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(e-mail: griselda.deelstra@ulb.ac.be)

Abstract

In this paper, we address the issue of determining the optimal contribution rate of a defined
benefit pension fund. The affiliate’s mortality is modelled by a jump process and the benefits

paid at retirement are function of the evolution of future salaries. Assets of the fund are invested
in cash, stocks, and a rolling bond. Interest rates are driven by a Vasicek model. The objective is
to minimize both the quadratic spread between the contribution rate and the normal cost, and

the quadratic spread between the terminal wealth and the mathematical reserve required to
cover benefits. The optimization is done under a budget constraint that guarantees the actuarial
equilibrium between the current asset and future contributions and benefits. The method of

resolution is based on the Cox–Huang approach and on dynamic programming.

1 Introduction

There mainly exist two categories of pension funds: the defined contribution pension

plan and the defined benefit pension plan. In the first one, the financial risk is born by

the affiliate – in case of poor performance of assets, his savings may be insufficient to

maintain his standard of living at retirement – whereas in a defined benefit pension

plan, the risk is born by the pension funds – whatsoever the return of assets, benefits

paid to pensioners are proportional to his salary. In this context, the choice of the

investment policy and of the contribution pattern is hence crucial for the agent

financing the fund.

Defined benefit pension plans have been extensively studied in the literature. Some

authors like Sundaresan and Zapatero (1997) argue that the investor should maxi-

mize the expected utility of the surplus of assets over the liabilities of the fund.

However, especially from the employer’s point of view, and it is the employer who

pays for the defined benefit pension plan of his employees, the important issue is to

find a contribution process which has small fluctuations and which leads as exactly as

possible to the value of the mathematical reserve necessary for covering the liabilities

promised in the pension plan. Therefore, a whole branch of papers has studied the

minimization of a loss function of contributions and the wealth to be obtained.

In the papers of, for example, Haberman and Sung (1994, 2005), Boulier et al. (1995),
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Josa-Fombellida and Rincon-Zapatero (2004, 2006), the fund manager keeps the

value of the assets as close as possible to liabilities by controlling the level of con-

tributions. Cairns (1995, 2000) has discussed the role of objectives in selecting an asset

allocation strategy and has analysed some current problems faced by defined benefit

pension funds. Huang and Cairns (2006) have studied the optimal contribution rate

for defined benefit pension plans when interest rates are stochastic.

The most novel features of our work are the modelling of the affiliates’ mortality

by a jump process, and the use of stochastic interest rates and salaries. Furthermore,

we minimize both contribution adjustments and a terminal surplus. By contribution

adjustment, we mean the spread between the sponsor’s contribution and the normal

cost ; whereas the terminal surplus is here defined as the difference between the

terminal wealth and the fair value of liabilities at retirement. The optimization is done

under a budget constraint that ensures the actuarial equilibrium between the current

assets and future deflated cash flows and with initial negative unfunded liabilities.

The objective function in the optimization problem further contains some weighting

expressing the importance given to the minimization of contribution adjustments and

of the terminal surplus. Numerical results will show that the optimal contribution

process depends on the weights corresponding to the minimization of the surplus

variation in comparison with the weight corresponding to the minimization of the

contribution fluctuations.

In this paper, we deal with the difficulty that the presence of stochastic salary and

mortality entails that the market is incomplete. The set of equivalent martingale

measures counts therefore more than one element and we need to fix the deflator used

by the insurer to value liabilities in order to apply the Cox and Huang (1989) mar-

tingale method, which is well adapted to deal with the presence of wealth constraints.

Furthermore, it does not require theMarkov properties of state processes and controls.

This approach was used in a dynamic Bayesian learning setting by Brennan and Xia

(2002) and translates in fact common practice of actuaries, who traditionally already

used security adjustments, which means that they already chose a certain probability

measure to work under. A more annoying implication of the incompleteness implied

by the salary and mortality risk is that the optimal target wealth process found by the

martingale method is not fully replicable. However, it is possible to determine the

investment strategy replicating at best this solution by using the dynamic programming

principle as in Hainaut and Devolder (2007a,b), which are both studies of asset

allocation of deterministic insurance liabilities with a stochastic mortality risk.

The outline of this paper is as follows. Sections 2 and 3 respectively present the

financial market and the defined benefit pension plans. In Section 4, the form of the

deflator is discussed. Section 5 introduces the optimization problem, and, in Section 6,

we propose a solution. Section 7 contains a numerical illustration and the last section

concludes.

2 The financial market

In this section, we introduce the market structure of our model and define the

dynamics of interest rates and asset values. The uncertainty involved by the financial
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market is described by a two-dimensional standard Brownian motion WPf

t =
(Wr,P f

t ,WS,P f

t )k defined on a complete probability space (V f, Ff, Pf). Ff is the filtration

generated by WPf

t

Ff= Ff
t

� �
t
=s Wr,P f

u ,WS,P f

u

� �
:uft

n o
:

Pf represents the historical financial probability measure. The two Wiener processes

Wr,P f

t and WS,P f

t are independent. The financial market is complete and there exists

therefore a unique equivalent measure under which the discounted prices of assets are

martingales. This risk neutral measure is denoted by Qf. The assets of the defined

benefit pension fund are invested in cash, rolling bonds, and stocks. The return of

cash is the risk free rate rt and is modelled by an Ornstein–Uhlenbeck process

(Vasicek model)

drt=a:(bxrt):dt+sr:dW
r,P f

t : (1)

The constant parameters a, b, and sr are respectively the speed of mean reversion, the

level of mean reversion, and the volatility of rt. The Vasicek model provides a con-

venient and tractable way for modelling interest rates, even if there is a small prob-

ability of having negative interest rates. Let lr be a negative constant being the

market price of risk and so implying the dynamics of rt under the risk neutral measure

Qf. Indeed, under Qf the risk free rate is the solution of the following SDE (Smart

Development Environment)

drt=a:
�
bxsr:

lr
a|fflfflfflfflffl{zfflfflfflfflffl}

bQ

xrt

�
:dt+sr: dWr,P f

t +lr:dt
� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

dW
r,Q f

t

, (2)

where W
r,Qf

t is a Wiener process under Qf.

The second category of assets is a rolling bond of maturity K whose price is

denoted Rt
K. This bond is a zero coupon bond continuously rebalanced in order to

keep a constant maturity and its price obeys the dynamics

dRK
t

RK
t

=rt:dtxsr:n(K): dWr,P f

t +lr:dt
� �

=rt:dtxsr:n(K):dW
r,Qf

t

where n(K) is a function of the maturity K

n(K)=
1

a
: 1xexa:K
� �

:

Note that the risk premium of the rolling bond is denoted by nR=xsr.n(K).lr.

The last kind of assets available on the financial market is a stock. Its price process

St is modelled by a geometric Brownian motion and is correlated with the interest

rate fluctuations

dSt

St
=rt:dt+sSr: dWr,P f

t +lr:dt
� �

+sS: dWS,P f

t +lS:dt
� �

=rt:dt+sSr:dW
r,Qf

t +sS:dW
S,Qf

t :

Optimal funding of defined benefit pension plans 33

https://doi.org/10.1017/S1474747210000016  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1474747210000016


The constant parameters sSr, sS, and lS denote respectively the correlation between

stocks and the risk free interest rates, the embedded volatility of the stocks, and the

market price of risk parameter. The stock risk premium is defined by nS=sSr.lr+
sS.ls. The correlation between the share price process and interest rates is crucial in

the context of long-term asset-liability management. This point was highlighted in the

work of Wilkie (1986, 1995) in his discrete-time stochastic investment model. Chan

(1997) has developed a continuous time version of this stochastic investment model.

3 The pension fund

The pension plan considered in this work provides benefits to affiliates that are

defined in terms of a member’s final salary. For the sake of simplicity, we assume that

the pension fund counts initially nx members of the same age x and earning the same

salary, denoted (At)t. All members retire at the age x+T and, in case of death, no

benefits are paid. The evolution of the individual salary is stochastic and correlated to

the financial market. More precisely, we suppose that the dynamics of an affiliate’s

salary are defined by the following SDE

dAt

At
=mA(t):dt+sArdW

r,P f

t +sASdW
S,P f

t +sA:dW
A,Pa

t (3)

where mA(t) is the average growth of the salary and WA,Pa

t is a Wiener process that

represents the intrinsic randomness of the salary and is independent from Wr,P f

t and

WS,P f

t . As this salary risk is not traded, WA,Pa

t is a source of incompleteness. We will

come back to this point in the next section. The constants sAr and sAS model the

correlation of the salary with respectively interest rates and stocks; and sA denotes

the embedded wage volatility. WA,Pa

t is defined on a probability space (Va, Fa, Pa),

where Fa is the filtration generated by WA,Pa

t .

Benefits are defined in terms of the salary at retirement date. Each pensioner will

receive a continuous annuity, whose rate B is a fraction, a of the last wage

B=AT:a:

These benefits are financed during the accumulation phase. ct is the contribution rate

made by the sponsor to the funding process at time t.

The fair value of liabilities will be discussed in the next section. We now detail

the jump process, modelling the mortality of the covered employees. The mortality

process is defined as in Møller (1998) on a probability space (Vm, Fm, Pm) and is

assumed to be independent from the filtration generated byWr,P f

t ,WS,P f

t ,WA,Pa

t . The

remaining lifetimes of the affiliates are exponential random variables, denoted T1,

T2, …,Tnx and their hazard rate (namely the mortality rate), at time t, is given by

m(x+t). Nt is the total number of deaths observed till time t

Nt= ;
nx

i=1
I(Tift)

where I(.) is an indicator function. The filtration Fm is generated by Nt and the

expectation of the infinitesimal variation of Nt verifies

E dNtjFm
tx

� �
=(nxxNtx):m(x+t):dt:
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As the mortality is not traded in our model, this is a second source of incompleteness.

The compensated process Mt of the mortality process is defined as follows

Mt=Ntx
Z t

0
(nxxNux):m(x+u):du

and Mt is a martingale under the historical measure Pm. The expected number of

survivors under Pm is equal to the current number of survivors times a survival

probability

E (nxxNs)jFm
t

� �
=E ;

nx

i=1
I(Ti>s)jFm

t

� �
= ;

Ti>s

E I(Ti>s)jFm
t

� �
=(nxxNt): exp x

Z s

t

m(x+u):du

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sxt px+t

:

sxt px+t is the actuarial notation for the probability that an individual of age x+t

survives till age x+s.

4 The deflator and the fair value of liabilities

Let (V, F, P) be the probability space resulting from the product of the financial,

wage, and mortality probability spaces

V=V frVarVm F=Ff � Fa � Fm _N P=PfrParPm

where the sigma algebra N is generated by all subsets of null sets from Ff�Fa�Fm.

The prices of pension fund liabilities are defined on (V, F, P). In this setting, the

market of pension fund liabilities is incomplete, owing to the presence of two un-

hedgeable risks : the salary risk and the mortality risk. It entails that prices may differ

from one insurance company to another. The next subsections describe the insurer’s

deflator that is here composed of three elements called the financial, wage, and ac-

tuarial deflators, and is an extension of the deflators used in Hainaut and Devolder

(2007b).

4.1 Financial deflator

The completeness of the financial market entails that there exists one unique

equivalent measure, namely the risk neutral measure, under which the discounted

prices of assets are martingales. This measure is denoted Qf and is defined by the

following Radon–Nikodym derivative

dQf

dPf

� �
t

= exp x
1

2
:

Z t

0
jjL fjj2:dux

Z t

0
L f:dWPf

u

� �

where L f=(lr, lS). The dynamics of the assets under Qf have been discussed

in Section 2. The financial deflator Hf(t, s) at time t for a cash flow to be paid at

time tfs is equal to the product of the discount factor and of the
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Radon–Nykodym derivative

Hf(t, s)=
exp x

R s
0 ru:du

� �
: dQ f

dP f

� �
s

exp x
R t
0 ru:du

� �
: dQ f

dP f

� �
t

= exp x
Z s

t

ru:dux
1

2
:

Z s

t

jjL fjj2:dux
Z s

t

L f:dWPf

u

� �
:

4.2 The wage deflator

As the intrinsic salary risk is not traded, the market of pension fund liabilities is

incomplete, and for any Fa adapted process la,t, an equivalent probability measure

Qa, la can be defined by the following Radon–Nikodym derivative

dQa, la

dPa

� �
t

= exp x
1

2
:

Z t

0
jla, uj2:dux

Z t

0
la, u:dW

A,Pa

u

� �
and by Girsanov Theorem underQa, la , dWA,Qa, la

u =dWA,Pa

u +la, u:du is a Fa-Brownian

motion. For the sake of simplicity, la,u is assumed to be constant and denoted la in

the sequel. The dynamics of the salary process under QfrQa, la is

dAt

At
= mA(t)xsAr:lrxsAS:lSxsA:lað Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mQ
A
(t)

:dt+sArdW
r,Qf

t +sASdW
S,Qf

t +sA:dW
A,Qa, la

t

(4)

and Ha(t, s) denotes the wage deflator at instant t, for a payment occurring at time

sot

Ha(t, s)=

dQa, la

dPa

� �
s

dQa, la

dPa

� �
t

= exp x
1

2
:

Z s

t

jla, uj2:dux
Z s

t

la, u:dW
A,Pa

u

� �
:

Notice that the discount factor does not appear in the definition of Ha(t, s) since it

was introduced when defining Hf(t, s).

4.3 The actuarial deflator

The second source of incompleteness is the mortality risk. For any Fm-predictable

process hs, such that hs>x1, an equivalent actuarial measure Qm,h is defined by a

solution of the SDE

d
dQm, h

dPm

� �
t

=
dQm, h

dPm

� �
t

:ht:d Ntx
Z t

0
nxxNuxð Þ:m(x+u):du

� �

=
dQm, h

dPm

� �
t

:ht:dMt

(5)

and we have the property that the process Mt
m,h defined by

Mm, h
t =Ntx

Z t

0
nxxNuxð Þ:m(x+u):(1+hu):du
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is a martingale under Qm,h. We adopt the notation lN,u=(nxxNux).m(x+u) for the

intensity of jumps. The solution of the SDE (5) is (for details, see Duffie, 2001:

Appendix I on counting processes)

dQm, h

dPm

� �
t

=
Y
Tift

1+hTi
ð Þ: exp x

Z t

0
hu:lN, u:du

� �

= exp

Z t

0
ln 1+huð Þ:dNux

Z t

0
hu:lN, u:du

� �
and Hm(t, s) denotes the actuarial deflator at instant t, for a payment occurring at

time sot, defined by

Hm(t, s)=

dQm, h

dPm

� �
s

dQm, h

dPm

� �
t

= exp

Z s

t

ln (1+hu):dNux
Z s

t

hu:lN, u:du

� �
: (6)

Under Qm,h, the expected number of survivors at time s is equal to the number of

survivors at time t multiplied by a modified probability of survival sxtpx+t
h

EQm, h

(nxxNs)jFm
t

� �
=(nxxNt): exp x

Z s

t

m(x+u):(1+hu):du

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sxt p
h
x+t

:

In the sequel of this work, we pay attention to a constant process hu=h. The reason

motivating this choice is that, in this particular case, some interesting analytic results

can be presented. Remark that if h>0, h can be seen as a security margin against an

adverse evolution of the mortality or as the price of mortality risk.

4.4 The deflator and the price of liabilities

The deflator used to price liabilities, writtenH(t, s) is in our settings the product of the

financial, wage, and mortality deflators

H(t, s)=
exp x

R s
0 ru:du

� �
exp x

R t
0 ru:du

� � : dQ f

dP f

� �
s

dQ f

dP f

� �
t

:

dQa, la

dPa

� �
s

dQa, la

dPa

� �
t

:

dQm, h

dPm

� �
s

dQm, h

dPm

� �
t

: (7)

The pricing of pension fund liabilities is hence done under a probability measure Q,

equivalent to P, which is equal to the product ofQf,Qa, andQm.Q is thus defined by

the deflator H(t, s), which depends on the particular choice of h and la, which are

decided by the insurer and depend on the way he evaluates the mortality risk and

salary risk.

Remark that the expectation of the deflator H(t, s) is equal to the price of a zero

coupon bond paying one unit at time s, denoted B(t, s)

B(t, s)=E H(t, s)jFtð Þ

=EQ e
x
R s

t
ru:dujFt

� �
:
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The analytic expression of B(t, s) is recalled in Appendix A. The fair value at time t

of the liabilities at the date of retirement, denoted Lt, is defined as the expectation of

the deflated value of future contributions and benefits. Lt will be used in the sequel to

state the optimization problem. In particular, if Tm is the maximum time horizon of

the insurer’s commitments, Lt is equal to

Lt=E x
Z T

t

H(t, s):cs:ds+
Z Tm

T

H(t, s): nxxNsð Þ:B:dsjFt

� �
:

Generally, the minimum value of asset that the fund must hold to ensure his solvency

is set larger than or equal to Lt (this minimum depends evidently on the local

regulation).

5 The optimization problem

As motivated in the introduction, the insurer’s objective is to minimize the quadratic

spread between the contribution rate and a constant target one (namely the normal

cost) and to minimize the deviation of the terminal target asset from the mathemat-

ical reserve required to cover benefits at the date of retirement. The normal cost,

denoted NC, is the contribution rate allowing equality between expected assets and

liabilities under the chosen risk neutral measure Q

NC=
EQ
�
e
x
R T

0
ru:du:LTjF0

�
EQ
�R T

0 e
x
R s

0
ru:du:dsjF0

�= E H(0,T):LTjF0ð Þ
E
�R T

0 H(0, s):dsjF0

� :
The market being incomplete, the normal cost depends on the safety margins, h and

la, which are set by the insurer in deflators (7), to appraise the mortality and salary

risks. The target total asset is denoted ~XXT. Following Brennan and Xia (2002), we will

use the Cox–Huang method and minimize first with respect to the contributions and

the associated terminal target wealth. As done by Josa-Fombellida and Rincon–

Zapatero (2004), we define the value function as follows

V(t, x, n, a)=

min
ct, ~XXT2At(x)

E

Z T

t

u1: csxNCð Þ2:ds+u2:( ~XXTxLT)
2 j ~XXt =x, Nt=n, At=a|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ft

2
4

3
5, (8)

where u1 and u2 are constant weights. We draw the attention of the reader on the fact

that the specification (8) implies that the fund manager assigns the same importance

to over and under deviations of the fund’s assets and contributions from their re-

spective targets. This kind of objective is particularly well adapted if a fund manager

considers that a low volatility of contribution rates and terminal wealth is a sign of

good management. The contribution rate and the target wealth are chosen in a set

At(x) which is delimited by a constraint ensuring the actuarial equilibrium between

future deflated cash flows and the current asset x.
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At(x)=
�

csð Þs2[t,T] , ~XXT

� �
such that E

�
x
Z T

t

H(t, s):cs:ds+H(t,T): ~XXT jFt

�
fx

	
: (9)

In the sequel, this constraint is called the budget constraint. However, as the market is

incomplete, the fact that ~XXT belongs to At(x) does not guarantee that it is replicable

by an adapted investment policy. This is the reason why we use the terminology of

‘target ’ terminal wealth, denoted by ~XXT. This point is detailed in Subsection 6.2, in

which we introduce also a replicable wealth XT at time of retirement.

6 The martingale solution

6.1 Optimal contribution rate and wealth

In this section, we solve the optimization problem (8)–(9). Let ytsR+ be the

Lagrange multiplier associated to the budget constraint at instant t. The Lagrangian

is defined by

L t, x, n, a, csð Þs, ~XXT, yt
� �

=E

Z T

t

u1: csxNCð Þ2:ds+u2:( ~XXT xLT)
2jFt

� �

xyt: xxE x
Z T

t

H(t, s):cs:ds+H(t,T): ~XXT jFt

� �� �
:

(10)

A sufficient condition to obtain an optimal contribution rate (cs*)ss[t,T] and an opti-

mal target wealth ~XXT
* is the existence of an optimal Lagrange multiplier yt*>0 such

that the couple (cs*)s2[t,T], ~XXT
*

� �
is a saddle point of the Lagrangian. The value func-

tion may therefore be reformulated as

V(t, x, n, a)=supyt2R+ inf
(cs)s, ~XXT

L t, x, n, a, csð Þs, ~XXT, yt
� � !

=supyt2R+ ~VV(t, x, n, a, yt)

(11)

and

V(t, x, n, a)= ~VV(t, x, n, a, yt*):

It can be proved under technical conditions (see Karatzas and Shreve, 1998, for

details) that the optimal contribution rate and target wealth are

cs*=yt*:H(t, s):
1

2:u1
+NC (12)

~XXT*=xyt*:H(t,T):
1

2:u2
+LT: (13)

Formally, cs* and ~XXT
* are obtained by offsetting the derivatives of equation (10) with

respect to cs and XT. The optimal Lagrange multiplier, yt*, is such that the budget

constraint (9) is binding

yt*=
E H(t,T):LTjFtð ÞxxxNC:

R T
t E H(t, s)jFtð Þds

1
2:u1

:
R T
t E H(t, s)2jFt

� �
ds+ 1

2:u2
:E H(t,T)2jFt

� � : (14)
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The numerator of (14) is precisely the part of the benefits that are not yet financed:

the expected fair value of reserves less the current asset and less the normal cost times

a financial annuity. This quantity is called unfunded liabilities in the sequel of this

paper and noted as follows

ULt=E H(t,T):LTjFtð ÞxxxNC:

Z T

t

E H(t, s)jFtð Þds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�aat,T

, (15)

where �aat,T is a financial annuity of maturity Txt. The Lagrange multiplier, being

positive, implies that the unfunded liabilities must remain positive. Therefore, ac-

cording to equation (13), the optimal target wealth at the date of retirement is lower

than the mathematical reserve required to cover the liabilities at that date ( ~XXT
*fLT).

The positivity of the Lagrange multiplier also implies that, according to equation

(12), the optimal contribution rate is always higher that the normal cost. We draw the

attention of the reader to the fact that those observations are valid only if we can

replicate the optimal target wealth ~XXT
* by an adapted investment policy. However, in

practice, that is not the case given that ~XXT
* depends on LT, and then on mortality and

wage risks that are not hedgeable. In the next section, we will propose an investment

strategy, replicating at best the optimal wealth process ~XXT
*. In the example proposed

in Section 7, we will see that this strategy may lead to negative unfunded liabilities

(a surplus of assets above liabilities) and hence to a negative Lagrange multiplier. In

this case, it means that the optimal target wealth ~XXT
* minimizes the value function

under the equality constraint

E x
Z T

t

H(t, s):cs:ds+H(t,T): ~XXT jFt

� �
=x

rather than under the initial inequality constraint defined in equation (9). For an

equality constraint, the Lagrange multiplier may indeed be negative or positive.

If we insert (12) and (13) in the objective (8), the value function is rewritten in terms

of unfunded liabilities

V(t, x, n, a)=
UL2

t

1
u1
:
R T
t E H(t, s)2jFt

� �
ds+ 1

u2
:E H(t,T)2jFt

� � (16)

The following propositions detail the expectations intervening in the calculation of

the Lagrange multiplier (14) and of the value function (16).

Proposition 1. Under the assumptions that interest rates follow (1), that the deflator is

defined by (7), and that the process defining the actuarial measure Qm,h is constant,

ht=h with h>x1
2, the conditional expectation of the square of the deflator is equal to

E H(t, s)2jFt

� �
= exp

Z s

t

l2r+l2S+l2a
� �

:du

� �
,

exp xb
~PP:(sxt)+n(sxt):(b

~PPx2:rt)x
s2
r

a
:n(sxt)2

� �
,

;
nxxNt

n=1

(nxxNt)!

(nxxNtxn)! n!
kn: sxtp

2h
x+t

� �nxxNtxn
: 1xsxtp

2h
x+t

� �n� �
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where b
~PP and k are constant and defined by

b
~PP=2:bx4:

sr:lr
a

x2:
s2
r

a2

k=
(1+h)2

(1+2:h)

sxt px+t
2h is a probability of survival under a modified measure of probability

sxt p
2h
x+t= exp x

Z s

t

m(x+u):(1+2:h):du

� �
and n(sxt) is a positive decreasing function, null when s=t

n(sxt)=
1xexa(sxt)

a
(17)

The proof is provided in Appendix B.

Proposition 2. The expectation of the deflated value of liabilities, at time tfT, is

E H(t,T):LTjFtð Þ=(nxxNt):a:

Z T

t
sxt p

h
x+t:E

Q e
x
R T

t
ru:du:AT:B(T, s)jFt

� �
:ds

where

EQ e
x
R T

t
ru:du:AT:B(T, s)jFt

� �
=At:e

R T

t
m
Q
A
(u):du

:B(t, s):e
sAr:sr

a :x(Txt)+n(sxt)xn(sxT)ð Þ
� �

and n(sxt) is defined by equation (17).

The proof is detailed in Appendix C. Note that, in the example detailed in Section 7,

the integrals
R T
t E H(t, s)2jFt

� �
ds and

R T
t sxt p

h
x+t:E

Q
�
e
x
R T

t
ru:du:AT:B(T, s)jFt

�
:ds are

computed numerically.

6.2 The best replicating strategy

We now turn to the issue that the optimal target wealth ~XX *T is in general not hedge-

able due to the incompleteness of the market caused by mortality and salary risk.

From the previous section, we recall that ~XX *T depends on LT, which has the following

expression

LT=E

Z Tm

T

H(T, s): nxxNsð Þ:B:dsjFT

� �

= nxxNTð Þ:a:AT:

Z Tm

T
sxT p

h
x+T:B(T, s):ds:

As LT is a function both of the mortality NT and of the salary AT, which are not

replicable, it is easily seen that ~XXT
* is not hedgeable. However, it is possible to find the

investment strategy replicating at best this process. We refer the interested readers to

Hainaut and Devolder (2007a), in which two conceivable ways to establish the best
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investment policy are studied in order to determine the optimal asset allocation in

case of pure endowment insurance contracts. Our reasoning in this paper is based on

dynamic programming (see e.g. Fleming and Rishel 1975 for details) and is also

applied in Hainaut and Devolder (2007b), which is a study of the dividend policy

and the asset allocation of a portfolio of life insurance policies with predetermined

contributions and benefits.

Let At
p(x) be the set of replicable wealth processes. If (pt

S, pt
R) denote respectively

the fraction of the wealth invested in stocks and rolling bonds, At
p(x) is defined as

follows

Ap
t (x)=

�
csð Þs2[t,T] , XT

� �
j9 (pS

t )t (p
R
t )t Ftxadapted::

e
x
R T

t
rs:ds:XT=x+

Z T

t

e
x
R s

t
ru:du:cs:ds

+
Z T

t

e
x
R s

t
ru:du:pS

s :Xs:dSs+
Z T

t

e
x
R s

t
ru:du:pR

s :Xs:dR
K
s

	
:

By definition, the set At
p(x) is included in At(x) and the dynamics of the replicable

wealth process are such that

dXt= rt+pS
t :nS+pR

t :nR
� �

:Xt+ct
� �

:dt+pS
t :sS:Xt:dW

S,P f

t

+ pS
t :sSrxpR

t :sr:n(K)
� �

:Xt:dW
r,P f

t :

For a small step of time Dt, the dynamic programming principle states that

V(t, x, n, a)=E

Z t+Dt

t

u1: c
*
sxNC

� �2
:ds+V t+Dt, ~XX

*

t+Dt ,Nt+Dt,At+Dt

� �
j Ft


 �

= inf
ct, ~XXt2At(x)

E

Z t+Dt

t

u1: csxNCð Þ2:ds+V t+Dt, ~XXt+Dt,Nt+Dt,At+Dt

� �
j Ft


 �
:

(18)

The process ~XXt
*

� �
t
being the optimal target wealth (13), any other couple

��
ct*
�
t
,XT

�
2Ap

t (x) � At(x) verifies the inequality

V(t, x, n, a)fE

Z t+Dt

t

u1: cs*xNCð Þ2:ds+V t+Dt,Xt+Dt,Nt+Dt,At+Dtð Þ j Ft


 �
: (19)

A proof of the dynamic programming principle may be found in Yong and Zhou

(1999, page 180, theorem 3.3). The closest replicable process to ~XXt
*

� �
t
is the one

minimizing the right-hand term of the inequality (19). Indeed, the value function

V(t, x, n, a) is quadratic and then locally Lipschitz

8O � R, 9CO 2 R+ j x1, x2 2 O V(t, x1, n, a)xV(t, x2, n, a)j jfCO:jx1xx2j
And if t+Dt is the first exit time of ~XX *t+Dt or Xt+Dt from an interval O round x, the

difference between the right-hand sides of (18) and (19) is bounded around x, as

follows

0fE V t+Dt,Xt+Dt,Nt+Dt,At+Dtð ÞxV t+Dt, ~XX *t+Dt,Nt+Dt,At+Dt

� �
j Ft

� 
,

fE CO: Xt+Dtx ~XX *t+Dt

�� �� j Ft

� 
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where CO is constant. Minimizing E Xt+Dtx ~XX *t+Dt

�� �� j Ft

� 
is therefore equivalent to

minimizing the right-hand term of (19). The Ito’s lemma for jump processes (see for

e.g. Øksendal and Sulem 2004, chapter 1), leads to the following expression for the

expectation of the value function at time t+Dt

E V(t+Dt,Xt+Dt,Nt+Dt,At+Dt)jFtð Þ=

V(t, x, n, a)+E

Z t+Dt

t

Gp(s,Xs,Ns,As):dsjFt

� �

+E

Z t+Dt

t

V(s,Xs,Ns,As)xV(s,Xs,Nsx,As)ð Þ:dNsjFt

� �
where Gp(s, Xs, Ns, As) is the generator of the value function

Gp(s,Xs,Ns,As)=Vs+a:(bxrs):Vr+mA(s):As:VA

+
1

2
:s2

r :Vrr+
1

2
:A2

s :(s
2
A+s2

Ar+s2
AS):VAA+sAr:As:sr:VAr

+Xs:As: sAS:p
S
s :sS+sAr: p

S
s :sSrxpR

s :sr:n(K)
� �� �

:VXA

+ rs+pS
s :nS+pR

s :nR
� �

:Xs+cs*
� �

:VX+Xs:sr: p
S
s :sSrxpR

s :sr:n(K)
� �

:VXr

+
1

2
:X2

s : pS
s :sS

� �2
+ pS

s :sSrxpR
s :sr:n(K)

� �2� �
:VXX:

Vs, VX, Vr, VA, VXX, VXr, VXA, Vrr, VAA are partial derivatives of first and second

orders with respect to time, fund, wage, and interest rate. When Dt tends to zero,

minimizing the right-hand term of the inequality (19) is equivalent to minimizing the

generator Gp(s, X, Ns, As). The investment strategy replicating at best the process ~XXt*

is then obtained by deriving Gp(t, Xt, Nt, At) with respect to pt
s and pt

R

pS*
t = x

nR:sSr

s2
S:sr:n(K)

x
nS
s2
S

� �
:
VX

VXX
:
1

Xt
x

sAS

sS
:
VXA

VXX
:
At

Xt
(20)

pR*
t = x

nS:sSr

s2
S:sr:n(K)

x
nR

s2
r :n(K)

2 : 1+
s2
Sr

s2
S

� �� �
:
VX

VXX
:
1

Xt

+
sAr

sr:n(K)
x

sAS:sSr

sS:sr:n(K)

� �
VXA

VXX
:
At

Xt
+

1

n(K)
:
VXr

VXX
:
1

Xt
:

(21)

As the value function is known (see expression (16)), it suffices to derive it with respect

to Xt, rt, and At to obtain the optimal part of the funds invested in stocks and bonds

pS*
t =

nR:sSr

s2
S:sr:n(K)

+
nS
s2
S

� �
:
ULt

Xt
+

sAS

sS
:
E H(t,T):LTjFtð Þ

Xt

pR*
t =

nS:sSr

s2
S:sr:n(K)

+
nR

s2
r :n(K)

2 : 1+
s2
Sr

s2
S

� �� �
:
ULt

Xt

x
sAr

sr:n(K)
x

sAS:sSr

sS:sr:n(K)

� �
:
E H(t,T):LTjFtð Þ

Xt

+
1

n(K)
:
VXr

VXX
:
1

Xt|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
correction term

:

(23)
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The correction term has no simple analytic expression

1

n(K)
:
VXr

VXX
:
1

Xt
=

1

n(K):Xt
: NC:

Z T

t

@B(t, s)

@rt
:dsx

@E H(t,T):LTjFtð Þ
@rt

� �

+
ULt

n(K):Xt
:

1
u1
:
R T
t

@E H(t, s)2jFtð Þ
@rt

ds+ 1
u2
:
@E H(t,T)2jFtð Þ

@rt
ht

� �
1
u1
:
R T
t E H(t, s)2jFt

� �
ds+ 1

u2
:E H(t,T)2jFt

� �� �2

where

@B(t, s)

@rt
=xn(sxt):B(t, s)

@E H(t, s)2jFt

� �
@rt

=x2:n(sxt):E H(t, s)2jFt

� �
@E H(t,T):LTjFtð Þ

@rt
=

x(nxxNt):a:

Z T

t

sxtphx+s:n(Txs):EQ e
x
R T

t
ru:du:AT:B(T, s)jFt

� �
:ds:

An interesting characteristic of this correction term is that it tends to zero when tpT.

Indeed, all terms intervening in the numerator of the correction term are integrals or

function of n(Txt), which tend to zero when tpT.

The economic significance of the investment strategy proposed may be summarized

as follows:

(1) In a first stage, we define an optimal wealth process ~XXt*
� �

t
that is not replicable by

an adapted investment strategy, given that it depends upon the mortality and

wages, which are not traded in our model (see equations (13) and (14)).

(2) In a second stage, we propose a strategy of investment/contribution as close as

possible to the optimal solution. As close as possible, in the sense that the wealth

process (Xt)t minimizes locally E Xt+Dtx ~XX *t+Dt

�� �� j Ft

� 
.

Note that Nielsen (2005) has adopted a similar approach. He has first solved by the

martingale approach a problem of utility maximization, in an incomplete market, due

to the presence of mortality. The optimal wealth process found in this way is, as in

our case, not replicable. Nielsen has next calculated the local risk minimizing strategy

following at best this target wealth process.

7 Example

We consider a male population, age 50, of n50=10000 affiliates, and who earns a wage

At=0 of 2500 Euro. We assume that all individuals retire at 65 years and receive till

their death a continuous annuity equal to a=20% of their last salary AT. Market

parameters are presented in the Table 1.

The normal cost is set to

NC=
E H(0,T):LTjF0ð Þ

�aa0,T
=26:763 Eur:
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According to equation (16), this is the normal cost, minimizing the value function at

time t=0 (indeed, it implies that ULt=0=0 since the initial wealth is null at t=0).

Three choices of weights u1, u2 are tested. In the first test, the asset manager seeks

mainly to limit the volatility of the contribution rate : u1=1, u2=0.1. In the second

case studied, u1 and u2 are set equal to one. In the last test, the aim is mainly to limit

the volatility of the terminal surplus : u1=1, u2=10. We have opted for Monte Carlo

simulations. Five thousand sample paths are generated for each test and the dis-

cretization step of time Dt is set to one year (contributions and asset allocation are

both changed once a year). In Figures 1 and 2, we compare respectively the average

contribution rates and the average negative unfunded liabilities (xULt, which is

equal at time T to the terminal surplus, see equation (15)). These negative unfunded

liabilities may be seen as the surplus of assets owned by the fund.

The unfunded liabilities are on average negative. According to equation (14), it

means that on average the Lagrange multiplier is negative and that the investment/

contribution strategy is suboptimal for the optimization problem (8). In fact, it means

that the optimal target wealth ~XX *T minimizes the value function under the equality

constraint

E x
Z T

t

H(t, s):cs:ds+H(t,T): ~XXT jFt

� �
=x

rather than under the initial inequality constraint defined in equation (9). For an

equality constraint, the Lagrange multiplier may indeed be negative or positive.

As mentioned in Section 6.1, this results from the fact that the proposed investment

strategy does not perfectly replicate the optimal wealth process ~XX *t , equation (13),

owing to the presence of unhedgeable risks. As mentioned earlier, the followed

strategy is however as close as possible to the non-replicable optimal one, solution (8).

For each set of weights, the contribution rate decreases on average. The higher is

the weight u2 granted to minimize the terminal surplus variation, the higher is the

decrease of the contribution rate and the lower is the average negative unfunded

liabilities.

In Figure 3 depicts the evolution of the average asset allocation for u1=1 and

u2=0.1 as obtained in equations (22) and (23). Over the first nine years, huge amounts

of cash are borrowed and invested in stocks and bonds. This short position in cash

Table 1. Parameters

a 12.72% sSR x0.10%
b 3.88% nS 5.35%
sr 1.75% mA 2.00%

lr x2.36% sAr 2.00%
rt=0 2.00% sAS 2.00%
K 8 years mA

Q 2.00%

nR 2.77% sA 5.00%
lS 34.94% la x4.54%
sS 15.24% h 0.0
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is reduced with time. One year before T, the asset allocation is as follows: 68.3% in

bonds, 21.3% in cash, and 10.4% in stocks. We also observe that weights mainly

influence the contribution rate and the terminal surplus : the average asset allocation

for the two other sets of weights are nearly identical to the one displayed in Figure 3.

Fig. 1. Contribution rates

Fig. 2. xULt (% of the fund)
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8 Conclusion

In this paper, we have investigated a model for defined benefit pension plans, which

incorporates stochastic interest rates, mortality, and salary. In particular, we have

studied the problem of pension funds from the perspective of an asset manager who

wishes to minimize the deviation of contributions and terminal surplus from target

ones, under a budget constraint and using a quadratic criterion.

The presence of stochastic mortality and salary entails that the market of pension

fund liabilities is incomplete and the set of deflators used to valuate liabilities counts

more than one element. In order to apply the Cox and Huang martingale method,

it is then necessary to choose a deflator that reflects the pricing preferences of the fund

manager. This assumption is not really impeding and corresponds to the actuarial

practice. Another problem of the market incompleteness is that the optimal wealth

process found by the martingale approach is not perfectly replicable. However, we

can find the optimal investment hedging this process at best by a reasoning based on

the dynamic programming principle.

We have seen that the optimal contribution rate is the sum of the normal cost and

of the unfunded liabilities amortized by a factor, the function of the market con-

ditions. The optimal investment strategy also depends on the unfunded liabilities ;

in particular : for initial negative unfunded liabilities, the optimal target wealth will

be larger than the mathematical reserve at retirement date necessary to cover the

promised liabilities. An illustrative example has been given which shows the depen-

dence between the contribution rate and the weights respectively, given to the mini-

mization of the contribution risk and of the surplus risk.

Fig. 3. Asset mix for u1=1 and u2=10
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Appendix A

As mentioned early in Section 4, the expected value of the deflator, E(H(t, s)|Ft), is the

price of a zero coupon bond B(t, s), because of independency of Wr,P f

u , WS,P f

t , and

WA,Pa

t . If interest rates are driven by a Vasicek model (for details on this model, we

refer to Cairns 2004), the price of a zero coupon bond is given by

B(t, s)= exp xb:(sxt)+n(sxt):(bxrt)x
s2
r

4:a
:n(sxt)2

� �
(24)

where

b=bQx
s2
r

2:a2
=bxsr:

lr
a
x

s2
r

2:a2
(25)

and n(sxt) is a positive decreasing function, null when s=t

n(sxt)=
1

a
: 1xexa:(sxt)
� �

:

The derivative of the bond price with respect to rt, used in paragraph 2 to calculate

the correction term of the optimal bonds strategy (23), is

@B(t, s)

@rt
=xn(sxt):B(t, s):

Appendix B

This appendix presents the proof of the proposition 1. The deflator (7) can be re-

written as follows

H(t, s)= exp x
Z s

t

ru:dux
1

2
:

Z s

t

jjLjj2:dux
Z s

t

L:dWP
u

� �
:

exp

Z s

t

ln 1+hð Þ:dNux
Z s

t

h:lN, u:du

� �
where L=(lr, lS, la) and WP

u= Wr,P f

u ,WS,P f

u ,WA,Pa

u

� �
k. EP(H(t, s)2|Ft) can there-

fore be decomposed in two independent terms called the financial and actuarial

components, which are next calculated separately

EP H(t, s)2jFt

� �
=EP exp x2:

Z s

t

ru:dux
Z s

t

jjLjj2:dux2:

Z s

t

L:dWP
u

� �
jFt

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Financial component

EP exp

Z s

t

ln ((1+h)2):dNux
Z s

t

2:h:lN, u:du

� �
jFt

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Actuarial component

(26)

Calculation of the financial component

The following random variable defines a change of measure from P to ~PP

d ~PP

dP

 !
t

= exp x
Z t

0
2:L:dWP

ux
1

2
:

Z t

0
jj2:Ljj2:du

� �
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and under ~PP, the following elements are Brownian motions

d ~WW
r, ~PP

u =dWr,P f

u +2:lr:du

d ~WW
S, ~PP

u =dWS,P f

u +2:lS:du

d ~WW
A, ~PP

u =dWA,Pa

u +2:la:du:

The financial component of (26) becomes

EP exp x2:

Z s

t

ru:dux
Z s

t

jjLjj2:dux2:

Z s

t

L:dWP
u

� �
jFt

� �

= exp

Z s

t

jjLjj2:du
� �

:E
~PP e

x
R s

t
2:ru:dujFt

� �
and as 2.ru has mean reverting dynamics under ~PP

d 2:ruð Þ=a: 2:bx4:
sr:lr
a

x2:ru

� �
:dt+2:sr:d ~WW

r, ~PP

u ,

it suffices to apply the Vasicek’s formula to obtain that

E
~PP e

x
R s

t
2:ru:dujFt

� �
= exp xb

~PP:(sxt)+n(sxt):(b
~PPx2:rt)x

s2
r

a
:n(sxt)2

� �
where

b
~PP=2:bx4:

sr:lr
a

x2:
s2
r

a2

and

n(sxt)=
1

a
: 1xexa:(sxt)
� �

:

Calculation of the actuarial component

By the assumption that h>x1
2, it is possible to define a positive constant k

k=
1+hð Þ2

1+2:hð Þ
such that the actuarial component of equation (26) can be rewritten as

EP exp

Z s

t

ln 1+hð Þ2
� �

:dNux
Z s

t

2:h:lN, u:du

� �
jFt

� �

=EQm, 2:h
exp

Z s

t

ln (k):dNu

� �
: exp

Z s

t

ln 1+2:hð Þ:dNux
Z s

t

2:h:lN, u:du

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} jFt

0
BB@

1
CCA

r
dQm, 2:h

dPm
(27)
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The term dQm, 2:h

dPm defines a new actuarial measure Qm,2.h, under which the following

centered process

Mm, 2:h
t =Ntx

Z t

0
(nxxNux):m(x+u):(1+2:h):du

is a martingale. The expected number of survivors at time s, conditional to instant t is

given by

EQm, 2:h
(nxxNs)jFtð Þ=(nxxNt): exp x

Z s

t

m(x+u):(1+2:h):du

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sxt p
2:h
x+t

:

Equation (27) is finally rewritten as the expectation underQm,2.h of a constant k to the

power NsxNt, the number of deaths

EP exp

Z s

t

ln 1+hð Þ2
� �

:dNux
Z s

t

2:h:lN, u:du

� �
jFt

� �
=EQm, 2:h

kNsxNt jFt

� �
:

Under Qm,2.h, the probability of observing n deceases in the interval of time (t, s) is a

binomial variable of parameters (nxxNt, 1xsxt px+t
2.h ). The expected value of kNsxNt

is then computable by the following formula

EP exp

Z s

t

ln 1+hð Þ2
� �

:dNux
Z s

t

2:h:lN, u:du

� �
jFt

� �
=EQm, 2:h

kNsxNt jFt

� �
= ;

nxxNt

n=1

(nxxNt)!

(nxxNtxn)! n!
kn: sxtp

2:h
x+t

� �nxxNtxn
: 1xsxt p

2:h
x+t

� �n� �
:

Appendix C

The independence between mortality and the other random variables of our model

entails that the fair value of the pension fund liabilities is

LT=E

Z Tm

T

H(T, s): nxxNsð Þ:B:dsjFT

� �

= nxxNTð Þ:a:AT:

Z Tm

T

sxTphx+T:B(T, s):ds

and that the expectation at time tfT of LT equals

E H(t,T):LTjFtð Þ=a: nxxNtð Þ:
Z Tm

T

sxtphx+t:E
Q e

x
R T

t
ru:du:AT:B(T, s)jFt

� �
:ds:

The sequel of this paragraph focuses then on the calculation of EQ
�
e
x
R T

t
ru:du:AT:

B(T, s)jFt

�
. This step is based on the following four observations. Firstly, AT is the

Dolean–Dade exponential, solution of the SDE (4)

AT=At: exp

Z T

t

mQA(u)x
s2
Ar

2
x

s2
AS

2
x

s2
A

2

� �
du

� �

: exp +
Z T

t

sA:dW
A,Qa, la

u +
Z T

t

sArdW
r,Qf

u +
Z T

t

sASdW
S,Qf

u

� �
:

(28)
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Secondly, as detailed in Appendix A, the price of a zero coupon bond is given by

B(T, s)= exp xb:(sxT)+n(sxT):(bxrT)x
s2
r

4:a
:n(sxT)2

� �
, (29)

where b is defined by equation (25). The last useful elements are related to the fact

that interest rates are Gaussian in the Vasicek model

rT= 1xexa:(Txt)
� �

:bQ+exa:(Txt):rt+
Z T

t

sr:e
xa:(Txu):dWr,Qf

u (30)

Z T

t

rudu=bQ:(Txt)+(rtxbQ):n(Txt)+sr:

Z T

t

n(Txu):dWr,Qf

u : (31)

The proof of such results can be found in Cairns (2004: Appendix B). Combining

expressions (28), (29), (30), and (31) allows us to rewrite e
x
R T

t
ru:du:AT:B(T, s) as an

exponential of independent normal random variables and the calculation of

EQ
�
e
x
R T

t
ru:du:AT:B(T, s)jFt

�
directly results from the expectation of lognormal

variables.

Appendix D

In the example presented in this paper, mortality rates obey to a Gompertz–

Makeham distribution. The parameters are those defined by the Belgian regulator for

the pricing of a life insurance purchased by a man. For an individual of age x, the

mortality rate is

m(x)=am+bm:c
x am=x ln (sm) bm= ln (gm): ln (cm)

where the parameters sm, gm, cm take the values shown in the Table 2.

Table 2. Belgian legal mortality, for life insurance products and for a male population

sm : 0.999441703848
gm : 0.999733441115
cm : 1.116792453830
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