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INTERPRETABLE SETS IN DENSE O-MINIMAL STRUCTURES

WILL JOHNSON

Abstract. We give an example of a dense o-minimal structure in which there is a definable quotient
that cannot be eliminated, even after naming parameters. Equivalently, there is an interpretable set which
cannot be put in parametrically definable bijection with any definable set. This gives a negative answer
to a question of Eleftheriou, Peterzil, and Ramakrishnan. Additionally, we show that interpretable sets
in dense o-minimal structures admit definable topologies which are “tame” in several ways: (a) they are
Hausdorff, (b) every point has a neighborhood which is definably homeomorphic to a definable set, (c)
definable functions are piecewise continuous, (d) definable subsets have finitely many definably connected
components, and (e) the frontier of a definable subset has lower dimension than the subset itself.

§1. Introduction. Let us say that a structure M has parametric elimination of
imaginaries if given anyM -definable set X andM -definable equivalence relation E
on X , there is anM -definable map eliminating the quotient X/E. Replacing “M -
definable” with “0-definable” gives the usual notion of elimination of imaginaries,
which is a stronger condition.
It is well-known that o-minimal expansions of ordered abelian groups have para-
metric elimination of imaginaries. When working with o-minimal structures, it is
common to assume that the structure expands an ordered abelian group, or even
an ordered field. This assumption simplifies life, and holds in most o-minimal
structures arising in applications of o-minimality. Nevertheless, some o-minimal
structures do not expand ordered abelian groups, and one can pose the following
question:

Question 1.1. Do all o-minimal structures have parametric elimination of
imaginaries?

This question was first asked by Eleftheriou, Peterzil, and Ramakrishnan in
[2]. They gave a partial answer, proving that an o-minimal quotient X/E can
be eliminated whenever it admits a definable group structure, as well as when
dim(X/E) = 1.
We answer Question 1.1 in the negative in Section 2. Specifically, we give an
o-minimal expansion of (R,≤) in which there is a 0-definable quotient X/E which
cannot be eliminated over any set of parameters.
A structureM has parametric elimination of imaginaries if every interpretable set
inM can be put in definable bijection with a definable set. The negative answer to
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1478 WILL JOHNSON

Question 1.1 thereforemeans that o-minimal structures can have exotic interpretable
sets which are intrinsically different from definable sets.
O-minimality providesmany tools forworkingwith definable sets, and it is natural
to wonder which of these tools can be generalized to interpretable sets. For exam-
ple, Peterzil and Kamenkovich generalized the dimension and Euler characteristic
machinery to interpretable sets in [5] and [4], respectively.
As a step in this direction, we show in Section 3 that interpretable sets X/E in
dense o-minimal theories can be given nice definable topologies. More precisely, we
show in Theorem 1.3 that the quotient topology on X/E is a Hausdorff definable
topology, provided one first discards a set of low dimension from X .1

Using this theorem, we show that interpretable sets admit Hausdorff definable
topologies satisfying certain “tameness” properties, including the following:

• Every definable subset has finitely many definably connected components.
• Every definable map is continuous off a set of low dimension.
For a precise statement, see Theorem 1.5, which is proven in Section 4.

1.1. Notation and conventions. “Definable” will mean “definable with parame-
ters,” and “A-definable” will mean “definable with parameters from A”. We will
write “0-definable” as shorthand for “∅-definable.”
When talking about sets, a “definable set” means a definable subset of a power of
the home sort, and an “interpretable set”means a definable set inT eq. Outside of this
distinction, we will always say “definable” instead of “interpretable.” For example,
wewill talk about definable subsets of interpretable sets, anddefinablemaps between
interpretable sets, rather than “interpretable subsets” or “interpretable maps”. We
will say that a subset of an interpretable set is “ind-definable” (over some parameters
A) if it is a union of A-definable subsets.
A “definable quotient” is a pair X/E consisting of a definable set X and a
definable subset E ⊆ X × X defining an equivalence relation on X . The quotient
can be “eliminated” if one of the following equivalent conditions is true:

• There is a definable bijection between the interpretable set X/E and some
definable set Y ⊆Mk .

• There is some definable map f : X →Mk such that
xEx′ ⇐⇒ f(x) = f(x′) ∀x, x′ ∈ X.

“O-minimal” will mean dense o-minimal, i.e., we require o-minimal structures to
expand dense linear orders without endpoints.
In an o-minimal structure, dim(X ) will denote the standard o-minimal dimension
of a definable or interpretable setX (see [5] for the interpretable case).Theo-minimal
rank of a finite tuple a over a set of parameters S will be denoted dim(a/S); this

is the minimum of dim(X ) for S-definable X 
 a. We will write |�
th
to denote

thorn-forking independence, so a |�
th
C
B means dim(a/BC ) = dim(a/C ).

1Without this proviso, one can produce pathological examples such as the line with doubled origin.
Indeed, if X = R× {0, 1} and E is the equivalence relation generated by

(x, 0)E(x, 1) for x �= 0,
then the quotient X/E is the line with doubled origin.
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In a topological space, the interior, boundary, frontier, and closure of a set X will
be denoted int(X ), bd(X ), ∂X , and X . Thus

bd(X ) = X \ int(X )
∂X = X \X.

An “embedding” will be a continuousmap that is a homeomorphism onto its image.
If E is an equivalence relation on a set X , and X ′ ⊆ X , we will write X ′/E to
indicate X ′/(E � X ′).
A map f : P1 → P2 between two posets will be called order-preserving if

x ≤ y =⇒ f(x) ≤ f(y)
and order-reversing if

x ≤ y =⇒ f(x) ≥ f(y).
(Usually the posets will be powersets with inclusion ordering.)
IfX is a definable set in a structureM , then �X�will denote a canonical parameter
for X , i.e., a finite tuple from Meq fixed pointwise by exactly the automorphisms
that fix X setwise. If r is a real number, �r
 and �r� will denote the ceiling and floor
of r, respectively.
If X is a definable or interpretable set in a structure M , a topology on X is
“definable” if there is a definable family of subsets of X forming a basis of opens.
This means that there is a definable relation U ⊆ X ×Mk for which the sets

U�a := {x ∈ X |(x, �a) ∈ U} for �a ∈Mk

form a basis for the topology. A “definable topological space” is an interpretable
set together with a definable topology.
If X is a definable topological space in an o-minimal structure (M,≤, . . .), we
will say thatX is Euclidean at a point x ∈ X if there is a definable homeomorphism
between an open neighborhood of x in X and an open subset ofMk for some k.
We will say that X is “locally Euclidean” if X is Euclidean at every x ∈ X . (Note
that k might depend on x.)

1.2. Statement of results.

Proposition 1.2. There is a (dense) o-minimal structureM containing an inter-
pretable set which cannot be put in M -definable bijection with any M -definable
set.

Theorem 1.3. Fix an o-minimal structureM . Let X ⊆Mk be a definable set and
E be a definable equivalence relation on X . Then we can write X as a disjoint union
X ′ ∪X0 satisfying the following conditions:
1. X ′ is open in X .
2. dim(X0) < dim(X ) or X0 = ∅.
3. The quotient topology on X ′/E is definable, Hausdorff, and locally Euclidean.
4. If X ′′ is any open subset of X ′, the map of quotient spaces

X ′′/E ↪→ X ′/E

is continuous, and in fact an open embedding.
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Condition 2 means thatX ′ is “generic” inX in a certain sense. Condition 4 shows
that the quotient topology is somewhat independent of the choice of X ′: as long as
we have chosen a sufficiently small generic open subset of X , the quotient topology
will agree.

Definition 1.4. A Hausdorff topology on an interpretable set Y is admissible if
there is a definable surjection f : X � Y whereX is a definable subset ofMn , such
that f is a continuous open map with respect to the standard topology on X .

The next result says that admissible locally Euclidean topologies exist, and share
many properties with the standard topology onMk .

Theorem 1.5. Fix an o-minimal structureM .
1. Every interpretable set can be endowed with an admissible locally Euclidean
topology.

2. Admissible topologies are definable.
3. If Y is an admissible locally Euclidean topological space and D is a nonempty
definable subset of Y , then
(a) D has finitely many definably connected components.
(b) dim ∂D < dimD.
(c) There is a pointp ∈ D such that dimN∩D = dimD for every neighborhood
N of p. In other words, the local dimension of D at p equals the global
dimension of D.

4. If f : Y → Y ′ is a definable map between two admissible locally Euclidean
topological spaces, then f is continuous on a dense open subset of Y . Moreover,
Y can be written as a finite disjoint union of locally closed definable subsets, on
which the restriction of f is continuous.

Note that there are other ways to put locally Euclidean definable topologies on
interpretable sets, such as the discrete topology. However, the discrete topology fails
to satisfy many of the conditions listed above, such as 3a, 3c, and 4.

§2. A pathological quotient. In this section, we give an example of an o-minimal
structure in which parametric elimination of imaginaries fails, namely

(R,≤, R),
where R(x0, . . . , x5) is the 5-ary predicate holding if and only if

cos(x1 − x0)
sin(x1 − x0) −

cos(x2 − x0)
sin(x2 − x0) =

cos(x3 − x0)
sin(x3 − x0) −

cos(x4 − x0)
sin(x4 − x0)

and
4∧
i=1

x0 < xi < x0 + �.

2.1. A toy example. We first discuss the simplest example of an o-minimal theory
which lacks elimination of imaginaries. LetM = (R,≤, E), whereE(�x) is the 4-ary
relation

E(x1, . . . , x4) ⇐⇒ x1 − x2 = x3 − x4.
The relation E defines an equivalence relation on the set X := R2. The quotient
X/E cannot be 0-definably eliminated, and this can be seen using automorphisms.
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Suppose for the sake of contradiction that there is a 0-definable injection X/E ↪→
Mk for some k. Consider the automorphisms

�1(x) := x + 1,

�2(x) := 2x

of the structureM . Let e ∈ X/E ⊆ M eq be the E-equivalence class of (0, 1) ∈ X .
Then one verifies easily that

�1(e) = e,

�2(e) �= e.
Let �r denote f(e). Then e and �r are inter-definable over ∅, so

�1(�r) = �r,

�2(�r) �= �r.
However, �r is a tuple of elements fromM . By inspection, every element ofM fixed
by �1 is fixed by �2, yielding a contradiction.2

The structureM gives an example of an o-minimal theory which does not have
elimination of imaginaries. Nevertheless, after naming two constants, this example
has a strong form of elimination of imaginaries: every nonempty definable set X
contains an �X�-definable point. So this is not yet an example of an o-minimal
structure in which parametric elimination of imaginaries fails. However, this toy
example will play a role in the construction below.
For future reference, we record the configuration that showed that a quotient was
not eliminated:

Lemma 2.1. LetM be a structure, A be a small set of parameters, and X/E be an
A-definable quotient. Suppose there exist �i ∈ Aut(M/A) for i = 1, 2 such that

• Every element ofM fixed by �1 is fixed by �2.
• Some element of X/E fixed by �1 is not fixed by �2.
Then there is no A-definable injection X/E ↪→ Mk , so the quotient X/E cannot be
eliminated over A.

2.2. Preliminaries. Let RP1 = R ∪ {∞} be the real projective line. The group
of linear fractional transformations x �→ ax+b

cx+d acts transitively on RP
1, and the

stabilizer of∞ is exactly the group of affine transformations x �→ ax + b.
For x0, . . . , x5 ∈ RP

1, let P(x0, . . . , x4) indicate that

f(x1)− f(x2) = f(x3)− f(x4)
for any/every linear fractional transformation f mapping x5 to ∞. This is
well-defined because f is determined up to an affine transformation, and affine
transformations preserve the 4-ary relation y1 − y2 = y3 − y4.
Remark 2.2. Any linear fractional transformation (and in particular, any affine
transformation) preserves the predicate P.

2In this toy example, �1 has no fixed points inM , and so �2’s only role is to rule out the possibility
that �r is the tuple of length 0. Later, we will use the same argument in a more complicated situation
where �1 has fixed points.
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We will write cot � and tan � for the cotangent and tangent of the angle �.

Remark 2.3. Forfixedα ∈ R, there is a linear fractional transformationmapping
tanx �→ cot(x−α), by the trigonometric angle-sum formulas. This transformation
sends tanα �→ cot(α − α) =∞, and so

P(tanα, tanx1, . . . , tanx4)

⇐⇒ cot(x1 − α)− cot(x2 − α) = cot(x3 − α)− cot(x4 − α).
We also record the trivial example

P(∞, x1, . . . , x4) ⇐⇒ x1 − x2 = x3 − x4. (1)

2.3. Details of the construction. LetM be the structure (R,≤, 
, P̃), where
• 
(x) = x + �
• P̃(x0, x1, . . . , x4) holds if

P(tan(x0), . . . , tan(x4)) ∧
4∧
i=1

x0 < xi < 
(x0).

By Remark 2.3, P̃(x0, . . . , x4) holds if and only if {x1, . . . , x4} ⊆ (x0, x0 + �)
and

cot(x1 − x0)− cot(x2 − x0) = cot(x3 − x0)− cot(x4 − x0).
Let N be the structure (Z× RP1,≤, 
, P̃), where
• ≤ is the lexicographic ordering on Z × RP

1, where RP1 is ordered by putting
∞ > R.

• 
 is the map (n, x) �→ (n + 1, x).
• P̃(x0, x1, . . . , x4) holds if

P(�(x0), . . . , �(x4)) ∧
4∧
i=1

x0 < xi < 
(x0),

where � : Z× RP1 → RP1 is the projection.

It is easy to verify that there is an isomorphismM ∼→ N given by

x �→
(⌈
x

�
+
1
2

⌉
, tanx

)
.

The map preserves P̃ essentially because the following diagram commutes

M ��

tan ���
��

��
��

� N

�
��

RP
1

The two structuresM and N are o-minimal, becauseM is a definable reduct of

(R,≤,+, ·, sin � [0, �], cos � [0, �]),
which is o-minimal by Gabrielov’s theorem (see, e.g., Theorem 4.6 in [1]).
For any a ∈M , let

Xa = {(x, y) : a < x < y < 
(a)} ⊆M 2
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and let Ea be the equivalence relation on Xa given by

(x, y) Eα (x′, y′) ⇐⇒ P̃(a, x, y, x′, y′)
⇐⇒ cot(x − a)− cot(y − a) = cot(x′ − a)− cot(y′ − a).

Via the isomorphism, the same definitions make sense in N .

Example 2.4. In the structure N , consider the case a = (n − 1,∞). The open
interval from a to 
(a) = (n,∞) consists of points (n, x) with x ∈ R. Abusing
notation and identifying (n, x) with x, we have

Xa = {(s, t) ∈ R2 : s < t}
(s, t) Eα (s ′, t′) ⇐⇒ s − t = s ′ − t′.

So Xa/Ea is the toy example of Section 2.1.

Lemma 2.5. In the structuresM andN , there are automorphisms �1, �2 such that
1. Every element of the home sort fixed by �1 is fixed by �2.
2. The set of elements fixed by �1 is unbounded above.
3. If a is fixed by �1, then under the induced action onM eq or N eq, �1 fixes every
element of Xa/Ea and �2 fixes no elements of Xa/Ea .

Proof. By the isomorphismM ∼= N , we only need to consider the case of N . In
this case, let

�1((n, x)) = (n, x + 1)

�2((n, x)) = (n, 2x).

These maps are indeed automorphisms; P̃ is preserved because of Remark 2.2. The
fixed points of �1 are exactly the points (n,∞), which are cofinal and fixed by �2.
For part 3, suppose a = (n − 1,∞). Under the identification of Example 2.4,

Xa = {(s, t) ∈ R2 : s < t}
(s, t) Eα (s ′, t′) ⇐⇒ s − t = s ′ − t′

�1(s) = s + 1

�2(s) = 2s.

As in Section 2.1, �1 fixes Xa/Ea pointwise. By contrast, �2 moves every point,
because

s < t =⇒ s − t �= 2s − 2t. �
Now letM∗ be anℵ1-saturated ultrapower ofM ; there are canonical extensions of
�1 and �2 toM∗ having the same first-order properties. In particular, the properties
listed in Lemma 2.5 continue to hold.
The following lemma allows us to glue automorphisms across Dedekind cuts
inM∗:
Lemma 2.6. Let (Ξ−,Ξ+) be a Dedekind cut on M∗, meaning specifically that
M∗ is the disjoint union of Ξ− and Ξ+, and Ξ− < Ξ+. Let �+ and �− be two
automorphisms ofM . Suppose that �+, �−, and 
 each preserve the Dedekind cut ( for
example, 
(Ξ−) = Ξ−). Then the map

� := (�− � Ξ−) ∪ (�+ � Ξ+)
is an automorphism ofM∗.
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Proof. By inspection, P̃(x0, . . . , x4) cannot hold unless the xi are within distance
� of each other, in which case they must lie entirely on one side of the Dedekind
cut. Consequently, the preservation of P̃ by � can be checked on each side of the
Dedekind cut in isolation. The preservation of ≤ and 
 by � are similar or easier. �
Let Ξ± be the Dedekind cut just beyond the end ofM , so Ξ+ is the set of upper
bounds of M in M∗. This Dedekind cut is fixed by 
, �1 and �2, because each of
these maps sendsM toM setwise. By ℵ1-saturation, Ξ+ is nonempty. For i = 1, 2,
let �i be the automorphism obtained by gluing the identity map on Ξ− with �i on
Ξ+. So �i fixes Ξ− pointwise, and agrees with �i on Ξ+. Thus,
1. The �i fixM ⊆ Ξ− pointwise.
2. Every element of the home sort fixed by �1 is fixed by �2.
3. There is an element a ∈ Ξ+ fixed by �1 and �1, as the fixed points of �1 are
cofinal.

4. For this element a, the maps �i and �i agree on Xa . Consequently �1 fixes
every element of Xa/Ea , and �2 fixes no element of Xa/Ea .

By Lemma 2.1, it follows that theaM -definable quotientXa/Ea is not aM -definably
eliminated.
Now let X be the 0-definable set of all triples of real elements

{(x, y, z) : x < y < z < 
(x)}
and let E be the 0-definable relation

(x, y, z) E (x′, y′, z′) ⇐⇒ x = x′ ∧ P̃(x, y, z, y′ , z′)
⇐⇒ x = x′ and
cot(z − x)− cot(y − x) = cot(z′ − x′)− cot(y′ − x′).

Then E is an equivalence relation on X . For any a, there is an a-definable injection
Xa ↪→ X given by (x, y) �→ (a, x, y), and this induces an a-definable injection
Xa/Ea ↪→ X/E.
Proposition 2.7. In the structure M , the quotient X/E is not M -definably
eliminated.
Proof. Otherwise, there would be anM -definable injection from X/E intoMk .
In the elementary extensionM∗ considered above, this would yield anM -definable
injection from X/E into (M∗)k . Above, we found an element a ∈ M∗ such that
the aM -definable quotient Xa/Ea is not aM -definably eliminated. However, the
composition

Xa/Ea ↪→ X/E ↪→ (M∗)k

is an aM -definable injection that eliminates the quotient Xa/Ea , a contradiction. �

§3. Good quotient topologies. We next turn our attention to Theorem 1.3, which
shows that quotient topologies on definable quotients are sometimes well-behaved.
We begin by discussing the topological tools that will be used in the proof.

3.1. Definable topologies and definable compactness. Work inside a model-
theoretic structureM . Recall that a topology on an interpretable set X is definable
if some definable family of subsets ofX constitutes a basis for the topology. Typical
examples include:
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1. The order topology on any ordered structure.
2. The standard topology onMn for any o-minimal structureM .
3. The valuation topology on any model of ACVF or pCF (p-adically closed
fields).

4. The discrete topology on any structure.

Remark 3.1. Let X and Y be definable topological spaces.

1. The subspace topology on any definable subset of X is a definable topology.
2. The sum and products topologies on X

∐
Y and X × Y are definable.

3. If D is a definable subset of X , then D is definable.
4. AsD ranges over a definable family of subsets ofX ,D ranges over a definable
family.

In definable topological spaces, there are notions of “definable connectedness”
and “definable compactness” behaving similarly to normal connectedness and
compactness. Here we will only deal with definable compactness.3 ,4

Say that a partial order (≤, P) is downwards-directed if every finite nonempty
subset of P has a lower bound, and upwards-directed if every finite nonempty
subset of P has an upper bound. Recall that a topological space is compact if every
downwards-directed family of nonempty closed sets has nonempty intersection.

Definition 3.2. A definable topological space X is definably compact if
⋂F is

nonempty, for every definable family F of nonempty closed subsets of X that is
downwards-directed with respect to inclusion.
More generally, a definable subset D ⊆ X is said to be definably compact if the
induced subspace topology on D is definably compact.

Example 3.3.

1. The order topology on (R, <) is not definably compact due to the family of
half-infinite intervals [a,+∞), which has empty intersection in spite of being
a downwards directed family of closed nonempty sets.

2. By contrast, [0, 1] is definably compact in (R, <), because it is compact.
3. The closed interval [0, 1] is definably compact in (Q,≤), because this is
elementarily equivalent to the previous example.

4. The discrete topology on any pseudofinite or NSOP set is definably compact,
because downwards-directed families of subsets must haveminima. For exam-
ple, the discrete topology on a pseudofinite field or an algebraically closed field
is definably compact.

3Definition 3.2 does not appear in the literature, except for some slides and unpublished notes of
Fornasiero [3].
4There is an alternative notion of “definable compactness” in the o-minimal setting, due to Peterzil

and Steinhorn [6]. The Peterzil–Steinhorn definition uses completable curves, and is primarily geared for
the setting of “definable spaces.” In our terminology, Peterzil–Steinhorn definable spaces are definable
topological spaces covered by finitely many open sets, each of which is homeomorphic to a definable
subset of Mn with the induced subspace topology. Since exotic interpretable sets never admit such
coverings, we do not use the Peterzil–Steinhorn theory. It is unclear whether our notion of definable
compactness (Definition 3.2) agrees with Peterzil and Steinhorn’s definition, when restricted to definable
spaces.
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5. In Qp, the ring of integers Zp is definably compact in the valuation topology,
because it is compact.More generally, the ring of integers in ap-adically closed
field is definably compact in the valuation topology.

6. If K is a pseudofinite field, then the ring K [[t]] is definably compact with
respect to the valuation topology (i.e., the (t)-adic topology), because it is
elementarily equivalent to an ultraproduct of the previous examples.

7. One can show thatC[[t]] is definably compact in the valuation topology, using
the fact that the residue field is a pure algebraically closed field.

We now verify that many of the familiar properties of compactness hold for
definable compactness. (Fornasiero has independently made these observations
in [3].)

Lemma 3.4. Let f : X → Y be a definable continuous map between two definable
topological spaces. Then f(K) is definably compact for any definable compact set
K ⊆ X .
Proof. Replacing X and Y with K and f(K), we may assume K = X and f
is surjective. Let F be a downwards-directed definable family of nonempty closed
subsets of Y . As f is surjective, f−1(F ) is a nonempty closed subset of X for each
F ∈ F . Moreover, the map

F �→ f−1(F )

is order-preserving, so the family

{f−1(F ) : F ∈ F}
is downwards-directed.This family is a definable family, so by definable compactness
on X , there is some x0 ∈ X such that

x0 ∈ f−1(F ) ∀F ∈ F
or equivalently,

f(x0) ∈ F ∀F ∈ F .
Thus

⋂F is nonempty, proving definable compactness of Y . �
Lemma 3.5.

1. If K is a definably compact definable topological space, and F ⊆ K is a closed
subset, then F is definably compact itself.

2. If K1 and K2 are definably compact, so is K1 ∪K2.
Proof. 1. Any downwards-directed definable family of closed nonempty sub-
sets of F is also a downwards-directed definable family of closed nonempty
subsets of K , so definable compactness directly transfers.

2. Let F be a downwards-directed definable family of closed subsets of K1 ∪K2.
Suppose

⋂F = ∅. We will show ∅ ∈ F .
If F is a closed definable subset of K1 ∪ K2, then F ∩ K1 and F ∩ K2 are
closed subsets of K1 and K2. The maps

F �→ F ∩K1,
F �→ F ∩K2
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are order-preserving, so the families

F1 := {F ∩K1 : F ∈ F},
F2 := {F ∩K2 : F ∈ F}

are also downwards-directed definable families of closed sets. Note that⋂
Fi ⊆

⋂
F = ∅

for i = 1, 2. Consequently ∅ ∈ Fi for i = 1, 2, meaning that there are F1, F2 ∈
F such that

Fi ∩Ki = ∅
for i = 1, 2. By downward-directedness, there is some F3 ∈ F such that
F3 ⊆ F1 ∩ F2. Then
F3 ∩ (K1 ∪K2) = (F3 ∩K1)∪ (F3 ∩K2) ⊆ (F1 ∩K1)∪ (F2 ∩K2) = ∅ ∪ ∅ = ∅.
So ∅ ∈ F . �

Say that a definable map f : X → Y of definable topological spaces is defin-
ably closed if f(D) is closed for every closed definable subset D ⊆ X . This is a
weaker condition than being a closed map: for example, in the structure (Q,≤), the
projection Q × [0, 1] → Q is not closed,5 but is definably closed (by Lemmas 3.6
and 3.9).

Lemma 3.6. Let X and K be definable topological spaces, with K definably com-
pact. Consider the product topology on X × K and let � : X × K � X be the
projection. Then � is definably closed.

Proof. Suppose F is a closed subset of X ×K and x0 ∈ X \ �(F ). We will show
x0 /∈ �(F ), so that �(F ) = �(F ). For each open neighborhood N of x0, let
N † := {k ∈ K : there is an open neighborhood U of k

such that (N ×U ) ∩ F = ∅}.
Note that N † is open and map N �→ N † is order-reversing. Let N be a definable
neighborhood basis of x0, and let

N † := {N † : N ∈ N}.
Because N is downwards-directed,N † is upwards-directed.
Furthermore,

⋃N † = K . Indeed, if k is any element of K , then (x0, k) /∈ F , by
choice of x0, so some open neighborhoodN ×U of (x0, k) avoids F , as F is closed.
So N † is an upwards-directed definable family of open subsets of K , whose
union is all of K . By definable compactness, K ∈ N †. So there is some N ∈ N
with N † = K , implying that (N × K) ∩ F = ∅, and thus N ∩ �(F ) = ∅. Thus
we have produced an open neighborhood N of x0 disjoint from �(F ), showing
that x0 /∈ �(F ). As x0 was an arbitrary point not in �(F ), it follows that �(F ) is
closed. �
5Take a sequence a1, a2, . . . of rational numbers in [0, 1] converging to an irrational number. If

S = {(1/n, an) : n ∈ N}, then S is closed (as a subset of Q × Q), but its projection onto the first
coordinate is not closed.
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Proposition 3.7. Let X andY be definably compact definable topological spaces.
Then X × Y is definably compact.
Proof. We may assume X and Y are nonempty. Let � : X ×Y → X denote the
projection. SupposeF is a downwards-directed definable family of nonempty closed
subsets of X × Y . For each F ∈ F , the projection �(F ) is closed, by Lemma 3.6,
and obviously nonempty. Furthermore, the map F �→ �(F ) is order-preserving.
Consequently, the family

{�(F ) : F ∈ F}
is a downwards-directed definable family of closed nonempty subsets of X . By
definable compactness of X , we may find some x0 such that

x0 ∈ �(F ) ∀F ∈ F .
Equivalently, F ∩ ({x0} × Y ) is nonempty for every F ∈ F . Note that {x0} × Y is
definably compact (as a subset of X ×Y ) because it is definably homeomorphic to
Y . The family

{F ∩ ({x0} × Y ) : F ∈ F}
is a definable family of nonempty closed subsets of {x0} ×Y , and it is downwards-
directed because the map

F �→ F ∩ ({x0} × Y )
is order-preserving. By definable compactness of {x0}×Y , we can find some (x0, y0)
which is in every F , showing that

⋂F is nonempty. �
Lemma 3.8. Let X be a definable topological space that is Hausdorff, and let K be
a definably compact subset. Then K is closed.

Proof. Otherwise, fix x0 ∈ ∂K . Let N be a definable neighborhood basis of x0.
The family N is downwards directed, and the map

N �→ N ∩K
is order-preserving, so the family

{N ∩K : N ∈ N}
is a downwards-directed definable family of closed subsets ofK . Furthermore, none
of the sets N ∩ K is empty, because x ∈ ∂K , so each N intersects K . By definable
compactness, there is some x1 such that

x1 ∈ N ∩K ∀N ∈ N .
Then x1 ∈ K , so x1 �= x0. By the Hausdorff property, some open neighborhood N
of x0 satisfies x1 /∈ N . Shrinking N a little, we may assume N ∈ N , and obtain a
contradiction. �
Lemma 3.9. IfM is an o-minimal structure, then any closed interval [c, d ] ⊂ M 1
is definably compact in the order topology.

Proof. Let F be a downwards-directed definable family of nonempty closed
subsets of [c, d ]. O-minimality ensures that maxF exists for each F ∈ F . Let

S = {maxF : F ∈ F}.
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This is a definable subset of [c,d], so s0 = inf S exists. We claim that s0 ∈ F for all
F ∈ F .
Otherwise, by closedness of the F ’s, there must be some open interval (a, b)
around s0, and some F0 ∈ F , such that (a, b) ∩ F0 = ∅. Since s is the infimum of S,
it must be in the closure of S, so S must intersect (a, b). In particular, there must be
some s1 ∈ S∩(a, b). By definition ofS, there is some F1 ∈ F such that s1 = maxF1.
By downwards directedness, there is some F2 ∈ F such that F2 ⊆ F0 ∩ F1. Then

F2 ⊆ F1 ⊆ (−∞, s1] ⊆ (−∞, b)
because s1 = maxF1 and s1 < b. Additionally,

F2 ∩ (a, b) ⊆ F0 ∩ (a, b) = ∅.
Combining these, we see that F2 ⊆ (−∞, a]. Consequently, maxF2 ≤ a < s0,
contradicting the choice of s0. �
The next proposition shows that our definition of definable compactness agrees
with the standard one in o-minimal structures.

Proposition 3.10. Let (M,<, . . .) be an o-minimal structure. In the standard
topology onMn the definably compact sets are exactly the closed bounded sets.

Proof. Let X ⊆Mn be definable.
First suppose thatX is closed and bounded. ThenX ⊆ [a, b]n for some a, b ∈M .
By Lemma 3.9, [a, b] is definably compact, and by Proposition 3.7, [a, b]n is de-
finably compact. Finally, the closed subsetX of [a, b]n is compact by Lemma 3.5(1).
Next suppose X is not bounded. Then for every a ≤ b, the intersection

X ∩ (
(−∞, a] ∪ [b,+∞))n

is nonempty. The family of all such intersections is a definable downwards-directed
family of closed nonempty subsets of X . However, its intersection is empty, so X is
not definably compact.
Finally, suppose X is not closed. Then X fails to be definably compact by
Lemma 3.8, because the standard topology onMn is Hausdorff. �
Lemma 3.11. Let f : X → Y be a definable continuous map from a definable
topological space X to a definable topological space Y . If X is definably compact, Y
is Hausdorff, and f is injective, then f is a homeomorphism onto its image.

Proof. Shrinking Y , we may assume f is a bijection. For any definable subset
D ⊆ X , D is closed in X if and only if f(D) is closed in Y . Indeed, if f(D) is
closed, then D = f−1(f(D)) is closed by continuity, and conversely, if D is closed,
thenD is compact by Lemma 3.5(1), f(D) is compact by Lemma 3.4, and f(D) is
closed by Lemma 3.8.
Equivalently, a definable subset D ⊆ X is open in X if and only if f(D) is open
in Y . Because X and Y have definable bases of opens, this is enough to ensure that
f is a homeomorphism. �
3.2. Quotient topologies and open maps. Recall ([7] Section 6.4) that a surjective
continuous map f : X → Y is an identifying map if

f−1(U ) is open =⇒ U is open
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for all U ⊆ X . For a fixed topological space X , the identifying maps out of X are
exactly the maps of the form X � X/E where X/E has the quotient topology.
Note that surjective openmaps are identifying. Say that an equivalence relationE
on a topological space is an open equivalence relation if the quotient mapX � X/E
is an open map.
ForD a subset ofX , letDE denote the union ofE-equivalence classes intersecting
D. We will call this the E-closure of D. An equivalence relation E is an open
equivalence relation exactly if the E-closure of any open set is open.
We are interested in open equivalence relations because they ensure definability
of the quotient topology, in a model-theoretic setting:

Lemma 3.12. Let X be an interpretable set with a definable topology. Let E be
a definable open equivalence relation on X . Then the quotient topology on X/E is a
definable topology.

Proof. Let f : X � X/E be the quotient map, which is a surjective open map.
Note that the open subsets of X/E are exactly the sets of the form f(U ) for U an
open in X . Let B be a definable basis of opens for X . Then

{f(B) : B ∈ B}
is a definable basis for the topology on X/E. �
In the proof of Theorem 1.3, we will prove that certain properties hold
generically, and then shrink to open sets on which these properties hold. Open
equivalence relations help ensure that the topology does not change toomuch when
we pass to open subsets:

Lemma 3.13. Let X be a topological space and E be an open equivalence relation
on X . Let X ′ be an open subset of X .

1. The restriction of E to X ′ is an open equivalence relation.
2. There are two topologies on X ′/E, the subspace topology (as a subset of X/E)
and the quotient topology (as a quotient of X ′). These two topologies agree.

3. The map X ′/E ↪→ X/E is an open embedding.
Proof. View X ′/E as topological space via the subspace topology. The map
f : X → X/E is an open map, so f(X ′) = X ′/E is an open subset of X/E,
proving (3).
The top and right maps in the following commutative diagram are open maps, so
their composition is also an open map.

X ′ � � ��

����

X

����
X ′/E �

� �� X/E

Because the diagonal is an open map and the bottom map X ′/E ↪→ X/E is a
continuous injection, it follows that the left map X ′ � X ′/E is an open map. Open
surjective maps are identifying maps, so X ′/E has the quotient topology from X ′,
proving (2). Having shown thatX ′/E has the quotient topology, (1)means precisely
that X ′ � X ′/E is an open map, which we showed. �
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3.3. Proof of Theorem 1.3. In this section, we will work inside a fixed o-minimal
structureM . If X ⊆ Y is an inclusion of interpretable sets, we will say that X is a
full subset of Y if dim(Y \ X ) < dimY .
We will prove the following refinement of Theorem 1.3:

Theorem 3.14. Let X ⊆ Mn be a definable set, and E be a definable equiva-
lence relation on X . There is a definable full open subset X ′ of X such that if E ′

is the restriction of E to X , then E ′ is an open equivalence relation on X ′ (in the
sense of Section 3.2), and the quotient topology on X ′/E ′ is Hausdorff and locally
Euclidean.

The requirement that X ′ is a full open subset of X is exactly equivalent to
conditions 1 and 2 of Theorem 1.3. Lemma 3.12 ensures that the quotient topology
X ′/E ′ is definable, andLemma3.13 ensures that the final condition 4 ofTheorem1.3
holds.
For the proof of Theorem 3.14, we may assume that X and E are 0-definable, by
naming parameters otherwise. We may also assume that the language is countable
(by passing to a reduct otherwise).
In proving Theorem 3.14, we may replace M with an ℵ1-saturated elementary
extension. The topological properties other than local Euclideanity are all express-
ible by first-order sentences. In ℵ1-saturated models, local Euclideanity implies
uniform local Euclideanity, local Euclideanity witnessed by charts of bounded com-
plexity. And then uniform local Euclideanity can be expressed as a disjunction of
first-order sentences, so it descends from the elementary extension to the original
structure.
Thus, in what follows, we will assume that the language is countable, and that the
ambient o-minimal structure is ℵ1-saturated. For a 0-definable or 0-interpretable set
D, we will say that an element a ∈ D is generic (in D) if dim(a/∅) = dimD.
The following lemma contains the main tricks we will use in the proof:

Lemma 3.15. Let X ⊆ Mn be a 0-definable set. Working inside the definable
topological space X ,

1. dim ∂D < dimD for any nonempty definable set D, where the frontier is taken
inside X .

2. Let P be a subset of X which is 0-definable or 0-ind-definable. Suppose that P
contains every generic element of X . Then P contains a full open 0-definable
subset X ′ of X .

3. Let S be any countable set, and let a be an element of X . The collection of
definable open neighborhoodsB of a such that

�B�
th
|�aS

form a neighborhood basis of a.

Proof. 1. The frontier of D within X is smaller than the frontier of D within
the ambient spaceMn , and forMn this fact is [7] Theorem 4.1.8.

2. Note that X \ P is type-definable over ∅ and contains only elements of rank
less than dimX over ∅. Thus

X \ P ⊆ D
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for some 0-definableD with

dimD = dimD < dimX,

and then we can take X ′ = X \D.
3. We can take B of the form

X ∩
n∏
i=1

]bi , ci [,

where the bi and ci are close to a but independent from everything in sight.
�

We break the proof of Theorem 3.14 into three steps, which are the next three
propositions.

Proposition 3.16. Let X ⊆Mn be 0-definable andE be a 0-definable equivalence
relation on X . There is a 0-definable full open subset X ′ ⊆ X on which the restriction
E � X ′ is an open equivalence relation.
Proof. Recall from Section 3.2 that for S ⊆ X , the E-closure of S, denoted SE ,
is the union of all E-equivalence classes that intersect S.
Say that a point a ∈ X is nice if for every b ∈ {a}E , and every neighborhood B
of b,

a ∈ int(BE).
Note that we could equivalently restrict to basic open neighborhoods, so “niceness”
is definable.

Claim 3.17. Every generic element of X is nice. That is, if a ∈ X and dim(a/∅) =
dimX , then a is nice.

Proof. Suppose otherwise. Let a be generic, b be another point such that a E b
holds, and B be an open neighborhood of b such that a /∈ int(BE ). Shrinking B,
we may assume by Lemma 3.15(3) that

�B�
th
|�ab.

As a E b and b ∈ B, we see a ∈ BE . But by assumption, a /∈ int(BE ), and so
a ∈ ∂(X \ BE ). Then

dim(a/�B�) ≤ dim ∂(X \ BE ) < dim(X \ BE) ≤ dimX = dim(a/∅),
contradicting the independence of a and �B�. �
The set of nice points is a 0-definable subset of X . By Lemma 3.15(2), there is a
0-definable full open subset X ′ ⊆ X consisting only of nice points. Let E ′ be the
restriction of X to E. Note that a subset of X ′ is open as a subset of X ′ if and only
if it is open as a subset of X . So we can talk unambiguously about “open” sets.
We claim that E ′ is an open equivalence relation on X ′. Otherwise, there is an
open subset U of X ′ such that UE

′
is not open. Take a ∈ UE′ \ int(UE′

), and
choose a point b ∈ U such that aE ′b holds.
InX , we have twoE-equivalent points a, b and an open neighborhoodU of b. As
a is nice, a ∈ int(UE), meaning that there is a neighborhood V of a in X such that
every point of V is connected via E to a point in U . Shrinking V , we may assume
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V ⊆ X ′. Then V and U are in X ′, so every element of V is connected via E ′ to
some element of U , meaning that V ⊆ UE′

. Now V witnesses that a ∈ int(UE′
),

a contradiction. �
Proposition 3.18. Let X ⊆ Mn be 0-definable and E be a 0-definable open
equivalence relation on X . There is a 0-definable full open subset X ′ ⊆ X such that
X ′/E is Hausdorff.
Here, the topology on X ′/E is either the quotient topology from the subspace
topology on X ′, or the subspace topology from the quotient topology on X/E.
These two topologies agree by Lemma 3.13.

Proof. Let � : X � X/E denote the quotient map.
Claim 3.19. Let a and b be two generic elements of X (perhaps not jointly
generic). If a and b are in different E-equivalence classes, then there exist basic open
neighborhoodsN1 andN2 around a and b, respectively, such that �(N1)∩ �(N2) = ∅.
Proof. We claim that a /∈ {b}E . Suppose otherwise. Then a ∈ ∂({b}E). Let c
be an element of {b}E of maximal rank over �(b). Then

dim(a/∅) ≤ dim(a�(b)/∅) = dim(a/�(b)) + dim(�(b)/∅)
≤ dim(∂({b}E)) + dim(�(b)/∅) < dim({b}E) + dim(�(b)/∅)
= dim(c/�(b)) + dim(�(b)/∅) = dim(c�(b)/∅)
= dim(c/∅) ≤ dimX,

contradicting the fact that a is generic.
So a is not in the closure of {b}E , and therefore some open neighborhoodN1 of
a is disjoint from {b}E . Shrinking N1 slightly, we may assume by Lemma 3.15(3)
that �N1� is independent from b. Because b is then generic over �N1�, we see that
b /∈ ∂(NE1 ). Now by choice of N1, b /∈ NE1 . Therefore b /∈ NE1 . So we can find an
open neighborhoodN2 of b, disjoint fromNE1 . The fact thatN2 is disjoint fromN

E
1

means exactly that �(N1) and �(N2) are disjoint. �
Let Σ(x) be the partial type over ∅ asserting that x is generic over ∅. Let D
be the set of pairs (x, y) ∈ X × X such that either �(x) = �(y) or there exist
neighborhoods N1 of x and N2 of y such that �(N1) and �(N2) are disjoint. Note
thatD is 0-definable. By Claim 3.19,

Σ(x) ∧ Σ(y) � (x, y) ∈ D.
By compactness, there is some 0-definable set X ′ such that

Σ(x) � x ∈ X ′

and X ′ × X ′ ⊆ D. Shrinking X ′ a little, we may assume X ′ is a full open subset of
X , as in the proof of Lemma 3.15(2).
Let E ′ be the restriction of E to X ′. By Lemma 3.13, X ′/E ′ is an open subset
of X/E, and E ′ is an open equivalence relation on X ′. We claim that X ′/E ′ is
Hausdorff.
Let a0, b0 be two distinct elements of X ′/E ′, and let a and b be lifts of a0 and b0
to X ′. By choice of X ′, the pair (a, b) is in D. As �(a) = a0 �= b0 = �(b), a and b
are not E-equivalent. By definition of D, there exist neighborhoods N1 and N2 in
X , around a and b, such that �(N1) is disjoint from �(N2). Because � : X → X/E
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is an open map, �(N1) is a neighborhood of a0, and �(N2) is an open neighborhood
of b0. Therefore, a0 and b0 can be separated by open neighborhoods in X/E, hence
also in X ′/E ′. �
Proposition 3.20. Let X ⊆ Mn be 0-definable and E be a 0-definable open
equivalence relation on X , with X/E Hausdorff. Then there is a 0-definable full open
subset X ′ ⊆ X such that X ′/E is locally Euclidean.

In the proposition, note that the topologies on X/E and X ′/E are definable,
thanks to Lemma 3.12.

Proof. Let � : X → X/E be the quotient map.
Claim 3.21. It suffices to show that X/E is Euclidean at �(a) for every generic
a ∈ X .
Proof. The set ofa ∈ X such that local Euclideanity holds at�(a) is ind-definable
over ∅. By Lemma 3.15(2), if this set includes every generic ofX , then there must be
a 0-definable full open subsetX ′ ofX such that local Euclideanity holds at �(a) for
all a ∈ X ′. By Lemma 3.12 the map of quotient spaces X ′/E ↪→ X/E is an open
embedding. Therefore, X ′/E is also Euclidean at �(a), for every a ∈ X ′. In other
words, X ′/E is locally Euclidean. �
So assume that a ∈ X is generic. Let e = �(a) be the image of a in X/E. We
will show that X/E is Euclidean at e, i.e., that some neighborhood of e is definably
homeomorphic to an open subset ofMk for some k.
Choose b such that tp(a/e) = tp(b/e) and a |�

th
e
b. Note that e = �(b).

Claim 3.22. After re-ordering coordinates, we may write b = b1b2b3, where

• b3 ∈ dcleq(b1b2).
• dim(b1b2/∅) = |b1b2|.
• b2 ∈ dcleq(b1e).
• dim(b1/e) = |b1|.
Proof. In the pregeometry of definable closure over ∅, take b1b2 to be a maximal
independent subset of b. In the pregeometry of definable closure over e, take b1 to
be a maximal independent subset of b1b2. �
Let f and g be 0-definable functions such that

b2 = f(b1, e),

b3 = g(b1, b2).

Let N be a countable model containing a, b, and let B be a closed box with b2 in its
interior, such that

�B�
th
|�N

and such that B is contained in every N -definable open neighborhood of b2.
Because b1, b2 are generic in M |b1b2|, the function g is continuous on an open
neighborhood of b1b2. In particular, g is continuous on {b1} × B.
The set of x such that

x = f(b1, �(b1, x, g(b1, x))) (2)
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contains b2, and is b1-definable. Since b1b2 is generic over ∅, b2 is generic over b1.
Therefore, b2 is in the interior of the set of x such that (2) holds. Consequently, (2)
holds for x ∈ B.
Let h : B → X/E be the map given by

h(x) = �(b1, x, g(b1, x)).

Then h is continuous on B (because g is continuous there, and � is continuous
everywhere). Furthermore, (2) shows that h is injective. By Lemma 3.11, B is
homeomorphic to h(B). Consequently, int(B) is homeomorphic to h(int(B)).
To complete the proof of local Euclideanity around �(a), it suffices to show that
�(a) is in the interior of h(int(B)). The set of x ∈ X such that

�(x) ∈ h(int(B))
is definable over b1�B�, and contains a. It suffices to show that a is generic (in X )
over b1�B�.
To see this, note that

dim(b1/a) = dim(b1/e) = |b1| = dim(b1/∅).
So b1 is independent from a. As �B� is independent from everything in N , the
sequence

a, b1, �B�
is independent. Then dim(a/b1�B�) = dim(a/∅) = dimX , and so a is generic over
b1�B�. �
We now prove Theorem 3.14.

Proof of Theorem 3.14. As noted previously, we may assume the language is
countable and the ambient model is ℵ1-saturated. By Proposition 3.16, we may find
a 0-definable full open subset X1 ⊆ X such that the restriction E1 := E � X1 is an
open equivalence relation. By Proposition 3.18 applied to X1 and E1, there is a
0-definable full open subset X2 ⊆ X1 such that X2/E1 is Hausdorff. By Proposi-
tion 3.20 applied to X2 and E1 � X2, there is a 0-definable full open subset X3 ⊆ X2
such that X3/E1 is locally Euclidean.
TakeX ′ = X3. The relations “full subset” and “open subset” are transitive, soX3
is a full open subset of X . By Lemma 3.13,

• E � X3 = E1 � X3 is an open equivalence relation on X3, because X3 is open in
X1.

• The inclusion X3/E ↪→ X2/E is an open embedding, and therefore X3/E is
Hausdorff. �

§4. Tameness in the quotient topology. Say that a topology on an interpretable
set Y is admissible if it is Hausdorff and there is a definable set X ⊆ Mn and a
surjective definable (continuous) open map X � Y where X has the subspace
topology from X ⊆ Mn . Admissible topologies are definable by Lemma 3.12. The
quotient topologies of Theorem 3.14 are admissible and locally Euclidean.

Remark 4.1. If Y1 and Y2 are two interpretable sets with admissible topologies,
then the disjoint union topological space Y1

∐
Y2 is also admissible.
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We leave the proof as an exercise to the reader.

Proposition 4.2. Every interpretable set admits an admissible locally Euclidean
topology.
Proof. If f : X → Y is a definable surjection from a definable set to an inter-
pretable set, then Y admits an admissible locally Euclidean topology. We prove this
by induction on dim(X ). By Theorem 3.14, there is an open subset X ′ ⊆ X such
that the quotient topology on f(X ′) is admissible and locally Euclidean, and such
that dim(X \ X ′) < dim(X ). Let Y ′ = f(X ′). Then

f−1(Y \Y ′) ⊆ X \ X ′.

Therefore, the inductive hypothesis can be applied to the surjection

f−1(Y \ Y ′)� Y \ Y ′,

showing that Y \ Y ′ admits an admissible locally Euclidean topology. Taking the
disjoint union of this topological space with the quotient topology on Y ′ = f(X ′)
gives an admissible topology on Y . �
We now show that admissible locally Euclidean topologies have some tameness
properties.

Proposition 4.3. If Y is an interpretable set with an admissible topology, then the
subspace topology on any definable subset of Y is also admissible.
Proof. Let Y ′ ⊆ Y be a definable subset. Let f : X � Y be the surjection
witnessing that the topology on Y is admissible. Let X ′ = f−1(Y ′). Note that
f(U ∩X ′) = f(U ) ∩ Y ′ for any U ⊆ X . Therefore

{U ⊆ Y ′ : U is open in Y ′} = {U ∩ Y ′ : U is open in Y}
= {f(U ) ∩ Y ′ : U is open in X}
= {f(U ∩ X ′) : U is open in X}
= {f(U ) : U is open in X ′}.

It follows that the map f � X ′ is an open map from X ′ to Y ′. Subspaces of
Hausdorff spaces are Hausdorff, so Y ′ is admissible. �
Proposition 4.4. If Y is an interpretable set with an admissible topology, then
every definable subset of Y can be written as a finite union of definably connected sets.
Proof. By Proposition 4.3, it suffices to show that Y itself can be written as a
finite union of definably connected sets. Let X → Y be a map witnessing admissi-
bility, withX ⊆Mn. Then X has finitely many definably connected components by
cell decomposition. The image of a definably connected set under a definable con-
tinuous map is definably connected, soY also has finitely many definably connected
components. �
Lemma 4.5. Assumeℵ1-saturation.LetY be an interpretable set with an admissible
topology, aswitnessed by somemapf : X → Y . LetS be a countable set of parameters
over which f,X,Y are defined, and T be a countable set. For any point p and any
neighborhoodN of p, there is a smaller neighborhoodN ′ ⊆ N of p such that

�N ′�
th
|�
S

pT.
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Proof. Let p̃ be some point in X mapping to p. The set f−1(N) is an open
neighborhood of p̃, because f is continuous. By Lemma 3.15(3) there is some
smaller neighborhood p̃ ∈ U ⊆ f−1(N) such that �U� |�

th
p̃TS. Let N ′ = f(U ).

This is a neighborhood of p because f is an open map. Furthermore,

�U�
th
|�p̃TS =⇒ �U�

th
|�
S

p̃T =⇒ �N ′�
th
|�
S

pT

because N ′ is defined from U and p is defined from p̃. �
If X is an interpretable set with a definable topology, it makes sense to talk about
the “local dimension” dimp X ofX at any point p ∈ X . Namely, the local dimension
is the minimum of dim(N) asN ranges over neighborhoods of p in X . We can also
talk about the local dimension dimD p of a definable subset D ⊆ X at a point
p ∈ D. Specifically,

dimp D := min
N
dim(N ∩D) N a neighborhood of p in X.

This is the same as the local dimension at p within the subspace topology on D.

Proposition 4.6. Let Y be an interpretable set with an admissible topology. If D
is any definable subset of Y , then

dim(D) = max
p∈D
dimp(D).

Proof. By Proposition 4.3 we may assume D = Y . The maximum of the local
dimensions is certainly at most dim(Y ), so we only need to show that there is some
point p ∈ Y at which dimp(Y ) = dim(Y ). Because of the definability of dimension,

{p ∈ Y : dimp(Y ) = k}
is definable for each k, in particular for k = dim(Y ). Therefore we may pass to an
ℵ1-saturated elementary extension. Let S be a finite set of parameters over which Y
is defined, and let p ∈ Y be a point such that dim(p/S) = dim(Y ). We claim that
the local dimension of Y at p is dim(Y ). LetN ⊆ Y be any neighborhood of p; we
will show that dim(N) = dim(Y ). By Lemma 4.5, there is a smaller neighborhood
N ′ of p such that

�N ′�
th
|�
S

p.

Therefore, dim(p/�N ′�S) = dim(p/S) = dim(Y ). Because p lies in N ′,

dim(N ′) ≥ dim(p/�N ′�S) = dim(p/S) = dim(Y ).

On the other hand, Y ⊇ N ⊇ N ′, so

dim(Y ) ≥ dim(N) ≥ dim(N ′).

Therefore the inequalities are equalities and dim(N) = dim(Y ). As N was an
arbitrarily small neighborhood of p, it follows that the local dimension dimp(Y )
agrees with dim(Y ). �
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Proposition 4.7. LetY be an interpretable set with an admissible locally Euclidean
topology.

1. If D is any definable subset of Y , then dim ∂D < dimD.
2. IfD is any definable subset ofY , thendimD = dimD anddim bd(D) < dimY .
3. Assuming saturation: if D is a type-definable subset of Y of dimension d , then
D is contained in a definable closed set of dimension d .

Proof.

1. Let k = dim ∂D. By Proposition 4.6, there is a point x ∈ ∂D such that
dimx(∂D) = k. Let U be an open neighborhood of x which is definably
homeomorphic to an open subset ofMn for some n. Transferring the situation
along the homeomorphism, and using the analogous fact for definable sets (=
Lemma 3.15(1) or [7] Theorem 4.1.8), we see that dim(D ∩U ) > k.

2. These bounds follow because D = D ∪ ∂D, and bd(D) = ∂D ∪ ∂(Y \D).
3. By general properties of dimension, D ⊆ D′ for some definable subset D′ of
dimension d . Then D ⊆ D′ and dimD′ = d . �

Using Lemma 4.5 and Proposition 4.7, one can transfer facts about “generic
behavior” from the definable setting to the admissible interpretable setting. We give
two examples:

• Definable subsets are Euclidean at generic points.
• Definable functions are continuous at generic points in their domain.
Remark 4.8. If D is any definable subset of Mn , then there is a definable full
open subset D′ ⊆ D such that D′ is locally Euclidean as a subspace ofMn . (Here,
we mean thatD′ is open in D, not open inMn .)

Proof. Write D as a disjoint union of cells
⋃k
i=1 Ci by cell decomposition. Each

cellCi is locally Euclidean in isolation. TakeD′ to beD\⋃ki=1 ∂Ci , where the closure
and frontier are with respect to the topology onMn . This is open as a subset ofD′,
and a full open subset by standard dimension bounds. Every point p in D′ is in the
closure of exactly one Ci , so the Euclideanity of Ci at p implies the Euclideanity of
D′ at p. �
Lemma 4.9. Let Y be an interpretable set with admissible locally Euclidean topol-
ogy. IfD is any definable subset ofY , then there is a definable full open subsetD′ ⊆ D
such that the subspace topology on D′ is locally Euclidean.

Proof. Without loss of generality, we may assume the ambient model is
sufficiently saturated, and that Y and D are 0-definable.

Claim 4.10. If a ∈ D is generic in D, then D is locally Euclidean at a.
Proof. By local Euclideanity of Y , there is an open neighborhood a ∈ U ⊆ Y
definably homeomorphic to an open in some Mn . By Lemma 4.5, we may shrink
U and assume that a |�

th�U�. Let 
 : U ↪→ Mn be the definable open embedding.
Moving 
 by an automorphism fixing �U�, we may assume a |�

th�U��
�.
Therefore we can name �U� and �
� as constants, and assume that U and 
 are
0-definable, without losing the fact that a is generic. Now because a is generic in
U ∩D, the image 
(a) is generic in 
(U ∩D). By Remark 4.8, 
(U ∩D) is Euclidean
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at 
(a). Transferring things back along 
−1, we see thatD is Euclidean at a, proving
the claim. �
Now let D′′ be the locally Euclidean locus of D. Then D′′ is an ind-definable
subset of D, i.e., D \ D′′ is a type-definable set. By the claim, D \ D′′ has lower
dimension than D. Thus by Proposition 4.7(3) there is a definable closed set F
containing D \D′′, with dimF < dimD. Take D′ = D \ F . Then D′ is a full open
subset of D, and D′ ⊆ D′′. �
We recall another basic fact about o-minimality:

Remark 4.11. Let U and U ′ be 0-definable open subsets of powers ofM , and
let f be a 0-definable partial map from U to U ′. Suppose a is generic in U and
that f is defined at a. Then f is defined and continuous on an open neighborhood
of a.

Proposition 4.12. Let Y and Y ′ be two interpretable sets with admissible locally
Euclidean topologies, and f be a definable map from Y to Y ′. Then Y can be written
as a finite disjoint union of definable locally closed sets, on which the restriction off is
continuous.More generally, this holds whenY is a definable subspace of an admissible
locally Euclidean space.
Proof. By induction on dim(Y ) it suffices to show that f is continuous on a
full open subset of Y . By Lemma 4.9, we may assume Y is locally Euclidean. By
Proposition 4.7, the interior of any full subset is a full subset of Y , so it suffices to
show that the continuous locus of f is a full subset of Y .
Without loss of generality, we may assume that everything is defined over ∅ and
that the ambient model is ℵ1-saturated. It suffices to show that f is continuous at
generic points ofY . Fix some generic y ∈ Y . By locally Euclideanity, there are open
neighborhoods U of y and U ′ of f(y) admitting open embeddings into powers of
M . By Lemma 4.5 we may shrink U and U ′ in such a way that

�U�
th
|�y and �U ′�

th
|�y�U�.

Thus �U��U ′� |�
th
y. Let 
 and 
′ be definable open embeddings from U and U ′

into powers of M . Moving 
 and 
′ by an automorphism over �U��U ′�, we may
assume that

�
��
′�
th
|�

�U��U ′�
y

and so

�
��
′��U��U ′�
th
|�y.

By naming constants, we may assume that U , U ′, 
, 
′ are all 0-definable, and y is
still generic in Y .
Now f � (U ∩ f−1(U ′)) is a partial function from U to U ′, defined at y.
Transferring things along the open embeddings 
, 
′, we reduce to the case where U
and U ′ are open subsets of powers ofM , reducing to the situation of Remark 4.11
above. �
This completes the proof of Theorem 1.5 in the introduction, which is merely a
compilation of Proposition 4.2, Lemma 3.12, Propositions 4.4, 4.7, 4.6, and 4.12.
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We close with a few open questions:

Question 4.13. Do Propositions 4.7 and 4.12 hold without the local Euclideanity
assumption?

Question 4.14. For “definable spaces” in the sense of Peterzil and Steinhorn [6],
is our definition of “definable compactness” (Definition 3.2) equivalent to Peterzil and
Steinhorn’s definition using completable curves?
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