object region in the next frame (Dorai et al.,
2017; Pang et al., 2017). Recently, such algorithms have appeared in maritime applications, where
researchers (Shan et al., 2020) have used a modified Siamese network combined with multi-region
proposal networks to build a tracking pipeline to track maritime ships. ResNet-50 with a feature pyramid
network structure was used as the CNN of the Siamese detection subnetwork.

However, research concerning multi-object ships is relatively sparse. Vivone et al. (2015) used a
prior knowledge-based multi-object tracking method, prior information given by the ship channel, and
its related motion model as the basic components of a variable structure interactive multi-model process
and used the joint probabilistic data association rules to deal with false and missed detections. Xiao and
Gang (2011) employed the continuously adaptive mean shift (camshaft) multi-ship tracking algorithm
and multi-feature adaptive fusion based on colour, shape and texture to improve the robustness of
the model.

3. Methodology

This paper uses a multi-object ship tracking mechanism based on the combination of a detector and a
tracker and, using a data fusion algorithm, achieves AIS AR. The steps are as follows. (1) We enhance
the night images to increase the contrast between the ship objects and the water surface background.
(2) We use the SSD model to build a detector and introduce a self-attention mechanism to improve the
model to enhance the accuracy of object detection. (3) We use the DeepSORT algorithm to build a
tracker, according to the current tracking results, to predict the next position of the object and obtain the
best match. (4) We establish a mapping between the ship positioning points and the world coordinate
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Figure 1. Schematic of the algorithm discussed in this paper.

system. (5) We track and predict the AIS signal via a distance calculation matching an AIS signal with
a ship object. The structure of the algorithm discussed in this paper is shown in Figure 1.

3.1. Increased contrast at night

Computer vision began to dabble in maritime video-surveillance and finds many both civilian and
military applications (Grimaldi et al., 2015). Therefore, it is necessary to improve the image quality
before further analysis. Yang et al. (2019) estimated the initial brightness through Max-RGB and then
refined it with the WLS filter. Based on the well-constructed brightness, the enhanced image at a low
light level was obtained. In the inland waterway, the problem of night image detection mainly came
from the low contrast between the ship target and background.

In this paper, we chose the RGB colour space based on the visible light image. The differences
in red (R), green (G) and blue (B) in three dimensions cause the image to present different colour
representations; however, it can be difficult to express the deep image characteristics. By constructing
the pixel matrices hue (H), saturation (S) and brightness (V), the image can be easily quantified according
to its colour, saturation and brightness. For image P, as shown in Figure 2(a), the corresponding S and
V grey matrices are calculated as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑆𝑖 𝑗 = 1 − 3 min(𝑅𝑖 𝑗 , 𝐺𝑖 𝑗 , 𝐵𝑖 𝑗)

𝑅𝑖 𝑗 + 𝐺𝑖 𝑗 + 𝐵𝑖 𝑗
𝑉𝑖 𝑗 =

1√
3

(𝑅𝑖 𝑗 + 𝐺𝑖 𝑗 + 𝐵𝑖 𝑗)
(3.1)

where 𝑅𝑖 𝑗 , 𝐺𝑖 𝑗 , and 𝐵𝑖 𝑗 represent the three colour weights for the pixel coordinates (𝑖, 𝑗) after
normalisation.

A generic ship tends to show high saturation and low brightness in night images; accordingly, the
pixels in the ship region have higher S and lower V. The surface region in the background, conversely,
exhibits lower S and higher V, e.g., 𝑆boat > 𝑆river and 𝑉boat < 𝑉river. At the same time, because of
the influence of the illumination on both sides of the water surface, the pixels have high gradient
characteristics; therefore, the Sobel operator can be used to extract the gradient image of 𝑃 : 𝐿, as
shown in Figure 2(b), and then transform it into the grey pixel matrix 𝐿 ′, as shown in Figure 2(c). Then,
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Figure 2. Image enhancement process. (a) Original image. (b) Gradient characteristic image.
(c) Greyscale image of gradient characteristic image. (d) Saturation image. (e) Brightness image.
(f) Grey image after enhancement processing.

the contrast of the water region pixels in S and V can be enhanced:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑆𝑖 𝑗 =
1

exp
(
𝐿′
𝑖 𝑗

𝑃max

) 𝑆𝑖 𝑗
𝑉𝑖 𝑗 = min

(
𝑉𝑖 𝑗 × exp

(
𝐿 ′
𝑖 𝑗

𝑃max

)
, 𝑃max

) (3.2)

where 𝑃max = 255. The processed greyscale images of S and V are shown in Figure 2(d) and (e),
respectively. It is obvious from the figure that the ship region is more obvious in the saturation image S
than in the brightness image V. The ship region can be enhanced by subtracting the two images:

𝑇𝑖 𝑗 = 𝑆𝑖 𝑗 − min(𝑆𝑖 𝑗 , 𝑉𝑖 𝑗 − 𝜀). (3.3)

where 𝑇𝑖 𝑗 = grey image after enhancement processing and the parameter 𝜀 = 40𝜀. The grey image T is
shown in Figure 2(f). Now that the ship region is clearly expressed, the contrast enhancement calculation

https://doi.org/10.1017/S0373463321000503 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463321000503


The Journal of Navigation 1341

for the object region can be carried out using

𝑃𝑖 𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

(
𝑃max ×

(
𝑃𝑖 𝑗

𝑃max

)𝛽
, 𝑃max

)
𝑇𝑖 𝑗 > 0

𝑇𝑖 𝑗 𝑇𝑖 𝑗 = 0
(3.4)

where 𝑃𝑖 𝑗 = pixel after contrast enhancement and 𝛽 = controllable parameter, where 𝛽 = 1.15. Each
pixel in T is compared with 0, and the ship region is segmented from T. Then, the RGB component of
the corresponding position in the original image P is exponentially calculated. The processed image P is
shown in Figure 2(f). The ship object in the figure shows higher contrast compared with the background
region.

3.2. Self-attention mechanism

The self-attention mechanism is a recently proposed improved machine-learning method that enables
the model to fully consider the relationship between the features of the samples in training and enhances
the feature learning of key regions. This mechanism has been widely used in natural language processing
and image learning (Cao et al., 2020). Because of the small size of the convolution kernel, CNNs only
capture regional features with the same size and cannot effectively reflect the relationships between
pixels in different regions. In this paper, we improve the network structure of SSD, based on the self-
attention mechanism, so that it can analyse the correlations of all the pixels in the different scale feature
maps, making the correlation of the extracted features stronger.

First, we input the feature map x with a structure 𝑐×𝑤×ℎ, use a 1× 1 convolution kernel to convolute
twice, and compress the channel number according to 𝑐 = 𝑐 ÷ 8 and obtain matrices F and G with
structures 𝑐′ × 𝑤 × ℎ, which are then transformed into 𝑐′ × 𝑛, where 𝑛 = 𝑤 × ℎ. The third convolution
operation is performed using a 1 × 1 convolution kernel without channel number compression, and a
matrix H with a 𝑐 × 𝑤 × ℎ structure is obtained, which is then transformed into 𝑐 × 𝑛. The matrices F
and G are used to calculate the attention matrix

𝑒𝑖, 𝑗 =
exp(𝑠𝑖 𝑗)∑𝑁
𝑖=1 exp(𝑠𝑖 𝑗)

, where 𝑠𝑖 𝑗 = 𝑓 (𝑋 𝑗)𝑇 𝑔(𝑋𝑖), (3.5)

where 𝑒𝑖, 𝑗 = element values of the attention matrix E, which has dimensions 𝑛 × 𝑛; 𝑠𝑖 𝑗 = relative
weight of the i position to the j position; N = number of elements in the characteristic graph matrix; and
𝑓 (𝑥𝑖) = 𝑊 𝑓 𝑥𝑖 , 𝑔(𝑥 𝑗 ) = 𝑊𝑔𝑥 𝑗 , where 𝑊 𝑓 and 𝑊𝑔 represent 1 × 1 convolutions.

We continue to multiply the matrices H and E to obtain a matrix with dimensions 𝑐 × 𝑛 as the
self-attention map:

𝑞𝑖, 𝑗 = 𝑦(ℎ(𝑋𝑖)𝑒(𝑋 𝑗)), (3.6)

where 𝑞𝑖, 𝑗 = elements in the matrix Q and y = learning parameter, which is used to represent the
dependence of the network on the relationship between the long-distance regions. ℎ(𝑥 𝑗 ) = 𝑊ℎ𝑥𝑖 , where
𝑊ℎ is a 1 × 1 convolution.

The matrix Q is expanded into a characteristic graph with a 𝑐 × 𝑤 × ℎ structure as the output result
of the self-attention module, as shown in Figure 3. The input structure is a characteristic graph with a
𝑐 ×𝑤 × ℎ structure. Because the structure of the entire process characteristic graph remains unchanged,
the self-attention module can be directly added to the convolution network without changing its basic
structure.
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Figure 3. Calculation method for a self-attention characteristic graph.

3.3. The detector

The basic network of SSD was improved compared with VGG16. The full connection layer of the
original VGG16 was deleted, and the depth of the convolution layer was increased. In addition, four
convolution layers were added after the network to extract the network features. In the process of the
network moving forward, a series of prediction scores of bounding box sets and categories are generated
and then the final detection results are determined via nonmaximum suppression (NMS). As the depth
of the network increases, the size of the feature map decreases and the NMS layer collects the object
information at each scale; therefore, the default box generated by SSD is multiscale.

As shown in Figure 4, based on the SSD network, the self-attention module is added after the 4th,
7th, 8th, 9th, 10th and 11th layers. The output characteristic diagram of the original layer is taken
as the input of the self-attention module, and the corresponding feature map is the output. With the
deepening of the network, the scale of the generated feature map decreases, and different scale feature
maps produce different default boxes. NMS is used again to fuse the self-attention feature maps of the
different receptive fields, and the final detection result is calculated.

3.4. The tracker

This component of the algorithm must continuously track all the ship objects detected by the detector.
Multiple-object tracking (MOT) is used to track and extract the trajectories of multiple objects of interest
in a video sequence. As opposed to single-object tracking, MOT must identify different objects in each
frame. For new objects, it must generate new trajectories, and for objects that have left the field of view
of the camera, it must terminate the tracking of their trajectories.

The traditional multi-object tracking algorithm is based on correlation filtering, with its represen-
tative algorithm being a KCF-based multi-object tracking algorithm (Henriques et al., 2015) that uses
multithreading to track multiple single objects. The SORT (Bewley et al., 2016) algorithm proposed
in 2016 regards multi-object tracking as a data association problem. SORT is based on accurate object
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Figure 4. Improved SSD network.

Figure 5. DeepSORT algorithm processes.

detection, according to the location information in the detection box, and uses Kalman filtering and the
Hungarian algorithm to match the tracking objects of the front and back two frames of the image. How-
ever, because SORT ignores the surface characteristics of the object being detected, it is easy to lose an
object.

DeepSORT (Wojke et al., 2017) has been improved, combining object motion and surface feature
information and using the Mahalanobis and cosine distances as a measure of the similarity between
the motion and depth features within the detection box, while at the same time using the Hungarian
algorithm to cascade match the predicted track with the detections in the current frame, giving priority
to the objects that have not been lost. Then, use the minimum IOU threshold to filter the low confidence
matching to reduce error matching, and set a threshold to remove trackers that loop too many times. The
algorithm structure is shown in Figure 5.

3.5. Multimodal data fusion

(1) Perspective transformation

Perspective transformation is the process of projecting an image onto a new view plane by establishing
a projection matrix. The projection process is the product of the coordinate vector and the transformation
matrix, as

[𝑥 ′ 𝑦′ 𝑤′] = [𝑢 𝑣 𝑤]
⎡⎢⎢⎢⎢⎣
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤⎥⎥⎥⎥⎦ , (3.7)
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Figure 6. Perspective effect of a virtual grid in world coordinates on an image.

where u and v = coordinates of the original plane; the parameter 𝑤 = 1; the perspective matrix contains
the zoom, rotation and translation operations of the plane; and 𝑎33 = 1. The transformed coordinates are
represented as (𝑢′, 𝑣′), where 𝑢′ = 𝑥 ′/𝑤′ and 𝑣′ = 𝑦′/𝑤′. Entering this into Equation (3.7), we obtain
Equation (3.8). According to this formula, the parameters in the perspective matrix can be calculated
by simply identifying four sets of key points:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑢′ =

𝑎11 × 𝑢 + 𝑎21 × 𝑣 + 𝑎31 × 1
𝑎13 × 𝑢 + 𝑎23 × 𝑣 + 1 × 1

𝑣′ =
𝑎12 × 𝑢 + 𝑎22 × 𝑣 + 𝑎32 × 1
𝑎13 × 𝑢 + 𝑎23 × 𝑣 + 1 × 1

. (3.8)

In this paper, the principle of perspective transformation is used to project the image coordinate system
onto the longitude and latitude coordinate system. The process of transforming the pixel coordinate to
longitude and latitude coordinates is called the forward perspective, while the opposite is called the
reverse perspective. If we reverse perspective the plane of the river water, the effect is shown in Figure 6,
which demonstrates the reverse perspective effect of a square virtual grid with a side length of 0·00045
in the longitude and latitude coordinate system.

(1) Ship position estimation

The previous steps transform any pixel coordinate into longitude and latitude coordinates on the river
surface in an image. However, the longitude and latitude data in AIS are confirmed by the shipborne
GPS, which is often close to the bow or stern of the ship; therefore, there may be a gap of tens of meters
between the two sets of coordinates. This paper takes the ship centre as the estimated positioning point
and marks the pixel coordinates of the ship centre position corresponding to the river surface in the
video.

This is shown in Figure 7, where the point O on the long side of the detection box is the selected water
surface projection point. A ray is traced along the angle 𝜃 to the right boundary and intersects with the
boundary box at the point F, where 𝜃 is obtained by the DeepSORT tracker, such that the line segment
𝑂𝐹 can approximately represent the waterline of the ship. The position of B in world coordinates is

𝑃
′
𝐵 =

1
2
· (Transform(𝑃𝑂) + Transform(𝑃𝐹 )), (3.9)
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Figure 7. Estimation method for the ship GPS positioning points.

where P is used to represent the pixel coordinates of each point and Transform () represent the forward
perspectives. From point B along the vertical travel direction, a ray is traced into the detection box to
the ship positioning point S. The length of this line segment in world coordinates, 𝑙 ′𝐵𝑆 , is determined by
the length/width ratio of the ship, such that

𝑙 ′𝐵𝑆 =
1
2
· 𝛿 · Distance(Transform(𝑃𝑂),Transform(𝑃𝐹 )), (3.10)

where 𝛿 represents the length/width ratio, which for bulk carriers, tankers and river ships is approximately
1 : 6 and for yachts, cruise ships and tugboats is approximately 1 : 3; Distance () is used to calculate
the Euclidean distance between two points. On this basis, the position S in the world coordinate system
𝑃

′
𝑆 can be obtained as

𝑃
′
𝑆 = 𝑃

′
𝐵 + (𝑙 ′𝐵𝑆 · sin(𝛽), 𝑙 ′𝐵𝑆 · cos(𝛽)), (3.11)

where 𝛽 = azimuth of point S with respect to point B in world coordinates. Then, we can obtain the pixel
coordinates of the point 𝑆:

𝑃𝑆 = Transform′(𝑃′
𝑆), (3.12)

where Transform′() = reverse perspective.

(1) AIS signal prediction and data fusion

Next, we demarcate the object region within the longitude and latitude coordinate system. We receive
the dynamic AIS information in the object region and extract the Maritime Mobile Service Identity
(MMSI) number, longitude and latitude, direction and speed information. We track the latest signal
points of the ship according to the MMSI number, where 𝐷𝑚𝑚𝑠𝑖,𝑡 = {lon, lat, sog, cog}. The AIS signal
is updated only every few seconds and is out of sync with the video signal; therefore, it is necessary to
track the ship and continuously predict its position at every moment 𝐴𝑚𝑚𝑠𝑖,𝑡′ = {lon′, lat′} according to
𝐷𝑚𝑚𝑠𝑖,𝑡 , such that

lon′ = lon + (𝑡 ′ − 𝑡) · sog · sin(cog · 𝜋/180), (3.13)
lat′ = lat + (𝑡 ′ − 𝑡) · sog · cos(cog · 𝜋/180), (3.14)

Therefore, the position of AIS objects at each moment are expressed as 𝑃𝐴, the position of video
ship objects after the positive perspective transformation are expressed at the same moment as 𝑃′

𝑆 ,

two points constitute the vector 𝑅1 =
−−−−→
𝑃

′
𝑆𝑃𝐾 . Their forward directions are represented by the vector
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Table 1. Comparison of the accuracy of the test set detection results (%).

mAP River ships Bulk carriers Cruise ships Tankers Tugboats Yachts

SSD 82·83 86·43 82·48 89·93 71·26 90·82 76·03
SSD+ 87·53 91·54 89·60 97·78 73·58 95·61 77·08

𝑅2 = 𝑃
′
𝑆 +

−−−−−→
𝑃

′
𝑂𝑃

′
𝐹 , and we calculate the distance between the two as

𝑑 = Normalisation(𝑃′
𝑆 , 𝑃𝐴2) −

����𝑅1 · 𝑅2

𝑅1𝑅2

���� + 1, (3.15)

where Normalisation() represents a normalised function, the first half of the formula represents the
Euclidean distance between two points, and the second half represents the cosine similarity between the
vectors. The range of values of distance is [0, 2].

Using the near-matching mechanism, information pairs with smaller distances can be matched first.

4. Results

4.1. The experiment platform

The experimental scene selected in this paper is the Bund section of the Huangpu River, Yangtze
River channel, which is in the central region of Shanghai, shown in Figure 8. During the day, this area
accommodates many bulk carriers and river ships, which differ in distance and size. At night, the traffic
volume increases and there are more cruise ships and yachts on the water surface. Under the illumination
of the lights on both sides of the channel, the water surface is colourful and provides a variety of visual
conditions for passing ships.

We used a long focal distance network camera to receive a video signal with a resolution of 2550 ×
1440. The AIS signal receiving base station was set at the same location, and the video and AIS signals
were transmitted to the remote experimental platform via the network at the same time.

Using the computer vision method for ship detection and tracking, this experiment employed an
original, independently established dataset and a monitoring probe located on the river bank. Images
of the channel were collected from different shooting angles, under different weather conditions, and
for different time periods throughout the day, resulting in a total of 2,700 images, including daytime,
night-time, rainy weather and foggy weather, in which 6,330 ships were marked. The collected image
resolution was adjusted to 300 × 300, and the ship dataset was divided into six categories: river ships,
bulk carriers, cruise ships, tankers, tugboats and yachts. We manually distinguished the night images,
processed using the method in Section 3.1, and fed the processed images into the improved SSD–
DeepSORT frames for training. We used Python programming software, and the training environment
consisted of an Ubantu operating system, PyTorch 1.0 framework, TensorFlow 1.14 frame, GTX 1050ti
(2 blocks) GPU, and 10 G of memory, using the NVIDIA CUDA9.0 acceleration toolbox.

4.2. Experiment and analysis

As can be seen from Table 1, the average detection accuracy of the improved SSD model in the six ship
categories is 87·53, which is 4·7 higher than the original SSD model. The accuracy for the river ships,
which are the most frequent type of ship, increased by 5·11; the accuracy for the cruise ships improved
the most, by 7·85; and the accuracy increase for the yachts was smaller, only 1·05. Results show that the
detector proposed in this paper has a higher detection performance than that of the original method.

We used continuous frames to test the effect of tracing and to draw the ship trajectories. Figure 9
shows the object-tracking test results. According to the objects detected in Figure 9(a),
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Figure 8. Map representation of the experimental area.

Even in rainy weather, some small-sized ship targets can still be tracked effectively. Figure 9(b) shows
that the detection and tracking algorithm can still performs well in foggy weather. In Figure 9(c), the
ships and the water surface region are dim and the degree of discrimination is not large. However, the
trajectories of the objects indicate that the algorithm can solve the problem of ship object tracking at
night. Figure 9(d) indicates that the algorithm can also achieve good detection and tracking effects for
crowded ships.

After capturing the objects in the video, the angle ranging from 0° to 35° between the line of two
central pixels one second apart and the horizontal line is figured out. Then according to the method
described in Section 3.5, the real scene was modelled and coordinate matches between the video and
AIS objects were made. The result is shown in Figure 10.

To verify the effect of the algorithm on the information enhancement at different times, we selected
a video with a length of 1 h, selected a frame with an interval of 3·5 s to test and compiled statistics of
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Figure 9. Object tracking test results. (a) test in rainy weather. (b) test in foggy weather. (c) Test at
night. (d) Test of crowded ships.

the relevant indicators in each frame. These indicators included the total number of ships, the number
of tracked ships, the number of successful matches with AIS information and the number of correct
matches with AIS information. Then, all the indicators were summed over 12 time periods. Because the
detection difficulty for ships in day and night scenes is different, and the types of ships on the waterway
during these periods are different, 1 h each of day and night scenes was selected; the statistical results
for the day and night scenes are shown in Figure 11(a) and (b), respectively.

5. Discussion

As can be seen in Figure 11, the gap between the total number of ships and the number of tracked ships
is large, indicating that, in some cases, some ships fail to form a tracking trajectory because they are
distant and small, resulting in object tracking interruption or failure to track. In most time periods, the
gap between the number of tracked ships and the number of successful matches is significant, indicating
that, even if the ship has a greater probability of successfully matching the AIS signal under the premise
of successful tracking, in some cases, because of the gap between the AIS forecast position and the actual
position of the ship, the matching conditions cannot be met. The gap between the number of successful
matches and the number of correct matches is generally small, indicating that the AIS information for
the successful matches has a high accuracy.

An analysis of Table 2 reveals that, given a period of 1 h, the total number of ships at night is 2,319,
reflecting an increase of 525 compared with the same period during the day. This suggests that the traffic
flow on the waterway is significantly greater at night than during the day. According to the summation
calculation results for each indicator in Table 2, the ratios of the number of tracked ships to the total
number of ships during the day and at night are 87·0% and 83·4%, respectively, which indicates that
it is easier to lose or not track a ship at night. This is because there are more smaller yachts at night
and the self-lighting of these ships makes it difficult to separate them from the reflected light on the
water surface, leading to object leakage. The ratios of the number of successful matches to the number
of tracked ships during the day and night were 93·0% and 89·5%, respectively; the difference between
the two ratios is obvious. This is because the error in the ship signal position prediction at night makes
it more difficult to meet the matching conditions. The ratios of the number of correct matches to the
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Figure 10. AIS information visualisation. (a) During the day. (b) At night.

number of successful matches during the day and night were 96·6% and 94·4%, respectively, indicating
that the correct rate of matched information is lower at night than during the day because the ships are
denser at night, resulting in interference between the ships, which are closer to each other. The overall
accuracy of the algorithm is represented by the proportion of the number of correct matches to the
total number of ships; the accuracies during the day and night were calculated to be 78·2% and 70·4%,
respectively. The algorithm can visualise the AIS information for most ships in the surveillance video
and that the display effect is obviously better during the day than during the night.

As shown in Figure 10, the information displayed in the upper part of the ship detection box includes
the MMSI number, type, speed and course, where the type is derived from the detector and the rest of the
information is obtained from the AIS dynamic information and is constantly updated. However, since
the missed detection and occlusion of the ship will cause the temporary disappearance of the tracking
target, the cascade matching algorithm of DeepSORT can retain the missing track information for a

https://doi.org/10.1017/S0373463321000503 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463321000503


1350 Zishuo Huang et al.

Figure 11. Test results for each index during different periods. (a) 1 h during the day. (b) 1 h during the
night.

Table 2. Test results for each index for 1 h.

Result

Order Index Day Night

I1 All vessels 1794 2319
I2 Tracked ships 1560 1933
I3 Successful matches 1451 1729
I4 Correct matches 1402 1633
I5 I2/I1 (%) 87·0 83·4
I6 I3/I2 (%) 93·0 89·5
I7 I4/I3 (%) 96·6 94·4
I8 Accuracy: I4/I1 (%) 78·2 70·4

period of time, which requires the combination of the video frame rate and the ship moving speed to set
the optimal max_age. These are basic pieces of information concerning a ship that can help an observer
quickly understand the driving status of the ship and can be used to search for the ship data and voyage
information according to the ship MMSI number. Our method can enhance the display of the basic
ship information in a channel video. It can also be adapted to similar scenes, and further developments
can be applied to various channel video surveillance platforms to achieve the intelligent supervision of
waterways.

6. Conclusions

VTSs are key to ensuring the efficient navigation of ships. This paper makes full use of channel
surveillance video and AIS data to design a ship information tracking scheme. We standardise virtual
information with actual ships and superimpose a visual expression of AIS information on video images.
The algorithm was tested on day and night scenes, and the results show that the algorithm can be
effective in real scenes. This study proposes a constructive plan for an intelligent upgrade for river
shipping supervision.

This paper proposes a solution to the problem that the contrast between a ship object and background
is not strong in night images, which is helpful for detecting ordinary bulk ships, river vessels, tankers
and tugboats because of their special appearance in HSV images, but not for ship objects with higher
brightness; therefore, this method has local applicability in night scenes. In this paper, a popular object
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detection algorithm was selected and improved upon, and the advantages of the improved algorithm
were verified via comparative tests. Tracking tests were performed on both day and night scenes. The
application of computer vision principles and algorithms illustrates that artificial intelligence has broad
prospects for maritime applications. Based on the completion of image object positioning, this paper
designed a signal-fusion calculation method based on the perspective transformation, simulating the
positioning point of a ship, and predicting the AIS signal position that can be applied to a variety of
overlooking monitoring scenes. To achieve coordinate matching between the virtual information and a
ship object by combining the Euclidean distance and the cosine similarity between the multimodal data.

The establishment of the ship information tracking model in this paper needs to be adjusted according
to different video images. The target detection based on SSD can adapt to the change of the camera’s
focal length in a certain range, but the camera has different perspectives to collect the video of the
waterway; thus, it is necessary to consider the multiangle features of the ship when building the ship
data set. Under different focal lengths and angles of view, different coordinates of reference points
are also needed to establish the perspective transformation model, to ensure the basic conditions of
interrelation between objects.
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