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Abstract

This article presents a numerical and theoretical study of the generation and propagation of oscillation in the semiclas-
sical limitz — 0 of the nonlinear paraxial equation. In a general setting of both dimension and nonlinearity, the essential
differences between the “defocusing” and “focusing” cases are observed. Numerical comparisons of the oscillations are
made between the lineéifree”) and the cubiddefocusing and focusingases in one dimension. The integrability of

the one-dimensional cubic nonlinear paraxial equation is exploited to give a complete global characterization of the
weak limits of the oscillations in the defocusing case.
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1. INTRODUCTION respectively, due to laser—plasma interacti@sman, 1998
This work is of interest to the acceleration of electrons by

Wave propagation in plasmas with substantial dispersion oiasers(Esareyet al., 1997; Wanget al, 1998; Hora, 2000

diffraction and a significant nonlinearity can be describedand for the scheme of the fast ignitor for laser-driven inertial

by the nonlinear paraxial equation for laser plasma interconfinement fusioriTabaket al, 1993; Hora, 2000

action. The nonlinear paraxial equation has exact soliton

solutions(Hauseret al., 1992 that correspond to a balance

between nonlinearity and dispersion in the case of temporad. NONLINEAR PARAXIAL EQUATION

solitons or between nonlinearity and diffraction in the case ] ] ) ) )

of spatial solitons. The soliton concept is a sophisticated®n€ Of the simplest nonlinear equations is the nonlinear

mathematical construct based on the integrability of a clasBaraxial equation for a complex valued field x, t) over a

of nonlinear differential equations. Integrable nonlinear dif-SPatial domair2 C R” (Osman, 1998

ferential equations have one feature in common; they are all

conservative if dissipation is neglectédora, 1991, Chap- ) h? s

ter 10.6, thus derivable from a Hamiltonian. The integra- Tho W + 2 AY = U (J¥*)¥ =0, @)

tion is performed via the method of inverse scattering

(Zakharov & Shabat, 1973 where U’ is the first derivative of a twice-differentiable

Anumerical study of the semiclassical limit of linear and || /i oo real-valued function ads a positive parameter.

nonlinear paraxial equations, in both focusing and defocus.—l.he parametef is analogous to Planck’s constant, which in

ing cases, is explored. Along with this, an analytical study ofthe quantum setting is usually very small when evaluated in

_the s?_mlila:jssgal I|m|t_ of the ?ifott;]uzl_ng cases W”(Ij alsolbe[he natural dimensional scales of the equation as determined
investigated. t-omparisons of both dimension and non Inby its initial and boundary conditions. For the moment, the
earity are observed for the focusing and defocusing CaS€Rrecise specification of the domaihand the nature of the

boundary conditions are left vague in order to make some

Address correspondence and reprint requests to: F. Osman, Schoolrgfenerm statements regarding the structure of(EE)q.The
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Sydney, Locked Bag 1797, Penrith South DC NSW 1797, Australia. E—mail:n_cmllnear fl.JnCtlorU R. — Ris the potentlal energy den-
f.osman@uws.edu.au sity of the field and is clearly seen when the nonlinear par-
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axial equation, Eq(1), is recast as a Hamiltonian system in and corresponds to a “defocusing” nonlinear paraxial equa-
the form tion. In this context a “focusing” nonlinear paraxial equa-
tion can be understood as a fluid whose pressure decreases
when the mass density increases, a phenomenon leading to
the development of mass concentrations.

. oH h?
ihd, V= —, H= —|V\I"2+U(‘\If|2)dDX. (2
o Q0 2

The associated Poisson bracket of any two functioRalsd 3 THE SEMICLASSICAL LIMIT

G is given by
The “semiclassical limit” of the nonlinear paraxial equation
1 OF 9G  oF oG can be described as follows. Consider the family, parameter-
{FG}= in “<ﬁ T 9V @) ° (3 ized bys > 0, of solutions¥ ™ (x, ) to the Cauchy prob-

lems(Osman, 1998
The evolution of any functiondt under the nonlinear par-

axial equation flow(1) is then %0, w® + h_;M,m) —U(|w® 2)p® = (8a)
& _ {FH} 4 [
dt W (x,0) = A(x)exp(% S(x)), (8b)

This Hamiltonian structure plays a major role in our analy- ) _
sis. Associated with the nonlinear paraxial equatiap,are ~ Where the(nonnegative amplitudeA(x) and (rea) phase

the local conservation laws corresponding to mass, momerP(X) are assumed to be smooth and independeft Ghe
tum, and energy conservation. Their densifieg, ande, ~ Nitial conserved densities are then

respectively, are given by pB(%.0) = [AX)[?

p =19 w®(x,0) = |AX)|2VS(X) (93
=i ﬁ(@vw—wv@) 1 #i?
T2 e®(x,0) = 2 [AX[VS(I? + = [V + U(| A7)
2
e = % V|2 + U(|w]?). (5) (9b)

N . . The general problem of the semiclassical limit is to deter-
The mass and momentum densities determine thedield  ine the limiting behavior of any function of the fiefe®

to a constant phase; the energy density can be written igsz _, 0, in particular, to ascertain the exister{@@some
terms of them as sensgof the limits of the conserved densities:

1 2 K2 |Vp|? — i
2 p 8
= |i (7))
The local conservative laws are then = lim (10b)
dp+Vep=0, &= lim&®, (109
b+ v(ﬂ ® M) L YP(p) = = v pV2 log p] and if the limits EXISt., t.o determine thelr dynamics.
p 4 Arguing formally, it is natural to conjecture for the de-

) focusing case that the(®?) dispersive terms appearing in
P (E (e + p(p))) _ " V,[M_AP _ M], (7 Eq.(7) are negligible, a# — 0 and that the limiting densi-
p 4 p p tiesp andu satisfy the hyperbolic syste(the Euler system

whereP(p) = pU’(p) = U(p). dp+Veuw=0
The first two of these are a closed system govering

andu that has the form of a perturbation of the compressible

Euler equations of fluid dynamics with the “pressure” given p+ V‘(

by P(p). If the “Euler part” of these equations is to be

hyperbolic, then the “pressuré(p) must be a strictly in-  with initial conditions inferred from Eq9a) given by

creasing function op; in that caseP’(p) = pU"(p) > 0.

This means that) must be a strictly convex function @f p(x,0) = |A(X)|? w(x,0) = |AX)|2VS(X). (11b)

H@u

) +VP(p) = 0, (11a
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This argument is self-consistent only so long as the solutiomnd the system can be placed in the Riemann invariant form
of the Euler systenil1) remains classical. In that case, the

limiting energy density will be given by ar. — }(r +3r)ar, =0
th+ 2 + —)O0xt+ =

8=}w+U(p) (12) 1
2 p ' der_ — 5(3r++r_)8xr_ =0, (173
and will satisfy with the initial conditions
12 1
&8+V<;%e+P@»>=0, (13 rgxﬁ)=§@34x%tV§A4m. (17b

hence, playing the.role of a Il_ax entropy for the Euler SYS'5. THE NUMERICAL EXPERIMENTS ON THE
tem(11). The genuinely ponlmear nature pf thg Euler sys-  pOSTBREAKING PHENOMENA

tem (11) will ensure that its classical solution will develop

singular behaviofan infinite derivative for all but rarefac-  Another method for deriving the reduced system in Equa-
tion initial data. At the instant such a breaking occurs, thetion (158 is the classical WKB method. It considers
formally small dispersive terms on the right sidg df) will

no longer be negligible, and the above characterization of 70, w® = _ﬁ_zaqu,(m V)W, (19)
the semiclassical limit will break down. Because this small

regularizing term is dispersive, one expects that the impend-

ing singularity inp and g will be regularized by the devel- and begins with the Ansatz that™ is in the form
opment of small wavelength oscillations.

v (x, t) = A(x,t)exp(% S(X, t)) + 0(#). (19

4. THE NUMERICAL EXPERIMENTS ON THE
ONSET OF BREAKING Inserting this Ansatz into the nonlinear paraxial equation

. . (18), and balancing the leading two powersiofields
Numerics are to be used to illustrate the breakdown of the

“Euler” description of the semiclassical limit for the defocus- dU+ Ud U+ AV = 0
ing nonlinear paraxial equatigfrornberg & Whitham, 1978,

p. 289. The problem is cast in one spatial dimension with a 1
cubic nonlinearityOsman, 1998 I AT U A+ S AU =0, (20)
. h? ) whereu = 9, S, which is equivalent to the reduced system in
ho, ¥ = — =¥ + y[¥[*¥ (148 Eq. (158 upon making the identifications
i = A? = A?u. 21
wwm=Ammw(5%u0, (14D g # &

The development of a singularity in this reduced system

wherey here is a positive constant. For this one-dimensionaf"USt then be interpreted as a breakdown in the Ansatz equa-
case, the Euler system in EQ.18), describing the formal tion (19). After the breakdown, the time of the wave forms

semiclassical limit, reduces to the initial value problem: N° longer continue to resemble that of the Ansatz. _
In linear theories such as quantum mechanics and classi-

cal electromagnetism, the presence of singularities in re-
duced systems and their consequences for the full system
) ) are well understood. For example, in quantum mechanics
O g+ ax<“— +y p—> =0 (159  the characteristics of the reduced hyperbolic syg@nare
p 2 the paths of classical particles in the conservative force field

F(x) = —d,V(x), which is defined in terms of the prescribed
potential energy functiorV(x). In this manner, classical
mechanics arises as the semiclassical limit of quantum me-
Riemann invariants for the Euler systéftba are given by  chanics(In the electromagnetic setting, the characteristics
are the “rays” of “geometrical optics”.

Singularities in the reduced semiclassical equations result
from foci and envelopes of families of these classical paths.

dp+ou=0

p(%,0) = AL(X),  m(X,0) = AL (X)dxSn(X). (150

ro= 2 = \yp, (16
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These envelopes separate regions in (tkg) plane that A(x,t) and assembles the formula in E§4). Arguments
consist of points lying on only one classical path from re-from the theory of uniform asymptotic expansions then show
gions consisting of points that lie on multiple paths. Alongthat the formula in Eq.24) is asymptotically valid except at
these envelopgsalled caustics neighboring rays coalesce the focus and along the characteristic envelopes, the only
and geometric conservation law properties of the transporeffect of which is phase shifts of integer multiplesmf4.
equation for the amplitud&(x, t) force| Al to diverge along In the linear case, the qualitative consequence of the for-
these caustics. mula in Eq.(24) is striking. Before the caustic, only one
More mathematically, in the linear case of quantum me-classical path passes through each space time pxijt;
chanics, the reduced hyperbolic system is degenerate in tfanly one term appears in the sum in Eg4); the intensity
sense that the eikonal equation foand the eikonal equa- |A(x,t)|? is slowly varying on thé: scale. After the caustic,
tion for Ahave identical characteristics. Because the eikonathree classical paths pass through each point), three
equation does not depend upon the amplitdgdé can be  terms appear in the sum, and the intengftyx, t)|? is
solved first, and its characteristics are the classical paths.
The transport equation for the amplitullés then integrated
along these classical paths, and geometrical consideration
forces|A| to diverge along caustic envelopes. This diver-
gence of the amplitud@ is a direct consequence of the This has rapid oscillations on tliescale due to phase inter-
degeneracy of system in Equati(20). ference between the three terms in the sum. Mathematically,
The caustic behavior can be present even in the triviathese rapid oscillations prevent strong convergence after the
case of the free paraxial equatiomith V(x) = 0) provided  caustic. In summary, in this linear case the weak limit can be

[A(x, 1)|? = 2 (25)

> exp<% S (x, t))AJ(x, t)
j

one begins with compressional initial data such as constructed simply by summing over the contributions from
each classical path, with interference between terms in this
u(x,0) = d,S,(x) = —tanh(x). (22 sum causing rapid oscillatiorif®sman, 1998

In this V(x) = 0 case, the solutioWr ™ (x, t) of initial value

problem equatiofil4g can be represented exactly as a Fou—6' NONLINEAR SIMULATIONS OF

DEFOCUSING AND FOCUSING CASES

rier integral:
Numerical results that illustrate the contrast formations of
W (x, 1) = 1 f“’" oscillations in solutions of E¢148 (Osman, 199gfor the
' \N27int ), linear (v = 0), the nonlinear defocusingy > 0), and the

nonlinear focusingy < 0) cases are shown in this section.
i[(x—y)? The linear caséy = 0) is considered to illustrate the semi-
% exF)(%( 2t - Sn(y)>> An(y)dy. (23 classical Iineary theory just described. Figure 1 shows
|Ww(x,t)| as a surface over th&, t) plane, and clearly con-
The behavio® ®(x, t) asfi — 0, uniformly in(x,t), canbe  tains one focus of that theory, from which two caustics
obtained from an asymptotistationary phasesvaluation emanate.
of this integral. The result shows that, away from the char- Figure 2a shows that the defocusing case is treated here
acteristic envelopesy ™ (x,t) behaves asymptotically as with a repulsive nonlinearityy > 0). As in the linear case,
the linear superposition oscillation intensity forms at specific points in space and
time, and then persists.

In the defocusing case, these oscillations form two pack-
ets, one travelling to the right and the other to the left. The
central region of the spatial profile that separates the two
where the index in the sum runs over different classical oscillatory regionsis a quiescent plateau attimes beyond the
paths through the poirik, t), andS') is the classical path. focus. However, when compared with the linear case, sev-
Al is computed by integrating the transport equation alongeral distinguishing features arise from the nonlinearity. First,
thejth classical path, with adjustments by phase shifts of thehe amplitudé ¥ (x, t)| is much less intense at the focus than
form exp(intV7/4). The integerm')) are computed from in the linear case, which is depicted from the same perspec-
the number of times th¢h path touches the caustic envelope.tive in Figure 2b.

In the linear case for generdl x), the classical pathsare ~ The response in the focusing case is treated here with an
not straight lines and the asymptotic behavior cannot battractive nonlinearityy < 0; Fig. 39. Indeed, the defocus-
calculated with Fourier theory. Nevertheless, the asymping case had the mildest response, followed by the linear
totic behavior is still given by the superposition of E&4). case, with the most extreme behavior found with focusing
Using the method of characteristics for the eikonal equationnonlinearity. It is the focusing nonlinearity that supports
one constructs a surfaece= u(x,t) over the(x,t) plane. solitons in one spatial dimension and that blows up in finite
With this surface, one integrates the transport equation fotime in two or more dimensions.

P (x, 1) ~Zexp<%S(“(x,t)>A<“(x,t), (24)
j
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Fig. 1. The amplitudg ¥ ®| for the linear(y = 0) paraxial equation as a surface over tRet) plane, fors = 0.1.

The blowup of a portion of the oscillatory region shown tions in the semiclassical limita — 0) of the nonlinear
in Figure 3b admits the intriguing interpretation of theseparaxial equation at laser—plasma interaction. In a general
oscillations as a dense “sea of solitons,” located near theetting of both dimension and nonlinearity, the essential
center of the spatial profile, with a sharp boundary separatdifferences between the focusing and defocusing cases were
ing the oscillatory from the quiescent regions of space.

7. CONCLUSION a

In conclusion, this article investigated a numerical and theo-
retical study of the generation, and propagation, of oscilla-
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Fig. 2. a: The amplitudg¥®| for the defocusingy > 0) nonlinear  Fig. 3. a: The amplitudé¥ ™| for the focusingy < 0) nonlinear paraxial
paraxial equation as a surface over tixet) plane, forzi = 0.1. b: The equation as a surface over the t) plane, forzi = 0.1. b: An enlargement
comparison result for the lineéy = 0) paraxial equation. of the oscillatory region fronta).
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investigated. Numerical comparisons of the oscillations arelense “sea of solitons” spa¢eora, 199) located near the

made between the solutions of the linear and nonlinear paspatial profile, with a sharp boundary separating the oscil-

axial equation due to laser—plasma interactions. latory from the quiescent regions of spaddora, 2000.
This article has presented several numerical simulation¥his is discussed for application to the fast ignitor laser

that illustrate and contrast the formation of oscillations infusion scheméTabaket al,, 1993 especially for the condi-

solutions of Eq(14a), for the linear(y = 0), the nonlinear tion avoiding the intermediary step of the funnel generation

defocusing(y > 0), and the nonlinear focusingy < 0) (Borehamet al., 1998; Hora, 200D

cases. In the first numerical simulation of Figure 1, the

linear case ofy = 0) was considered, to illustrate the semi-

classical linear theory. Figure 1 illustrate¥(x,t)| as a REFERENCES

surface over théx, t) plane, and clearly contains one focus,

from which two caustics emanate. Notice th&t Dwave-
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