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Abstract

This article presents a numerical and theoretical study of the generation and propagation of oscillation in the semiclas-
sical limit \ r 0 of the nonlinear paraxial equation. In a general setting of both dimension and nonlinearity, the essential
differences between the “defocusing” and “focusing” cases are observed. Numerical comparisons of the oscillations are
made between the linear~“free”! and the cubic~defocusing and focusing! cases in one dimension. The integrability of
the one-dimensional cubic nonlinear paraxial equation is exploited to give a complete global characterization of the
weak limits of the oscillations in the defocusing case.
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1. INTRODUCTION

Wave propagation in plasmas with substantial dispersion or
diffraction and a significant nonlinearity can be described
by the nonlinear paraxial equation for laser plasma inter-
action. The nonlinear paraxial equation has exact soliton
solutions~Häuseret al., 1992! that correspond to a balance
between nonlinearity and dispersion in the case of temporal
solitons or between nonlinearity and diffraction in the case
of spatial solitons. The soliton concept is a sophisticated
mathematical construct based on the integrability of a class
of nonlinear differential equations. Integrable nonlinear dif-
ferential equations have one feature in common; they are all
conservative if dissipation is neglected~Hora, 1991, Chap-
ter 10.6!, thus derivable from a Hamiltonian. The integra-
tion is performed via the method of inverse scattering
~Zakharov & Shabat, 1973!.

A numerical study of the semiclassical limit of linear and
nonlinear paraxial equations, in both focusing and defocus-
ing cases, is explored.Along with this, an analytical study of
the semiclassical limit of the defocusing cases will also be
investigated. Comparisons of both dimension and nonlin-
earity are observed for the focusing and defocusing cases,

respectively, due to laser–plasma interactions~Osman, 1998!.
This work is of interest to the acceleration of electrons by
lasers~Esareyet al., 1997; Wanget al, 1998; Hora, 2000!
and for the scheme of the fast ignitor for laser-driven inertial
confinement fusion~Tabaket al, 1993; Hora, 2000!.

2. NONLINEAR PARAXIAL EQUATION

One of the simplest nonlinear equations is the nonlinear
paraxial equation for a complex valued fieldC~x, t ! over a
spatial domainV , RD ~Osman, 1998!:

i\]t C 1
\2

2
DC 2 U '~6C62!C 5 0, ~1!

where U ' is the first derivative of a twice-differentiable
nonlinear real-valued function and\ is a positive parameter.
The parameter\ is analogous to Planck’s constant, which in
the quantum setting is usually very small when evaluated in
the natural dimensional scales of the equation as determined
by its initial and boundary conditions. For the moment, the
precise specification of the domainV and the nature of the
boundary conditions are left vague in order to make some
general statements regarding the structure of Eq.~1!. The
nonlinear functionU : R1 r R is the potential energy den-
sity of the field and is clearly seen when the nonlinear par-
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axial equation, Eq.~1!, is recast as a Hamiltonian system in
the form

i\]t C 5
]H

] PC
, H 5E

V

\2

2
6¹C62 1 U~6C62! dDx. ~2!

The associated Poisson bracket of any two functionalsF and
G is given by

$F,G% [
1

i\
E

V
S ]F

]C

]G

] PC
2

]F

] PC
]G

]C
DdDx. ~3!

The evolution of any functionalF under the nonlinear par-
axial equation flow~1! is then

dF

dt
5 $F, H %. ~4!

This Hamiltonian structure plays a major role in our analy-
sis. Associated with the nonlinear paraxial equation,~1!, are
the local conservation laws corresponding to mass, momen-
tum, and energy conservation. Their densitiesr, m, and«,
respectively, are given by

r 5 6C62,

m 5 2i
\

2
~ PC¹C 2 C¹ PC!

« 5
\2

2
6¹C62 1 U~6C62!. ~5!

The mass and momentum densities determine the fieldw up
to a constant phase; the energy density can be written in
terms of them as

« 5
1

2

6m62

r
1

\2

8

6¹r62

r
1 U~r!. ~6!

The local conservative laws are then

]t r 1 ¹{m 5 0,

]t m 1 ¹{Sm J m

r
D1 ¹P~r! 5

\2

4
¹{@ r¹2 log r#

]t « 1 ¹{Sm

r
~« 1 P~r!!D 5

\2

4
¹{FmDr

r
2

¹{m¹r

r
G, ~7!

whereP~r! [ rU '~r! 2 U~r!.
The first two of these are a closed system goveringr

andm that has the form of a perturbation of the compressible
Euler equations of fluid dynamics with the “pressure” given
by P~r!. If the “Euler part” of these equations is to be
hyperbolic, then the “pressure”P~r! must be a strictly in-
creasing function ofr; in that caseP'~r! 5 rU ''~r! . 0.
This means thatU must be a strictly convex function ofr

and corresponds to a “defocusing” nonlinear paraxial equa-
tion. In this context a “focusing” nonlinear paraxial equa-
tion can be understood as a fluid whose pressure decreases
when the mass density increases, a phenomenon leading to
the development of mass concentrations.

3. THE SEMICLASSICAL LIMIT

The “semiclassical limit” of the nonlinear paraxial equation
can be described as follows. Consider the family, parameter-
ized by\ . 0, of solutionsC~\!~x, t ! to the Cauchy prob-
lems~Osman, 1998!:

i\]t C
~\! 1

\2

2
DC~\! 2 U '~6C~\! 62!C~\! 5 0 ~8a!

C~\!~x,0! 5 A~x!expS i

\
S~x!D, ~8b!

where the~nonnegative! amplitudeA~x! and ~real! phase
S~x! are assumed to be smooth and independent of\. The
initial conserved densities are then

r~\!~x,0! 5 6A~x!62

m~\!~x,0! 5 6A~x!62 ¹S~x! ~9a!

«~\! ~x,0! 5
1

2
6A~x!62 6¹S~x!62 1

\2

2
6¹A~x!62 1 U~6A~x!62!

~9b!

The general problem of the semiclassical limit is to deter-
mine the limiting behavior of any function of the fieldC~\!

as\ r 0, in particular, to ascertain the existence~in some
sense! of the limits of the conserved densities:

r 5 lim
hr0

r~\! ~10a!

m 5 lim
hr0

m~\! ~10b!

« 5 lim
hr0

«~\!, ~10c!

and if the limits exist, to determine their dynamics.
Arguing formally, it is natural to conjecture for the de-

focusing case that the 0~\2! dispersive terms appearing in
Eq. ~7! are negligible, as\ r 0 and that the limiting densi-
tiesr andm satisfy the hyperbolic system~the Euler system!

]t r 1 ¹{m 5 0

]t m 1 ¹{Sm J m

r
D1 ¹P~r! 5 0, ~11a!

with initial conditions inferred from Eq.~9a! given by

r~x,0! 5 6A~x!62, m~x,0! 5 6A~x!62 ¹S~x!. ~11b!
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This argument is self-consistent only so long as the solution
of the Euler system~11! remains classical. In that case, the
limiting energy density will be given by

« 5
1

2

6m62

r
1 U~r!, ~12!

and will satisfy

]t « 1 ¹{Sm

r
~« 1 P~r!!D 5 0, ~13!

hence, playing the role of a Lax entropy for the Euler sys-
tem ~11!. The genuinely nonlinear nature of the Euler sys-
tem ~11! will ensure that its classical solution will develop
singular behavior~an infinite derivative! for all but rarefac-
tion initial data. At the instant such a breaking occurs, the
formally small dispersive terms on the right side of~11! will
no longer be negligible, and the above characterization of
the semiclassical limit will break down. Because this small
regularizing term is dispersive, one expects that the impend-
ing singularity inr andm will be regularized by the devel-
opment of small wavelength oscillations.

4. THE NUMERICAL EXPERIMENTS ON THE
ONSET OF BREAKING

Numerics are to be used to illustrate the breakdown of the
“Euler” description of the semiclassical limit for the defocus-
ing nonlinear paraxial equation~Fornberg & Whitham, 1978,
p. 289!. The problem is cast in one spatial dimension with a
cubic nonlinearity~Osman, 1998!:

i\]t C 5 2
\2

2
]xxC 1 g 6C62C ~14a!

C~x,0! 5 Ain~x!expS i

\
Sin~x!D, ~14b!

whereg here is a positive constant. For this one-dimensional
case, the Euler system in Eq.~11a!, describing the formal
semiclassical limit, reduces to the initial value problem:

]t r 1 ]x m 5 0

]t m 1 ]xSm2

r
1 g

r2

2
D 5 0 ~15a!

r~x,0! 5 Ain
2 ~x!, m~x,0! 5 Ain

2 ~x!]x Sin~x!. ~15b!

Riemann invariants for the Euler system~15a! are given by

r6 5
m

2r
6Mgr, ~16!

and the system can be placed in the Riemann invariant form

]t r1 2
1

2
~r1 1 3r2 !]x r1 5 0

]t r2 2
1

2
~3r1 1 r2 !]x r2 5 0, ~17a!

with the initial conditions

r6~x,0! 5
1

2
]x Sin~x! 6MgAin~x!. ~17b!

5. THE NUMERICAL EXPERIMENTS ON THE
POSTBREAKING PHENOMENA

Another method for deriving the reduced system in Equa-
tion ~15a! is the classical WKB method. It considers

i\]t C
~\! 5 2

\2

2
]xxC~\! 1 V~x!C~\!, ~18!

and begins with the Ansatz thatC~\! is in the form

C~\!~x, t ! 5 A~x, t !expS i

\
S~x, t!D1 0~\!. ~19!

Inserting this Ansatz into the nonlinear paraxial equation
~18!, and balancing the leading two powers of\ yields

]t u 1 u]xu 1 ]xV 5 0

]t A 1 u]x A 1
1

2
A]xu 5 0, ~20!

whereu5 ]xS, which is equivalent to the reduced system in
Eq. ~15a! upon making the identifications

r 5 A2, m 5 A2u. ~21!

The development of a singularity in this reduced system
must then be interpreted as a breakdown in the Ansatz equa-
tion ~19!. After the breakdown, the time of the wave forms
no longer continue to resemble that of the Ansatz.

In linear theories such as quantum mechanics and classi-
cal electromagnetism, the presence of singularities in re-
duced systems and their consequences for the full system
are well understood. For example, in quantum mechanics
the characteristics of the reduced hyperbolic system~20! are
the paths of classical particles in the conservative force field
F~x!52]xV~x!, which is defined in terms of the prescribed
potential energy functionV~x!. In this manner, classical
mechanics arises as the semiclassical limit of quantum me-
chanics.~In the electromagnetic setting, the characteristics
are the “rays” of “geometrical optics”.!

Singularities in the reduced semiclassical equations result
from foci and envelopes of families of these classical paths.
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These envelopes separate regions in the~x, t ! plane that
consist of points lying on only one classical path from re-
gions consisting of points that lie on multiple paths. Along
these envelopes~called caustics!, neighboring rays coalesce
and geometric conservation law properties of the transport
equation for the amplitudeA~x, t ! force6A6 to diverge along
these caustics.

More mathematically, in the linear case of quantum me-
chanics, the reduced hyperbolic system is degenerate in the
sense that the eikonal equation fork and the eikonal equa-
tion forAhave identical characteristics. Because the eikonal
equation does not depend upon the amplitudeA, it can be
solved first, and its characteristics are the classical paths.
The transport equation for the amplitudeA is then integrated
along these classical paths, and geometrical consideration
forces6A6 to diverge along caustic envelopes. This diver-
gence of the amplitudeA is a direct consequence of the
degeneracy of system in Equation~20!.

The caustic behavior can be present even in the trivial
case of the free paraxial equation~with V~x! 5 0! provided
one begins with compressional initial data such as

u~x,0! 5 ]x Sin~x! 5 2tanh~x!. ~22!

In thisV~x! 5 0 case, the solutionC~\!~x, t ! of initial value
problem equation~14a! can be represented exactly as a Fou-
rier integral:

C~\!~x, t ! 5
1

M2pi\t
E

2`

1`

3 expS i

\
S ~x 2 y!2

2t
1 Sin~ y!DDAin~ y! dy. ~23!

The behaviorC~\!~x, t ! as\ r 0, uniformly in~x, t !, can be
obtained from an asymptotic~stationary phase! evaluation
of this integral. The result shows that, away from the char-
acteristic envelopes,C~\!~x, t ! behaves asymptotically as
the linear superposition

C~\!~x, t ! ; (
j

expS i

\
S~ j ! ~x, t !DA~ j ! ~x, t !, ~24!

where the indexj in the sum runs over different classical
paths through the point~x, t !, andS~ j ! is the classical path.
A~ j ! is computed by integrating the transport equation along
thej th classical path, with adjustments by phase shifts of the
form exp~in ~ j !p04!. The integersn~ j ! are computed from
the number of times thej th path touches the caustic envelope.

In the linear case for generalV~x!, the classical paths are
not straight lines and the asymptotic behavior cannot be
calculated with Fourier theory. Nevertheless, the asymp-
totic behavior is still given by the superposition of Eq.~24!.
Using the method of characteristics for the eikonal equation,
one constructs a surfaceu 5 u~x, t ! over the~x, t ! plane.
With this surface, one integrates the transport equation for

A~x, t ! and assembles the formula in Eq.~24!. Arguments
from the theory of uniform asymptotic expansions then show
that the formula in Eq.~24! is asymptotically valid except at
the focus and along the characteristic envelopes, the only
effect of which is phase shifts of integer multiples ofp04.

In the linear case, the qualitative consequence of the for-
mula in Eq.~24! is striking. Before the caustic, only one
classical path passes through each space time point~x, t !;
only one term appears in the sum in Eq.~24!; the intensity
6A~x, t !62 is slowly varying on the\ scale. After the caustic,
three classical paths pass through each point~x, t !, three
terms appear in the sum, and the intensity6A~x, t !62 is

6A~x, t !62 5 *(
j

expS i

\
S~ j ! ~x, t !DAj ~x, t !*2. ~25!

This has rapid oscillations on the\ scale due to phase inter-
ference between the three terms in the sum. Mathematically,
these rapid oscillations prevent strong convergence after the
caustic. In summary, in this linear case the weak limit can be
constructed simply by summing over the contributions from
each classical path, with interference between terms in this
sum causing rapid oscillations~Osman, 1998!.

6. NONLINEAR SIMULATIONS OF
DEFOCUSING AND FOCUSING CASES

Numerical results that illustrate the contrast formations of
oscillations in solutions of Eq.~14a! ~Osman, 1998! for the
linear ~g 5 0!, the nonlinear defocusing~g . 0!, and the
nonlinear focusing~g , 0! cases are shown in this section.
The linear case~g 5 0! is considered to illustrate the semi-
classical linear theory just described. Figure 1 shows
6C~x, t !6 as a surface over the~x, t ! plane, and clearly con-
tains one focus of that theory, from which two caustics
emanate.

Figure 2a shows that the defocusing case is treated here
with a repulsive nonlinearity~g . 0!. As in the linear case,
oscillation intensity forms at specific points in space and
time, and then persists.

In the defocusing case, these oscillations form two pack-
ets, one travelling to the right and the other to the left. The
central region of the spatial profile that separates the two
oscillatory regions is a quiescent plateau at times beyond the
focus. However, when compared with the linear case, sev-
eral distinguishing features arise from the nonlinearity. First,
the amplitude6C~x, t !6 is much less intense at the focus than
in the linear case, which is depicted from the same perspec-
tive in Figure 2b.

The response in the focusing case is treated here with an
attractive nonlinearity~g , 0; Fig. 3a!. Indeed, the defocus-
ing case had the mildest response, followed by the linear
case, with the most extreme behavior found with focusing
nonlinearity. It is the focusing nonlinearity that supports
solitons in one spatial dimension and that blows up in finite
time in two or more dimensions.
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The blowup of a portion of the oscillatory region shown
in Figure 3b admits the intriguing interpretation of these
oscillations as a dense “sea of solitons,” located near the
center of the spatial profile, with a sharp boundary separat-
ing the oscillatory from the quiescent regions of space.

7. CONCLUSION

In conclusion, this article investigated a numerical and theo-
retical study of the generation, and propagation, of oscilla-

tions in the semiclassical limit~\ r 0! of the nonlinear
paraxial equation at laser–plasma interaction. In a general
setting of both dimension and nonlinearity, the essential
differences between the focusing and defocusing cases were

Fig. 1. The amplitude6C~\! 6 for the linear~g 5 0! paraxial equation as a surface over the~x, t ! plane, for\ 5 0.1.

Fig. 2. a: The amplitude6C~\! 6 for the defocusing~g . 0! nonlinear
paraxial equation as a surface over the~x, t ! plane, for\ 5 0.1. b: The
comparison result for the linear~g 5 0! paraxial equation.

Fig. 3. a: The amplitude6C~\! 6 for the focusing~g , 0! nonlinear paraxial
equation as a surface over the~x, t ! plane, for\ 5 0.1. b: An enlargement
of the oscillatory region from~a!.
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investigated. Numerical comparisons of the oscillations are
made between the solutions of the linear and nonlinear par-
axial equation due to laser–plasma interactions.

This article has presented several numerical simulations
that illustrate and contrast the formation of oscillations in
solutions of Eq.~14a!, for the linear~g 5 0!, the nonlinear
defocusing~g . 0!, and the nonlinear focusing~g , 0!
cases. In the first numerical simulation of Figure 1, the
linear case of~g 5 0! was considered, to illustrate the semi-
classical linear theory. Figure 1 illustrates6C~x, t !6 as a
surface over the~x, t ! plane, and clearly contains one focus,
from which two caustics emanate. Notice that 0~\! wave-
length oscillations in the intensity form at the focus and
persist for later times. The spatial region containing these
oscillations is bound by the two caustics.

Figure 2a treats the defocusing case with a repulsive non-
linearity ~g . 0!. Figure 2a shows that, as in the linear case,
oscillations in the intensity form at specific points in space
and time, and then persist. However, when compared with
the linear case, several distinguishing features arise from the
nonlinearity. First, the amplitude6C~x, t !6 is much less in-
tense at the focus than in the linear case, which is depicted
from the perspective, but with a different vertical scale shown
in Figure 2b. Second, while the oscillations are given to be
0~1! in amplitude and 0~\! in wavelength, this can be com-
pared for the defocusing case. In the defocusing case, these
oscillations form two packets, one travelling to the right and
the other to the left. The central region of the spatial profile
that separates the two oscillatory regions is a quiescent pla-
teau at times beyond the focus.

Figure 3a treats the focusing case with an attractive non-
linearity ~g , 0!. The response in this focusing case is the
most violent of the three graphical forms presented. Indeed,
the defocusing case had the mildest response, followed by
the linear case, with the most extreme behavior found with
focusing nonlinearity. It is the focusing nonlinearity that
supports solitons in one spatial dimension and which blows
up in finite time in two or more dimensions. The blowup of
a portion of the oscillatory region illustrated in Figure 3b
admits the intriguing interpretation of these oscillations as a

dense “sea of solitons” space~Hora, 1991! located near the
spatial profile, with a sharp boundary separating the oscil-
latory from the quiescent regions of space~Hora, 2000!.
This is discussed for application to the fast ignitor laser
fusion scheme~Tabaket al., 1993! especially for the condi-
tion avoiding the intermediary step of the funnel generation
~Borehamet al., 1998; Hora, 2000!.
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