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The paper describes an asymptotic flow of a viscous fluid in an infinite annular
cylindrical cavity as the distance from the flow source tends to infinity. If the
driving flow near the source is axisymmetric then the asymptotic pattern is cellular;
otherwise it is typically not. Boundary conditions are derived to match the asymptotic
axisymmetric flow with that near the source. For a narrow cavity, the asymptotic
solutions for the axisymmetric and three-dimensional flows are obtained analytically.
For any gap, the flow is described by a numerical solution of an eigenvalue problem.
The least decaying mode corresponds to azimuthal wavenumber m= 1.
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1. Introduction

This work extends the studies by Moffatt (1964), Shankar (1998), Hall, Hills &
Gilbert (2009) and other researchers to flow in an infinitely deep annular cavity.
Moffatt discovered that a flow in a narrow corner between two planes has an
infinite number of vortices, whose scale and intensity decrease as the corner edge
is approached. An axisymmetric flow between concentric cones has vortices similar to
those in Moffatt’s problem (Hall, Hills & Gilbert 2007). A motion in a plane infinitely
deep cavity (Shankar & Deshpande 2000) can be considered to be a limiting case of
that in the corner whose angle tends to zero. The vortex scale does not decrease in the
plane cavity, in contrast to the corner and cone flows. Reviews of early studies are in
Shankar’s book (2007) and the paper by Hall et al. (2009).

Cavity flow has been the subject of numerous works motivated by both fundamental
and technological interest (Shankar & Deshpande 2000). Among three-dimensional
cavities, the cylindrical cavity has attracted the most attention. Elongated cylindrical
containers are widely used in several technologies, e.g. vortex tubes, hydrocyclones
and vortex combustors (Shtern 2012). A sealed cylinder with one rotating disk serves
for fundamental studies of the nature of vortex breakdown (VB) (Escudier 1988).
Hills (2001) studied the slow flow in an infinite cylindrical container with a rotating
cover. Muite (2004) explored a container flow at small but finite Reynolds numbers.
Elongated cylindrical containers are of special interest in recent VB research (Lopez
2012).
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668 V. Shtern

The advantages of confined flows in a cavity with a sliding cover, and in
a cylindrical or conical container with a rotating cover, are simple and well-
controlled domains and boundary conditions, which allow for meaningful comparisons
of experimental and numerical results. Surprisingly, flow in an annular cylindrical
cavity has not attracted much attention, in spite of its fundamental and technological
relevance.

Our paper addresses this flow and differs from previous studies in terms of (i) cavity
geometry, (ii) boundary conditions, (iii) time-dependent flows, and (iv) matching
conditions. First, we consider an annular cylindrical cavity. In some vortex combustors,
the cylinder is annular; this motivates our study of annular flows. In addition, the
annular geometry is generic, encompassing a plane cavity, in the limiting case as the
gap-to-radius ratio tends to zero, and a cylindrical container, in the limiting case as the
inner-to-outer radius ratio tends to zero.

Second, in contrast to sliding and rotating covers, we consider more general
boundary conditions at the cavity end where the flow source is located. The only
limitation is the zero flow rate (ZFR), implied by the cavity dead end. Therefore we
consider a ZFR flow where the flow rate is zero, e.g. through any cross-section normal
to the cavity axis. This condition is valid for a wide variety of flows in addition to
those driven by sliding and rotating covers. An example is a flow in a cylindrical
container with one end closed. The flow enters and leaves the container through the
open end. Such flows model vortex combustors and vortex traps (Shtern, Torregrosa &
Herrada 2011a,b). For small Reynolds number Re, a few flow cells exist in elongated
cylinders. The number of cells increases with the length-to-radius (aspect) ratio.

At greater depth, a ZFR flow becomes oblivious to most of the constraints posed
by boundary conditions at the flow-source end. Even if boundary conditions are
steady and axisymmetric, a flow can be time-dependent and three-dimensional due
to instability, as has been shown for the container with a rotating end wall (Sorensen,
Naumov & Okulov 2011; Lopez 2012). Any ZRF flow decays as the distance from the
flow source increases, and eventually becomes so slow that it can be governed by the
linear Stokes equations rather than the nonlinear Navier–Stokes equations.

Therefore, the Stokes flow is a limiting case for any ZFR motion as the distance
from the flow source tends to infinity. This feature makes the Stokes flow of general
interest. The Stokes equations allow for solutions proportional to exp(−λz), where z is
the distance from the flow source and λ must be found as an eigenvalue. In general, λ
is a complex number; its real part, λr, is a decay rate as z increases.

The asymptotic flow is determined by modes with smallest λr. In axisymmetric
flows, swirl and meridional motions have different decay rates because the
corresponding equations are uncoupled. The axisymmetric asymptotic flow is cellular.
In more general flows, swirl and meridional motions are coupled; the asymptotic
pattern corresponds to modes with azimuthal wavenumber m=±1 and is typically not
cellular. This feature of annular cylindrical flow is similar to that in annular conical
flows (Hall et al. 2009).

Third, we consider time-dependent flow. A flow near the flow source can be time-
oscillating or even turbulent. In the cavity depth, such a flow can preserve its unsteady
nature even where the flow is very slow. We explore this possibility.

Fourth, we deduce boundary conditions to match near-source and asymptotic
axisymmetric flows. These conditions can be used in numerical simulations and allow
for a finite-length computational domain, with matching conditions at the end opposite
to the flow-source end.
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A flow in the depth of infinite annular cylindrical cavity 669
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FIGURE 1. Problem geometry.

We start with axisymmetric flow because this particular case is important for
combustor and VB applications. For example, the Vogel–Escudier flow is steady
and axisymmetric for small Reynolds number Re. As Re exceeds its critical value,
Recr, typically a few thousands, the flow instability results in unsteady and three-
dimensional motion. Experiments (Sorensen et al. 2011) and simulations (Lopez 2012)
indicate that Recr increases roughly proportionally to the aspect ratio in elongated
containers. Therefore the asymptotic steady axisymmetric flow, as the aspect ratio
tends to infinity, merits study.

Next, we consider helical modes, m = ±1,±2 and show that the m = ±1 mode has
the smallest decay rate in a cavity of any gap. The corresponding λ is a real number,
except for a very small inner-to-outer radius ratio of the cylindrical sidewalls, and the
corresponding flow is typically not cellular.

In the rest of the paper, we formulate the problem (§ 2), analyse the asymptotic
axisymmetric (§ 3) and three-dimensional (§ 4) motions, and summarize the results
(§ 5).

2. Problem formulation
Consider a flow of a viscous fluid in a semi-infinite annular cavity, Rin < r < Ro,

0 < z <∞, where r and z are the radial and axial cylindrical coordinates (figure 1).
Suppose that some non-zero velocity is prescribed at z = 0, while the cylindrical
sidewalls are still and the cavity terminates at a dead end at z =∞. This implies the
zero flow rate (ZFR), e.g. through a cross-section, z= z0 > 0.

As z increases, a ZFR flow decays and eventually becomes so slow that it can be
governed by the linear rather than nonlinear Navier–Stokes equations. We focus here
on this asymptotic part of a ZRF flow as z→∞. Using the gap width ∆= Ro − Rin as
a length scale, and ∆2/ν, ν/∆, and ρν2/∆2 as scales for time, velocity and pressure,
respectively, renders all variables dimensionless; ν is the kinematic viscosity and ρ is
the density of the fluid. The Stokes equations can be written in the form (Batchelor
1967)

∂vr/∂t + ∂p/∂r =∇2vr − r−2vr − 2r−2∂vθ/∂θ, (2.1a)
∂vθ/∂t + r−1∂p/∂θ =∇2vθ − r−2vθ + 2r−2∂vr/∂θ, (2.1b)

∂vz/∂t + ∂p/∂z=∇2vz, (2.1c)
∂vz/∂z+ ∂vr/∂r + vr/r + r−1∂vθ/∂θ = 0, (2.1d)

where ∇2 ≡ r−1∂(r∂/∂r)/∂r + r−2∂2/∂θ 2 + ∂2/∂z2, (vr, vθ , vz) are the velocity
components in the cylindrical coordinates (r, θ, z), and p is pressure.
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670 V. Shtern

Equations (2.1) allow for a solution in the form

vr = U(r) exp(−λz+ imθ + iωt)+ c.c., (2.2a)
vθ = iS(r) exp(−λz+ imθ + iωt)+ c.c., (2.2b)
vz = λW(r) exp(−λz+ imθ + iωt)+ c.c., (2.2c)
p= P(r) exp(−λz+ imθ + iωt)+ c.c., (2.2d)

where c.c. denotes the complex conjugate of a preceding term.
Any solution of (2.1) can be presented as a linear superposition of modes (2.2)

with azimuthal wavenumber m = 0,±1,±2, . . . and frequency ω being a real number,
−∞ < ω <∞. For any fixed m and ω, there is a countable set of λ values which
must be found. In general, λ is a complex number, λ = λr + iλi; the subscripts ‘r’and
‘i’ indicate real and imaginary parts, respectively. For our problem, eigenvalues with
λr > 0 are the only physically relevant ones since the flow decays as z increases. The
larger λr is, the faster the corresponding mode decays. To explore asymptotic flow
features as z→∞, we focus on modes having small λr and therefore decaying more
slowly than other modes. These modes provide the main contribution to the asymptotic
flow while the contribution of other modes becomes negligible for large z. Due to the
linearity of (2.1), each mode can be treated separately.

Substitution of (2.2) reduces (2.1) to ordinary differential equations:

S′ = S1/r, (2.3a)

S′1 = r(a+ r−2)S− 2mUr−1 + mP, (2.3b)

W ′ =W1/r, (2.3c)

W ′1 = r(aW − P), (2.3d)

P′ = λ2W1/r + mr−2(S1 + S)− aU, (2.3e)

U′ = λ2W − r−1U + mr−1S, (2.3f )

where the prime denotes differentiation with respect to r and a= m2r−2 − λ2 + iω.
In the gap, Rin 6 r 6 Ro = Rin + 1, the no-slip boundary conditions at the sidewalls

yield

W = U = S= 0 at r = Rin, (2.4a)
W = U = S= 0 at r = Ro. (2.4b)

For the round pipe, where Rin = 0, the regularity conditions at the axis, r = 0, are

W1 = U = S= 0 at m= 0, (2.5a)
W = P= U − S= 0 at m= 1, (2.5b)

and

W = U = S= 0 at m > 2. (2.5c)

System (2.3) and the boundary conditions constitute a uniform problem having the
trivial (zero) solution. For a non-zero solution, a special (eigen-) value λ is required. In
some cases, eigensolutions can be found analytically (see below).

3. Axisymmetric flow
If the prescribed velocity distribution at z = 0 is axisymmetric, e.g. corresponding

to a rotating disk, the asymptotic flow can be axisymmetric as well. First we consider
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A flow in the depth of infinite annular cylindrical cavity 671

this case where m = 0 and equations for swirl, (2.3a) and (2.3b), and meridional
motion, (2.3c)–(2.3f ), are uncoupled.

3.1. Decay of swirl

To obtain an analytical solution, rewrite (2.3a) and (2.3b) as the second-order equation

S′′ = (r−2 − λ2 + iω)S− r−1S′, (3.1)

and address the limiting case as Rin→∞. Then (3.1) is reduced to S′′+ (λ2− iω)S= 0
and

S = C sin(nπy), y= r − Rin, n= 1, 2, . . . , (3.2a)

λr = [n2π
2
/2+ (n4π

4 + ω2)
1/2
/2]

1/2

, λi = ω/(2λr), (3.2b)

where C is a constant. Since λ is complex, the flow oscillates with respect to z.
The rotation direction (clockwise or anticlockwise) alternates as z varies. The smallest
eigenvalue, λsw = π, corresponding to n = 1 and ω = 0, is real; the subscript ‘sw’
means ‘swirl’. It follows from (3.2b) that time-oscillating modes, ω 6= 0, decay more
rapidly than steady modes, ω = 0, as z increases.

Next, consider any gap. Introduce µ2 = λ2 − iω and note that if µ is a real number
then (3.2b) is valid, where nπ is replaced by µ; therefore, time-oscillating modes
again decay more rapidly than steady modes for which λ = µ. Now we show that the
smallest µ is indeed a real number.

To this end, (3.1) is integrated from y = 0 to y = 1 with the initial conditions
S(0) = 0 and S′(0) = 1. The last condition (normalization) can be used with no loss
of generality because the problem is linear and uniform, allowing for an arbitrary
constant multiplier. We apply the fourth-order Runge–Kutta procedure with 400
grid points for all numerical simulations reported in this paper. As a result of the
integration, S(1) is determined and can be explored as a function of µ, F(µ) ≡ S(1).
The ratio of the gap width to the outer radius is δ = 1/Ro. In the limiting case as
δ→ 0, we have F(µ)= sinµ/µ. To find the smallest eigenvalue at any δ in the range
0< δ < 1, we first calculate F(µ) at µ= 0 and then eventually increase µ. A value of
µ at which F(µ) vanishes is needed.

Figure 2 depicts sinµ/µ (solid curve, δ = 0) and the calculation results for δ = 0.5
and δ = 1. Complex roots can appear only if two real roots merge and disappear.
No merging is observed in figure 2. Since the smallest eigenvalues µ are real, time-
independent modes decay more slowly than time-oscillating modes, and λ = µ at
ω = 0. Figure 3 depicts the dependence of the smallest λ = λsw on δ. As δ increases
from 0 to 1, λsw increases from 3.1416 to 3.8317. At δ = 1, our results for the steady
swirl agree with those obtained by Hills (2001) for the cylindrical container with a
rotating end wall.

Figure 4 depicts the asymptotic profile of swirl velocity. Under the normalization,
vθmax = 1, the profile is nearly invariant as δ varies from 0 to 1, e.g. the maximum
velocity location shifts from y = 0.5 to y = 0.48. Recall that the swirling mode does
not involve the meridional motion. In the limiting case as δ→ 0, the velocity of
corresponding flow in a plane cavity is parallel to its sidewalls and plane, z = 0.
Note that large eigenvalues of µ are close to nπ, n� 1, because the terms, r−2S and
r−1S′, in (3.1) become negligible compared with the other terms and therefore (3.1) is
reduced to S′′ + µ2S= 0.
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FIGURE 2. F(µ) is zero at an eigenvalue µ: solid curve, δ = 0; dashed curve, δ = 0.5;
dot-dashed curve, δ = 1.
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FIGURE 3. Dependence of the smallest decay rate of swirl, λsw, on gap/(outer radius) ratio δ.
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FIGURE 4. Swirl velocity profiles for a small gap (sin(πy), solid curve) and for a round pipe
(dot-dashed curve).
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A flow in the depth of infinite annular cylindrical cavity 673

3.2. Decay of meridional motion
Small gap

For analytical calculations, it is convenient to use the Stokes stream function

Ψ = λQ(r) exp(−λz+ imθ + iωt)+ c.c., vz = r−1∂Ψ/∂r, vr =−r−1∂Ψ/∂z. (3.3)

Then, in the limiting case as δ→ 0, the equations describing the meridional motion
can be reduced to

Q′′′′ + (λ2 + µ2)Q′′ + λ2µ2Q= 0. (3.4)

Its solution, Q(y), satisfying the no-slip conditions, Q(0)= Q′(0)= Q(1)= 0, is

Q= C{(cosµ− cos λ)[λ sin(µy)− µ sin(λy)]
− (λ sinµ− µ sin λ)[cos(µy)− cos(λy)]}, (3.5)

where C is a constant, which can be conveniently chosen to satisfy a normalization
condition, e.g. Q(0.5)= 1. The no-slip condition, Q′(1)= 0, yields that

F(λ)≡ C[2λµ(1− cosµ cos λ)− (λ2 + µ2) sin λ sinµ] = 0. (3.6)

At ω = 0, the smallest eigenvalue is λm = 4.212+ i2.251, which agrees with the known
value obtained for the plane cavity flow (Shankar & Deshpande 2000). As ω increases,
λmr also increases, e.g. λm = 4.493 + i2.742 at ω = 10. This feature is valid for any
gap according to our numerical simulations at ω = 10 as δ increases from 0 to 1. Since
steady meridional modes decay more slowly than time-oscillating ones, like the swirl
case, we now address only steady axisymmetric modes.

Moderate gap
Now consider an annular pipe with an arbitrary gap. A solution can be represented

in terms of Bessel functions (Shankar 1997), but we have found that direct numerical
simulations are less laborious. To numerically solve the eigenvalue problem for the
meridional motion, (2.3c)–(2.3f ) are integrated from y = 0 to y = 1 with initial
conditions W = U = 0,P = 1 (normalization) and W1 = W1 at y = 0. A value of
W1 is found by ‘shooting’ to satisfy the condition W(1) = 0. Since the problem is
linear, shooting rapidly converges for any initial guess for W1. As a result, U(1)
is determined and explored as a function λ, F(λ) ≡ U(1). Figure 5 depicts contours
Fr = 0 and Fi = 0 on the complex plane (λr, λi) for δ� 1, δ = 0.5 and δ = 1. Only the
region where λr > 0 and λi > 0 is shown, because both the abscissa and the ordinate
are lines of symmetry. According to system (2.3) at ω = 0, if λ is an eigenvalue,
then eigenvalues are −λ, λ∗ and −λ∗ as well; the symbol ‘∗’ denotes the complex
conjugate.

At points where the solid curves intersect the abscissa in figure 5, pole singularities
are located. Therefore, figure 5 reveals no real eigenvalue λ. Complex λ means a
cellular axisymmetric motion. Figure 6 depicts streamline patterns corresponding to the
minimal decay rate for δ� 1, δ = 0.5 and δ = 1. Figure 7 depicts the dependence of
the smallest λmr and related λmi on the gap width; index ‘m’ denotes the meridional
motion. Since r = 0 is a singularity point for system (2.3), we terminate integration as
Rin decreases down to 0.0001, where λm = 4.482+ i1.6617. With the no-slip conditions
at r = Rin, a singularity develops in the limiting case as Rin→ 0. This explains the
character of the curve near the ordinate in figure 7.

For transition to the round-pipe flow, we must replace conditions (2.4a) by (2.5a),
because in a round pipe (i) the axial velocity, W, is not zero at the axis, and
(ii) the regularity requires that W1 = 0 at r = 0. The new boundary conditions yield
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FIGURE 5. Contours Fr = 0 (solid curves) and Fi = 0 (dashed curves) for (a) a small gap,
δ� 1, (b) δ = 0.5, and (c) a round pipe, δ = 1.

λm = 4.466+ i1.4675, which agrees with the first eigenvalue found by Shankar (1998).
The difference between the results for the annular and round pipes is small for λmr but
remarkably large for λmi.

3.3. Matching conditions
The asymptotic solution obtained allows us to derive conditions to match the above
described large-z flow with that occurring for small and moderate z. Here we derive
the matching conditions for a steady axisymmetric flow. For the swirl velocity, the
condition is straightforward:

∂vθ/∂z+ λswvθ = 0. (3.7)
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FIGURE 6. Streamlines for (a) a small gap, δ� 1, (b) δ = 0.5, and (c) a round pipe, δ = 1.
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FIGURE 7. Decay rate of meridional flow in an annular pipe: solid curve, λmr; dashed curve,
λmi. The gap width serves as a length scale for λm.

For the meridional motion, we apply the solution for the Stokes stream function in
the form

Ψ = Q(r) exp(−λmz)+ Q∗(r) exp(−λ∗mz), (3.8)

where the symbol ‘∗’ denotes the complex conjugate. Differentiating (3.8) three
times with respect to z and excluding Q(r) exp(−λmz) and Q∗(r) exp(−λ∗mz) yields
the conditions

∂2Ψ/∂z2 + 2λmr∂Ψ/∂z+ (λ2
mr + λ2

mi)Ψ = 0, (3.9a)
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FIGURE 8. Contours Fr = 0 (solid curves) and Fi = 0 (dashed curves) for a round pipe,
δ = 1,m= 1.

∂3Ψ/∂z3 + (λ2
mi − 3λ2

mr)∂Ψ/∂z− 2λmr(λ
2
mr + λ2

mi)Ψ = 0. (3.9b)

Conditions (3.7) and (3.9) can be applied at a sufficiently large z for any ZFR flow
in a semi-infinite pipe. They can help reduce the domain of numerical simulations.
Conditions (3.7) and (3.9) can be applied for any gap value as well as for the round
pipe.

We conclude that the asymptotic axisymmetric flows in the annular and round
cavities are similar. The common features are (i) the cellular character of the
meridional motion, and (ii) that the swirl decays more slowly than meridional flow
as z increases. In contrast, the asymptotic three-dimensional flows in annular and
round cavities are very different, as shown below.

4. Steady three-dimensional flow
4.1. Cylindrical cavity

For comparison, we first re-examine the steady flow in the cylindrical cavity. Shankar
(1998) found that the smallest decay rate corresponds to the m = 1 mode with
λ1c = 2.5678 + i1.122; the subscripts 1 and ‘c’ indicate the m = 1 mode and the
cylindrical cavity, respectively.

To find eigenvalues we integrate (2.3) from y = 1 with initial conditions W = U =
S = 0,P = 1 (normalization), W1 =W1 and S1 = S1. To avoid the singularity at y = 0,
the integration terminates at yf = 0.0001. Values of W1 and S1 are found by shooting
to satisfy the conditions W = 0 and U = S at y = yf : see (2.5b). As the problem is
linear, shooting rapidly converges from any guess. As a result, P(yf ) is determined,
which is explored as a function λ, F(λ) ≡ P(yf ). Points where F(λ) = 0 correspond to
eigenvalues.

Figure 8 depicts contours Fr = 0 and Fi = 0 on the complex plane (λr, λi). The
symbol ‘p’ indicates singularities which are poles. Figure 8 reveals three complex and
two real eigenvalues. These values agree with those found by Shankar (1998) to five
significant figures.

The difference is in flow patterns. Shankar addressed a flow induced by a sliding
cover. This flow has a plane of symmetry, θ = const. In contrast, we consider a ZFR
flow which typically has no plane of symmetry. The problem is invariant with respect
to the transformation, (m, vθ)→ (−m,−vθ). Let v1 and v−1 be solutions for m = 1
and m = −1 respectively (with the same λ). A general solution is v = C1v1 + C−1v−1,
where C1 and C−1 are constants. The plane of symmetry exists at C1 = C−1. In this

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

42
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.429


A flow in the depth of infinite annular cylindrical cavity 677

1.0

0.5

0

–0.5

–1.0

1.0

0.5

0

–0.5

–1.0
1.00.50–0.5–1.0 1.00.50–0.5–1.0

(a) (b)

FIGURE 9. Contours vz = const. at a fixed z for (a) helical modes (C1 = 0 or C−1 = 0) and
(b) symmetric modes (C1 = C−1), corresponding to the smallest decay rate in a cylindrical
cavity.

case, the asymptotic flow is cellular, but it is not for C1 6= C−1. Figure 9 depicts
contours vz = const. at a fixed z for helical (C1 = 0 or C−1 = 0) and symmetric
modes (C1 = C−1) at λ= λ1c. Let the left-hand (right-hand) side correspond to positive
(negative) vz. At the separating curves and the sidewall (bold lines), the axial velocity
is zero.

Figure 9(a) rotates clockwise (for v−1) or anticlockwise (for v1) while figure 9(b) is
invariant as z increases. The other velocity components behave similarly. The regions
of positive and negative vz as well as the separating surface are helical and unbounded
for the flow corresponding to figure 9(a). Therefore, this flow is not cellular. In
contrast, the flow corresponding to figure 9(b) is cellular (Shankar 1998).

4.2. Annular cavity

As in the case of axisymmetric modes, there is no continuous transition from
the round to annual cavity for m = 1 modes because the no-slip (2.4a) and
regularity (2.5b) conditions differ. With the no-slip condition at y = yf , we found
that λ1 = 2.76 + i0.78. Comparison of λ1 and λ1c shows that the no-slip condition
yields more rapid flow decay as z increases, and a larger wavelength in the z direction,
than does the regularity condition. This trend becomes even more prominent as δ
decreases.

Figure 10 depicts the dependence of the smallest λr and the corresponding λi on the
gap width δ for a few leading modes: m= 0, 1 and 2. Figure 10(b) is a close-up of the
vicinity of δ = 1. The numbers near the curves are m values. Note that the transition
from the round to annular cavity is continuous for the m= 2 mode, because the no-slip
and regularity conditions agree for m > 2.

The striking effect is that the complex λ merges with its complex conjugate and
transforms into two real eigenvalues as δ decreases for both m = 1 and 2. This
metamorphosis occurs at δ close to 0.993 (0.81) for m = 1 (m = 2). The smaller
(larger) real λ tends to 0 (π) as δ→ 0. The mode corresponding to the larger real
λ tends as δ→ 0 to the flow described by analytical solution (3.2) at n = 1. The
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FIGURE 10. (a) Dependence of decay rate λr (solid curves) and wavenumber λi (dashed
curves) on gap δ. The numbers near the curves are m values. (b) Close-up of the vicinity of
δ = 1. The dotted curves are asymptotes, λ= mδ/(1− δ), as δ→ 0.

mode corresponding to the smaller real λ tends as δ→ 0 to the flow described by the
analytical solution derived below.

4.3. Analytical solution for azimuthal modes in a narrow annular cavity
In the limiting case as δ→ 0, the annular cavity tends to the plane cavity and the
azimuthal coordinate θ can be replaced by x = θRin. Let θ → 0 as Rin→∞, so that
the limiting value of x is finite. The Stokes equations in Cartesian coordinates (x, y, z)
have the solution

vx = p0αW sin(αx) exp(−αz), vy = 0, vz = p0αW cos(αx) exp(−αz), (4.1a)
p= 8p0 cos(αx) exp(−αz), Ψaz = p0W sin(αx) exp(−αz), W = 4y(1− y). (4.1b)

Here p0 is a constant, α is a wavenumber of x-oscillations, λ = α is the decay rate
in the z direction, Ψaz is the stream function, vz = ∂Ψaz/∂x and vx = −∂Ψaz/∂z, and
the y-profile, W, is normalized to its maximum, W(0.5) = 1; the subscript ‘az’ means
azimuthal.

Solution (4.1) describes a flow which is parallel to the cavity sidewalls, periodic
along the cavity, and which decays in the cavity depth as z→∞. The decay rate can
be arbitrarily small for α→ 0, but solution (4.1) becomes trivial at α = 0, so that
λ = 0 is not an eigenvalue. Figure 11 depicts streamlines, Ψaz = const., corresponding
to solution (4.1) in the cross-section y = 0.5 (the pattern is similar for any y), and
shows one period in the x direction.

To describe this mode in the annular cavity of large Rin = 1/δ − 1, we substitute
x = θRin. Now α = m/Rin = mδ/(1 − δ) has only discrete values corresponding to
m = 1, 2, . . . . Accordingly, the decay rate is λ = mδ/(1 − δ) (the dotted curves in
figure 10), which explains the asymptotic behaviour of the curves labelled 1 and 2 in
figure 10 as δ→ 0.

Figure 12 depicts profiles of the axial (W), swirl (S), and radial (U) velocities at
m = 1, λ = 1.66 and δ = 0.9 (see the curve labelled 1 in figure 10). For comparison,
the analytical solution, Wa = 4y(1 − y) as δ→ 0, is also shown. Even for this small
Rin = 1/9, the profiles W and Wa are close, and the radial velocity is small compared
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FIGURE 11. Streamlines of a plane flow parallel to the sidewalls of a plane cavity.
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FIGURE 12. Profiles of the axial (W, bold curve), swirl (S, dashed curve) and radial (U,
dotted curve) velocities at m = 1, λ = 1.66 and δ = 0.9; Wa = 4y(1 − y) (thin solid curve) is
the profile of W and −S as δ→ 0.

with the axial and swirl velocities, i.e. the numerical results for δ = 0.9 and the
analytical results as δ→ 0 are rather close.

5. Conclusions
The paper describes the asymptotic pattern of a ZFR flow of a viscous fluid in an

annular cylindrical cavity as the distance z from the flow source tends to infinity. The
pattern depends on a driving flow.

If the driving flow is axisymmetric, the asymptotic pattern is cellular and the
number of vortices is infinite in the cavity depth. In the limiting cases of the narrow
gap and the round cavity, our results agree with earlier ones (Shankar & Deshpande
2000; Hills 2001). It is shown that time-oscillating axisymmetric modes decay more
rapidly than steady modes. Conditions are derived which match the asymptotic and
near-surface axisymmetric flows.
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If the driving flow is three-dimensional, the asymptotic pattern is typically not
cellular. The least decaying mode corresponds to azimuthal wavenumber m = 1. The
flow monotonically decays as z increases except for inner-to-outer radius ratio less
than 0.007. The presence of an inner cylinder radically changes the asymptotic flow,
which becomes monotonic with respect to z in contrast to the z-oscillating flow in
the cylindrical cavity. Our numerical results are verified by comparison with analytical
solutions derived for both axisymmetric and three-dimensional flows in the cavity, with
inner-to-outer radius ratio close to 1.
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