
Knowledge base for finite-element mesh design learned
by inductive logic programming

BOJAN DOL XSAK,1 IVAN BRATKO, 2 and ANTON JEZERNIK1

1Faculty of Mechanical Engineering, University of Maribor, Slovenia
2Faculty of Computer and Information Science, University of Ljubljana, Slovenia

(Received June 27, 1997;Revised October 17, 1997;Accepted November 10, 1997)

Abstract

This paper addresses an important application of machine learning (ML) in design. One of the major bottlenecks in the
process of engineering analysis by using the finite-element method—a design of the finite-element mesh—was a sub-
ject of improvement. Defining an appropriate geometric mesh model that ensures low approximation errors and avoids
unnecessary computational overhead is a very difficult and time-consuming task based mainly on the user’s experience.
A knowledge base for finite-element mesh design has been constructed using the ML techniques. Ten mesh models
have been used as a source of training examples. The mesh dataset was probably the first real-world relational dataset
and became one of the most widely used training set for experimenting with inductive logic programming (ILP) sys-
tems. After several experiments with different ML systems in the last few years, the ILP system CLAUDIEN was
chosen to construct the rules for determining the appropriate mesh resolution values. The ILP has been found to be an
effective approach to the problem of mesh design. An evaluation of the resulting knowledge base shows that the mesh
design patterns are captured well by the induced rules and represent a solid basis for practical application. The aim of
this paper is not only to present the real-life ML application to design, but also to describe and discuss a relation of the
work being done to the topic of this special issue: the proposed “dimensions” of ML in design.

Keywords: Finite-element Mesh Design; Inductive Logic Programming; Knowledge Base; Machine Learning

1. INTRODUCTION

The finite-element method (FEM), in the last 30 years the
most successful numerical method in design, has been used
extensively by engineers and modelling scientists to ana-
lyze stresses in physical structures. The effects of a specific
loading case and support of such a structure can be ex-
pressed as a set of differential equations. However, it is not
possible to solve such equations in a reasonable amount of
computer time for arbitrarily complex structures. There-
fore, we have to approximate the structure (Figure 1a) with
a mesh model, that is, with a set of finite elements (FE)
interconnected in the nodal points (Figure 1b).

Displacements in the nodal points then are adopted as the
basic unknown parameters of the problem. A set of func-

tions is chosen to approximate the displacement within each
FE in terms of its nodal displacements. As a consequence of
such a discretization, a set of linear algebraic equations, in-
stead of differential equations, has to be solved. FEM is de-
scribed in detail in Zienkiewicz and Taylor (1988).

An FE mesh should correspond to the geometric shape of
the structure. In the areas where high deformations are ex-
pected, a fine mesh is required to ensure low approximation
errors. On the other hand, a coarse mesh is adequate for the
rest of the structure to avoid unnecessary computational over-
heads, since each additional FE adds new equations to the
set that has to be solved. Thus, the “optimal” mesh model is
the coarsest one that still ensures a satisfactory accuracy of
the results. Figure 1b shows an example of that kind of mesh
model (DolYsak, 1996).

Much experience and knowledge about FEM are re-
quired to know in advance where the mesh should be fine
and where it should be coarse. A number of parameters, such
as the shape of the structure, loads, and supports, have to be
considered.

Reprint requests to: Dr. Bojan DolYsak, Faculty of Mechanical Engineer-
ing, Smetanova 17, 2000 Maribor, Slovenia. Tel: (1386)62-22-07-691; Fax:
(1386)62-22-07-990; E-mail: dolsak@uni-mb.si

Artificial Intelligence for Engineering Design, Analysis and Manufacturing(1998),12, 95–106. Printed in the USA.
Copyright © 1998 Cambridge University Press 0890-0604/98 $12.50

95

https://doi.org/10.1017/S0890060498122023 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498122023

Most of the FEM packages on the market have the ability
to build the FE mesh automatically. Yet, this option only
considers the geometric shape of the structure, which is one
of the influential parameters, but certainly not the only one
and, in many cases, also not the most important one. It usu-
ally is necessary to design a few different meshes until the
right one is found through experimentation. The trouble is
that each mesh must be analyzed, since the next mesh should
be generated with respect to the results derived from the
previous one. If we consider that one FEM analysis can take
from a few minutes to several hours and even days of com-
puter time, there is obviously a great motivation to build an
expert system (ES) that would be able to design “optimal”
FE meshes in the first iteration, or at least in fewer trials.

The main question is, how to build a mesh design knowl-
edge base (KB)? FEM has been applied extensively for the
last 30 years. Still, there is no clear and satisfactory formal-
ization of the mesh design know-how. Mesh design is still a
mixture of art and experience. However, many published
reports exist in terms of the problem definition, an adequate
FE mesh (chosen after several trials), and the results of the
analysis. These reports can be used as a source of training
examples for machine learning (ML).

A typical procedure of applying ML tools has been car-
ried out. This includes experimenting with several ML tools
to explore the domain and the data, improving the dataset
according to the shortcomings exposed by the initial exper-
iments, detection of desirable domain-specific properties of
ML tools, and, accordingly, the choice of a tool satisfying
these properties for further improved application.

In this paper we concentrate on the last phase of this par-
adigm of ML application, describing the use of the induc-
tive logic programming (ILP) system CLAUDIEN (De Raedt
& Bruynooghe, 1993) that was chosen to construct rules for
FE mesh design by generalizing the given examples. We
directly address two “dimensions” of ML in design stated
as a specific topic of this special issue. The paper clearly
identifies one example of dimension 3 (what might be

learned: rules for finite-element mesh design) and a corre-
sponding example of dimension 5 (methods for learning:
induction). Let us first, in the next section, present the learn-
ing problem and the structure of the training set.

2. LEARNING PROBLEM, EXAMPLES, AND
BACKGROUND KNOWLEDGE

2.1. Source of examples

Reports about ten FEM analyses performed successfully in
the past were used as a source for the training examples.
Ten different FE mesh models, each used as the reference
mesh model in one of these analyses, are comprised in the
present training set. It is impossible to take into consider-
ation all of the different structures that can appear in prac-
tice. Thus, the FE mesh models described in our training set
represent a family with the following common features:

• all of the structures are cylindrical,

• loads are only due to forces or pressures (there are no
thermal influences, etc.),

• highly local mesh refinement is not required.

A detailed description of the FE mesh models used can be
found in Dol Ysak (1996). Figure 1b shows one of the models.

The FE meshes for all of the structures were “hand-
constructed” and modified several times until the numeri-
cal results were accurate enough at acceptable computer time
consumption.

Basically, a structure consists of a network of edges. A
single edge can be described much more easily than the
whole structure. Individual edges represent a lower level of
the problem. The same type of edge can be found in many
different structures, which allows us to describe a wide set
of possible structures with a relatively small number of edge
types. Therefore all of the FE mesh models were put to-
gether as a collection of edges. The edges were labeled by a

Fig. 1. FEM discretization. (a) Physical structure. (b) FE mesh model.

96 B. Dol Ysak, Ivan Bratko, and Anton Jezernik

https://doi.org/10.1017/S0890060498122023 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498122023

combination of a letter and a number. Each letter (a–i) de-
notes a mesh model, while the consecutive numbers denote
individual edges in the model. Figure 2 shows some labeled
edges in the FE mesh model from Figure 1b.

The geometric form, loads, and supports are defined for
all of the edges in the training set. In addition, certain im-
portant topological relations between the edges also are de-
fined. To take into account this relational information among
the edges, relational learning techniques apply most natu-
rally to the learning about mesh design. Therefore, an ILP
system was employed to build a KB for FE mesh design,
since it realizes a form of relational learning.

According to the proposed taxonomy of the fourth di-
mension of ML in design (availability of knowledge for
learning), the reports about FEM analyses that have been
used as a source of the training examples are repositories
of designs. The topological relations between the edges/
examples might be considered as the interactions in the train-
ing set. Furthermore, another interaction takes place in the
experiment described here. Since the topological relations
between the edges of the structure are important in FE mesh
design, relational learning was needed. One might analyze
this as an example of a dimension 4 issue arising from in-
teractions of dimensions 3 (what might be learned) and 5
(methods of learning). The interaction between these three
dimensions seems to be the most important relation to de-
sign computing in general.

In general, the ILP problem statement involves positive
and negative examples and background knowledge. In this
section we develop a suitable representation for learning
about FE mesh design in terms of examples and back-
ground knowledge.

2.2. Positive examples

The FE mesh is defined by stating the number of FEs along
the edges. The relation to be learned ismesh(E,N) , where

E is the name of an edge in the structure andN is the
recommended number of FEs along this edge. For each edge
in the training set the number of FEs is given as a positive
example. From the analysis point of view, the FE mesh mod-
els used to construct the training set are satisfactory. Yet,
positive examples derived from these FE mesh models can-
not be considered as perfect. To facilitate the learning pro-
cess, some deviations were therefore also allowed. Thus,
for N $ 8, for each examplemesh(E,N) , additional ex-
amples mesh(E,N1), N1 = N1 6 1 are added. We
sometimes refer to the numberN of FEs along an edge as
theclass of the edge.

Since edges with more than 12 FEs are quite rare, we de-
cided to induce the rules only for classes from 1 to 12. Thus
it may happen that the induced rules will not be able to clas-
sify all of the edges of the structure. Yet this should not be
a serious problem, since one does not have to specify the
number of FEs for all of the edges in order to build an FE
mesh. In such cases, the FEM pre-processor constructs an
FE mesh with respect to the given resolution values, using
some built-in rules to determine the missing values.

2.3. Negative examples

Basically, negative examples were constructed according to
the closed-world assumption. Therefore, the negative ex-
amples are constructed as the combinations of the names of
the edges with all of the numbers between 1 and 12 other
than those found in the positive examples. Again, some de-
viations from this are considered. For all of the edges with
5 to 7 FEs, deviations by one element are not stated as neg-
ative examples. For the edges with 8 or more elements, de-
viations by up to two elements are tolerated.

2.4. Background knowledge

Background knowledge contains definitions of the predi-
cates that can be used in the hypotheses about the target
relationmesh/2. It can be divided into two parts:

• attribute-value description of the edges,

• topological relations between the edges.

2.4.1. Attribute-value description of the edges

The following attributes of the edges that pertain to the
FE mesh are described as background facts:

• the type of the edge using predicates:
long, usual, short, circuit, half_cir-
cuit, quarter_circuit,
short_for_hole, long_for_hole, cir-
cuit_hole,
half_circuit_hole, quarter_circuit-
_hole, not_important,Fig. 2. Some labeled edges in the FE mesh model (Figure 1b).

KB for FE mesh design learned by ILP 97

https://doi.org/10.1017/S0890060498122023 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498122023

• the supports using predicates:
free, one_side_fixed, two_side_fixed,
fixed,

• the loads using predicates:
not_loaded, one_side_loaded, two_side-
_loaded, cont_loaded.

There are special predicates that describe the type of an edge
for those edges that have a circular shape (we have de-
scribed a family of cylindrical structures). The other edges
are classified by their length with the qualitative values
“long,” “usual,” and “short.” Special predicates also are used
for the edges that are a part of a hole in the structure, since
those places are usually important for the analysis. Short
edges that do not belong to an important part of the struc-
ture are described with the predicatenot_important.

To prevent unwanted displacements the structure must be
supported. There are four predicates to describe the sup-
ports. Only the property of an edge being fixed (completely
or at the endpoints) or free is considered, without distin-
guishing the supports with respect to the number of degrees
of freedom.

Another influential parameter is the loading case. In fact,
the purpose of the analysis is to inspect whether the struc-
ture is sufficiently dimensioned to sustain the loads during
its exploitation. Similarly as for the supports, a description
of a load only states the position of a load.

Each predicate that defines an attribute of an edge has
one argument—the name of the edge. All of the edges in the
training set are described by one predicate for each attribute.
It could happen that an edge would be loaded with a com-
bination of pressure (continuously) and force. In that case,
two predicates can be used to describe the loading case of
the edge. None of the training FE mesh models has an edge
with a combined loading case; thus such an example does
not exist in our training set.

2.4.2. Topological relations between the edges

A topological representation is needed because of the re-
lationships between the edges that also pertain to the FE
mesh. According to our experience there is also a connec-
tion between the edges that are neighbors or opposite (par-
allel) to each other, which affects the appropriate number of
FEs on those edges. As we will see later, these two relations
are indeed used very frequently in the induced rules.

A third interesting relation concerns the edges that are
not only opposite but also have the same length or form.
For instance, concentric circles have the same form. Such
pairs of edges have been described using the predicate
equal. All three predicates are binary.

An edge also can be a neighbor or opposite or equal to
more than one edge. Because of that, it is best to use an ILP
learning algorithm that allows nondeterminate literals. A lit-
eral such asneighbor (a3,X) is called nondetermi-
nate because the “input” argumenta3 does not necessarily
determine the “output” argumentX (if a3 has several neigh-

bors,X can be any one of them). In spite of this, a “deter-
minate” version of background knowledge description also
was used in our earlier experiments (DolYsak & Muggleton,
1992; DolYsak et al., 1994) with the ILP program GOLEM
(Muggleton & Feng, 1990), which is restricted to determi-
nate literals only. CLAUDIEN allows nondeterminate literals.

2.5. Summary of the training set

The training set used in the present experiments comprises
4029 facts in the nondeterminate version of background
knowledge and 644 positive examples. Distribution of the
training examples considering the proposed predicates and
target classes is believed to be sufficient.

The only proposed predicate that is not represented in
the background knowledge isquarter_circuit_hole.
Such edges are scarce enough, so this omission was consid-
ered noncritical.

3. SELECTION OF THE
LEARNING ALGORITHM

The mesh dataset was probably the first real-world rela-
tional dataset. This contributed to the fact that mesh design
became one of the most widely used domains for experi-
menting with ILP systems. Several learning systems have
been applied to the FE mesh design problem in the last few
years, most of them relational learning algorithms. As al-
ready mentioned, the first experiments with GOLEM were
done using a smaller training set (DolYsak & Muggleton,
1992). After that, the training set was expanded and changed
into the form that is described in DolYsak et al. (1994). Ba-
sically, the form of the training set was the same as dis-
cussed in the previous section, yet only the first five training
models (a–e) were described in it. Following is a list of the
ML experiments that were performed with such a training
set:

• experiments with the ILP algorithm GOLEM (Muggle-
ton & Feng, 1990), described in DYzeroski (1991), Lavracˇ
and DYzeroski (1994), and DolYsak et al. (1994);

• experiments with the ILP algorithm FOIL (Van Laer
et al., 1994), described in DYzeroski (1991);

• experiments with the ILP algorithm mFOIL, described
in D Yzeroski (1991);

• experiments with the ILP algorithm CLAUDIEN
(De Raedt & Bruynooghe, 1993), described in Van Laer
et al. (1994);

• experiments with the ILP algorithm MILP, described
in Kovačič (1994);

• experiments with the ILP algorithm FOSSIL (Fürn-
kranz, 1994a), described in Fürnkranz (1994b);

• experiments with several attribute-value algorithms, de-
scribed in Kononenko et al. (1994).

The results of these preliminary ML experiments to the FE
mesh design problem were below expectations. The classi-

98 B. Dol Ysak, Ivan Bratko, and Anton Jezernik

https://doi.org/10.1017/S0890060498122023 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498122023

fication accuracy, measured by performing a leave-one-out
test, was under 50% (12 to 44%). We believe that the reason
for this lies in the nature of the training set; namely, each of
the first five training models is in a way unique and has
contributed a significant part of the examples in the train-
ing set. Because of this dissimilarity between the five struc-
tures, the leave-one-structure-out test was not very
appropriate in this case.

To ensure the necessary conditions for the leave-one-out
test, which is indeed the most natural test to validate the
quality of the induced rules, a distribution of training ex-
amples was improved by the extension of the training set.
Five additional structures (f–i) are included in the present
training set. To ensure good results with ML with the new
training set, the following features were considered to be
important in the choice of an appropriate learning algorithm:

• relational learning,

• capability for dealing with nondeterminate literals,

• noise tolerance (both the number of positive and neg-
ative examples covered by the clause have to be con-
sidered),

• induction of practically useless rules should be pre-
vented during the learning process.

The ILP system CLAUDIEN (De Raedt & Bruynooghe,
1993) has all of the desired properties. Furthermore, a set
of negative examples (in our case 5157 instances) does not
need to be presented to the system. Therefore, CLAUDIEN
was chosen to be applied on the described new training set.
A very useful feature of CLAUDIEN is that it allows the
user to loosely specify the general form and contents of rules
to be potentially generated by the induction algorithm.

4. LEARNING WITH CLAUDIEN

The learning of the rules for determining the resolution val-
ues for the FE mesh was carried out in six stages. In each
learning stage a different form of rules was specified to be
induced by CLAUDIEN. While specifying the form of the
rules, the following criteria were considered:

• the use of all predicates from the training set has to be
enabled,

• attribute description is needed for the edges intro-
duced by geometric relations,

• the induction of too complicated rules should be
avoided—the rules should not contain more than two
geometric relations.

The whole training set was used in each learning step; thus,
the order of the learning steps is not important and has no
influence on the induced rules whatsoever.

The learning process was further guided by setting the
required accuracy (percentage of positive examples among
those covered) and coverage (the number of covered ground

“cases”; this is understood to be the number of substitutions
from the training set that make the body of the induced clause
true; therefore, a case does not necessarily correspond to an
example).

In the following subsections all six learning stages are
described. We give examples of induced rules and rule
schemes. All have a Prolog syntax as generated or accepted
by CLAUDIEN.

We also refer several times to the CPU time spent to per-
form a particular learning step. The whole learning process
was carried out using the computer hardware SUN Sparc
Station where CLAUDIEN was installed. The computer used
can be considered as a representative powerful workstation.
Thus there exists not only a strong correlation between CPU
time and computational complexity of the learning process,
but also a solid basis for comparison with some other ML
applications.

4.1. Learning step 1: Class rules without relations

In the first stage CLAUDIEN induced 17 classification rules
that contain only attribute descriptions of the edges. The fol-
lowing rule schema was specified for this purpose:

clausemodel(‘mesh(Edge1,
[1,2,3,4,5,6,7,8,9,10,11,12])<–\

+1{(Type(Edgel),Support(Edgel),
Load(Edgel)}’).

This says that the conclusion part of an induced rule is a
literal of the form mesh/2, specifying up to 12 FE on Edge1.
The condition part of the rule may mention at least one
and at most three attributes of Edge1 (Type, Support, and
Load). For example, rule number 10 with 100% accuracy
(perc_cov(1)), which was induced in little more than 14
CPU seconds, is

rule(10,[perc_cov(1),body(4),
cpu(14.1667)],

(mesh(Edgel,11) :–
long(Edge1),
one_side_loaded(Edgel))).

It specifies 11 FEs on the long edges, loaded at one side.
From the rule description it also can be seen that there are
four substitutions in the training set that make the body of
the rule true.

4.2. Learning step 2: Class rules with one relation

In the second stage of the learning process the use of a sin-
gle topological relation was allowed. To prevent the induc-
tion of practically useless rules, the following conditions
also were specified by the language for the target hypothesis:

• the rules must contain at least one attribute description
of the actual edge;

KB for FE mesh design learned by ILP 99

https://doi.org/10.1017/S0890060498122023 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498122023

• the new edge, introduced by the topological relation,
has to be further described by at least one attribute:

clausemodel(‘mesh(Edgel,
[1,2,3,4,5,6,7,8,9,10,11,12]) <–\

< +1{Type(Edgel),Support(Edge1),
Load(Edge1)},\

{<Relation(Edgel,Edge2),\
+1{Type(Edge2),Support(Edge2),

Load(Edge2)}>}’).

The predicate variable Relation was defined as one of:
neighbor, opposite, or equal. Limited by this specification,
351 rules were induced in the second learning stage. Here is
an example of a rule that specifies 7 FEs for the “usual”
edges, which have a continuously loaded and both sided fixed
neighbor of the quarter circuit geometric form:

rule(340,[perc_cov(1),body(4),
cpu(19375.2)],

(mesh(Edgel,7) :–
usual(Edge1),
neighbor(Edgel,Edge2),
quarter_circuit(Edge2),
two_side_fixed(Edge2),
cont_loaded(Edge2))).

4.3. Learning step 3: Class rules with two relations,
both referring to the target edge

Classification rules with two topological relations were in-
duced in two learning stages. First, rules with two topolog-
ical relations, both referring to the “target” edge, were built.
For example, the following rule, which was induced in the
third learning stage, contains two topological relations
(neighbor and opposite) with an actual edge (Edge1) as the
first argument in both cases:

rule(166,[perc_cov(0.909091),body(22),
cpu(1026)],

(mesh(Edgel,9) :–
half_circuit(Edge1),

not_loaded(Edge1),
neighbor(Edge1,Edge2),
usual(Edge2),
opposite(Edge1,Edge3),
half_circuit(Edge3),
not_loaded(Edge3))).

CLAUDIEN induced 1988 rules of this type in 128207 CPU
seconds.

4.4. Learning step 4: Class rules with two
relations in chain

The search space was even more complex in the fourth stage
of the learning process, when the rules with two topological
relations, describing a chain of edges, were sought. Despite
the fact that the required accuracy and coverage of the rules
were increased (Table 1), almost 300,000 CPU seconds
were spent in the fourth learning step to build 1700 rules.
An example is

rule(1535,[perc_cov(1),body(8),
cpu(64226)],

(mesh(Edge1,3) :–
cont_loaded(Edge1),
neighbor(Edge1,Edge2),
half_circuit(Edge2),
cont_loaded(Edge2),
neighbor(Edge2,Edge3),
not_important(Edge3),
one_side_loaded(Edge3))).

In this case, two new edges, Edge2 and Edge3, are intro-
duced as a chain of neighbors together with the target edge,
Edge1.

4.5. Learning step 5: Interval rules
with one relation

In the fifth learning stage we allowed the induced rules to
specify more than one class. The use of one topological re-
lation was also allowed. In this case we considered all 17

Table 1. Learning the rules—basic parameters

Step Form of the rules Accuracy Coverage Rules CPU sec.

1 Class rules without relations $0.90 $3 17 79
2 Class rules with one relation $0.90 $3 351 26657
3 Class rules with two relations (Edge1) $0.90 $3 1988 128207
4 Class rules with two relations in chain $0.95 $10 1700 299833
5 Interval rules with one relation $0.98 $20 395 894573
6 Limiting rules considering the edge type 1 $8 11 8666

4462 1356237

100 B. Dol Ysak, Ivan Bratko, and Anton Jezernik

https://doi.org/10.1017/S0890060498122023 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498122023

classes that appear in the training set. On the other hand, the
required accuracy and coverage of the rules were increased
further. CLAUDIEN spent more than 10 days of CPU time
to induce 395 rules that meet the given specification in this
stage of learning. Most of the rules specify an interval over
the classes, although there are also examples with some miss-
ing classes, for example:

rule(362,[perc_cov(1),body(26),
cpu(775726)],

(one(A);two(A);four(A) :–
mesh(Edge1,A),

one_side_fixed(Edge1),
neighbor(Edge1,Edge2),
free(Edge2),
cont_loaded(Edge2))).

The rule specifies 1, 2, or 4 FEs for edges that are fixed on
one side and have a neighbor that is free and continuously
loaded.

4.6. Learning step 6: Limiting rules considering
the edge type

In the last stage, interval specifications were again allowed;
however, this time only the type of the edge was considered
in the body of a clause. For each type description predicate,
one rule was induced to specify the possible numbers of FEs
corresponding to that type of edge. Thus, for example, the
following rule says that short edges in the training set have
between 1 and 4 FEs:

rule(2,[perc_cov(1),body(109),
cpu(13.9333)],

(one(A);two(A);three(A);four(A) :–
mesh(Edge1,A),

short(Edge1))).

4.7. Summary of the learning process

The basic parameters of the overall learning process are pre-
sented in Table 1. CLAUDIEN induced 4462 rules alto-
gether in some 15 days of effective CPU time on a SUN
Sparc Station. More than one-half of this time (66%) was
spent for induction of only 395 rules (9%) in the fifth learn-
ing step, when interval rules with one geometric relation
were learned! A computational complexity of the rest of the
learning process was quite reasonable, considering the num-
ber of induced rules. The learning process could be termi-
nated after a specified CPU time; however, this option was
not applied, since there is no connection between the order
of the induced rules and their quality. The induced rules men-
tion all of the background predicates, as well as all the classes
represented in the training set.

5. POSTPROCESSING OF THE
INDUCED RULES

The induced rules were found to be inappropriate to be placed
directly into KB. Many of them were subsequently elimi-
nated, while the form and order of the remaining rules were
adjusted to meet the application requirements. In postpro-
cessing, the rules that specify an exact number of FEs were
treated separately from the interval rules.

Rules were eliminated considering the following con-
ditions:

• if they covered less than three positive examples,

• if they were duplicated,

• if they were subsumed by a more general rule for the
same class,

• if they covered only additional positive examples,

• if they were merged with other rules that had the same
body but specified different classes (in the case of
interval rules).

The first condition seems to be redundant, since the min-
imum number 3 of substitutions from the training set that
make the body of the clause true has already been consid-
ered in the learning process. Yet it must be taken into ac-
count that the number of substitutions is not always the same
as the number of positive examples covered by the rule. One
positive example may cause more than one successful sub-
stitution. For example, one edge can have up to four neigh-
bors with the same attributes.

After the learning process, 2686 rules (60%) were elim-
inated in total. The remaining 1776 rules were simplified.
To ensure the best possible efficiency, all of the elements of
the rules that are not necessary for practical application (for
example, CPU time spent for induction quoted in the head
of the rules) were abandoned. On the other hand, a mecha-
nism for preventing the infinite loops was implemented, to
handle the recursive rule that was induced in one of the pre-
vious learning experiments (DolYsak et al., 1994) and was
added to the KB.

In the FEM pre-processor environment one has to define
the exact number of FEs on each edge of the structure to be
idealized. Therefore, rules for determining the most appro-
priate class from the proposed list of classes, specified by
the interval rules, were also added to the KB. Basically, these
rules compare the geometric type of two edges and give the
difference between the average classes used in the training
set for that kind of edge. For example, the following rule
says that usual edges have on average 6 FEs less than long
edges:

compare_type(Edge1,Edge2,–6) :–
usual(Edge1),

long(Edge2).

The comparison rules were built on the basis of simple
statistics on the training set. The comparison rules in the

KB for FE mesh design learned by ILP 101

https://doi.org/10.1017/S0890060498122023 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498122023

KB enable the inference engine to choose the class out of
the proposed list of classes by considering the type of the
opposite edge. If there is no opposite edge, a single class is
calculated as an arithmetic mean value of the proposed
classes.

All of the rules in the KB were ordered to optimize the
effectiveness and accuracy of the ES. Because of the top-
down search strategy implemented in Prolog, which was used
as a programming language for the ES shell, the most reli-
able rules were placed on top of the KB. This is especially
important in the case of classification rules, to ensure that
the best rule is executed to determine the number of FEs for
each particular edge of the structure. Several criteria were
used to define a proper order of the classification rules in
the KB:

• Rules that classify single classes were placed in the KB
before interval rules to minimize the need for selection
of the most appropriate class from the proposed list of
classes with the comparative rules. For the same rea-
son, the recursive rule is placed just after the rules for
single classes.

• Rules without negative covers had priority.

• Rules describing the type of the actual edge were placed
before the rest of the rules, since the type of the edge
(relative length) is most obviously related to the num-
ber of FEs.

• Rules with 100% accuracy (on training data) were or-
dered from simple attribute rules to more complex rules
with one and two geometric relations. The opposite
ordering was used for the rules that cover negative
examples.

6. RESULTS

6.1. Knowledge base and expert system shell

Finally, 1873 rules and 31 facts were accepted into the KB
as described in the previous section. It is the most compre-
hensive KB of all of the previous experiments in this field
that were mentioned before. Undoubtedly the main reason
for this is the extension of the training set. Yet, the extended
training set was not the only difference between the exper-
iment described here and other ML experiments carried out
in this field in the past. The following features are charac-
teristic of our recent experiment and were performed for
the first time:

• Induction of practically useless rules was prevented by
prescribing the form of the rules.

• Rules that specify more than one single class also were
induced.

• The learning process was not stopped until all of the
rules that satisfied the given criteria were induced.

• The ILP system CLAUDIEN was adjusted to deal more
efficiently with such an extensive training set.

It also should be noted that some additional rules were put
into the KB after the learning process.

The KB is written in Prolog syntax in the form of Prolog
rules and facts. Thus it is sufficiently transparent and can be
easily extended if necessary. Most of the rules (17115 91%)
contain geometric relations. Furthermore, the classification
rules without geometric relations cover only 110 positive
examples (17%). Thus, it is quite obvious that the geomet-
ric relations are even more important than was expected.

The ES shell also is written in Prolog. It facilitates the
proper use of the KB for FE mesh design, as well as com-
munication between the user and the system. One of the more
interesting features of the user interface is its capability to
explain the inference process.

6.2. Evaluation of the expert system

A comprehensive evaluation of the ES was carried out. First,
the classification accuracy was tested in various ways. Fur-
thermore, an additional, more informative criterion of suc-
cess, called classification cost, was introduced. This takes
into account the size of error in the case of misclassifica-
tion. Misclassification cost was defined as:

Cost5 6N12N26/max~N1,N2!,

whereN1 is the reference number of FE andN2 is the num-
ber prescribed by the ES. Misclassification cost is normal-
ized between 0 and 1, where cost means better classification
performance. In our domain, the worst possible error is to
classify a 1-element edge into “class” 17; this would incur a
misclassification cost of617216/17 5 0.94.

The results of the ES have been used in practice as the
resolution values for real-life mesh generation with the FEM
pre-processor. The results of these tests also are presented
in this section.

6.2.1. Test on the edges from the training set

First, the ES was used to determine the number of FEs
for all of the edges from the training set. The classification
accuracy was 78.26%, and the misclassification cost was
0.092.

6.2.2. Leave-one-out test

Here the classification accuracy and cost were measured
for each training model, which, for that purpose, was effec-
tively eliminated from the training set. Because of its time
complexity, the learning process was not actually repeated
each time with a different training set. Instead, the rules that
could not be induced if the current structure would not be a
part of the training set were eliminated from the KB. A de-
tailed description of the elimination process can be found in
Dol Ysak (1996). Although this process does not guarantee ex-
actly the same results as would be obtained by repeated in-
duction without the eliminated structure, any differences in
results are unlikely. The classification accuracy was be-

102 B. Dol Ysak, Ivan Bratko, and Anton Jezernik

https://doi.org/10.1017/S0890060498122023 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498122023

tween 40.48 and 80.46%, and 59.09% on average. The low-
est misclassification cost for a single structure was 0.064,
and the highest was 0.244.

The results of the ES for the “eliminated” structure also
were used as basic parameters for mesh generation with the
well-known FEM pre-processor within the popular computer-
aided design package I-DEAS Master SeriesTM (I-DEAS,
1993). Let us consider the structure with the lowest classi-
fication performance as an example. To meet the require-
ments of the built-in mapped meshing method, the structure
was partitioned into six subvolumes (Figure 3).

In spite of quite low classification accuracy, the mesh built
on the basis of the results of the ES (Figure 4a) is not bad,
at least as an initial attempt. A comparison with the refer-
ence, a manually designed mesh (Figure 4b), which was used
for the numerical analysis, shows that the ES proposed a
few more elements on some of the edges, but the overall
pattern of the mesh was almost the same.

6.2.3. Tenfold cross-validation test on randomly
selected subsets

The training set was randomly divided into ten subsets.
The elimination of each subset from the training set was
simulated in the same way as in the case of the leave-one-
out test. On average, 70.16% of the edges were classified
correctly, and the average misclassification cost was 0.127.

6.2.4. Test on an unseen structure

In the final test, the ES was employed to specify the mesh
resolution values for a completely new cylindrical structure
that was not included in the training set. The performed clas-
sification accuracy was 86.67%, with a misclassification cost
of 0.028, which is quite impressive considering the results
of the previous ML experiments on this problem. There were
only four misclassified edges (encircled in Figure 5a). For
all quarter circuit edges the ES proposed one FE more than
in the reference design, yet this qualified as an allowable
deviation according to the construction of our training set.

With respect to the results of the ES, the FEM pre-
processor built almost the same FE mesh (Figure 5b) as that
designed manually (Figure 5c). As a matter of fact, the
knowledge-based designed mesh model has a few FEs more.
We can suspect that it also would require a little more CPU
time for analysis, but this is not the most important issue
here. The fact is that the ES proposed an almost “optimal”
mesh model in the first trial. On the other hand, the mesh
model that was produced by automatic mesh design (free
meshing), which is implemented in the I-DEAS Master
SeriesTM FEM pre-processor (Figure 5d), cannot be con-
sidered as a near-“optimal” trial. Moreover, in this particu-
lar case, the FE mesh model is not good enough even to
represent properly the geometric shape of the structure.

Again, a partitioning of the part into smaller subvolumes
with a maximum of six surfaces was done to satisfy the re-
quirements of the mapped meshing procedure. This test also
shows that classification accuracy may be misleading as a
measure of success in this domain. The reason is that the
mesh generator will automatically correct some errors. This
happened in the case of Figure 5 as follows. The mapped
meshing technique assumes an equal number of FEs on the
opposite sides of the surfaces. The FEM pre-processor put
14 FEs on the edges while the ES specified 11 FEs, since
the total number of FEs on the opposite side is also 14.

7. CONCLUSIONS

We have presented an ML application to the real-world en-
gineering design problem. The extensive KB for FE mesh
design was built by using the ILP system CLAUDIEN. Yet,
the KB is not only the result of our experiment. It is also a
demonstration of the strength of ILP on this particular task
as well as its potential in general. According to the practical
experience with FEM systems, it would be very difficult to
extract the knowledge about FE mesh design from the hu-
man expert. Much experience is required to design an “op-
timal” FE mesh, which is hard to describe explicitly. On the
other hand, the inductive knowledge acquisition turned out
to be an effective approach to solve the FE mesh design
problem. Furthermore, human experts also were asked to
look over the induced rules and to assess their meaningful-
ness in comparison with their own expert knowledge. The
most important overall conclusion of the expert evaluation
of the induced rules was found to be that the form of the
rules is as expected and in general matches the knowledge
used by human experts.

Considering the results of the overall KB evaluation, it
can be concluded that the KB represents a solid basis for
practical application. The mesh generated according to the
ES results for the example “eliminated” training model is
insignificantly different from the reference mesh. Although
the results of the ES seemed rather low in that particular
case, the comparison of performance measured by the leave-
one-out test and by the tenfold cross-validation test indi-
cates a satisfactory distribution of the training examples. TheFig. 3. Partitioning of the part for mapped meshing procedure.

KB for FE mesh design learned by ILP 103

https://doi.org/10.1017/S0890060498122023 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498122023

results of the cross-validation test are somewhat higher, yet
the difference is relatively small. The applicability of the
ES was further confirmed by the test on the completely new
structure.

To simplify the learning problem, the training set was de-
signed with the aim of being representative of a particular
type of structures. However, the KB presented here also can
be applied as a general tool for determining the mesh reso-
lution values for structures outside the scope of these types.
These values have to be adjusted subsequently according to
the specific requirements of the particular analysis and suited
to the method for the mesh generation.

The ES application enabled the determination of an al-
most “optimal” FE mesh for a structure within the type scope
in the first attempt. Such effectiveness of the ES cannot be
expected in cases of structures of different types. Yet, the

resolution values specified by the ES can always serve as a
basis for an initial FE mesh, which is subject to further ad-
aptations by considering the results of the numerical anal-
yses. It is very important to choose a good initial mesh and
minimize the number of iterative steps, leading to an appro-
priate mesh model. The ES presented can be very helpful in
performing this task, especially to inexperienced users. Fi-
nally, by minimizing the number of mesh models over mul-
tiple FEM analyses, even the extensive learning time also
can be amortized.

When the rules in the KB specify the list of the proposed
classes, “the most appropriate” class should be determined.
In spite of the special attention that was paid to the methods
for determining “the most appropriate” class out of the pro-
posed list, the interval rules in the KB still enable better
results than those that have been achieved. It is a matter of

Fig. 4. A comparison between knowledge-based and manual mesh design. (a) Design by expert system. (b) Reference manual design.

Fig. 5. Test on the new structure. (a) ES classification. (b) Knowledge-based design. (c) Reference manual design. (d) Automatic mesh design.

104 B. Dol Ysak, Ivan Bratko, and Anton Jezernik

https://doi.org/10.1017/S0890060498122023 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498122023

further research to find more appropriate rules for determin-
ing a single class out of the proposed list of classes.

Finally, let us relate the work described in this paper to
the proposed “dimensions” of ML in design. We already
pointed out the important relation between dimensions 3, 4,
and 5. In any case, the method of learning (dimension 5) is
dependent on the form of the available knowledge (dimen-
sion 4), which is strongly related to the domain concept that
is going to be learned (dimension 3).

With respect to the first dimension (what can trigger learn-
ing?), we can give two reasons for learning the rules for FE
mesh design: first, a need and motivation to improve the
ability of the existent FEM software, and, second, the na-
ture of domain knowledge based mostly on experiences that
cannot be expressed explicitly enough to build the KB. Ac-
cording to the evaluation results, it can be concluded that
the consequence of learning (dimension 7) is the improve-
ment of the design process.

We believe that there is another important “dimension”
of ML in design which has not been set up in the call for
this special issue. Are the present learning methods and al-
gorithms adequate enough to be applied to design? In our
experiment, ILP was found to be a powerful and useful tool
for learning the FE mesh design rules. And yet, there still
exists substantial room for further improvements. Despite
some changes and adaptations that have been made to CLAU-
DIEN to deal with the FE mesh design problem, the exten-
sive and time-consuming postprocessing of the induced rules
still is necessary.

ACKNOWLEDGMENTS

This research was financially supported by the Ministry of Sci-
ence and Technology, Republic of Slovenia, and by the European
Community within the action for co-operation in science and tech-
nology with Central and Eastern European countries (PECO92)—
ILPNET, contract no. CIPA3510OCT920044. Researchers from
several ILPNET nodes have been involved in ML applications
to the FE mesh design problem and made their learning pro-
grams available for that purpose. S. Muggleton’s GOLEM and
L. De Raedt’s CLAUDIEN were particularly important in our work.
We would like to acknowledge Professor T.K. Hellen of Imperial
College of Science, Technology and Medicine, London; M. PraYs-
nički and R. Kogler from TAM Research & Development Insti-
tute, Maribor; and S. Ulaga from the Faculty of Mechanical
Sciences, Maribor, for providing the training examples. Special
thanks to Professor Hellen for his willingness to carry out the ex-
pert evaluation of the induced rules.

REFERENCES

De Raedt, L., & Bruynooghe, M. (1993). A theory of clausal discovery.
Proc. Thirteenth Int. Joint Conf. on Artificial Intelligence, pp. 1058–
1063. Morgan Kaufmann, San Mateo, CA.

Dol Ysak, B. (1996).A contribution to intelligent mesh design for FEM anal-
yses(in Slovene, with English abstract). Ph.D. Thesis. Faculty of Me-
chanical Engineering, University of Maribor, Slovenia.

Dol Ysak, B., Jezernik, A., & Bratko, I. (1994). A knowledge base for finite
elementmeshdesign.Artificial Intelligence inEngineering9, pp.19–27.

Dol Ysak, B., & Muggleton, S. (1992). The application of inductive logic
programming to finite element mesh design. InInductive Logic Pro-
gramming(Muggleton, S., Ed.), pp. 453–472. Academic Press, New
York.

D Yzeroski, S. (1991).Handling noise in inductive logic programming.M.Sc.
Thesis. Faculty of Electrical Engineering and Computer Science, Uni-
versity of Ljubljana, Slovenia.

Fürnkranz, J. (1994a). FOSSIL: A robust relational learner.Proc. Euro-
pean Conf. on Machine Learning, Catania, Italy. Springer-Verlag, New
York.

Fürnkranz, J. (1994b). Top-down pruning in relational learning.Proc. 11th
European Conf. on Artificial Intelligence, Amsterdam. The Nether-
lands, pp. 453–457.

I-DEAS Master SeriesTM (1993).Exploring I-DEAS Simulation, 2nd ed.
Structural Dynamic Research Corporation. Milford, OH, USA.

Kononenko, I., XSimec, E., & Robnik, M. (1994).Overcoming the myopia
of inductive learning algorithms.Report No. FER-LUI-1/94. Faculty
of Electrical Eng. and Computer Science, University of Ljubljana,
Slovenia.

Kovačič, M. (1994). MILP—A stochastic approach to inductive logic pro-
gramming.Proc. Fourth Int. Workshop on Inductive Logic Program-
ming (ILP-94)(Wrobel, S., Ed.), pp. 123–138. GMD-Studien Nr. 237,
Germany.

Lavrač, N., & D Yzeroski, S. (1994).Inductive Logic Programming: Tech-
niques and Applications.Ellis Horwood, New York.

Muggleton, S., & Feng, C. (1990). Efficient induction of logic programs.
Technical Report TIRM-90-044, The Turing Institute, Glasgow, Scot-
land.

Van Laer, W., De Raedt, L., & Dehaspe, L. (1994).Applications of a log-
ical discovery engine.Report No. CW 195. Department of Computing
Science, KU Leuven, Belgium.

Zienkiewicz, O.C., & Taylor, R.L. (1988).The Finite Element Method—
Basic Formulation and Linear Problems.McGraw-Hill, London.

Bojan Dol Ysak is a senior lecturer of computing and CAD
related subjects at the Faculty of Mechanical Engineering,
University of Maribor, Slovenia. He received his B.Sc.,
M.Sc., and Ph.D. from Faculty of Mechanical Engineering
at the University of Maribor. He has a deep and thorough
understanding of the modern programming techniques and
computer graphics. He is also concerned with the artificial
intelligence methods, especially expert systems and ma-
chine learning. His current interests include computer aided
design in general, three-dimensional modeling, engineering
analyses using FEM, artificial intelligence methods in gen-
eral, expert systems for CAD and machine learning.

Ivan Bratko is professor of computer science at the Fac-
ulty of Computer and Information Sc., Ljubljana Univer-
sity, Slovenia. He heads the AI laboratories at J. Stefan
Institute and the University. He is the chairman of ISSEK,
International School for the Synthesis of Expert Knowl-
edge. He has conducted research in machine learning,
knowledge-based systems, qualitative modelling, intelli-
gent robotics, heuristic programming and computer chess.
His main interests in ML have been in learning from noisy
data, combining learning and qualitative reasoning, and var-
ious applications of ML and ILP. Ivan Bratko’s numerous
publications include the books PROLOG Programming for
Artificial Intelligence (Addison-Wesley) and KARDIO: a
Study in Deep and Qualitative Knowledge for Expert Sys-
tems (MIT Press).

KB for FE mesh design learned by ILP 105

https://doi.org/10.1017/S0890060498122023 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498122023

Anton Jezernik is a professor of computing and CAD re-
lated subjects and a head of the Laboratory for Technical
Software at the Faculty of Mechanical Engineering, Uni-
versity of Maribor, Slovenia. He received his M.Sc. and
Ph.D. from Imperial College of Science, Technology and
Medicine, University of London. After nearly three years

stay at electricity generating industry in the UK, he has been
working since 1973 at the University of Maribor, where he
carried out many research projects mainly from the field of
computer aided design. His current main interests are feature-
based design and expert systems for CAD.

106 B. Dol Ysak, Ivan Bratko, and Anton Jezernik

https://doi.org/10.1017/S0890060498122023 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498122023

