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Abstract. The joint spectral radius of a pair of 2× 2 real matrices (A0, A1) ∈ M2(R)2
is defined to be r(A0, A1)= lim supn→∞ max{‖Ai1 · · · Ain‖

1/n
: i j ∈ {0, 1}}, the optimal

growth rate of the norm of products of these matrices. The Lagarias–Wang finiteness
conjecture [Lagarias and Wang. The finiteness conjecture for the generalized spectral
radius of a set of matrices. Linear Algebra Appl. 214 (1995), 17–42], asserting that
r(A0, A1) is always the nth root of the spectral radius of some length-n product
Ai1 · · · Ain , has been refuted by Bousch and Mairesse [Asymptotic height optimization
for topical IFS, Tetris heaps, and the finiteness conjecture. J. Amer. Math. Soc. 15 (2002),
77–111], with subsequent counterexamples presented by Blondel et al [An elementary
counterexample to the finiteness conjecture. SIAM J. Matrix Anal. 24 (2003), 963–970],
Kozyakin [A dynamical systems construction of a counterexample to the finiteness
conjecture. Proceedings of the 44th IEEE Conference on Decision and Control, and
the European Control Conference (Seville, Spain, December 2005). IEEE, Piscataway,
NJ, pp. 2338–2343] and Hare et al [An explicit counterexample to the Lagarias–Wang
finiteness conjecture. Adv. Math. 226 (2011), 4667–4701]. In this article, we introduce a
new approach to generating finiteness counterexamples, and use this to exhibit an open
subset of M2(R)2 with the property that each member (A0, A1) of the subset generates
uncountably many counterexamples of the form (A0, t A1). Our methods employ ergodic
theory; in particular, the analysis of Sturmian invariant measures. This approach allows a
short proof that the relationship between the parameter t and the Sturmian parameter P(t)
is a devil’s staircase.
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1. Introduction
1.1. Problem and setting. For a square matrix A with real entries, its spectral radius
r(A), defined as the maximum modulus of its eigenvalues, satisfies Gelfand’s formula

r(A)= lim
n→∞

‖An
‖

1/n,

where ‖ · ‖ is a matrix norm. More generally, for a finite collection A= {A0, . . . , Al} of
real square matrices, all of the same size, the joint spectral radius r(A) is defined by

r(A)= lim sup
n→∞

max{‖Ai1 · · · Ain‖
1/n
: i j ∈ {0, . . . , l}}, (1)

or, equivalently (see, e.g., [10]), by

r(A)= lim
n→+∞

max{r(Ai1 · · · Ain )
1/n
: i j ∈ {0, . . . , l}}. (2)

The notion of joint spectral radius was introduced by Rota and Strang [19] and notably
popularized by Daubechies and Lagarias [6] in their work on wavelets. Since the 1990s
it has become an area of very active research interest, from both a pure and an applied
perspective (see, e.g., [1, 10, 13, 21]).

The set A is said to have the finiteness property if r(A)= r(Ai1 · · · Ain )
1/n for some

i1, . . . , in ∈ {0, . . . , l}. It was conjectured by Lagarias and Wang [14] (see also Gurvits
[7]) that every such A enjoys the finiteness property. This so-called finiteness conjecture
was, however, refuted by Bousch and Mairesse [4], and a number of authors (see [2, 8, 12,
16]) have subsequently given examples of sets A for which the finiteness property fails. A
common feature of these finiteness counterexamples has been a judicious choice of a pair
of 2× 2 matrices A0, A1, followed by an argument that, for certain t > 0, the finiteness
property fails for the set A(t)= {A(t)0 , A(t)1 } = {A0, t A1}.

In fact, for many of these examples, it has been observed that the family (A(t))t>0

can be associated with the class of Sturmian sequences of Morse and Hedlund [17]:
for a given t > 0 an appropriate Sturmian sequence (in)

∞

n=1 ∈ {0, 1}N turns out to give
the optimal matrix product, in the sense that the joint spectral radius r(A(t)) equals
limn→∞ r(A(t)i1

· · · A(t)in
)1/n (see [2, 4, 8, 12, 16] for further details). A Sturmian sequence

(in)
∞

n=1 has a well-defined 1-frequency P = limN→∞ (1/N )
∑N

n=1 in , and it is those sets
A(t) whose associated Sturmian sequences† have irrational 1-frequency which yield
counterexamples to the finiteness conjecture (see Proposition 9 below for a more precise
description of the connection between finiteness counterexamples and Sturmian sequences
with irrational 1-frequency). For certain such families (A(t))t>0 (which henceforth we
refer to as Sturmian families), it has been proved by Morris and Sidorov [16] (see also
[4, p. 109]) that if P(t) denotes the 1-frequency associated to A(t), then the parameter
mapping t 7→ P(t) is continuous and monotone, but singular in the sense that {t > 0 :
P(t) /∈Q} is nowhere dense: in other words, the uncountably many parameters t for which
finiteness counterexamples occur only constitute a thin subset‡ of R+.

† We follow the definition of a Sturmian sequence given in [5], although note that some authors refer to these as
balanced sequences, reserving the nomenclature Sturmian precisely for those balanced sequences with irrational
1-frequency.
‡ The belief that finiteness counterexamples are rare appears to be widespread; for example, Maesumi [15]
conjectures that they constitute a set of (Lebesgue) measure zero in the space of matrices.
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Examples of Sturmian families (A(t))t>0 have been given by Bousch and Mairesse [4],
who considered the family generated by matrix pairs of the form

A=
((

eκh0 + 1 0
eκ 1

)
,

(
1 eκ

0 eκh1 + 1

))
, κ > 0, h0, h1 > 0, h0 + h1 < 2, (3)

by Kozyakin [12], who studied the family generated by pairs of the form

A=
((

1 0
c d

)
,

(
a b
0 1

))
, 0< a, d < 1≤ bc, (4)

and by various authors [2, 8, 16] focusing on the family generated by the particular pair

A=
((

1 0
1 1

)
,

(
1 1
0 1

))
. (5)

For an invertible matrix P , the simultaneous similarity (A0, A1) 7→

(P−1 A0 P, P−1 A1 P) leaves invariant the joint spectral radius, and does not change
the sequences (in)

∞

n=1 attaining the optimal matrix product, while, if u, v > 0,
then (u A0, vA1) has the same optimizing sequences as (A0, (v/u)A1). Therefore,
declaring A= (A0, A1) and A′ = (A′0, A′1) to be equivalent if A′0 = u P−1 A0 P and
A′1 = vP−1 A1 P for some invertible P and u, v > 0, we see that the equivalence of A and
A′ implies that (A(t))t>0 is a Sturmian family if and only if (A′(t))t>0 is. In particular,
(A′(t))t>0 is a Sturmian family whenever A′ is equivalent to a matrix pair A of the form
(3), (4), or (5).

The purpose of this article is to introduce an approach to studying the joint spectral
radius and generating finiteness counterexamples, which, in particular, yields new
examples of Sturmian families (A(t))t>0, i.e. where A is not equivalent to a matrix pair
of the form (3), (4) or (5). Our method is conceptually different from that of previous
authors, employing notions from dynamical systems, ergodic theory and, in particular,
ergodic optimization (see, e.g., [9]). Specifically, we identify a dynamical system TA with
the matrix pair A= (A0, A1), and cast the problem of determining the joint spectral radius
r(A) in terms of ergodic optimization (see Theorem 2 below): it suffices to determine the
TA-invariant probability measure which maximizes the integral of a certain auxiliary real-
valued function fA. Working with the family of A-Sturmian measures (certain probability
measures invariant under TA) instead of Sturmian sequences, we exploit a characterization
of these measures in terms of the smallness of their support to show that they give
precisely the family of fA(t)-maximizing measures, t > 0. In particular, whenever the
fA(t)-maximizing measure is Sturmian of irrational parameter P(t), then A(t) is a
finiteness counterexample (cf. Proposition 9).

The A-Sturmian measures are naturally identified with Sturmian measures on
�= {0, 1}N, the full shift on two symbols (see Notation 2). A notable feature of our
approach is that the singularity of the parameter mapping t 7→ P(t) (and, in particular, the
fact that {t > 0 : P(t) /∈Q} is nowhere dense in R+) is then readily deduced (see Theorem
9 in §11) as a consequence of classical facts about parameter dependence of Sturmian
measures on � (i.e. rather than requiring the ab initio approach of [16]).
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1.2. Statement of results. We use M2(R) to denote the set of real 2× 2 matrices, and
we focus attention on certain of its open subsets.

Notation 1. M2(R+) will denote the set of positive matrices, i.e. matrices in M2(R) with
entries in R+ = {x ∈ R : x > 0}, and M+2 (R

+)= {A ∈ M2(R+) : det A > 0} will denote
the set of positive orientation-preserving matrices.

Turning to pairs of matrices, we shall consider the following open subset of M+2 (R
+)2.

Definition 1. Let C⊂ M+2 (R
+)2 denote the set of matrix pairs

(A0, A1)=

((
a0 b0

c0 d0

)
,

(
a1 b1

c1 d1

))
∈ M+2 (R

+)2

satisfying
a0

c0
<

b1

d1
(6)

and
a1 + c1 − b1 − d1 < 0< a0 + c0 − b0 − d0. (7)

For reasons which will become apparent later (see Proposition 4), C will be referred to as
the set of concave–convex matrix pairs.

Finally, our counterexamples to the Lagarias–Wang finiteness conjecture will be drawn
from a certain open subset D (given by Definition 3 below) of C which is conveniently
described in terms of quantities %A and σA defined as follows.

Definition 2. For A =
(

a b
c d

)
∈ M+2 (R

+), we define

%A =
2b

a − d − 2b +
√
(a − d)2 + 4bc

,

and if a + c 6= b + d , then we define

σA =
b − a

a + c − b − d
.

It turns out (see Corollary 4) that if (A0, A1) ∈ C, then σA0 < 0< %A0 and %A1 <−1.
The set D is defined by imposing two inequalities.

Definition 3. Define

D= {(A0, A1) ∈ C : %A1 < σA0 and σA1 < %A0}.

Clearly, D is an open subset of C, and hence also of M2(R)2. It is also non-empty: for
example, it is readily verified that the two-parameter family

D2 =

{((
1 b
c 1

)
,

(
1 c
b 1

))
: bc < 1< c, (b, c) ∈ (R+)2

}
(8)

is a subset of D. Note that the pair (5) studied in [2, 8, 16], and corresponding to (b, c)=
(0, 1) in (8), lies on the boundary of both D and D2.

A version of our main result is the following theorem.
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THEOREM 1. The open subset D⊂ M2(R)2 is such that if A= (A0, A1) ∈D, then, for
uncountably many t ∈ R+, the matrix pair (A0, t A1) is a finiteness counterexample.

If we define E⊂ M2(R)2 to be the set of matrix pairs which are equivalent to some pair
in D (recall that A= (A0, A1) and A′ = (A′0, A′1) are equivalent if A′0 = u P−1 A0 P and
A′1 = vP−1 A1 P for some invertible P and u, v > 0), then, clearly, we get the following
corollary.

COROLLARY 1. The open subset E⊂ M2(R)2 is such that if A= (A0, A1) ∈ E, then, for
uncountably many t ∈ R+, the matrix pair (A0, t A1) is a finiteness counterexample.

Remark 1. Theorem 1 yields new finiteness counterexamples, in the sense that D contains
matrix pairs which are not equivalent to pairs satisfying (3), (4) or (5). To see this, note,
for example, that

A= (A0, A1)=

((
5/8 3/112
7/8 15/16

)
,

(
15/16 1
1/128 7/8

))
(9)

belongs to D. Both A0 and A1 have their larger eigenvalue equal to one, and smaller
eigenvalues given by λ0 = 9/16 and λ1 = 13/16, respectively. Now both matrices in (5)
have the single eigenvalue one, so (9) cannot be equivalent to (5); moreover, (9) is not
equivalent to any matrix pair satisfying (3), since both matrices in (3) have the property
that the larger eigenvalue is more than double the smaller eigenvalue. Lastly, we show
that A in (9) is not equivalent to any pair A′ satisfying (4): i.e. A′ = (A′0, A′1) with
A′0 =

(
1 0
c d

)
, A′1 =

(
a b
0 1
)
, where 0< a, d < 1≤ bc. Note that both A′0 and A′1 have their

larger eigenvalue equal to one (as is the case for A0 and A1), and smaller eigenvalues
equal to d and a, respectively. Thus, if A and A′ were equivalent, then there would
exist an invertible P such that A′0 = P−1 A0 P and A′1 = P−1 A1 P (i.e. the positive reals
u, v in the above definition of equivalence must both equal one), so that d = λ0 = 9/16,
a = λ1 = 13/16, and trace(A0 A1)= trace(A′0 A′1). In particular, 1≤ bc = trace(A′0 A′1)−
d − a = trace(A0 A1)− λ0 − λ1 = 12 995/14 336< 1, which is a contradiction. It
follows that A ∈D given by (9) is not equivalent to any matrix pair satisfying (4).

A key tool in proving Theorem 1 is the following Theorem 2 (proved in §4 as Theorem
4) characterizing the joint spectral radius of A ∈ C in terms of maximizing the integral
of a certain function fA over the set MA of probability measures invariant under an
associated mapping TA. More precisely, the action of any positive matrix A on (R+)2
induces a projective map TA (see §2.1), and if A= (A0, A1) ∈ C, then the inverses T−1

A0
,

T−1
A1

together define a two-branch dynamical system TA (see §4) on a subset of the unit
interval X . Defining the real-valued function fA in terms of the derivative T ′A and the
characteristic functions of the images TA0(X) and TA1(X) by

fA = 1
2 (log T ′A + (log det A0)1TA0 (X)

+ (log det A1)1TA1 (X)
)

then gives the following theorem.

THEOREM 2. If A ∈ C, then

log r(A)= max
µ∈MA

∫
fA dµ. (10)
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In order to state a more precise version of Theorem 1, we first need some basic facts
concerning ergodic theory, symbolic dynamics, and Sturmian measures.

Notation 2. Let �= {0, 1}N denote the set of one-sided sequences ω = (ωn)
∞

n=1, where
ωn ∈ {0, 1} for all n ≥ 1. When equipped with the product topology,� becomes a compact
space, and the shift map σ :�→� defined by (σω)n = ωn+1 for all n ≥ 1 is then
continuous. Let M denote the set of shift-invariant Borel probability measures on�; when
equipped with the weak-∗ topology, M is compact (see [22, Theorem 6.10]).

We equip � with the lexicographic order < and write [ω−, ω+] = {ω ∈� : ω− ≤
ω ≤ ω+}. A Sturmian interval is one of the form [0ω, 1ω], for some ω ∈�. A measure
µ ∈M is called Sturmian (see, e.g., [4, Proposition 1.5], [5]) if its support is contained in a
Sturmian interval. Let S ⊂M denote the class of Sturmian measures on�. For a Sturmian
measure µ ∈ S, the value µ([1]), denoted by P(µ), is called its (Sturmian) parameter†,
where [1] denotes the (cylinder) set {ω ∈� : ω1 = 1}. A Sturmian sequence of parameter
P is any point in the support of the Sturmian measure of parameter P .

The following are classical facts about Sturmian measures (see, e.g., [4, §1.1] or [5]).

PROPOSITION 1.
(a) For each Sturmian interval [0ω, 1ω] ⊂�, there exists a unique Sturmian measure

whose support is contained in this interval.
(b) The mapping P : S→ [0, 1] is a homeomorphism. If µ ∈ S has P(µ) ∈Q, then

its support is a single σ -periodic orbit, while if P(µ) /∈Q, then its support is a
Cantor subset of� which supports no other σ -invariant measure (and, in particular,
contains no periodic orbit).

(c) If d(ω) denotes the Sturmian parameter of the Sturmian measure supported by the
Sturmian interval [0ω, 1ω] ⊂�, then the map d :�→ [0, 1] is continuous, non-
decreasing and surjective. The preimage d−1(P) is a singleton if P is irrational,
and a positive-length closed interval if P is rational.

For example, the Sturmian measures of parameter 1/2, 1/3, 2/5, 3/8 and 5/13 are,
respectively, supported by the σ -periodic orbits generated by the finite words

01, 001, 00101, 00100101, 0010010100101,

whereas the Sturmian measure of parameter (3−
√

5)/2 is supported by the smallest
Cantor set containing the σ -orbit of

0010010100100101001010010010100101 . . . .

In view of Theorem 2, for a matrix pair A ∈ C we are interested in measures ν ∈MA
attaining the maximum in (10), i.e. satisfying

∫
fA dν =maxµ∈MA

∫
fA dµ; such ν

will be called fA-maximizing. There is a topological conjugacy between TA and the
shift map σ :�→�, and this induces a natural homeomorphism between MA and M;
the image of any fA-maximizing measure under this homeomorphism will be called a
maximizing measure for A. We then say that A= (A0, A1) ∈ C generates a full Sturmian

† This corresponds to the 1-frequency mentioned in §1.1, sometimes called the 1-ratio (see, e.g., [8, 16]), or the
rotation number (see, e.g., [5]).
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family if the set of maximizing measures for the family A(t)= (A0, t A1), t ∈ R+, is
precisely the set S of all Sturmian measures on �.

A more precise version of our main result Theorem 1 is then the following.

THEOREM 3. Every matrix pair in the open subset D⊂ M2(R)2 (and hence the open
subset E⊂ M2(R)2) generates a full Sturmian family.

Note that Theorem 3 will follow from a more detailed version, Theorem 9, which,
in particular, incorporates the statement that the parameter map t 7→ P(t) is a devil’s
staircase.

1.3. Relationship with previous results. The methods of this paper can also be used to
give an alternative proof of some of the results mentioned above, namely, establishing the
analogue of Theorem 3 in certain cases treated by Bousch and Mairesse [4] and Kozyakin
[12], and the case considered by Blondel, Theys and Vladimirov [2], Hare, Morris, Sidorov
and Theys [8], and Morris and Sidorov [16].

As already noted, the matrix pair (5) lies on the boundary of our open set D, and clearly
it also lies on the boundary of the set K⊂ M+2 (R

+)2 defined by Kozyakin’s conditions (4).
It can be checked that K itself lies in the boundary of our set C, but not in the boundary of
D. However, the subset K′ ⊂ K, defined by

K′ =

{((
1 0
c d

)
,

(
a b
0 1

))
∈ K : a ≤ b and d ≤ c

}
, (11)

can be readily checked to lie in the boundary of D. Matrices in the Bousch–Mairesse
family (3) do not all satisfy our condition (6), or indeed the corresponding weak inequality,
so do not automatically belong to the boundary of C. However, imposing the additional
condition

e2κ
≥ (eκh0 + 1)(eκh1 + 1) (12)

ensures that a matrix pair satisfying (3) belongs to the boundary of C, and indeed also
belongs to the boundary of D. In §7.2, we will indicate the minor modifications to our
approach that are needed to handle the case of (5) and the sub-cases of (3) and (4) defined
by (12) and (11), respectively.

1.4. Organization of article. The article is organized as follows. Section 2 consists of
preliminaries: maps induced by matrices acting on projective space, Perron–Frobenius
theory and some useful notation and identities. Section 3 develops the notions of projective
convexity and projective concavity. Section 4 introduces the induced dynamical system
TA for concave–convex matrix pairs A, the formulation of joint spectral radius in terms
of ergodic optimization (Theorem 4) and the connection between the finiteness property
and TA-periodic orbits. Section 5 introduces Sturmian measures and Sturmian intervals for
the dynamical system TA and makes the connection between finiteness counterexamples
and unique maximizing measures which are Sturmian of irrational parameter. Section 6
establishes the existence of an important technical tool, the Sturmian transfer function.
After deriving some explicit formulae for extremal Sturmian intervals in §7, the key §8
establishes the link between Sturmian intervals and the parameter t of the pair A(t).
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Section 9 treats the case of those parameters t such that one matrix in the pair A(t)
dominates the other, so that the joint spectral radius r(A(t)) is simply the spectral radius
of the dominating matrix. All other parameters are considered in §10, establishing that the
joint spectral radius is always attained by a unique Sturmian measure. Finally, in §11, we
show that the map taking parameter values t to the associated Sturmian parameter P(t) is
a devil’s staircase.

2. Preliminaries
2.1. The induced map for a positive matrix.

Notation 3. Throughout we use the notation X = [0, 1].

A positive matrix A ∈ M2(R+) gives a self-map v 7→ Av of (R+)2. This lifts to a
self-map Ã : [v] 7→ [Av] of projective space (R+)2/∼, the equivalence relation ∼ being
defined by v ∼ v′ if v = sv′ for some s > 0, and where [v] denotes the equivalence class
containing v ∈ (R+)2. It is convenient to identify the projective space with

6 =

{(
x

1− x

)
: x ∈ (0, 1)

}
,

so that the projection π : (R+)2→6 takes the form

π :

(
x
y

)
7→

( x
x+y

y
x+y

)
,

and the projective map is represented as π ◦ A :6→6, taking the explicit form

π ◦ A :
(

x
1− x

)
7→

( (a−b)x+b
(a+c−b−d)x+b+d

(c−d)x+d
(a+c−b−d)x+b+d

)
.

This projective mapping is completely determined by its first coordinate, thereby
motivating the following definition of the self-map TA of the unit interval X = [0, 1].

Definition 4. For A =
(

a b
c d

)
∈ M+2 (R

+), the induced map TA : X→ X is defined by

TA(x)=
(a − b)x + b

(a + c − b − d)x + b + d
,

the induced image X A is defined by

X A = TA(X)=
[

b
b + d

,
a

a + c

]
,

and the induced inverse map SA : X A→ X is given by

SA(x)= T−1
A (x)=

(b + d)x − b
−(a + c − b − d)x + a − b

.

Remark 2. Defining P =
(

1 0
1 1

)
, the Möbius maps TA and SA are represented, respectively,

by the matrices PAP−1 and PA−1 P−1.

Remark 3. The objects defined in Definition 4 do not change if the matrix A is multiplied
by a positive real number: i.e. if t > 0, A ∈ M+2 (R

+), then Tt A = TA (hence St A = SA)
and X t A = X A.
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In view of (7), in the definition of C, it suffices to restrict attention to matrices of the
following form.

Notation 4. Let M denote the set of matrices A =
(

a b
c d

)
∈ M+2 (R

+) such that a + c 6=
b + d .

LEMMA 1. For A =
(

a b
c d

)
∈ M+2 (R

+), the map TA has a single fixed point pA = TA(pA)

in X. If A ∈M, then

pA =
a − d − 2b +

√
(a − d)2 + 4bc

2(a + c − b − d)
, (13)

and if A /∈M, then

pA =
b

2b + d − a
. (14)

Proof. Uniqueness follows from the fact that A has all entries strictly positive, and the
formulae (13) and (14) are straightforward computations. �

2.2. Notation and matrix preliminaries. For a matrix A =
(

a b
c d

)
∈ M+2 (R

+), it will be
useful to write

αA = a + c − b − d, (15)

βA = a − d − 2b, (16)

γA =
√
(a − d)2 + 4bc, (17)

noting that these quantities are related by the following identity.

LEMMA 2. For A ∈ M+2 (R
+),

γ 2
A − β

2
A = 4bαA. (18)

Proof. This is a straightforward computation. �

For ease of reference, it will be convenient to collect together various previously defined
objects expressed in terms of the above notation.

PROPOSITION 2. For A ∈ M+2 (R
+),

%A =
2b

βA + γA
, (19)

TA(x)=
(a − b)x + b
αAx + b + d

,

SA(x)=
(b + d)x − b
−αA(x + σA)

,

and if, moreover, A ∈M, then

σA =
b − a
αA

, (20)

pA =
βA + γA

2αA
=

bσA

(b − a)%A
. (21)

The set C can be written as

C=

{
(A0, A1) ∈M2

:
a0

c0
<

b1

d1
and αA1 < 0< αA0

}
.
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2.3. Perron–Frobenius theory and the joint spectral radius.

LEMMA 3. The dominant (Perron–Frobenius) eigenvalue λA > 0 of the matrix A =(
a b
c d

)
∈ M+2 (R

+) is given by

λA =
1
2
(a + d + γA)=

b
pA
+ a − b,

with corresponding left eigenvector

wA = (a − d + γA, 2b)

and right eigenvector

vA =

(
pA

1− pA

)
.

For A ∈ M+2 (R
+), the derivative of TA at its fixed point pA is related to the determinant

and Perron–Frobenius eigenvalue of A as follows.

LEMMA 4. If A ∈ M+2 (R
+), then

T ′A(pA)=
det A

λ2
A
.

Proof. This is a straightforward computation. If A ∈M, we can use the expression
pA = (βA + γA)/2αA (see (21)), the derivative formula T ′A(x)= det A(αAx + b + d)−2

and the fact that λA =
1
2 (a + d + γA)=

1
2 (βA + γA)+ b + d (see (3)). If A /∈M, then

T ′A ≡ (a − b)/(b + d), λA = b + d , and the relation a + c = b + d means that det A =
(a − b)(b + d), so the result follows. �

Since the Perron–Frobenius eigenvalue λA is also the spectral radius r(A), we obtain
the following corollary.

COROLLARY 2. If A ∈ M+2 (R
+), then its spectral radius r(A) satisfies

r(A)=
(

det A
T ′A(pA)

)1/2

. (22)

Proof. This is immediate from Lemma 4. �

Notation 5. Let us write finite words using the alphabet {0, 1} as i = (i1, . . . , in) and their
length as |i | = n. Let �∗ denote the set of all such finite words: i.e. �∗ =

⋃
n≥1{0, 1}n .

Given A= (A0, A1) ∈ M2(R)2 and i ∈ {0, 1}n , let A(i) denote the product

A(i)= Ai1 · · · Ain . (23)

Corollary 2 then allows us to express the joint spectral radius of a matrix pair A=
(A0, A1) ∈ M+2 (R

+)2 in terms of induced maps of the products A(i) as follows.

PROPOSITION 3. If A= (A0, A1) ∈ M+2 (R
+)2, then its joint spectral radius r(A)

satisfies

r(A)= sup
i∈�∗

(
det A(i)

T ′A(i)(pA(i))

)1/2|i |

. (24)
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Proof. The expression (2) for the joint spectral radius can be written as

r(A)= sup{r(Ai1 · · · Ain )
1/n
: n ≥ 1, i j ∈ {0, 1}} = sup

i∈�∗
r(A(i))1/|i |,

so applying Corollary 2 with A replaced by A(i) yields the result. �

2.4. Some useful formulae. The purpose of this short subsection is to collect together
various formulae which will prove useful in the subsequent work. Firstly, we have the
following two expressions for the determinant of A involving αA and σA.

LEMMA 5. For A ∈M, its determinant can be expressed as

det A =−αA(a + c)
(

a
a + c

+ σA

)
(25)

and

det A =−αA(b + d)
(

b
b + d

+ σA

)
. (26)

Proof. This is a straightforward computation. �

There is a useful alternative way of expressing the quantity %A.

LEMMA 6. For A ∈M,

%A =
γA − βA

2αA
, (27)

and %A is the larger root of the quadratic polynomial qA defined by

qA(z)= αAz2
+ βAz − b. (28)

Proof. The expression (27) follows from (19) and the identity (18).
The larger root of qA is computed to be

−βA +

√
β2

A + 4αAb

2αA
=
−βA + γA

2αA
,

again using (18). �

Clearly,

qA(z)= det
(

1 z
−αAz βAz − b

)
, (29)

although the following expression will prove to be more useful.

LEMMA 7. For A ∈M,

qA(z)= det
(

1 z
b + d − αAz (a − b)z − b

)
.

Proof. This is a straightforward computation. �

https://doi.org/10.1017/etds.2017.18 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2017.18


Joint spectral radius, Sturmian measures, finiteness conjecture 3073

3. Projective convexity and projective concavity
Remark 4.
(a) For A ∈M and x ∈ X , the derivative formula

T ′A(x)= det A(αAx + b + d)−2 (30)

implies that if A ∈M2, then TA0 and TA1 are orientation preserving.
(b) For A ∈M and x ∈ X , the second derivative formula

T ′′A(x)=−2αA det A(αAx + b + d)−3 (31)

implies that if A ∈ C, then T ′′A0
< 0 and T ′′A1

> 0: i.e. TA0 is strictly concave and TA1

is strictly convex.

Part (b) of Remark 4 motivates the following definition, partitioning M into two subsets.

Definition 5. A matrix A ∈M will be called projectively convex if the induced map TA is
strictly convex and projectively concave if the induced map TA is strictly concave.

Remark 5. The set M is the disjoint union of the subset of projectively convex matrices
and the subset of projectively concave matrices.

Recall that
wA = (w

(1)
A , w

(2)
A )= (a − d + γA, 2b) (32)

denotes the Perron–Frobenius left eigenvector of A ∈M and that (consequently) the right

eigenvector for the other eigenvalue of A is
(
w
(2)
A

−w
(1)
A

)
. It is useful to record the following

identity.

LEMMA 8. For A =
(

a b
c d

)
∈M,

%A =
w
(2)
A

w
(1)
A − w

(2)
A

. (33)

Proof. This is immediate from (19) and (32). �

COROLLARY 3. For A ∈M, if Q ∈ M2(R) is non-singular, then %Q−1 AQ = %A: i.e. %A is
invariant under similarities.

Proof. This is immediate from Lemma 8 and the fact that the eigenvector wA is invariant
under similarities. �

There are various useful characterizations of projective convexity and projective
concavity.

LEMMA 9. For A ∈M, the following are equivalent:
(i) A is projectively concave;
(ii) αA > 0;
(iii) %A > 0;
(iv) w

(1)
A >w

(2)
A .
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Proof. As noted in Remark 4(b), the second derivative formula (31) yields the equivalence
of (i) and (ii), since det A > 0, and a function is strictly concave if and only if its second
derivative is strictly negative.

To prove the equivalence of (ii) and (iii), we consider separately the cases where
βA ≥ 0 and βA < 0. If βA ≥ 0, then αA = βA + b + c > 0, so we must simply show that
%A > 0. But γA > 0, by definition, and hence βA + γA > 0, and therefore (19) implies that
%A = 2b/(βA + γA) > 0, as required. If, on the other hand, βA < 0, then γA − βA > 0 is
automatically true, again since γA > 0, by definition. Using (18) and (19), we see that

2αA%A = γA − βA > 0,

so, indeed, αA > 0 if and only if %A > 0, as required.
Lastly, the equivalence of (iii) and (iv) is immediate from (33), since w(2)A > 0. �

LEMMA 10. For A ∈M, the following are equivalent:
(i) A is projectively convex;
(ii) αA < 0;
(iii) %A <−1;
(iv) w

(1)
A <w

(2)
A .

Proof. A function is strictly convex if and only if its second derivative is strictly positive,
so the equivalence of (i) and (ii) follows from (31) since det A > 0 and αAx + b + d =
a + c + (b + d)(1− x) > 0 for all x ∈ X .

To prove that (iii) is equivalent to (iv), note that (33) gives w(1)A = w
(2)
A (1+ %−1

A );
therefore %A <−1 if and only if 1+ %−1

A ∈ (0, 1), if and only if w(1)A ∈ (0, w
(2)
A ).

Lastly, to prove the equivalence of (ii) and (iii), it follows from Lemma 9 that αA < 0
if and only if %A < 0, but this latter inequality, in fact, implies that w(2)A − w

(1)
A > 0

by (33), so

%A =−1−
w
(1)
A

w
(2)
A − w

(1)
A

<−1,

as required. �

Note that, in Lemma 10, the assertion is not merely that %A < 0, but that %A <−1; this
should be contrasted with the inequality %A > 0 in Lemma 9.

It is now clear why C is described as the set of concave–convex pairs†.

PROPOSITION 4. The set C consists of those matrix pairs (A0, A1) ∈M2 such that A0 is
projectively concave, A1 is projectively convex and the induced image for A0 is strictly to
the left of the induced image of A1.

Proof. Lemmas 9 and 10 imply that the inequality αA1 < 0< αA0 in Definition 1
is equivalent to A0 being projectively concave and A1 being projectively convex.
The inequality a0/c0 < b1/d1 in Definition 1 is equivalent to TA0(1)= a0/(a0 + c0) <

b1/(b1 + d1)= TA1(0), which asserts that the right endpoint of the induced image X A0 is
strictly to the left of the left endpoint of the induced image X A1 . �

† Note, however, the restriction that the induced images be disjoint, with the concave image to the left of the
convex one.
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LEMMA 11. If A ∈M is projectively concave then σA < 0.

Proof. Projective concavity of A means that αA > 0, so by (20) it suffices to show that
b < a. Since det A = ad − bc > 0 and αA = a + c − b − d > 0, we derive

a − b > d − c >
bc
a
− c =−

c
a
(a − b),

or, in other words,

(a − b)
(

1+
c
a

)
> 0,

and hence a − b > 0, as required. �

We can now prove the following result mentioned in §1.2 (note, however, that there is
no constraint on the sign of σA1 when (A0, A1) ∈ C).

COROLLARY 4. If (A0, A1) ∈ C, then σA0 < 0< %A0 and %A1 <−1.

Proof. This is immediate from Lemmas 9, 10 and 11 �

An important result is the following lemma.

LEMMA 12. If A ∈M, then

− αA(x + σA) > 0 for all x ∈ X A. (34)

In particular, if A ∈M is projectively concave, then

x + σA < 0 for all x ∈ X A, (35)

and if A ∈M is projectively convex, then

x + σA > 0 for all x ∈ X A. (36)

Proof. Clearly, (34) follows from (35) and (36) since αA is positive if A is projectively
concave and negative if A is projectively convex, by Lemmas 9 and 10.

To prove (35), note that −αA(a + c)(a/(a + c)+ σA)= det A > 0 by (25), and if A is
projectively concave, then αA > 0, so a/(a + c)+ σA < 0. But a/(a + c) is the right-hand
endpoint of X A, so if x ∈ X A, then x ≤ a/(a + c), and therefore x + σA ≤ a/(a + c)+
σA < 0, as required.

To prove (36), note that −αA(b + d)(b/(b + d)+ σA)= det A > 0 by (26), and if A is
projectively convex, then αA < 0, so b/(b + d)+ σA > 0. But b/(b + d) is the left-hand
endpoint of X A, so if x ∈ X A, then x ≥ b/(b + d), and therefore x + σA ≥ b/(b + d)+
σA > 0, as required. �

COROLLARY 5. If (A0, A1) ∈ C, then x + σA0 < 0 for x ∈ X A0 , x + σA1 > 0 for x ∈ X A1

and −αAi (x + σAi ) > 0 for all x ∈ X Ai , i ∈ {0, 1}.

Proof. This is immediate from Lemma 12. �

LEMMA 13. If A= (A0, A1) ∈ C, then

qA1(%A0) < 0< qA0(%A1).
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Proof. The larger root of qA1 is %A1 , by Lemma 6. It follows that qA1(z)= αA1 z2
+

βA1 z − b1 < 0 for all z > %A1 , since the leading coefficient αA1 < 0, since A1 is
projectively convex. But, by Lemmas 9 and 10, we know that %A0 > 0>−1> %A1 , so,
indeed, qA1(%A0) < 0, as required.

The smaller root of qA0 , which we shall denote by rA0 , is given by

rA0 =
−(γA0 + βA0)

2αA0

.

It follows that
qA0(z)= αA0 z2

+ βA0 z − b0 > 0 for all z < rA0 , (37)

since the leading coefficient αA0 > 0, since A0 is projectively concave. Now %A1 <−1 by
Lemma 10, and if we can show that rA0 >−1, then it follows that %A1 < rA0 , and hence
qA0(%A1) > 0 by (37).

To show that, indeed, rA0 >−1, note that this inequality is equivalent to 2αA − βA >

γA. Both sides are positive, so this is equivalent to (2αA − βA)
2 > γ 2

A, which, using
(18), becomes 4αA(αA − βA) > 4bαA. This latter inequality is equivalent to αA − βA > b,
which is true because, in fact, αA − βA = b + c > b. �

We deduce the following technical lemma, which will be used in §9.

LEMMA 14. If A ∈ C, then the Möbius function

x 7→
x + %A0

(b1 + d1 − αA1%A0)x + (a1 − b1)%A0 − b1

has strictly negative derivative, while the Möbius function

x 7→
x + %A1

(b0 + d0 − αA0%A1)x + (a0 − b0)%A1 − b0

has strictly positive derivative.

Proof. A general Möbius map x 7→ (Px + Q)/(Rx + S) has derivative D(Rx + S)−2,
where D = P S − Q R, so the derivative is strictly negative if D < 0 and strictly positive if
D > 0. For our first Möbius map,

D = det
(

1 %A0

b1 + d1 − αA1%A0 (a1 − b1)%A0 − b1

)
= qA1(%A0)

by Lemma 7, and qA1(%A0) is strictly negative by Lemma 13, so the derivative of the map
is strictly negative, as required.

For our second Möbius map,

D = det
(

1 %A1

b0 + d0 − αA0%A1 (a0 − b0)%A1 − b0

)
= qA0(%A1)

by Lemma 7, and qA0(%A1) is strictly positive by Lemma 13, so the derivative of the map
is strictly positive, as required. �
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4. The induced dynamical system for a concave–convex matrix pair
4.1. The induced dynamical system and joint spectral radius.

Definition 6. For a matrix pair A= (A0, A1) ∈ C, define the induced space XA to be

XA = X A0 ∪ X A1 ,

and define the induced dynamical system TA : XA→ X by

TA(x)=

{
SA0(x) if x ∈ X A0 ,

SA1(x) if x ∈ X A1 .

Remark 6.
(a) The map TA : XA→ X is Lipschitz continuous since XA = X A0 ∪ X A1 is the union

of disjoint intervals X A0 and X A1 , and the restriction of TA to X Ai is the Möbius
mapping SAi , which is certainly Lipschitz continuous.

(b) Note that the (surjective) induced dynamical system TA is naturally defined as a
mapping from XA to X = [0, 1]. To view it as a surjective self -mapping of some set
(the natural setting for a dynamical system), we consider its restriction to the induced
Cantor set YA :=

⋂
n≥0 T−n

A (XA) and note that TA : YA→ YA is topologically
conjugate to the shift map σ on �= {0, 1}N.

PROPOSITION 5. If A= (A0, A1) ∈ C, then its joint spectral radius r(A) satisfies

r(A)= sup
i∈�∗

(det A(i)(T |i |A )
′(pA(i)))

1/2|i |. (38)

Proof. From Definition 6, we see that TA ◦ TAi is the identity map on X , for i ∈ {0, 1},
since TA is defined in terms of the inverses SAi = T−1

Ai
. Similarly, for any i ∈ {0, 1}n , we

see that T n
A ◦ TA(i) is also the identity map on X , so (T n

A)
′(TA(i)(x))T ′A(i)(x)= 1 for all

x ∈ X , by the chain rule. Setting x = pA(i) = TA(i)(pA(i)),

(T n
A)
′(pA(i))=

1
T ′A(i)(pA(i))

, (39)

and combining this with (24) gives the required formula (38). �

4.2. Invariant measures for the induced dynamical system.

Definition 7. For A ∈ C, let MA denote the set of TA-invariant Borel probability measures
on X = [0, 1]; the support of any such measure is contained in YA =

⋂
n≥0 T−n

A (XA).

The following is a well-known consequence of the compactness of YA and continuity
of TA (see, e.g., [22, Theorem 6.10]).

LEMMA 15. The set MA is compact with respect to the weak∗ topology.

Definition 8. For any p ∈ XA that is a periodic point for TA, with T n
A(p)= p, we say that

the probability measure µ ∈MA defined by

µ=
1
n

n−1∑
j=0

δT j
A(p)

(40)

is the corresponding periodic orbit measure (or TA-periodic orbit measure).
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Remark 7. The topological conjugacy hA :�→ YA between the shift map σ :�→�

and TA : YA→ YA (cf. Remark 6(b)) induces a one-to-one correspondence h∗A :M→
MA between invariant measures.

Definition 9. For a bounded Borel function f : XA→ R, a measure m ∈MA is called
f -maximizing if ∫

f dm = sup
µ∈MA

∫
f dµ.

In the generality of Definition 9, the notion of an f -maximizing invariant measure is
part of the wider field of so-called ergodic optimization (see, e.g., [9]).

Definition 10. For A= (A0, A1) ∈ C, define the induced function fA : XA→ R by

fA = 1
2 (log T ′A + (log det A0)1X A0

+ (log det A1)1X A1
). (41)

That is,

fA(x)=

{
1
2 (log S′A0

(x)+ log det A0) if x ∈ X A0 ,

1
2 (log S′A1

(x)+ log det A1) if x ∈ X A1 ,
(42)

so writing Ai =
(ai bi

ci di

)
gives

fA(x)= log
(

det Ai

−αAi (x + σAi )

)
for x ∈ X Ai , (43)

where we recall from Corollary 5 that −det Ai/(αAi (x + σAi )) > 0 for all x ∈ X Ai .

Remark 8. The function fA is clearly Lipschitz continuous on each X Ai , and hence is
Lipschitz continuous on XA = X A0 ∪ X A1 since the intervals X A0 and X A1 are disjoint.

The reason for introducing the function fA is provided by the following characterization
of the joint spectral radius in terms of ergodic optimization.

THEOREM 4. If A= (A0, A1) ∈ C, then its joint spectral radius r(A) satisfies

log r(A)= max
µ∈MA

∫
fA dµ. (44)

Proof. From Proposition 5,

log r(A)= sup
i∈�∗

log(det A(i)(T |i |A )
′(pA(i)))

1/2|i |. (45)

If i ∈ {0, 1}n , then

log(det A(i)(T n
A)
′(pA(i)))

1/2|i |
=

1
2n
(log det(Ai1 · · · Ain )+ log(T n

A)
′(pA(i)))

=
1

2n

(
log

n∏
j=1

det Ai j + log
n−1∏
j=0

T ′A(T
j
A(pA(i)))

)

=
1
n

n−1∑
j=0

1
2
(log det Ai j+1 + log T ′A(T

j
A(pA(i))))

=
1
n

n−1∑
j=0

fA(T
j
A(pA(i))), (46)
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where the last step uses (41) together with the fact that

log det Ai j+1 = ((log det A0)1X A0
+ (log det A1)1X A1

)(T j
A(pA(i))),

because

1X Ak
(T j

A(pA(i)))=

{
1 if i j+1 = k,

0 if i j+1 6= k.

Combining (45) and (46) gives

log r(A)= sup
i∈�∗

1
|i |

|i |−1∑
j=0

fA(T
j
A(pA(i)))= sup

i∈�∗

∫
fA dµi , (47)

where

µi =
1
|i |

|i |−1∑
j=0

δT j
A(pA(i))

is the periodic orbit measure (see Definition 8) for the period-|i | point pA(i) = T |i |A (pA(i)):

i.e. the unique measure in MA whose support equals the periodic orbit {T j
A(pA(i))}

|i |−1
j=0 .

By a result of Parthasarathy [18] (see also Sigmund [20]), the collection of periodic orbit
measures {µi : i ∈�∗} is weak∗ dense in the weak∗ compact space MA, so

sup
i∈�∗

∫
fA dµi = max

µ∈MA

∫
fA dµ, (48)

and combining with (47) gives the required equality (44). �

4.3. The finiteness property and periodic orbits. In view of Theorem 4, we shall
be interested in those measures m ∈MA which are fA-maximizing, in the sense of
Definition 9, i.e. m attains the maximum in (44): log r(A)=maxµ∈MA

∫
fA dµ=∫

fA dm. The finiteness property for A (which we recall means that r(A)=
r(Ai1 · · · Ain )

1/n for some i1, . . . , in ∈ {0, 1}) corresponds to the existence of a periodic
orbit measure which is fA-maximizing.

PROPOSITION 6. A ∈ C has the finiteness property if and only if some TA-periodic orbit
measure is fA-maximizing.

Proof. If A ∈ C has the finiteness property and i ∈ {0, 1}n satisfies r(A)= r(A(i))1/n ,
then we claim that the corresponding periodic orbit measure µi = (1/n)

∑n−1
j=0 δT j

A(pA(i))

is fA-maximizing. To see this, first note that (44) gives

log r(A(i))1/n
= log r(A)= max

µ∈MA

∫
fA dµ, (49)

and the left-hand side of (49) can be written as

log r(A(i))1/n
= log

(
det A(i)

T ′A(i)(pA(i))

)1/2n

= log(det A(i)(T n
A)
′(pA(i)))

1/2n (50)
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using Corollary 2 and (39). Therefore (46) gives

log r(A(i))1/n
=

1
n

n−1∑
j=0

fA(T
j
A(pA(i)))=

∫
fA dµi , (51)

so (49) implies that µi is, indeed, fA-maximizing.
Conversely, if some TA-periodic orbit measure is fA-maximizing, then this measure is

necessarily of the form µi = (1/n)
∑n−1

j=0 δT j
A(pA(i))

for some n ∈ N and i ∈ {0, 1}n , and

it satisfies
∫

fA dµi =maxµ∈MA

∫
fA dµ. Combining (44) with (50) and (51), gives

log r(A(i))1/n
= log r(A), so A has the finiteness property, as required. �

Note that the above proof has also established the following proposition.

PROPOSITION 7. Suppose that A ∈ C, and i ∈ {0, 1}n for some n ∈ N. Then r(A)=
r(A(i))1/n if and only if the periodic orbit measure µi = (1/n)

∑n−1
j=0 δT j

A(pA(i))
is fA-

maximizing.

Recall that we say that A ∈ C is a finiteness counterexample if r(A) > r(Ai1 · · · Ain )
1/n

for all n ∈ N and all choices i1, . . . , in ∈ {0, 1}.

PROPOSITION 8. A ∈ C is a finiteness counterexample if and only if no TA-periodic orbit
measure is fA-maximizing. In this case, there exists at least one measure µ ∈MA that is
fA-maximizing, and there exist uncountably many sequences ω ∈� such that

r(A)= lim
n→∞

r(Aω1 · · · Aωn )
1/n . (52)

Proof. The first statement is equivalent to that of Proposition 6, while the existence of
an fA-maximizing measure µ is a consequence (see, e.g., [9, Proposition 2.4(i)]) of the
continuity of fA and the weak∗ compactness of MA (see Lemma 15). In fact, µ
may be chosen to be an ergodic measure since it is readily shown that the set of fA-
maximizing measures is convex, and any of its extremal points is ergodic (see, e.g., [9,
Proposition 2.4]). The ergodic theorem (see, e.g., [22, Theorem 1.14]) then implies that

log r(A)=
∫

fA dµ= lim
n→∞

1
n

n−1∑
j=0

fA(T
j
A(p)) (53)

for µ-almost every p ∈ YA. Since no periodic orbit measure is fA-maximizing, the
measure µ must have uncountable support, and therefore (53) holds for an uncountable
set of points p ∈ YA.

We may use the topological conjugacy hA :�→ YA to define the image measure
m = (h−1

A )∗(µ), which also has uncountable support, and if we write hA(ω)= p, then

r(Aω1 · · · Aωn )
1/n
= exp

(
1
n

n−1∑
j=0

fA(T
j
A(p))

)
, (54)

so (53) implies that r(A)= limn→∞ r(Aω1 · · · Aωn )
1/n for m-almost every ω ∈�, and

hence for uncountably many ω ∈�. �
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4.4. Monotonicity properties and formulae. The following simple lemma records that,
for A ∈ C, the induced dynamical system TA(t) is independent of t and that the induced
function fA(t) differs from fA only by the addition of a scalar multiple of the characteristic
function for the image X A1 .

LEMMA 16. For A= (A0, A1) ∈ C and all t > 0:
(i) TA(t) = TA;
(ii) fA(t) = fA + (log t)1X A1

;
(iii) fA(t)(TA0(1))− fA(t)(TA1(0))= fA(TA0(1))− fA(TA1(0))− log t; and
(iv) f ′A(t) = f ′A, with

f ′A(x)=−(x + σAi )
−1 for x ∈ X Ai , i ∈ {0, 1}. (55)

Proof. (i) From Remark 3, we see that if t > 0, then Tt A1 = TA1 , and hence TA(t) = TA.
(ii) Formula (42) gives fA = fA(t) on X A0 , while, for x ∈ X A1 ,

fA(t)(x)= 1
2 (log S′A1

(x)+ log det t A1)= log t + fA(x)

since log det t A1= log(t2 det A1)= 2 log t + log det A1, and thus fA(t)= fA+(log t)1X A1
.

(iii) This is immediate from part (ii).
(iv) The formula for f ′A follows readily from the explicit formula (43) for fA and is

equal to f ′A(t) by (ii) above. �

LEMMA 17. If A= (A0, A1) ∈ C, then:
(i) f ′A is strictly positive on X A0 and strictly negative on X A1 ;
(ii) fA is strictly increasing on X A0 and strictly decreasing on X A1 ; and
(iii) ( fA ◦ T i

A0
)′(x) > 0 and ( fA ◦ T i

A1
)′(x) < 0 for all i ≥ 1, x ∈ X.

Proof. (i) In view of formula (55), it suffices to note that, by Corollary 5, x + σA0 < 0 for
x ∈ X A0 and x + σA1 > 0 for x ∈ X A1 .

(ii) This is an immediate consequence of (i).
(iii) By the chain rule,

( fA ◦ T i
A j
)′(x)= f ′A(T

i
A j
(x))(T i

A j
)′(x). (56)

The second factor (T i
A j
)′(x) on the right-hand side of (56) is strictly positive for all

x ∈ X , i ≥ 1, j ∈ {0, 1}, since TA j is orientation preserving, as noted in Remark 4.
Regarding the sign of the first factor f ′A(T

i
A j
(x)) on the right-hand side of (56), note

that, since i ≥ 1, T i
A j
(x) ∈ X A j = TA j (X) for all x ∈ X . Part (i) above then implies that

f ′A(T
i
A j
(x)) is strictly positive when j = 0 and strictly negative when j = 1. It follows

that ( fA ◦ T i
A j
)′(x) is strictly positive when j = 0 and strictly negative when j = 1,

as required. �

For the purposes of the following Lemma 18, it will be convenient to introduce the
following notation.
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Notation 6. For a matrix A =
(

a b
c d

)
∈M, define

δA =
b + d
αA
=

b + d
a + c − b − d

.

We can now give another characterization of %A.

LEMMA 18. For A ∈M,
%A = lim

k→∞
δAk .

Proof. Perron–Frobenius theory (see, e.g., [22, Theorem 0.17]) gives

lim
k→∞

λ−k
A Ak

= vwA =

(
v(1)w

(1)
A v(1)w

(2)
A

v(2)w
(1)
A v(2)w

(2)
A

)
,

where the positive dominant eigenvalue λA > 0 and corresponding left eigenvector wA are
as in Lemma 3, and v is a corresponding right eigenvector (a suitable multiple of vA from
Lemma 3), normalized so that wAv = 1.

It follows that

lim
k→∞

δAk =
v(1)w

(2)
A + v

(2)w
(2)
A

v(1)w
(1)
A + v

(2)w
(1)
A − v

(1)w
(2)
A − v

(2)w
(2)
A

=
w
(2)
A

w
(1)
A − w

(2)
A

, (57)

so the formula %A = w
(2)
A /(w

(1)
A − w

(2)
A ) from Lemma 8 concludes the proof. �

COROLLARY 6. For A ∈M, x ∈ X,
∞∑

n=1

(log S′A ◦ T n
A )
′(x)=

2
x + %A

. (58)

Proof. A simple calculation using the chain rule yields

k∑
n=1

(log S′A ◦ T n
A )
′(x)=−(log T ′Ak )

′(x)=
2

x + δAk
(59)

for all k ≥ 1, so, letting k→∞, we see that the result follows from Lemma 18. �

Recalling from (42) that fA = 1
2 (log S′Ai

+ log det Ai ) on X Ai , the following result is
an immediate consequence of Corollary 6.

COROLLARY 7. If A= (A0, A1) ∈M2, then, for i ∈ {0, 1},
∞∑

n=1

( fA ◦ T n
Ai
)′(x)=

1
x + %Ai

for x ∈ X Ai . (60)

COROLLARY 8. If A= (A0, A1) ∈ C, then, for all x ∈ X,
∞∑

n=1

( fA ◦ T n
A0
)′(x) > 0 and

∞∑
n=1

( fA ◦ T n
A1
)′(x) < 0, (61)

and
x + %A0 > 0 and x + %A1 < 0. (62)
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Proof. The inequalities in (61) follow from Lemma 17(iii), while (62) is an immediate
consequence of (60) and (61). �

Remark 9. The inequality x + %A0 > 0 in (62) can also be deduced from the fact that
%A0 > 0 (by Corollary 4) and x ≥ 0.

5. Sturmian measures associated to a concave–convex matrix pair
For A ∈ C, the induced space XA becomes an ordered set when equipped with the usual
order on X = [0, 1]. In particular, by a sub-interval of XA we mean any subset of XA of
the form I ∩ XA, where I is some sub-interval of X . Note that a sub-interval of XA is a
sub-interval of X if it is contained in either X A0 or X A1 ; otherwise, it is a union of two
disjoint intervals in X .

Definition 11. Given a matrix pair A ∈ C, a closed interval 0 ⊂ XA is called A-Sturmian
(or simply Sturmian) if TA(min 0)= TA(max 0): i.e. its two endpoints min 0 and max 0
have the same image under the induced dynamical system TA.

Remark 10.
(a) The topological conjugacy hA :�→ YA (cf. Remark 7) is order preserving, so if

0 ⊂ XA is an A-Sturmian interval, then h−1
A (0 ∩ YA) is a Sturmian interval as

defined in Notation 2 (i.e. of the form [0ω, 1ω] for some ω ∈�).
(b) For all t > 0, an interval is A-Sturmian if and only if it is A(t)-Sturmian.

Definition 12. Let IA denote the collection of all A-Sturmian intervals. Note that IA is
naturally parametrized by X = [0, 1]: for each c ∈ X , there is a unique 0 ∈ IA such that
TA(min 0)= TA(max 0)= c. Henceforth, we shall write cA(0) to denote the common
value TA(min 0)= TA(max 0) for an A-Sturmian interval 0 ∈ IA, noting that

cA : IA→ X

is a bijection. As a subset of X , we can express 0 ∈ IA as

0 = [TA0(cA(0)), TA0(1)] ∪ [TA1(0), TA1(cA(0))]. (63)

Remark 11. It is apparent from (63) that, viewed as a subset of X = [0, 1], an A-Sturmian
interval 0 is always a disjoint union of two closed intervals. Note, however, that for the
two extremal cases where cA(0)= 0 or 1, one of the intervals in the disjoint union is a
singleton set (and the other interval is, respectively, either X A0 or X A1 ). These extremal
cases are particularly significant, and in the calculations of §7 onwards, it is convenient to
neglect the singleton set, thereby identifying the extremal A-Sturmian interval with either
X A0 or X A1 .

Definition 13. We say that a TA-invariant Borel probability measure on XA is A-Sturmian
if its support is contained in some A-Sturmian interval. Let SA denote the collection of
A-Sturmian measures.

https://doi.org/10.1017/etds.2017.18 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2017.18


3084 O. Jenkinson and M. Pollicott

Remark 12.
(a) In view of Remarks 7 and 10, the class of A-Sturmian measures on XA is just the

h∗A-image of the class of Sturmian measures on the shift space �: i.e. SA = h∗A(S).
In particular (cf. Proposition 1(b)), SA is also naturally parametrized by X = [0, 1]:
the map P ◦ (h∗A)

−1
: SA→ [0, 1] is a homeomorphism and, for µ ∈ SA, we refer

to P ◦ (h∗A)
−1(µ)= µ(X A1) as its (Sturmian) parameter.

(b) For all t > 0, a measure is A-Sturmian if and only if it is A(t)-Sturmian.

In §10, we shall identify cases where A-Sturmian measures arise as unique maximizing
measures for fA(t), t > 0. In particular, for certain t , the unique fA(t)-maximizing measure
is a Sturmian measure of irrational parameter, and such A(t) turn out to be finiteness
counterexamples.

PROPOSITION 9. If A ∈ C is such that there is a unique fA-maximizing measure, and if
this measure is an A-Sturmian measure with irrational parameter P , then A is a finiteness
counterexample (i.e. r(A) > r(Ai1 · · · Ain )

1/n for all n ∈ N and all choices i1, . . . , in ∈

{0, 1}). In this case,
r(A)= lim

n→∞
r(Aω1 · · · Aωn )

1/n (64)

holds for the uncountably many Sturmian sequences ω = (ωn)
∞

n=1 of parameter P .

Proof. By assumption, there is a unique fA-maximizing measure µ, and this measure
is an A-Sturmian measure with irrational parameter P , which, in particular, is not a
periodic orbit measure. It follows that no TA-periodic orbit measure is fA-maximizing, so
Proposition 8 implies that A is a finiteness counterexample and that there exist uncountably
many sequences ω ∈� such that (64) holds. In fact, the support of any A-Sturmian
measure µ is uniquely ergodic (see, e.g., [4, Corollary 1.6]), so the ergodic theorem holds
for the uncountably many points in the support of µ (see, e.g., [22, Theorem 6.19]), and
therefore limn→∞ (1/n)

∑n−1
j=0 fA(T

j
A(p))=

∫
fA dµ= log r(A) for all p in the support

of µ. Writing p = hA(ω), as in the proof of Proposition 8, the relationship (54) then
implies that (64) holds for all points in the support of the Sturmian measure m, i.e. for all
Sturmian sequences of parameter P . �

6. The Sturmian transfer function
In order to show that the maximizing measure for fA(t) is supported in some A-Sturmian
interval 0 ∈ IA, our strategy will be to add a coboundary ϕ0 − ϕ0 ◦ TA, where the
corresponding Sturmian transfer function ϕ0 is introduced below, so that the new function
fA + ϕ0 − ϕ0 ◦ TA takes a constant value on all of 0 and is strictly smaller than this
constant value on the complement of 0. This approach is patterned on ideas of Bousch [3]
in the setting of the angle-doubling map and degree-one trigonometric polynomials.

To proceed, it is convenient to introduce the following definition.

Definition 14. For A ∈ C, to each A-Sturmian interval 0 we associate the hybrid
contraction τ0 : X→ XA, defined by

τ0(x)=

{
TA1(x) if x ∈ [0, c(0)),

TA0(x) if x ∈ [c(0), 1].
(65)
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Remark 13. The hybrid contraction τ0 satisfies τ0(X)= 0 and is piecewise Lipschitz
continuous. More precisely, its restriction to [0, cA(0)) is Lipschitz, as is its restriction
to [cA(0), 1].

LEMMA 19. Given A ∈ C and an A-Sturmian interval 0 ∈ IA, there exists a unique
Lipschitz continuous function ϕA,0 : X→ R which simultaneously satisfies†

ϕ′A,0 =
∞∑

n=1

( fA ◦ τ n
0)
′ Lebesgue almost everywhere, (66)

and
ϕA,0(0)= 0. (67)

Proof. The function fA is Lipschitz and τ0 is piecewise Lipschitz (cf. Remark 13), so each
τ n
0 is piecewise Lipschitz, and thus by Rademacher’s Theorem is differentiable Lebesgue

almost everywhere, with L∞ derivative. Now ‖(τ n
0)
′
‖∞ = O(θn) as n→∞ for some

θ ∈ (0, 1), so the sum
∞∑

n=1

( fA ◦ τ n
0)
′
=

∞∑
n=1

f ′A ◦ τ
n
0 .(τ

n
0)
′

is Lebesgue almost everywhere convergent (as its nth term is O(θn)), and it defines an
L∞ function with respect to Lebesgue measure on X . In particular, it has a Lipschitz
antiderivative ϕ0 , which is the unique Lipschitz antiderivative up to an additive constant,
and hence is uniquely defined if it satisfies the additional condition ϕA,0(0)= 0. �

Notation 7. For A ∈ C, 0 ∈ IA, the function ϕ0 = ϕA,0 , whose existence and uniqueness
is guaranteed by Lemma 19, will be referred to as the corresponding Sturmian transfer
function.

Remark 14. Note that, although the induced function fA is only defined on XA, the
Sturmian transfer function ϕ0 is actually defined on all of X = [0, 1]. For the most part,
however, we shall only be interested in the restriction of ϕ0 to XA. More precisely, we
shall be interested in certain properties of fA + ϕ0 or of fA + ϕ0 − ϕ0 ◦ TA, considered
as functions defined on XA, beginning with the following Corollary 9.

COROLLARY 9. If A ∈ C, and 0 is any A-Sturmian interval, then both fA + ϕ0 and
fA + ϕ0 − ϕ0 ◦ TA are Lipschitz continuous functions on XA.

Proof. Both TA and fA are Lipschitz continuous on XA, as noted in Remarks 6 and 8,
and ϕ0 is Lipschitz continuous on X , as noted in Lemma 19, and hence Lipschitz
continuous on XA. It follows that both fA + ϕ0 and fA + ϕ0 − ϕ0 ◦ TA are Lipschitz
continuous on XA. �

LEMMA 20. Suppose that A ∈ C, t > 0, and that 0 is any A-Sturmian interval. The
Lipschitz continuous function fA(t) + ϕ0 − ϕ0 ◦ TA : XA→ R has the property that its
restriction to 0 ∩ X A0 is a constant function and its restriction to 0 ∩ X A1 is a constant
function.

† The substantial condition is (66), which determines ϕA,0 up to an additive constant. The extra condition (67)
is useful in that it removes any ambiguity when discussing ϕA,0 .
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Proof. By Corollary 9, the function fA(t) + ϕ0 − ϕ0 ◦ TA is Lipschitz continuous on XA,
because A(t) ∈ C. So, by the fundamental theorem of calculus for Lipschitz functions (see,
e.g., [11, Theorem 7.1.15]), the required result will follow if it can be shown that

( fA(t) + ϕ0 − ϕ0 ◦ TA)′ = 0 Lebesgue almost everywhere on 0. (68)

But f ′A(t) = f ′A, so (68) is equivalent to proving that

( fA + ϕ0 − ϕ0 ◦ TA)′ = 0 Lebesgue almost everywhere on 0. (69)

To establish this almost everywhere equality, note that

f ′A + ϕ
′
0 = f ′A +

∞∑
n=1

( fA ◦ τ n
0)
′
=

∞∑
n=0

( fA ◦ τ n
0)
′
=

∞∑
n=0

f ′A ◦ τ
n
0 .(τ

n
0)
′

and

(ϕ0 ◦ TA)′ =
∞∑

n=1

f ′A ◦ τ
n
0 ◦ TA.(τ n

0)
′
◦ TA.T ′A =

∞∑
n=1

f ′A ◦ τ
n−1
0 .(τ n−1

0 )′

since (τ0 ◦ TA)′ = τ
n−1
0 , so, indeed, (69) holds. �

Remark 15. In the generality of Lemma 20, the constant values assumed by fA(t) + ϕ0 −
ϕ0 ◦ TA on 0 ∩ X A0 and 0 ∩ X A1 do not coincide. However, we shall shortly give (see
Lemma 23) an extra condition which does ensure that fA(t) + ϕ0 − ϕ0 ◦ TA takes the
same constant value on the whole of 0. Indeed, this possibility is a key tool in our strategy.

7. The extremal Sturmian intervals
7.1. Formulae involving extremal intervals. As noted in Remark 11, an A-Sturmian
interval is the disjoint union of two closed intervals when viewed as a subset of X = [0, 1].
However, the two extremal cases yield a leftmost A-Sturmian interval equal to X A0 ∪

{TA1(0)} and a rightmost A-Sturmian interval equal to {TA0(1)} ∪ X A1 . The presence of
singleton sets in these expressions is notationally inconvenient, and unnecessary for our
purposes, so henceforth we neglect them.

More precisely, henceforth, the leftmost A-Sturmian interval is taken to be X A0 =

TA0(X), and denoted by 00, so that τ00 = TA0 ; the rightmost A-Sturmian interval is taken
to be X A1 = TA1(X), and denoted by 01, so that τ01 = TA1 .

When the A-Sturmian interval 0 is either 00 or 01, there is an explicit formula for the
Sturmian transfer function ϕ0 .

LEMMA 21. Suppose that A ∈ C. For i ∈ {0, 1} and all x ∈ X,

ϕ0i (x)= log
(

x + %Ai

%Ai

)
. (70)

Proof. Now τ0i = TAi , so the defining formula (66) becomes

ϕ′0i
(x)=

∞∑
n=1

( fA ◦ T n
Ai
)′(x), (71)
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and then (60) implies that

ϕ′0i
(x)=

1
x + %Ai

.

Noting that the sign of x + %Ai is positive when i = 0 and negative when i = 1 (see
Corollary 8), as well as the convention that ϕ0i (0)= 0 (see Definition 19), we deduce
the required expression (70). �

Definition 15. Given A= (A0, A1) ∈ C and 0 ∈ IA, define 1A(0) ∈ R by

1A(0)= (ϕ0(1)− ϕ0(0))− (ϕ0(TA0(1))− ϕ0(TA1(0))), (72)

noting the equivalent expression

1A(0)= ϕ0(1)− (ϕ0(TA0(1))− ϕ0(TA1(0))) (73)

as a consequence of the convention that ϕ0(0)= 0 (see Lemma 19).

The values 1A(0i ) play an important role, so it will be useful to record the following
explicit formulae.

LEMMA 22. Suppose that A ∈ C. For i ∈ {0, 1},

1A(0i )= log
(
(1+ %Ai )(b1/(b1 + d1)+ %Ai )

%Ai (a0/(a0 + c0)+ %Ai )

)
. (74)

Proof. This is immediate from the defining formula (72) (or (73)) for 1A(0i ), together
with formula (70) for ϕ0i , and the fact that TA0(1)= a0/(a0 + c0) and TA1(0)=
b1/(b1 + d1). �

COROLLARY 10. If A ∈ C, then

1A(01) < 0<1A(00).

Proof. The four terms %Ai , 1+ %Ai , a0/(a0 + c0)+ %Ai and b1/(b1 + d1)+ %Ai in (74)
are all positive if i = 0 and all negative if i = 1, by the inequalities (62) in Corollary 8. Now
A ∈ C implies that (6) holds, so b1/(b1 + d1)+ %Ai > a0/(a0 + c0)+ %Ai and, clearly,
1+ %Ai > %Ai Consequently,

(1+ %Ai )(b1/(b1 + d1)+ %Ai )

%Ai (a0/(a0 + c0)+ %Ai )

is strictly greater than one if i = 0, and strictly smaller than one if i = 1. The result then
follows from Lemma 22. �

7.2. Adaptations for other matrix pairs. As mentioned in §1.3, the methods of this
paper can be adapted so as to give alternative proofs of certain results (analogues of
Theorem 3) mentioned in §1, namely, establishing that a full Sturmian family is generated
by the matrix pair (5) and for matrix pairs corresponding to sub-cases of (3) and (4) which
lie in the boundary of D†. In this subsection, we indicate the modifications necessary to
handle these cases.

† Note that all of the matrix pairs in (3), (4) and (5) have the property that A0 is projectively concave and A1 is
projectively convex.
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Firstly, the induced space XA may be the whole of X = [0, 1] rather than a disjoint
union of two closed intervals: this occurs if a0/c0 = b1/d1 (i.e. when (6) becomes an
equality), which is the case for the pair (5) and for (4) if bc = 1.

Secondly, in each of the cases (3), (4) and (5), the induced maps TA0 and TA1 have
fixed points at zero and one, respectively, so that the dynamical system TA also fixes
these points. For (5), both zero and one are indifferent fixed points: i.e. T ′A0

(0)= 1=
T ′A1

(1). For (3) and (4), these fixed points are unstable for the induced maps TA0 and TA1 ,
i.e. T ′A0

(0) > 1 and T ′A1
(1) > 1, but both of these maps also have stable fixed points in

the interior of X = [0, 1]. Consequently, for (5), the dynamical system TA : X→ X has
indifferent fixed points at zero and one, and no other fixed points, while for (3) and (4),
the dynamical system TA has stable fixed points at zero and one and two further unstable
fixed points in the interior of X .

The potentially problematic stable fixed points for TA can, in fact, be avoided by
omitting to consider the two extremal A-Sturmian intervals: this ensures the asymptotic
‖(τ n

0)
′
‖∞ = O(θn) as n→∞, θ ∈ (0, 1), and the existence of Sturmian transfer functions

is proved as in Lemma 19. In the case where TA has indifferent fixed points, it is even
possible to consider extremal A-Sturmian intervals, as the series defining the Sturmian
transfer function is, nonetheless, convergent. The existence of Sturmian transfer functions
then allows the remainder of the method of proof to proceed essentially as for matrix pairs
in D, ultimately establishing analogues of the main result, Theorem 3.

8. Associating A-Sturmian intervals to parameter values
Notation 8. For a Sturmian interval 0 ∈ IA, let s0 ∈ SA denote the A-Sturmian measure
supported by 0: i.e. s0 is the unique TA-invariant probability measure whose support is
contained in 0.

LEMMA 23. Suppose that A ∈ C. If t ∈ R+ and 0 ∈ IA are such that

fA(t)(TA0(1))− fA(t)(TA1(0))=1A(0), (75)

then the Lipschitz continuous function fA(t) + ϕ0 − ϕ0 ◦ TA is equal to the constant value∫
fA(t) ds0 when restricted to 0.

Proof. By Lemma 20, we know that fA(t) + ϕ0 − ϕ0 ◦ TA is constant when restricted to
0 ∩ X A0 , and it is also constant when restricted to 0 ∩ X A1 . To prove that these constant
values are the same, it suffices to show that fA(t) + ϕ0 − ϕ0 ◦ TA takes the same value at
the point TA0(1) ∈ X A0 as it does at the point TA1(0) ∈ X A1 . But the equality

( fA(t) + ϕ0 − ϕ0 ◦ TA)(TA0(1))= ( fA(t) + ϕ0 − ϕ0 ◦ TA)(TA1(0))

holds if and only if

fA(t)(TA0(1))− fA(t)(TA1(0))= ϕ0(1)− ϕ0(0)− (ϕ0(TA0(1))− ϕ0(TA1(0))) :

in other words, fA(t)(TA0(1))− fA(t)(TA1(0))=1A(0), which is precisely the
hypothesis (75). �
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COROLLARY 11. Given A ∈ C, if t ∈ R+ and 0 ∈ IA are such that

log
((

a0 + c0

b1 + d1

)
t−1

)
=1A(0), (76)

then the Lipschitz continuous function fA(t) + ϕ0 − ϕ0 ◦ TA is equal to the constant value∫
fA(t) ds0 on 0.

Proof. By Lemma 23, it suffices to show that

fA(t)(TA0(1))− fA(t)(TA1(0))= log
((

a0 + c0

b1 + d1

)
t−1

)
,

and, by Lemma 16(iii), this is equivalent to showing that

fA(TA0(1))− fA(TA1(0))= log
(

a0 + c0

b1 + d1

)
.

Substituting TA0(1)= a0/(a0 + c0) and TA1(0)= b1/(b1 + d1) into, respectively, the
formulae (43) for fA on X A0 and X A1 , yields

fA(TA0(1))= log(a0 + c0) (77)

and
fA(TA1(0))= log(b1 + d1), (78)

so the result follows. �

In view of equation (76), we make the following definition.

Definition 16. For A ∈ C and i ∈ {0, 1}, define ti = ti (A) by

ti = ti (A)=
(

a0 + c0

b1 + d1

)
e−1A(0i ), (79)

so that

log
((

a0 + c0

b1 + d1

)
t−1
i

)
=1A(0i ).

Remark 16. Since e−1A(00) < 1< e−1A(01) by (10), it follows that

t0(A) < t1(A).

LEMMA 24. For A ∈ C and i ∈ {0, 1},

ti (A)=
%Ai (a0 + %Ai (a0 + c0))

(1+ %Ai )(b1 + %Ai (b1 + d1))
. (80)

Proof. From (74), we see that, for i ∈ {0, 1},

e−1A(0i ) =
%Ai (a0/(a0 + c0)+ %Ai )

(1+ %Ai )(b1/(b1 + d1)+ %Ai )
,

so that (79) gives

ti (A)=
(

a0 + c0

b1 + d1

)
e−1A(0i ) =

%Ai (a0 + %Ai (a0 + c0))

(1+ %Ai )(b1 + %Ai (b1 + d1))
, (81)

which is the required expression (80). �
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A consequence is the following property.

COROLLARY 12. For A ∈ C, t ∈ R+, and i ∈ {0, 1},

ti (A(t))=
ti (A)

t
. (82)

Proof. This follows easily from (80), and the easily verified fact (used only in the proof of
the i = 1 case) that %t A1 = %A1 . Specifically, for i ∈ {0, 1},

ti (A(t))=
%Ai (a0 + %Ai (a0 + c0))

(1+ %Ai )(tb1 + %Ai (tb1 + td1))
=

1
t

%Ai (a0 + %Ai (a0 + c0))

(1+ %Ai )(b1 + %Ai (b1 + d1))
=

ti (A)
t
.

�

LEMMA 25. For A ∈ C, the quantities t0(A) and t1(A) admit the alternative expressions

t0(A)=
det A0

(a0 − b0(1+ %−1
A0
))(d1 + b1(1+ %−1

A0
))

(83)

and

t1(A)=
(a0 + c0(1+ %−1

A1
)−1)(a1 − b1(1+ %−1

A1
))

det A1
. (84)

Proof. Since (81) implies that

t0(A)=
a0 + %A0(a0 + c0)

(1+ %A0)(d1 + b1(1+ %−1
A0
))
, (85)

we see that t0(A) is equal to (83) if and only if

a0 + %A0(a0 + c0)

1+ %A0

=
a0d0 − b0c0

a0 − b0(1+ %−1
A0
)
. (86)

Clearing fractions in (86) reveals it to be equivalent to the equation

qA0(%A0)= αA0%
2
A0
+ βA0%A0 − b0 = 0,

which is true by Lemma 6.
Since (81) implies that

t1(A)=
%A1(a0 + c0(1+ %−1

A1
)−1)

b1 + %A1(b1 + d1)
, (87)

we see that t1(A) is equal to (84) if and only if

%A1

b1 + %A1(b1 + d1)
=

a1 − b1(1+ %−1
A1
)

det A1
. (88)

Clearing fractions in (88) reveals it to be equivalent to the equation

qA1(%A1)= αA1%
2
A1
+ βA1%A1 − b1 = 0,

which is true by Lemma 6. �

Notation 9. For A ∈ C, let TA denote the open interval (t0(A), t1(A)).
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PROPOSITION 10. Let A ∈ C. For each t ∈ TA, there exists an A-Sturmian interval
0A(t) ∈ IA such that fA(t) + ϕ0t − ϕ0t ◦ TA is equal to the constant value∫

fA(t) ds0A(t) on 0A(t).

Proof. First, we show that 1A : 0 7→1A(0) is continuous. The formula (73) defines

1A(0) = ϕ0(1)− ϕ0(TA0(1))+ ϕ0(TA1(0))

= ϕ0(1)− ϕ0

(
a0

a0 + c0

)
+ ϕ0

(
b1

b1 + d1

)
,

so the continuity of 1A will follow from the fact that 0 7→ ϕ0(z) is continuous for each
z ∈ X . To see this, first note that Definition 19 gives

ϕ0(z)= ϕ0(z)− ϕ0(0)=
∫ z

0
ϕ′0 =

∫ z

0

∞∑
n=1

( fA ◦ τ n
0)
′,

and rewriting this integral as
∞∑

n=1

∫ z

0
( fA ◦ τ n

0)
′
=

∞∑
n=1

∫
τ n
0 [0,z]

f ′A =
∞∑

n=1

∫
1τ n

0 [0,z] f ′A =
∫

f ′A

∞∑
n=1

1τ n
0 [0,z]

gives

ϕ0(z)=
∫

f ′AHz(0), (89)

where

Hz(0)=

∞∑
n=1

1τ n
0 [0,z].

Now each map Hz,n : 0 7→ 1τ n
0 [0,z] clearly belongs to C([00, 01], L1), the space of

continuous functions from [00, 01] to L1
= L1(dx), and

∑
∞

n=1 Hz,n is convergent in
C([00, 01], L1), so Hz(·) ∈ C([00, 01], L1). It then follows from (89) that 0 7→ ϕ0(z)
is continuous, as required.

Now note that the function GA, defined by

GA(t)= log
((

a0 + c0

b1 + d1

)
t−1

)
, (90)

is strictly decreasing since a0, c0, b1, d1 > 0, so if t ∈ TA = (t0(A), t1(A)), then

GA(t) ∈ (GA(t1(A)), GA(t0(A)))= (1A(01), 1A(00)). (91)

Now 1A is continuous, so, applying the intermediate value theorem to this function
(defined on the interval [00, 01]), we see that, in view of (91), there exists an A-Sturmian
interval, which we denote by 0A(t), such that 0A(t) ∈ (00, 01) and

1A(0A(t))= GA(t). (92)

In other words,

log
((

a0 + c0

b1 + d1

)
t−1

)
=1A(0A(t)),

so that Corollary 11 implies that fA(t) + ϕ0t − ϕ0t ◦ TA =
∫

fA(t) ds0A(t) on 0A(t),
as required. �

https://doi.org/10.1017/etds.2017.18 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2017.18


3092 O. Jenkinson and M. Pollicott

9. The case when one matrix dominates
It will be useful to record the value of the induced function fA at the two fixed points
of TA.

LEMMA 26. For A ∈ C and i ∈ {0, 1},

fA(pAi )= log
(

det Ai

ai − bi (1+ %−1
Ai
)

)
= log

(
det Ai

ai − bi − (1/2)(βAi + γAi )

)
.

Proof. This is a straightforward computation using (19), (21) and (43). �

We first consider a sufficient condition for the projectively concave matrix A0 to be the
dominant matrix of the pair A= (A0, A1).

THEOREM 5. If A ∈ C is such that

t0(A)≥ 1, (93)

then the Dirac measure at the fixed point pA0 is the unique fA-maximizing measure; in
particular, the joint spectral radius of A is equal to the spectral radius of A0.

Proof. Choosing ϕ(x)= ϕ00(x)= log((x + %A0)/%A0) ensures, by Lemma 20, that
fA + ϕ − ϕ ◦ TA is constant when restricted to X A0 = 00, and the constant value assumed
by this function is clearly fA(pA0). The result will follow if we can show that fA + ϕ −
ϕ ◦ TA is strictly decreasing on X A1 and that the value ( fA + ϕ − ϕ ◦ TA)(b1/(b1 + d1))

at the left endpoint of X A1 is no greater than the constant value fA(pA0). This is
because the Dirac measure δpA0

will then clearly be the unique maximizing measure for
fA + ϕ − ϕ ◦ TA, and hence the unique maximizing measure for fA.

To compute the value ( fA + ϕ − ϕ ◦ TA)(b1/(b1 + d1)), we recall from (78) that

fA

(
b1

b1 + d1

)
= fA(TA1(0))= log(b1 + d1)

and note that

ϕ

(
TA

(
b1

b1 + d1

))
= ϕ(0)= 0

and

ϕ

(
b1

b1 + d1

)
= log

(
b1/(b1 + d1)+ %A0

%A0

)
= log

(
(d1 + b1(1+ %−1

A0
))

b1 + d1

)
.

Therefore

( fA + ϕ − ϕ ◦ TA)
(

b1

b1 + d1

)
= log(d1 + b1(1+ %−1

A0
)). (94)

By Lemma 26,

fA(pA0)= log
(

det A0

a0 − b0(1+ %−1
A0
)

)
, (95)

so (94) and (95) imply that the desired inequality

( fA + ϕ − ϕ ◦ TA)
(

b1

b1 + d1

)
≤ fA(pA0)
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is precisely the hypothesis (93), since

t0(A)=
det A0

(a0 − b0(1+ %−1
A0
))(d1 + b1(1+ %−1

A0
))

by (83).
It remains to show that fA + ϕ − ϕ ◦ TA is strictly decreasing on X A1 . Suppose that

x ∈ X A1 . We know by (43) that

fA(x)= log
(

det A1

−αA1(x + σA1)

)
.

Now

ϕ(x)= log
(

x + %A0

%A0

)
,

so

ϕ(TA(x))= log
(

SA1(x)+ %A0

%A0

)
,

and therefore

( fA + ϕ − ϕ ◦ TA)(x)= log
(

det A1(x + %A0)

−αA1(x + σA1)(SA1(x)+ %A0)

)
.

It, therefore, suffices to show that

x 7→
x + %A0

−αA1(x + σA1)(SA1(x)+ %A0)
(96)

is strictly decreasing. For this, note that

SA1(x)+ %A0 =
(b1 + d1)x − b1

−αA1(x + σA1)
+ %A0 =

(b1 + d1 − αA1%A0)x + (a1 − b1)%A0 − b1

−αA1(x + σA1)
,

so (96) is seen to be the Möbius function

x 7→
x + %A0

(b1 + d1 − αA1%A0)x + (a1 − b1)%A0 − b1
,

which is known to be strictly decreasing by Lemma 14. �

As a consequence of Theorem 5, we obtain the following corollary.

COROLLARY 13. If A ∈ C and t ∈ R+ are such that

t ≤ t0(A), (97)

then the Dirac measure at the fixed point pA0 is the unique fA(t)-maximizing measure; in
particular, the joint spectral radius of A(t) is equal to the spectral radius of A0.

Proof. The assumption (97) means, using (82), that t0(A(t))≥ 1, so the result follows by
applying Theorem 5 with A replaced by A(t). �

We now turn to an analogous sufficient condition for the projectively convex matrix A1

to be dominant.
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THEOREM 6. If A ∈ C is such that

t1(A)≤ 1, (98)

then the Dirac measure at the fixed point pA1 is the unique fA-maximizing measure; in
particular, the joint spectral radius of A is equal to the spectral radius of A1.

Proof. Choosing ϕ(x)= ϕ01(x)= log((x + %A1)/%A1) ensures, by Lemma 20, that fA +
ϕ − ϕ ◦ TA is constant when restricted to X A1 = 01, and the constant value assumed by
this function is clearly fA(pA1). The result will follow if we can show that fA + ϕ − ϕ ◦
TA is strictly increasing on X A0 and that the value ( fA + ϕ − ϕ ◦ TA)(a0/(a0 + c0)) at
the right endpoint of X A0 is no greater than the constant value fA(pA1). This is because
the Dirac measure δpA1

will then clearly be the unique maximizing measure for fA + ϕ −
ϕ ◦ TA, and hence the unique maximizing measure for fA.

To compute the value ( fA + ϕ − ϕ ◦ TA)(a0/(a0 + c0)), we recall from (77) that

fA

(
a0

a0 + c0

)
= fA(TA0(1))= log(a0 + c0),

and note that

ϕ

(
T
(

a0

a0 + c0

))
= ϕ(1)= log

(
1+ %A1

%A1

)
= log(1+ %−1

A1
)

and

ϕ

(
a0

a0 + c0

)
= log

(
a0/(a0 + c0)+ %A1

%A1

)
= log

(
(c0 + a0(1+ %−1

A1
))

a0 + c0

)
.

Therefore

( fA + ϕ − ϕ ◦ TA)
(

a0

a0 + c0

)
= log(a0 + c0(1+ %−1

A1
)−1). (99)

By Lemma 26,

fA(pA1)= log
(

det A1

a1 − b1(1+ %−1
A1
)

)
, (100)

so (99) and (100) imply that the desired inequality

( fA + ϕ − ϕ ◦ TA)
(

a0

a0 + c0

)
≤ fA(pA1)

is precisely the hypothesis (98), since

t1(A)=
(a0 + c0(1+ %−1

A1
)−1)(a1 − b1(1+ %−1

A1
))

det A1

by (83).
It remains to show that fA + ϕ − ϕ ◦ TA is strictly increasing on X A0 . Suppose that

x ∈ X A0 . We know by (43) that

fA(x)= log
(

det A0

−αA0(x + σA0)

)
.
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Now

ϕ(x)= log
(

x + %A1

%A1

)
,

so

ϕ(TA(x))= log
(

SA0(x)+ %A1

%A1

)
,

and therefore

( fA + ϕ − ϕ ◦ TA)(x)= log
(

det A0(x + %A1)

−αA0(x + σA0)(SA0(x)+ %A1)

)
.

It, therefore, suffices to show that

x 7→
x + %A1

−αA0(x + σA0)(SA0(x)+ %A1)
(101)

is strictly increasing. For this, note that

SA0(x)+ %A1 =
(b0 + d0)x − b0

−αA0(x + σA0)
+ %A1 =

(b0 + d0 − αA0%A1)x + (a0 − b0)%A1 − b0

−αA0(x + σA0)
,

so (101) is seen to be the Möbius function

x 7→
x + %A1

(b0 + d0 − αA0%A1)x + (a0 − b0)%A1 − b0
,

which is known to be strictly increasing by Lemma 14. �

As a consequence of Theorem 6 we obtain the following corollary.

COROLLARY 14. If A ∈ C and t ∈ R+ are such that

t ≥ t1(A), (102)

then the Dirac measure at the fixed point pA1 is the unique fA(t)-maximizing measure; in
particular, the joint spectral radius of A(t) is equal to the spectral radius of t A1.

Proof. The assumption (102) means, using (82), that t1(A(t))≤ 1, so the result follows
by applying Theorem 6 with A replaced by A(t). �

10. Sturmian maximizing measures
It is at this point that we make the extra hypothesis that the matrix pair A lies in the class
D⊂ C. By Lemma 17(ii), we know that if A ∈ C, then fA is strictly increasing on X A0

and strictly decreasing on X A1 ; the following result asserts that if we make the stronger
hypothesis that A ∈D, then these monotonicity properties are inherited by all functions
formed by adding a Sturmian transfer function ϕ0 to fA.

PROPOSITION 11. Let A ∈D. For each A-Sturmian interval 0 ∈ IA, the function fA +
ϕ0 : XA→ R is strictly increasing on X A0 and strictly decreasing on X A1 .

Proof. First, suppose that x ∈ X A0 . Let 0= i0 < i1 < i2 < · · · be the sequence of all
integers such that τ ik

0 (x) ∈ X A0 .
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For k ≥ 0, writing z = τ ik
0 (x), we see that if 1≤ i < ik+1 − ik , then τ i

0(z) ∈ X A1 , and
thus τ i

0(z)= T i
A1
(z), so that

ik+1−ik−1∑
i=0

( fA ◦ τ i
0)
′(z)= f ′A(z)+

ik+1−ik−1∑
i=1

( fA ◦ T i
A1
)′(z) > f ′A(z)+

∞∑
i=1

( fA ◦ T i
A1
)′(z),

(103)
where the inequality is because ( fA ◦ T i

A1
)′(z) < 0 for all i ≥ 1, by Lemma 17. Now

z ∈ X A0 , so (55) in Lemma 16(iii) gives f ′A(z)=−(z + σA0)
−1 (which is positive),

and formula (60) from Corollary 7 gives
∑
∞

i=1( fA ◦ T i
A1
)′(z)= (z + %A1)

−1 (which is
negative), so (103) implies that

ik+1−ik−1∑
i=0

( fA ◦ τ i
0)
′(z) >

−1
z + σA0

+
1

z + %A1

. (104)

However, A ∈D, so %A1 < σA0 , and therefore the right-hand side of (104) is positive, so
we have shown that

ik+1−ik−1∑
i=0

( fA ◦ τ i
0)
′(z) > 0.

It follows that, for all k ≥ 0,

ik+1−1∑
n=ik

( fA ◦ τ n
0)
′(x)= (τ ik

0 )
′(x)

ik+1−ik−1∑
i=0

( fA ◦ τ i
0)
′(z) > 0,

and hence

( fA + ϕ0)′(x)=
∞∑

n=0

( fA ◦ τ n
0)
′(x)=

∞∑
k=0

jk+1−1∑
n= jk

( fA ◦ τ n
0)
′(x) > 0,

so fA + ϕ0 is strictly increasing on X A0 .
Now suppose that x ∈ X A1 . The proof proceeds analogously to the above. Let 0= j0 <

j1 < j2 < . . . be the sequence of all integers such that τ jk
0 (x) ∈ X A1 .

For k ≥ 0, writing z = τ jk
0 (x), we see that if 1≤ i < jk+1 − jk , then τ i

0(z) ∈ X A0 , and
thus τ i

0(z)= T i
A0
(z), so that

jk+1− jk−1∑
i=0

( fA ◦ τ i
0)
′(z)= f ′A(z)+

jk+1− jk−1∑
i=1

( fA ◦ T i
A0
)′(z) < f ′A(z)+

∞∑
i=1

( fA ◦ T i
A0
)′(z),

(105)
using the fact that ( fA ◦ T i

A0
)′(z) > 0 for all i ≥ 1, by Lemma 17. The right-hand side of

(105) can be written as−(z + σA1)
−1
+ (z + %A0)

−1 using Lemma 16(iii) and Corollary 7,
and this is strictly negative since σA1 < %A0 , because A ∈D, so we have shown that

jk+1− jk−1∑
i=0

( fA ◦ τ i
0)
′(z) <

−1
z + σA1

+
1

z + %A0

< 0.
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It follows that, for all k ≥ 0,
jk+1−1∑
n= jk

( fA ◦ τ n
0)
′(x)= (τ jk

0 )
′(x)

jk+1− jk−1∑
i=0

( fA ◦ τ i
0)
′(z) < 0,

and hence

( fA + ϕ0)′(x)=
∞∑

n=0

( fA ◦ τ n
0)
′(x)=

∞∑
k=0

jk+1−1∑
n= jk

( fA ◦ τ n
0)
′(x) < 0,

so fA + ϕ0 is strictly decreasing on X A1 . �

THEOREM 7. Let A ∈D and t ∈ TA = (t0(A), t1(A)). The A-Sturmian measure
supported by the A-Sturmian interval 0A(t) is the unique maximizing measure for
fA(t); and thus the corresponding Sturmian measure on �= {0, 1}N is the unique A(t)-
maximizing measure.

Proof. Let us write ϕ = ϕ0A(t) and T = TA = TA(t). We know that fA(t) + ϕ − ϕ ◦ T
is a constant function when restricted to 0A(t)=: [γ

−
t , γ

+
t ] ∩ XA, by Proposition 10.

In particular,

( fA(t) + ϕ − ϕ ◦ T )(γ−t )= ( fA(t) + ϕ − ϕ ◦ T )(γ+t ),

and because T (γ−t )= T (γ+t ), we deduce that

( fA(t) + ϕ)(γ−t )= ( fA(t) + ϕ)(γ+t ). (106)

But Proposition 11 implies that fA(t) + ϕ is strictly increasing on X A0 and strictly
decreasing on X A1 , so, together with (106), we deduce that

( fA(t) + ϕ)(x) > ( fA(t) + ϕ)(y) for all x ∈ 0A(t), y ∈ XA\0A(t). (107)

Consequently, if z, z′ are such that T (z)= T (z′), with z ∈ 0A(t) and z′ /∈ 0A(t), then

( fA(t) + ϕ)(z) > ( fA(t) + ϕ)(z′),

and hence
( fA(t) + ϕ − ϕ ◦ T )(z) > ( fA(t) + ϕ − ϕ ◦ T )(z′).

In other words, the constant value of fA(t) + ϕ − ϕ ◦ T on 0A(t) is its global maximum,
and this value is not attained at any point in XA\0A(t).

It follows that the Sturmian measure supported by 0A(t) is the unique maximizing
measure for fA(t) + ϕ − ϕ ◦ T , and hence the unique maximizing measure for fA(t).
Thus the corresponding Sturmian measure on �= {0, 1}N is the unique A(t)-maximizing
measure. �

Recall from §1 that E⊂ M2(R)2 denotes the set of matrix pairs which are equivalent
to some pair in D, where equivalence of A= (A0, A1) and A′ = (A′0, A′1) means that
A′0 = u P−1 A0 P and A′1 = vP−1 A1 P for some invertible P and u, v > 0. We deduce the
following theorem.

THEOREM 8. If A ∈ E and t ∈ R+, then A(t) has a unique maximizing measure, and this
maximizing measure is Sturmian.

Proof. It suffices to prove the result for A ∈D, and this is immediate from Corollaries 13
and 14, Theorem 7 and the fact that D⊂ C. �
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11. The parameter map is a devil’s staircase
As noted in Remark 7, if A ∈ C, then there is a topological conjugacy hA :�→ YA
between the shift map σ :�→� and the restriction of TA to the Cantor set YA ⊂ XA;
the map hA is strictly increasing with respect to the orders on � and YA (cf. Remark 10).
If d :�→ [0, 1] is as in Proposition 1(c), associating to ω ∈� the Sturmian parameter of
the measure supported by [0ω, 1ω], then the map dA : YA→ [0, 1] given by dA = d ◦ h−1

A
enjoys the same properties as d.

LEMMA 27. The map dA : YA→ [0, 1] is continuous, non-decreasing and surjective. The
preimage d−1

A (P) is a singleton if P is irrational and a positive-length closed interval if
P is rational.

Proof. This is immediate from Proposition 1(c) and the fact that hA is strictly
increasing. �

Note that dA associates to y ∈ YA the parameter of the A-Sturmian measure supported
by the A-Sturmian interval c−1

A (y), where we recall from Definition 12 that the
identification map cA : IA→ [0, 1] is defined by cA(0)= TA(min 0)= TA(max 0). Of
the extensions of the function dA from the Cantor set YA to the interval X = [0, 1], there is
a unique one giving a non-decreasing self-map dA : X→ [0, 1]. This extension, which we
shall also denote by dA, is continuous, and dA(c) is just the parameter of the A-Sturmian
measure sc−1

A (c) (i.e. of the A-Sturmian measure supported by the A-Sturmian interval

c−1
A (c)) for each c ∈ X . We therefore have the following corollary.

COROLLARY 15. The map dA : X→ [0, 1] is continuous, non-decreasing and surjective.
The preimage d−1

A (P) is a singleton if P is irrational and a positive-length closed interval
if P is rational.

Definition 17. For A ∈D, let PA(t) denote the parameter of the Sturmian maximizing
measure for A(t) or, equivalently, of the A-Sturmian fA(t)-maximizing measure. This
defines the parameter map PA : R+→ [0, 1].

Recalling (see Proposition 10) the map t 7→ 0A(t) associating A-Sturmian interval to
parameter t ∈ TA = (t0(A), t1(A)), we see that, in fact, the map PA : TA→ X can be
written as

PA = dA ◦ cA ◦ 0A. (108)

This means that PA will enjoy the same properties as established for dA in Corollary 15,
provided cA ◦ 0A is strictly increasing.

LEMMA 28. For A ∈ C, the map cA ◦ 0A : TA→ X is strictly increasing and surjective.

Proof. Recall, from (90), the function GA given by

GA(t)= log
((

a0 + c0

b1 + d1

)
t−1

)
and that 0A(t) ∈ IA is defined (see (92)) by the identity

1A ◦ 0A = GA.
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Now GA is strictly decreasing, so is, in particular, injective, and therefore the map 0A
is necessarily injective. Note that 0A clearly extends to a continuous injection on TA =
[t0(A), t1(A)], with 0A(ti (A))= 0i for i ∈ {0, 1}.

Now cA : IA→ X is a bijection, so cA ◦ 0A : TA→ X is injective, and its continuity
means that it is strictly monotone. But cA(0A(t0(A)))= 0 and cA(0A(t1(A)))= 1, so
the map cA ◦ 0A must be strictly increasing and surjective, as required. �

We can now prove that the parameter map PA : R+→ [0, 1] is singular. More
specifically, its properties described by the following Theorem 9 mean that it is a devil’s
staircase. These properties of the parameter map were noted by Bousch and Mairesse [4]
in the context of the family (3) and were proved in detail by Morris and Sidorov [16] for
the family (5). The following result can be viewed as a more detailed version of Theorem 3
from §1.

THEOREM 9. If A ∈ E and t ∈ R+, then A(t) has a unique maximizing measure, and
this maximizing measure is Sturmian. Let PA(t) denote the parameter of the Sturmian
maximizing measure for A(t). The parameter map PA : R+→ [0, 1] is continuous, non-
decreasing and surjective. The preimage P−1

A (P) is a singleton if P is irrational and a
positive-length closed interval if P is rational.

Proof. The set E consists of matrix pairs which are equivalent to a matrix pair in D, so it
suffices to prove the result for A ∈D. Theorem 8 gives that A(t) has a unique maximizing
measure and that this maximizing measure is Sturmian.

For t ∈ R+\TA we know that

PA(t)= 0 for t ∈ (0, t0(A)) (109)

by Theorem 13, and that

PA(t)= 1 for t ∈ (t1(A),∞) (110)

by Theorem 14, since the Dirac measures at the fixed points pA0 and pA1 are A-Sturmian
measures of parameters zero and one, respectively.

In view of (109) and (110), it suffices to establish the required properties of PA on the
sub-interval TA = (t0(A), t1(A)). Using the factorization (108), we see that this follows
from Corollary 15 and Lemma 28. �
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