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We study non-totally geodesic Lagrangian submanifolds of the nearly Kahler 3 x §3
for which the projection on the first component is nowhere of maximal rank. We
show that this property can be expressed in terms of the so-called angle functions
and that such Lagrangian submanifolds are closely related to minimal surfaces in S°.
Indeed, starting from an arbitrary minimal surface, we can construct locally a large
family of such Lagrangian immersions, including one exceptional example. We also
show that locally all such Lagrangian submanifolds can be obtained in this way.
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1. Introduction

The nearly Kéhler manifolds are almost Hermitian manifolds with almost complex
structure J for which the tensor field VJ is skew-symmetric, where V is the Levi
Civita connection. They have been studied intensively in the 1970s by Gray ([12]).
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Nagy ([17,18]) made a further contribution to the classification of nearly Kahler
manifolds and more recently, it has been shown by Butruille ([4]) that the only
homogeneous 6-dimensional nearly Kéhler manifolds are the nearly Kéhler 6-sphere
S8, S3 x S3, the projective space CP? and the flag manifold SU(3)/U (1) x U(1),
where the last three are not endowed with the standard metric. All these spaces
are compact 3-symmetric spaces. Note that in 2014, V. Cortés and J. J. Vasquez
have discovered the first non homogeneous (but locally homogeneous) nearly Kahler
structures in [5], while more recently, the first complete non homogeneous nearly
Kihler structures were discovered on S% and S x S3 in [11].

A natural question for the above mentioned four homogeneous nearly Kéahler
manifolds is to study their submanifolds. There are two natural types of subman-
ifolds of nearly Kéahler (or more generally, almost Hermitian) manifolds, namely
almost complex and totally real submanifolds. Almost complex submanifolds are
submanifolds whose tangent spaces are invariant under J. For a totally real sub-
manifold, a tangent vector is mapped by the almost complex structure J into a
normal vector. In this case, if additionally, the dimension of the submanifold is half
the dimension of the ambient manifold, then the submanifold is Lagrangian.

Note that the Lagrangian submanifolds of nearly Kéhler manifolds are espe-
cially interesting as they are always minimal and orientable (see [9] for S® or
[13,20] for the general case). Lagrangian submanifolds of S® have been studied by
many authors (see, amongst others, [6,7,9,10,15,19, 22, 23]), whereas the study
of Lagrangian submanifolds of S® x S? only started recently. The first examples of
those were given in [16,20]. Moreover, in [8,24], the authors obtained a classifi-
cation of the Lagrangian submanifolds, which are either totally geodesic or have
constant sectional curvature. An important tool in the study in [8,24] is the use of
an almost product structure P on S* x S3, which was introduced in [2]. Its definition
is recalled in §2. The decomposition of P into a tangential part and a normal part
along a Lagrangian submanifold allows us to introduce three principal directions,
FEh, E5, E3, with corresponding angle functions 61, 05, 05.

In this paper, we are interested in studying non-totally geodesic Lagrangian sub-
manifolds f : M — S3 x §3 : 2z — f(x) = (p(x),q(x)), for which the first component
has nowhere maximal rank. Basic properties of the structure and its Lagrangian sub-
manifolds are given in §2. In §3, we show that in this case §; = 7/3 (theorem 1) and
p(M) has to be a (branched) minimal surface in S* (theorem 3). Conversely, for a
non-totally geodesic minimal surface in S* which locally corresponds to a solution of
the Sinh—Gordon equation, Aw = —8sinh w, and for an additional arbitrary solution
of the Liouville equation, Ay = —e, we can construct locally a Lagrangian immer-
sion of S® x S3. Thus, we obtain a large class of examples of Lagrangian immersions.
We also obtain that a similar class of Lagrangian immersions can be associated with
a totally geodesic surface in S®. This last case contains, in particular, the constant
curvature sphere obtained in [8]. Additionally, for each non-totally geodesic mini-
mal surface, we obtain also one exceptional example. In case of the Clifford torus
in S3, this additional example is the flat Lagrangian torus in S* x S? discovered in
[8]. We also show that any non-totally geodesic Lagrangian immersion for which
the first component has nowhere maximal rank is obtained by applying one of
the three previously mentioned constructions. The main results are summarized
in §4.
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2. Preliminaries

In this section, we recall the homogeneous nearly Kahler structure of S? x S* and
we mention some of the known results from [8, 24].

By the natural identification T, , (S? x $%) 2 T,83 & T,S?, we write a tangent
vector at (p,q) as Z(p,q) = (U(p,q),V(p,q)) or simply Z = (U, V). We regard the
3-sphere as the set of all unit quaternions in H and we use the notations i, j, k to
denote the imaginary units of H.. In computations it is often useful to write a tangent
vector Z(p, q) at (p,q) on S? x S? as (pa, ¢3), with a and 3 imaginary quaternions.
This is also possible for v € T,S* as we know that (v,p) =0 and, in addition,
for p € S* we can always find ¥ € H such that v = pi . Moreover, Re(?) =0 as
0 = (p,v) = Re(pv) = Re(ppd) = Re(v). We define the vector fields

Ei(p,q) = (pi,0),  Fi(p,q) = (0,
E (paq) (pj70)a }z‘2(p’ ) ( 4 )
Es(p,q) = —(pk,0), Fs(p,q) = —(0,qk),

which are mutually orthogonal with respect to the usual Euclidean product met-
ric on S* x S®. The Lie brackets are [E;, E;| = —2¢;,E), [Fi, F}] = —2¢;;,F), and
[E;, Fj] = 0, where

(1)

1,  if (ijk) is an even permutation of (123),
gijk = § —1, if (ijk) is an odd permutation of (123),
0, otherwise.

The almost complex structure J on the nearly Kahler S* x S? is defined by

1

—(2pg V= U, —2qp~ U + V), 2
\/§< Pq ap ) (2)
for (U, V) € T(p,)(S?* x S*). The nearly Kéhler metric on S* x §% is the Hermitian
metric associated with the usual Euclidean product metric on S? x S3:

JUV)p,q) =

o2.2) = 52,2+ (2,7 (3
= ST + V.V = 2 0™ V) + 0,

where Z = (U,V) and Z' = (U’,V'). In the first line (-,-) stands for the usual
Euclidean product metric on S* x S* and in the second line (-, -) stands for the usual
Euclidean metric on S?. By definition, the almost complex structure is compatible
with the metric g.

From [2], we have the following lemma.

LEMMA 1. The Levi-Civita connection NV on S® x S® with respect to the metric g is

given by
~ ~ ~ ~ ~ E'L
V E __EijkEk V F ék (Ek—Fk)
Vi B ggk(F By) Vi Fy = —cipnby.
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Then we have

- - ) - - - - 2 - -
(VE)J)E] = —TﬁEijk(Ek + 2Fk)7 (vElJ)FJ = _ﬁgijk(Ek - Fk),
(4)
- - ) N - - - ) - -
(VF‘,-J)EJ' = _ﬁgﬁk(Ek — Fy), (VEJ)F] = —Tﬂﬁijk(QEk + Fy).

Let G := V.J. Then G is skew-symmetric and satisfies
GX,JY)=-JG(X)Y), g(G(X,Y),Z)+9(G(X,Z),Y)=0, (5)
for any vectors fields X, Y, Z tangent to S? x S3. Therefore, S* x S? equipped with

g and J, becomes a nearly Kéahler manifold.
The almost product structure P introduced in [2] is defined as

PZ = (pqg 'V,qp~'U), VZ=(UV) €Ty (S* xS (6)

plays an important role in the study of the Lagrangian submanifolds of the nearly
Kihler S? x S3. It has the following properties:

P? =1d (P is involutive),

PJ=—JP (P and J anti-commute),
g(PZ,PZ")=g(Z,Z") (P is compatible with g),
g(PZ,7"y = g(Z,PZ") (P is symmetric).

Moreover, the almost product structure P can be expressed in terms of the usual
product structure QZ = Q(U, V) = (—U, V) and vice versa:

QZ = —((2PJZ —JZ),

Sl

PZ = %(Z —V3QJZ).

Next, we recall the relation between the Levi-Civita connections V of g and VZ of
the Euclidean product metric (-, -).

LEMMA 2 [8]. The relation between the nearly Kdhler connection V and the
Euclidean connection V¥is

VEY =VxY + %(JG()Q PY) + JG(Y, PX)).

We recall here a useful formula, already known in [8].
Let D be the Euclidean connection on R®. For vector fields X = (X7, X») and
Y = (Y7,Y2) on S? x S?, we may decompose DxY along the tangent and the normal
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directions as follows:

DxY = VEY + S{DxY, (0.0} (5,0) + 5(DxY, () (-pra). (D)

Here, notice the factor 1/2 due to the fact that (p,q) and (—p,q) have length /2.
Moreover, as (Y, (p,q)) = 0, (7) is equivalent with

Dx¥ = VEY — L0, X)(p.a) — 3 (Vi (~ X0, X)) (=,
In the special case that Yo = 0, the previous formula reduces to
Dx(¥1,0) = VX (¥1,0) — (X1, Y1) (p, 0). (8)
We find it appropriate here to prove an additional important formula not explicitly

mentioned in [2], that allows us to evaluate G for any tangent vector fields.

PROPOSITION 1. Let X = (pa, ¢83),Y = (py,40) € T(p7q)83 x S3. Then

GX,Y) = (p(Bxvy+axd+axy—20x1),

2
3v3
X q(—axd—pFxvy+2axy—70x79)). 9)
Proof. As « is an imaginary unit quaternion, we may write &« = ay i+ as - j +
ag - k and similarly for §,v,d. Then, using (1 ), we write for more convenience in
computatlons X =Uq + V3, where U, = a1 1 + asFy — a3E; and Vi = BlFl +
B2 Fy — (B3F5. Similarly, Y = U, + Vs. We now use the relations in (4) and compute

G(Uq, V3) =

Vaxg), GUa,Upg) = (Uaxpg + 2Vaxg)-

3\/*( axf —
As PU, = V,, we obtain

3f

2
G(Vo, V) = ———=Vaxp + 2Uaxp)-
(Va, V) = = \/?—)( x3 x)
Finally, by linearity, we get the relation in (9). O

From now on we will restrict ourselves to 3-dimensional Lagrangian submanifolds
M of S* x §3. It is known from [8,24] that, as the pull-back of T(S® x S?) to
M splits into TM @ JT M, there are two endomorphisms A, B : TM — TM such
that the restriction P|ras of P to the submanifold equals A + JB, that is PX =
AX + JBX, for all X € TM. Note that the previous formula, together with the
fact that P and J anti-commute, also determines P on the normal space by PJX =
—JPX = BX — JAX. In addition, from the properties of J and P it follows that A
and B are symmetric operators which commute and satisfy moreover, A2 + B2 = Id
(see [8]). Hence A and B can be diagonalized simultaneously at a point p in M and
there is an orthonormal basis e1, e2, e3 € T, M such that

Pei = COS(291‘)67; =+ sm(QHl)Jel (10)

The functions 6; are called the angle functions of the immersion. Next, for a point
p belonging to an open dense subset of M on which the multiplicities of the eigen-
values of A and B are constant (see [21]), we may extend the orthonormal basis
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e1, €2, ez to a frame on a neighbourhood in the Lagrangian submanifold. Finally, tak-
ing into account the properties of G, we know that there exists a local orthonormal
frame {FE1, E2, E5} on an open subset of M such that

and

1
JG(E,‘,EJ') = ﬁgijkEk' (12)

The following result is known ([8]):

PROPOSITION 2. The sum of the angles 61 + 05 4 03 is zero modulo 7.

For the Levi-Civita connection V on M, we introduce (see [8]) the functions w.

ij
satisfying

3
o k ko _ J
Vg, = E wi; B and - wi; = —wy.
k=1

As usual, we write:

VxY =VxY +h(X,Y),
VxJY = -85y X + VxJY,
where h is the second fundamental form on M and Sy is the shape operator in the

direction of JY. As for the Lagrangian manifolds of a strict 6-dimensional nearly
Kéhler manifold, we have G(X,Y") that is normal (see [13,20]) and follows

VxJY = JVxY + G(X,Y),
Jh(X,Y) =-S5y X.

The latter equation implies, in particular, that the cubic form g(h(X,Y),JZ) is
totally symmetric. We denote by hfj the components of this cubic form on M:

hy; = g(h(E;, E;), JEy). (13)

3. Results

3.1. Elementary properties of orientable minimal surfaces in S3

We recall some elementary properties of minimal surfaces. Let p: S — S3 C R*
be an oriented minimal surface. We are going to check that the immersion either
admits local isothermal coordinates for which the conformal factor satisfies the
Sinh—-Gordon equation or is totally geodesic. First, we take isothermal coordi-
nates u,v such that du,dv is positively oriented, (Qu,du) = (Jv,dv) = 2¢* and
(Ou, 0v) = 0 in a neighbourhood of a point of S. As it is often more useful to
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use complex notation, we write z = u + Tv and consider 9z = 1/2(0u — Idv) and
0z = 1/2(0u + Idv). Note that we use I here in order to distinguish between the
i, j, k introduced in the quaternions. We also extend everything in a linear way in
I. This means that (0z,0z) = (0z,0z) = 0 and (0z,0%z) = . If we write Ou = pa
and Qv = p, the unit normal is given by N = p((a x 5)/(2e¥)). It is elementary
to check that this is independent of the choice of complex coordinate and that
the matrix (p((Ou)/(|0u]))((Ov)/(|0v])) N) belongs to SO(4). We denote by o the
component of the second fundamental form in the direction of N. Remark that
with this choice, the minimality of the surface implies 0(9z,0%Z) = 0 and we may
determine the components of the connection V on the surface:

V.02 = w,0z, V5,02 =Vy:02=0 and Vy: =w:0z. (14)
The Codazzi equation of a surface in S? states that
Vo(0z,0%,0z) = Vo(0z,0z,0%).

So it follows that 0z(0(dz,0z)) = 0. Hence o(dz,0z) is a holomorphic function.
Then we have two cases:

Case 1. If 0(0z,0z) =0 on an open set, then by conjugation ¢(9z,9z) =0 and
therefore, using the analyticity of a minimal surface, ¢ = 0 everywhere.

Case 2. If 0(0z,0z) # 0, then there exists a function g(z) such that o(9z, 92) = g(2).
Away from isolated points, we can always make a change of coordinates if necessary
such that o(9z,0z) = —1. Notice that by conjugation, we also get 0(0z,0z) = —1.
Such a change of coordinates is unique up to translations and replacing z by —z.

Next, given the immersions p: S — S?(1) QR‘*, from the Gauss formula, we
obtain:

pzz = —€p, (15)

w

where N is the normal on S and N, = e “p;, Nz = e"“p,. Therefore,

Pzzz = (WZZ - e_w)pz - wzewpa Pzzz = _ewwzp - ewpza
which shows that w satisfies

w,; = —2sinhw <=
Aw = —8sinhw (Sinh-Gordon equation). (16)

Notice that by Aw, we denote the Euclidean Laplacian of w in R? = C.
Let P be the lift of the minimal immersion to the immersion of the frame bundle
in SO(4), that is,

P:US — SOM4):ww— (pw Jw N),
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where US denotes the unit tangent bundle of S and J denotes the natural complex
structure on an orientable surface. In terms of our chosen isothermal coordinate
this map can be parametrized by

Pu,v,t) = (p(u,v),cost Pu +sint Py ,—sintpu—|—costpv,N(u,v)>7
| Pu | | o | | pu | | pu |

for some real parameter t. Note that we have the frame equations which state
dP = PQ' = —PQ,

where in terms of the coordinates u, v and ¢ the matrix € is given by

o

V2e¥/?(cos(t)du + sin(t)dv)
du + sin(t)dv) 0
dv — sin(t)du) — 3 (wydv — wydu) — dt

—/2e#/?(cos(t
—V/2e%/?(cos(t

N

0 V2742 (cos(t)du — sin(t)dv)
V2e#/2 (cos(t)dv — sin(t)du) 0
Hwudv — wydu) + dt —/2e7/?(cos(t)du — sin(t)dv)
0 V2e=9/2(sin(t)du + cos(t)dv)
—V/2e=/?(sin(t)du + cos(t)dv) 0

3.2. From the Lagrangian immersion to the minimal surface

Now we will consider Lagrangian submanifolds in the nearly Kihler S* x S3. We
write the Lagrangian submanifold M as

fiM—s*xs?
z = f(x) = (p(x), ¢(z)),

and we assume that the first component has nowhere maximal rank. We have the
following:

THEOREM 1. Let

f:M—S®xSs?
z — f(z) = (p(x), q(z)),

be a Lagrangian immersion such that p : M — S? has nowhere mazimal rank. Then
/3 is an angle function up to a multiple of w. The converse is also true.

Proof. 1t is clear that p has nowhere maximal rank if and only if there exists a non
zero vector field X such that dp(X) = 0. As usual, we identify df (X) with X, so we
have that X = df(X) = (dp(X),dq(X)) and QX = (—dp(X),dq(X)). Therefore p
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has nowhere maximal rank if and only if
X=0QX

1
= %(QPJX —JX)

1
= —(2BX —2JAX — JX).
73 )

Comparing tangent and normal components, we see that this is the case if and
only if

AX = —%X BX — ?X.

So we see that X is an eigenvector of both A and B and that the corresponding
angle function is /3 (up to a multiple of ). O

For the remainder of the paper, we will consider Lagrangian immersions for which
the map p has nowhere maximal rank. In view of the previous lemma, this means
that one of the angle functions is constant, namely 6; = 7/3. Then using that the
angles are only determined up to a multiple of 7 and given that 20, + 205 + 265 is
a multiple of 27, we may write

2
200 =5
2
20y =2\ + =, (17)

3
2
20, = —2A + %

for A is an arbitrary function which takes values in [—7/2, 7/2]. If necessary by inter-
changing Fs, B3 with —Fs3, Fo, we may assume that A > 0 and, therefore, A takes
values only in [0,7/2]. Similarly, if necessary interchanging F4, E5 by —FE;, —FEj3,
we may also assume that h3; < 0 (see equation (13)).

Note, however, that at the points where A is 0 or 7/2 modulo 7, we have that two
of the angle functions coincide. If this is true on an open set, it follows from [24] that
the Lagrangian submanifold is totally geodesic and is congruent either with f: S3 —
S3x S iurs (1,u)or f: 83 — S xS uw (wiu=t,u™t). So by restricting to an
open dense subset of M which we denote by M*, we may actually assume that
A € (0,7/2), in which case the function A, as well as the vector fields E4, Es, Es5
are differentiable.

Notice that the case when A is constant is treated in [1], where such Lagrangian
submanifolds are determined to be either totally geodesic or of constant sectional
curvature. As we consider here A € (0, 7/2), the only possibility is A = 7/3, in which
case the Lagrangian submanifold is not totally geodesic, but of constant sectional
curvature.
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THEOREM 2. Let M be a Lagrangian submanifold of constant sectional curvature
in the nearly Kihler S® x S3. If M is not totally geodesic, then up to an isome-
try of the nearly Kdhler S® x S3, M s locally congruent with one of the following
1MMErsions:

(1) £:8* =83 xS u (wiv ' ujut),

(2) f:R® =S xS?: (u,v,w) — (p(u,w),q(u,v)), where p and q are constant
mean curvature tori in S® is given by

p(u, w) = (cosu cosw, cos usinw, sin u cos w, sin u sin w),

(cosv (sinw + cosu) ,sinwv (sinu + cosu),

1
Q(u7 U) = ﬁ

cosv (sinu — cosu) ,sinv (sinu — cosu)).

Note that these are precisely the two Lagrangian immersions with constant sectional
curvature obtained in [8]. These two examples will appear as special solutions in
respectively, Case 2 and Case 3. However, we will mainly focus on the case that A
is not constant.

In the following, we will identify a tangent vector X in T, M with its image
through df in T, S* x S?, that is, X = df (X) = (dp(X), dq(X)), and we can write
QX =Q(df(X)) = (—dp(X),dq(X)). Therefore, if we see dp(X) projected on the
first factor of S* x S3 | that is dp(X) = (dp(X),0), we can write

Ap(X) = (X ~QX). (18)
We use relations (10) and (17) to compute PE; = —1/2F; 4+ /3/2JE;. As men-
tioned before, this is equivalent with stating that dp(E;) = 0 and that p has nowhere
maximal rank. By straightforward computations, we obtain
1

(dp(F2),0) = (2 - % sin(2A + 2;)) E, + % (; + cos(2A + 2;)) JEs,

0= (4= Lsnon s )y (L vcaon s ) sy
and (19)
(dp(E3), dp(Es)) = sin? A,
(dp(Es), dp(E3)) = sin® A, (20)
(dp(E2),dp(Es)) =
We denote
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and we may easily see that Q¢ = —¢, that is, £ lies entirely on the first fac-
tor of S* x S3. Moreover, (v;,v;) = d;;sinA, (§,v9) = (£, v3) =0 and (£,€) = 1.
Therefore, p(M) is a surface in S* and ¢ can be seen as a unit normal to the
surface.

As far as the Lagrangian immersion itself is concerned, we also have due to the
minimality that
h}l + h%z + hi’:s =0,
hiy + 3y + h35 =0, (22)
h‘?l + h%g + hgz)’ - O
From [8], we know that the covariant derivatives of the endomorphisms A and B
are

1
(VxA)Y = BS;xY — Jh(X,BY) + Q(JG’(X7 AY) - AJG(X,Y)), (23)
1
(VxB)Y = —AS;xY + Jh(X, AY) + i(JG(X, AY) - AJG(X,Y)). (24)
We are going to use the definition of VA and VB in the previous expressions and

then evaluate them for different vectors in the basis in order to get information
about the functions wfj and hfj For X =Y = Fj in (23), we obtain

h%Z = _h§3v
w?, = h? cot A, (25)
w3, = —h3, cot A.

If we take X = Eq and Y = E» in (23) and (24), we see

E1(A) = his, (26)
wl, = ? — h3, cot 2A (27)

and, for X = Fy and Y = E; in (23), we obtain

h%l = Oa (28)

w2 = —cot Ah3,, (29)
3

wi = —% — h3, cot A. (30)

Then we choose successively X = F3,Y = F;, X = F,,Y = F3 and X = Fj,
Y = E5 in relations (23) and (24) and obtain

3
wi = % + cot Ahi,, (32)
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wy, = —cot Ah,, (33)
Wiy = — cot 2Ah3,, (34)
wiy = — cot 2Ah3,, (35)
Ex(A) = hig, (36)
E3(A) = —hi,. (37)

We can easily see from (25), (28) and (31) that
wi =0 and w} =0
and, if we consider as well the relations in (22), we have
his = —h3s, hi; =0 and hi, = —hi,.

Later on, we will also need to study the Codazzi equations for M. From [8] we
know their general form:

Vh(X,Y,Z) - Vh(Y, X, Z) = %(g(AY, 7)JBX — g(AX, Z)JBY

— g(BY, Z)JAX + g(BX,Z)JAY).  (38)

We are going to use the definition for VA in the previous relation and take different
values for the vectors X,Y and Z. Thus, we evaluate it successively for Ey, Fo, Fy;
FE1,Es, FEy; Fy, FEs,Fs; Ey,E3, F5; and Es, E3, E3 and we obtain the following
relations, respectively:

1
Ey(h33) = 3(—¢§h§2 + 6(h35)% cot A — 6(h3,)%csc(2A) + sin(2A)),

By (hy) = %h‘;’?)(\/g + k3, cot A + 3h%, tan A), (39)
1
V3
By (h3y) — Eo(h3,) = h3,h3,(2cot A — tan A)

Eo(h3y) — By (hdy) = —=hie + h3yh3y cot A — h3sh3, cot A — hi,h3, cot(2A),

1
+ 6h§3(2\/§ — 3hi, cot A + 9h%, tan A),
1
Es(hiy) — Ey(his) = ﬁhgz + (h3yh3y — hizhds) cot A

— (3hyh3,y + 2h33h3s) cot(2A),
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€L
V3
E2(h:1)’3) — L3 (hi)z) = Q(h?2h§2 + h?3h33) cot(2A),

Eg(h??)) + B (hg2) = hg3 + h‘;’3hg2 cot A + h‘;’th?) cot A — h‘Z’Qh‘;’?) cot(2A), (40)

Es(h3y) — Ea(his) = _%(8(@2)2 + 4(hi3)? 4 3((h3)* + (h33)*)) cot A

1 3
— 5 (VBhiy +sin4A) + S((h35)” + (h35)°) tan A,

!

3h§’3(\/§+ 6h3, cot A).

E(h3y) + E3(h3s) =
THEOREM 3. Let
f:M—-S*xs?
z— f(x) = (p(z), q(x)),

be a Lagrangian immersion such that p: M — S® has nowhere mazimal rank.
Assume that M is not totally geodesic. Then p(M) is a (branched) minimal surface
in S3. Moreover,

~ . v v
P M= S0(): z (p(x) sinzA SingA f),

where vy, v3 and & are defined by (21), is a map which is contained into the frame
bundle over the minimal surface p.

Proof. Recall that dp(E7) = 0, hence p(M) is a surface. Denoting the second funda-
mental form of the surface in the direction of £ by o, a straightforward computation
yields

G(EQv EQ) = h?i&r 1
0(Es, E3) = o(E3, Es) = 7 cos Asin A — h3,, (41)
O'(l?g7 E3) = —h‘;’g.
As dp(Es) and dp(E3) are orthogonal and have the same length, the above formulas
indeed imply that the surface is minimal.
Moreover, we also see that the surface is totally geodesic if and only if h$; =0

and h$, = 1/v/3cos Asin A. Note also that if we write (dp(Es),0) = (pa,0) and
(dp(E3),0) = (pv,0), we have

G((dp(E2),0), (dp(E3),0)) = G((per, 0), (p,0))

- 3%@«1 x 7). 24(ax x 7)).

Therefore,

(p(ax7v),0) = V3 (G((dp(E2),0), (dp(E3),0)) — Q(G((dp(E2),0), (dp(E3),0)))).
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A straightforward computation, using (19) and (12), shows that this gives

(p(a x7),0) = (sinA)%€.
Therefore, £ corresponds with the normal N on the surface. O

3.3. The reverse construction

In the following, we will separate the study of the submanifold into three cases,
according to whether the surface is totally geodesic or not and whether the map to
the frame bundle is an immersion or not.

3.3.1. Case 1. p(M) is not a totally geodesic surface and the map P is an immer-
sion. In that case, we can identify M with the frame bundle on the minimal surface
induced earlier. Recall that

- . vy 3
PizeM (p sin A sin A f)'

Writing again dP = —PRQ, we can express the matrix Q) in terms of {E1, Es, Es}

by
0 sin(A)ws
— sin(A)ws 0
1
—sin(A)ws — <\/§ + hzfzcsc(2A)> wi — h3ycsc(2A)ws — h3scsc(2A)ws
A
0 (—C(\);g + h%cscA) w3 — hiscse(A)ws
sin(A)ws 0
1
— + h3,cs¢(2A) ) wy h3,csc(A)ws
/3 e 13
3 3 cosA
+hiycsc(2A)wa + higesc(2A)ws + .3 hiscscA | ws
A 9
0 <ij§ - h‘;’chc(A)> W
A —h35esc(A)ws
(Cf% - h‘%QCSC(A)> wy — h3sese(A)ws 0

where w;(F;) = 8;;. The above matrix implies that the map P into SO(4) C R is
an immersion if and only if

1
7 + hi,csc(2A) # 0.

As it is an immersion, in view of the dimensions, its image is an open part of the
frame bundle and we can identify M with an open part of the frame bundle on the
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minimal surface. Moreover, we can write

+sin(t + (t, u, v)) 22

| o

= cos(t + (¢, u, v))p—

| Pu |

sin A ’

where ~ is some function. As P is an immersion, we have ¢ + ~(t,u,v) that depends
on ¢ and can be taken as the new variable ¢ on the frame bundle. Doing so, we have
P =P and Q= Q (for P,Q as in §3.1). Comparing both expressions for the matrix
), we deduce

1 csc2A 1
wy] = — \/5,76‘”/2 h3, cost — h3.sint —|—wv) du
YT 1B + hiyesc2A ( ( sin A (h2s 23 5in1) 2
2A 1
— <\@C§;Aew/2(h§2 sint + hgg cost) — 2wu> dv + dt> ,
wh = — A\f e“/?(cos(t)du + sin(t)dv),
wg = SmA\[e”/Q(COb( )dv — sin(t)du),
as well as
1
e “ cos(2t) + h13 e 0,
(42)
cos A 1
e “sin(2t) + (h‘;’QCSCA - —— =0,
V3 ) sinA
which implies
hj, = —e~% cos(2t) sin? A,
(43)

A
h3, = (—e‘“ sin(2t) sin A + COS) sin A.
12 ( ) \/g

We may express F1, Fa, E5 with respect to the basis {0t, Qu, dv} as follows. For E; =
a;0t + b;0u + ¢;0v, we use the previously obtained expressions of w; in w;(E;) = ;5
and by straightforward computations we get

E, = (\}g + h?QCSC(QA)) ot,
= (csc (2A)h3, + 2\1/5 sin Ae /2 (cos (t)wy, — sin(t)wu)) ot
N _“/Q(ijitslnAau_'_e‘“’/Zii/r%tsinAav’ (44)
(csc (2A)h3, — 2\1/5 sin A e/ (cos(t)wy + sin(t)wv)) ot
ew/? smtsmAau N e~w/? costsinAav.

V2 V2

In order to be able to proceed with the reverse construction, that is, in order to
be able to construct a Lagrangian immersion starting from the minimal surface, we
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need to express A, h3, and h3; in terms of the variables ¢,u,v. Remark that, as
E1(A) = h3,;, we may use (43) and the expression of E; in (44) to determine how
A depends on the variable t. We get

2 cos(2t) sin? A

A= — . 45
¢ V3e¥ — 2costsinttan A (43)

In order to solve the above differential equation, we use (45) to compute the
derivative of the expression ((v/3e*)/(tan A)) — sin(2t):

2
V3e . P
ot (tanA —sin(2t) | = 2sin(4t),

which, by integration, gives

(&5

tan A

2
1
- sin(2t)> =-3 cos(4t) + %,

where ¢; does not depend on t. Notice that this implies

24/3ev%

tan A = ,
¢y — 2 cos(4t) + 2sin(2t)

(46)

where €1 = +1 and, at the same time, the surface is defined on an open set where
c1 — 2cos(4t) > 0. Note that as the above expression contains a square root which
would complicate simplifications later on, we will avoid its use as much as possible.
For later use, remark that we can write

(2\/36“

2
ok 28111(215)) =1 — 2cos(4t). (47)

As we can rewrite the above equation as

(2\/36“’

2
oA 2sm(2t)> +2cos(4t) +2 =1 + 2,

we see that ¢; > —2 and equality can hold if ¢¢& {+n/4,+£5r/4} and
((2v/3e¥)/(tan A)) + 2 = 0. So on an open dense subset we can write

c =e"TH -2

Combining this with the previous expression of ¢; and taking the derivative with
respect to u and v, we can compute

sin? A (uu + e¥ cot A (36“’ cot A(fhy — wy) — 23w sin(2t)) + wu)
- 6e2 cot A — 2v/3ev sin(2t)

sin? A (,uv + e¥ cot A (36“’ cot Aty — wy) — 2v/3 41, sin(2t)) + wv)
B 6e2w cot A — 2v/3e% sin(2t) ’

—

A, =
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Using this, together with (44), we can solve in (36) and (37), for h3, and h3s.
This gives us
e~39/2sin% A
he, = ——— "~ (3e“ cos A((wy — fty,) SINt + (11 — wy) cOSE
22 612 ( (( fhu) (n ) )
— V3sin A((pu + wy) cos(3t) + (py + wy) sin(3t))),
e 3%/ 25in? o

6v/2

— 3e” cos A(fiy, — wy) cost — 3e” cos A(fry — wy) sint) .

h3y = (\/gsin A((poy + W) sin(3t) + (—py — wy) cos(3t))

In order to determine a differential equation for the function u, we now apply the
previously obtained Codazzi equations for M. By (44), it turns out (39) and the first
five equations of (40) are trivially satisfied. Recall from (16) that Aw = —8sinhw.
The seventh equation of (40) reduces to

Ap = —4e*(cos(2A) + 2)esc? A + 8vV/3 cot Asin(2t) + 8sinhw. (48)

A straightforward computation, using the definition of p and (47) shows that this
reduces to

Ap = —e. (49)

Further on, with these new notations, we may see by straightforward computations
that the sixth equation of (40) is now trivially satisfied.

Reverse construction
We denote by p: S — S* C R* a given minimal surface S which is not totally

geodesic, on which we take suitable isothermal coordinates as introduced before.
Hence we have a solution w of Aw = —8sinhw. Additionally, we take a solution of

Ap = —et (50)

and we take the open part of the frame bundle such that

(2\/56“

2
ok 2sin(2t)) = e M — 2 — 2cos(4t) (51)
has a solution for the function A on an open domain. We define

h3, = —e* cos(2t) sin? A,

A
h3, = (—e_w sin(2¢) sin A + COS) sin A,
12 ( ) \/g
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—3w/25in% A

h3 _c oA 3e¥ cos A((wy, — b)) sint + (pby — wy) cost

22 62 ( (( f) (1 ) )
3sin A((p 4 wu) cos(3t) + (py + wy) sin(3t))),

e 3w/2gin? A

6v/2

— 3e¥ cos A(fty, — wy) cost — 3e” cos Ay — wy) sint)

hi, (\/§ sin A((py, + wu) sin(3t) + (—f1 — wy) cos(3t))

and we define as well a metric on the open part of the frame bundle by assuming
that the vectors
1 _ .
Ei = 3 (\/3— 2¢ ‘”tanAsmtcost) ot,
e=3w/2gin A

TV A
+ 3¢“ (g, + wu) sint + (—py — wy) cos t))@t

Ey = — (\/gtanA((,uu + wy,) cos(3t) + (1 + wy) sin(3t))

—w/2 : —w/2 g :

e costsin A e sintsin A

+ ou + Ov, 52
7 7 (52)

e 3w/2gin A

12v/2
— 3e“((ftu + wu) cOS T+ (1 + wy) sint))at

By = (\/ﬁ tan A((jo + wy) SIN(3) + (— e — wy) cos(3t))

e~w/2 sintsin/\8 L e~w/2 costsinAa
— u v
V2 V2

form an orthonormal basis.
We now want to determine the Lagrangian immersion

f:SxI—8S*xs?
(u,v,t) — fu,v,t) = (p(u,v,t),q(u,v,t)).

We already know that the first component is the given minimal surface p. We write
for both bases

7] 0

at( ) qﬂh %(p) = pQa, (q) qI817 El(p) :p&h
a%(q) = qfa, 6%(10) —pas, and  Ex(q) = qBs, Es(p) = pas,
0 0 E3(q) = ¢fs, Fs(p) = pas.

av( ) - q/837 %(p) = pas,

Note that a; = 0 and a9 and ag are determined by the minimal surface. In particu-
lar, as and a3 are mutually orthogonal imaginary quaternions with length squared
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2e“. From (52), we then get

&1:07

~ e~%/2 costsin A
Qg = TQQ
. e~“/2sintsin A e~%/2 costsin A
3 = — \/i (65 \/§ Qs

and from the properties of the minimal surface, we obtain

8052 3013 1

e~“/2gintsin A

V2

ag,

—wya3 — e“ag X ag,

u v 2 S 2

60&2 1

Do 56%042 + iwuas + a2 X as,
8&3

Du = §wva2 + iwuag — Qg X Q3.

Using the properties of the vector cross product, this also implies

8042 X (g
——— =29 + 2e” a3 + w9 X a3,
ou
80@ X (g
a0 —2e% g — 203 + wya X 3.
v

Now, in order to find Bi, we remark that the vectors Fq, F5 and F3 need to cor-

respond with eigenvectors of the operators A and B with suitable eigenfunctions.
We have

Ey = (0,961),
Ey = (pas, qfa), (53)
Es = (pas, qfs).
The angle functions are 6; = 27/3, 02 = 2A + 27/3,03 = —2A 4 27/3 and
PE; = cos(20;)E; + sin(20;)JE;, (54)
for i = 1,2,3. At the same time, by the definition of P in (6) and by (53), we have
PE; = (pp1,0), PEy=(pf2,qdz), PE;= (pBs,qas). (55)

Now we use the definition of J to write out JE;:

JE, = %(22731,6131),
B = %wﬁz o), q(—2ds + fa)), (56)
JEs = %@(253 — Gis), q(~ 235 + ).

https://doi.org/10.1017/prm.2018.43 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2018.43

674 B. Bektas et al.

Then, by using (56), (53) and the values of §; in (17), we rewrite equation (54) and,
by comparing it with (55), we obtain

= cos(2A +2m/3) —1/V3sin2A +27/3) 1 ~
Pa= 1—2/v/3sin(2A + 27/3) o1 VBCotA)s,
> cos(—2A +27/3) — 1/V/3sin(—2A + 27r/3)

=

1 —2/+/3sin(—2A + 27/3) 3 (1 +V3cot A

Next, we continue the computations in order to determine Bl. For this, we compute

G(F2, E3) in two different ways, once using (12) and once using (9). We obtain,
respectively,

G(Es, Ey) = —%JEl - —%(pzﬁhqél),

and

G(E27 E3) = G((pd27 q52>7 (pd37 q/é3))
= ?)\if(p(@ X a3 + G X 3+ dg X a3 — 202 X [,

B X g — G X B3 + 2Gg X Gz — B2 X ()

q(=p
_ % < (2 1(1 300t2A)) G X @,
1-—

o

1
= —— (1 +cot? A)(2pay x a3, qdn X G3).

2V/3

1
7(1 — 3C0t A)) 6(2 X 643)

w

Hence, comparing both expressions, we get

B

- - 3 _
61 = —70502A Qo X Qg = —Te “ag X as.

Moreover, we also obtain
~ 1
Bo = 2\[( —V/3cot A)e /% sin A(cos ta + sin tars),

B3 = 2\[(1 + V3 cot A)e /% sin A(— sintay + costas).
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We then take the inverse of (52) and deduce

ﬂ _ \/§a2 X (3
' 2v/3e — 2sin(2t) tan(A)’

_ 1 (e o (et wi) cos(20) tan(A)
] o e

X g — 4(V/3 cot(A) cos(2t) + 1)ay — 4v/3sin(2t) cot Aoz;;)7

1 e " (e + wy) cos(2t) tan(A) N
fs = 8 ( (Mu Tt V3ew — sin(2t) tan(A) > :

X a3 — 4v/3 cot(A) sin(2t)as 4 4(1 + V3 cos(2t) cot A)a3>.

By straightforward computations, it now follows

0pr 0B

%—W—Qﬁlxﬁ2:0’
961 0B B
E—E_Qﬁlxﬂii—m
0B3  0fs B
%*E*%%X@*Ov

from which we deduce that the integrability conditions for the immersion ¢ are
satisfied.

3.3.2. Case 2. The minimal surface p(M) is totally geodesic, that is, c = 0. As men-
tioned before, this means that h$; = 0, h3, = ((cos Asin A)/(v/3)). The equations
following from (23) and (24), just like in the first case, give

hiy =0, wi; =0, Wy = H;O\;:?Ma
h?, =0, w} =0, w3y = —h3, cot(2A),
3 5 sin?A 5 2+cos(2A) o7
hip =0, wiy = J3 w31 = Ta
w3, =0, w3 =0, w3y = —h35 cot(2A)
and

Ei(A)=0
E3(A) = his, (58)
E3(A) = —h3,.

In this case, the equations of Codazzi become

V3 V3
El(hgs) = _7@2» El(hgz) = 7@37 E2(h§2) = —E3(h§3) (59)
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and

—1— (14 12(h3y)% 4+ 12(h33)?) cos(2A) + cos(4A) + cos(6A)

+ (B2 (h33) — E3(h3,)) sin(2A) = 0. (60)
In what follows, we are going to introduce new vector fields on M by:
4
Xl - %Elv
2h3,csc? Asec A
Xy = _—22csf/§ "2 By + 2escA Eo, (61)
2h3;csc? A sec A
X3 = ——230835 "C2 By + 2cscA Es.
We can easily check
[X1, Xo] = 2X3,
(X2, X3] = 2Xq, (62)
[X3, X1] = 2Xo.

Taking a canonical metric on M such that X, X5 and X3 have unit length and are
mutually orthogonal, it follows from the Koszul formula that all connection com-
ponents are determined. From (4.1), proposition 5.2 and its preceding paragraph in
8], it follows that we can locally identify M with S* and we can consider X, X»
and X5 as the standard vector fields on S® with

Xl (l’) = l‘i,
Xa(z) = xj, (63)
Xs5(z) = zk.

Using the above formulas, the component p of the map can now be determined
explicitly. First, we write

Dx;p = pa, (64)

for ¢ = 1,2,3, where D denotes the Euclidean covariant derivative. Of course, by
theorem 1, Dx,p = 0. Then, we may compute by (18)

(dp(X2),0) = (20\(;;/\ + 2sinA) E, + (—2 cos A + si\r/1§A> JEs,
(dp(X3),0) = (—%;;)A +2sinA) Es + <2COSA+ Sij?) JE;5
and we see that
VX, (dp(X2),0) = (2dp(X3),0),  VE,(dp(X3),0) = (0,0),
V%, (dp(X3),0) = (—2dp(X2),0), VE,(dp(X2),0) = (0,0), (65)
V%, (dp(X2),0) = (0,0), VX (dp(Xs),0) = (0,0).
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Moreover, it is straightforward to get

(dp(X2),dp(X2)) = (dp(X3),dp(X3)) =4, (dp(Xz),dp(X3)) =0.  (66)

Next, we want to determine a system of differential equations satisfied by as and
az. For this, we consider S? x §? € R* x R*. On the one hand, we use (64) together
with Dx (dp(Y),0) = (Dxdp(Y'),0). On the contrary, we use (8) and, therefore, we
obtain

Xi(a2) = 2as, Xi(az) = —2aq,
Xo(a) =0, Xo(a3) = —ag X as, (67>
Xg(ag) = —Qa3 X (g, Xg(Oég) = 0.

We choose a unit quaternion h such that at the point p(z) = 1 we have
as(1) = —2hjh~",
asz(1) = —2hkh™ 1,
o X ag(1) = 4hih™ .

Using (63), we can check that ap = —2hxjz = h™!, az = —2hxkz~'h~! and ay x
as = 4haiz~"h~! are the unique solutions for the system of differential equations

in (67):
Xi(ag) = X1(=2hajr 'h™t) = —2(hX1(z)jz At 4+ haj Xy (2R
= —dhzkx th!
= 2as3,
Xi(a3) = Xi(=2hzka™'h™) = —2(h Xy (2)ke 'h™" + hak X1 (g )h™Y)
= dhaxjz th!
= —2a,
Xo(as) = Xo(—2hzka™'h™) = —2(hajkz A~ + hak(—j)a"th™1)
= —dhziz th~!
= —og X (3,
Xo(ag) = Xo(—2hajr 'h™t) = =2(hajjz *h™ + haj(—j)a"th™1)
=0,
Xs(as) = X3(—2haka ™ h™') = —2(hakkz " h™' + hak(—k)z~'h™1)
= 0)
X3(ag) = X3(—2hajr 'h™t) = —2(hakjz~'h™' + haj(—k)z~'h™1)
= 4hxiz ' h!
= g X (3.
This in its turn implies
p(z) = —hiziz"'h™! (68)
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is the unique solution of X;(p) = pa; with initial conditions p(1) = 1. Indeed, we
have

X1(p) = Xy (—hiziz"'h™') = 0 = pay,
Xo(p) = Xo(—hiziz™'h™') = 2hizka ' h™*
= (—hiziz7'h7Y)(=2hzjz " h™Y) = pas,
X3(p) = Xs(—hiziz"'h™') = —2hizjz 'h~!
= (=hiziz"*h™ 1) (=2hxkz ™ h™") = pas.
Before we can determine the second component ¢ of the Lagrangian immersion,
we need to explore the Codazzi equations further. First, we look at the system of

differential equations for the function A in (59) and (60). Notice that by using the
relations in (61), we have

X1(A) =0,
Xo(A) = 2h35cscA, (69)
X3(A) = —2h3,cscA,
where the last two equations can be seen as the definition for the functions h3; and
h3,. The first one is, of course, a condition for the unknown function of A. Three

out of the four Codazzi equations then can be seen as integrability conditions for
the existence of a solution of this system, whereas the last one reduces to

Xo(X2(A)) + X3(X3(A)) = (cot(A) — tan(A))((Xa2(A))?
+ (X3(A))?) + 4(1 + 2 cos(2A)) cot(A).
Under the change of variable A = arctan(e??), this equation simplifies to

T
Xa(Xa(B) + Xal(Xa(8) = L2, (70)

Note also that for A = /3, we get the solution corresponding to example (1) in
theorem 2, as it follows. From (61) and (69), we see

Xl EED
4

X2 ﬁEzv
4

Xy=—

Es.
\/§3

This implies that M has constant sectional curvature v/3/4. Hence this corresponds
to example (1) in theorem 2.
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REMARK 1. Note that there exist at least locally many solutions of the system

_ A8
X(Xa(B) + Xa(Xy(3) = 222

This can be seen by choosing special coordinates on the usual S®. We take

X1 = coswcos(t + u),

To = cosvsin(t + u),
t

)
);
)

(

(
23 = sinw cos(u

(

x4 = sinvsin(u — ¢

As given (63), at the point z = (21,22, x3, x4), the vectors in the basis are

Xl(l')

XQ(:E) = (7‘T3a 7254,.%1#82),

(_x2,$1,$47 _'1:3)’

X3(2) = (=24, 73, =2, 21),
it is straightforward to see
ot =Xy,
Ou = cos(2v) X7 + sin(2t) sin(2v) X + cos(2t) sin(2v) X3,
Ov = cos(2t) Xy — sin(2t) X3,

and conversely,

X, = 0t,
_osin(2t) cos(2v)

Xy = Sin(%)au sin(2t) Sin(2v) Ot + cos(2t)0v,
_cos(2t) cos(2v) . .

X3 = Sin(20) Ou — cos(2t) Sin(20) Ot — sin(2t)v.

At last, the equations in (70) become ((9)/(0t))5 = 0 and

2 2

csc2(2v)gT§ + % + 200t(2v)g—€ =2(3¢ % —1). (71)
The above differential equation is an elliptic quasilinear second order PDE. Hence,
we can apply the Cauchy-Kowalevskaya theorem (see [14]). Therefore, if we start
with an analytic regular curve without self-intersections and analytic Cauchy data
along the curve, we locally have a unique (analytic) solution. Given that we can
choose arbitrarily both the curve and the Cauchy data along the curve, locally there
exist many solutions for the system in (71).
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In the following part, we are going to determine the second part of the immersion.
We start with an arbitrary solution of

X1(B) =0,

Xa(X2(8)) + X3(X3(8)) = 2(36%;4[3)

and we are going to find a system of differential equations determining the immer-
sion gq. We define h3, and h3; as in (69) and such that A = arctan(e??). First, we
can write for each of the bases that we took, {E;} and {X;}, the following:

Xi(q) = gp1, Xi(p) =pa, Ei(q) = qB1, Ei(p) = pan,
Xo(q) = qB2, Xa(p) =paz, and  Es(q) =qf2, Ea(p) = pao,
X3(q) = qﬂS’ XS(p) = paag, E3(Q) = qﬁ3, EB(P) = pd37

where a; = 0 and as and ag are as determined previously. Then, we prove as before

V3

Bl B _2sir12AO~l2 X G,
= cos(2A +27/3) — 1//3sin(2A +27/3) _ 1 3

_ = —(1 —V3cot A)as, 72
& 1 —2/v/3sin(2A + 21/3) 2= 5 cot A)az,  (72)

5 cos(—2A +2m/3) —1/V/3sin(-2A+27/3) . 1 cot A\
bs = 1—2/v/3sin(—2A + 27/3) “ 2(1+\/§ tA)%s

and we continue the computations in order to find the system of differential equa-
tions for the immersion ¢ in terms of the basis {X;}. As we identify df (X1) = X3,
we have

Dx, f = (X1(p), X1(q)) = (0,¢81) = X1 @ %El = %(deQBl)'

Therefore, 8; = 4/ V/361. We may compute similarly for Dx, f and Dx, f and find

3 2 13 2 3 _ 1 .

B2 = 2cscA o — ﬁhﬁcsc AsecApy, Gy = —— hajz—th~1,
- 2 ~ ~ 1

B3 = 2cscA B3 — %hgz,,cchA sec ABy, Gy = ——~ hxkz=th™!

and
- 3
01 = fihmixflhfl.
2
Using now relations (72), we may express

Bo = —(1— V3 cot A) hajr= h™' + hi,csc*Asec A hxiz™ h™!,
B3 =—(1+ V3 cot A) hakz *h™1 + thCSC2ASGCA hziz 'hL.
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Finally, as X;(q) = ¢f;, we find

Xi1(q) = —2qhziz=th~t,
Xo(q) = q(h3yesc?Asec A hxiz™"h=! — (1 — v/3cot A) hajz'h~1),
X3(q) = q(h3zcsc?Asec A hxiz 'h=" — (1 + v/3cot A) hzkz *h~1),

which, given (69) and A = arctan(e??), is equivalent to

X1(q) = —2qhxiz=th~1,
X5(q) = ¢(=X3(B)hwiz™ A~ — (1 — /3e=28) hajz—th™1), (73)
X3(q) = q(X2(B) haiz™'h™' — (1 +v3e ) haka~'h™").

By straightforward computations, one may see that X;(X;(¢)) — X;(Xi(¢q)) =
[X, X;](¢) hold for ,j = 1,2,3. Therefore, the immersion f is completely deter-
mined by (68) and (73).

3.3.3. Case 3. The minimal surface p(M) is not totally geodesic, but the map P is
not an immersion. As mentioned before, this means

_sin(2A)

hiy = 74
12 \/g ( )
Therefore, the equations in §3.2 which follow from (23) and (24) become
1+ 2cos(2A)
h2, = —h3,, Wiy = —"— "2 W2 =wd = —h3;cot A,
12 13 12 3 21 31 13
1+ 2cos(2A) 1+ 2cos(2A)
B2, = B3, =0, wd — 2O a1 2COSEA)
11 11 21 23 31 /3
W =wi =0, wiy, = —h3y;cot(2N), wiy = —hi; cot(2A)
and
Ei(A) = h13> Ey(A) = h23, E3(A) = _hg? (75)

Moreover, the equations of Codazzi in (39) yield h3; =0 and, therefore,
w3, = wj; = 0. The first two equations in (40) imply

Ey(h3;) =0 and FE;i(h3,) =0,
while the next three ones vanish identically. The last two equations in (40) become
Ey(h3y) = —E3(h3;) (76)
and

— 1 —[146(h35)? + 6(h33)?] cos 2A + cos 4A + cos 6A
+ 2[—E3(h3y) + E2(h35)]sin2A = 0, (77)
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respectively. The Lie brackets of the vector fields E1, o, E3 give
[Ey, Es] =0,
[Ey, B3] =0,
1+ 2cos(2A)
V3

Next, we take new vector fields X, X5, X3 of the form

[EQ, Eg] = — FEi+ h22 COt(QA)EQ + h23 COt(2A)E3

Xl = Elv
X2 \/é( h23) E1—|— \/5 E2_ \/§ E3 (78)
33/‘*(Snﬂ( A))3/2 31/4, /sin(2A) 31/4,/sin(2A)
3
X5 = 2(h3, + h3) E V2 V2 ..

+ By +
33/4(sin(2A))3/2 " " 314, /sin(2h) | 3Y/4/sin(2A)

We can easily check that X7, Xs] = 0, [X1, X3] = 0 and [X2, X3] = 0, therefore, by
the lemma on page 155 in [3], we know that there exist coordinates {t,u,v} on M
such that

X, = 0t,
X2 = 8u,
= Ov.

Using (75), we obtain:

A _ th + h§3
Y 31/4\/cos Asin A
A — —h3, + his .
Y 31/4/cos Asin A

Furthermore, we express h3, and h3; from the previous relations as

h3s = 231/4(Au — Ay)Veos Asin A,
1
h3s = 531/4(Au + Ay)Vecos Asin A

and therefore, the expression of (78) becomes

X, = Fq,
Aycsc(2A) 1 1
Xy = — B+ By — Es, 79
2 B Ot e hemAl?  3ivesasaaly (™
A,csc(2A 1 1
X3 = ( )El + FEs.

E> +
31/4\/cosAsn A~ 31/4/cos Asin A
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Finally, by straightforward computations, one may see that equation (77) becomes
— V3(A2 4+ A?) cos(2A) + 34 (Ey(Ay) — Es(Ay,)
+ Ey(Ay) + E3(A,))Veos Asin A — 2(sin(2A) + sin(4A)) = 0. (80)
We compute dp(du) and dp(dv):
V3 —2cos (2A + 7T/6)E 2sin (2A +7/3) — V3

Ip (Ou) = =57 /5, /sin(2h) © | 33/4y2,/sin(2A)
2cos(2A—|—27r/3)+1JE 2cos(2A+7/3) —1
33/4y2,/sm(2h) | 33/4y2,/sin(2A)
dp(Dv) = V3 —2cos (2A + 7r/6)E _ 2sin(2A+7/3) — \/§E

33/42./sin(2h) © 3%/4y2,/smn(2h)
2cos (2A +27/3) + 1 B 2cos (2A+7/3) —

33/42/sin(2h) 0 33/4y/2./sin(2A)

and we remark that they are mutually orthogonal and that their length is
((2tan A)/(v/3)). So, as u,v are isothermal coordinates on the surface, for which
(Ou, Ou) = (Ov, dv) = 2¢*, we obtain

JE

tan A
e¥ = ——. 81
v 81

On the one hand, for z = z + Iy as in §3.1, we may compute dp(9z):

Ap(0=) = 3 ldp (9u) — 1 - dp (00)

= e 33/41 SO {(1 - 1) (\/?; — 2cos (2A + %)) FEo

1+ (\/??—2sin<2A+g))E3
(2005 <2A+) +1> JE
(1+1) (200 (2A+ ) I)JE3}.
As
V3 — 2cos (2A+ %) = 25in A(V3sin A + cos A),

2sin (2A—|— g) — V3 =2sinA(cos A — V/3sin A),

2
2 cos <2A+ ;) +1=2sinA(sin A —v3cosA),

2 cos <2A + g) —1=—2sinA(sin A + V3 cos A),

https://doi.org/10.1017/prm.2018.43 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2018.43

684 B. Bektas et al.

we finally have

dp(0z) = 7 33/s4m /:m o) [ (\f 3sin A + cos A) E,
+(1+1) (COSA \fsmA) (sinA—\/gcosA) JEs

—(1+1) (sinA + /3 cos A) JEg] .

Moreover, from (81), it follows that w, = ((1)/(sin(2A)))(A, — iAy).
On the contrary, we may compute V . dp(0z) using the Euclidean connection AVAE

1 e~/ *sin® A (V3 cot A + 3) (A, — iA,)
VE dp(9z) = ———=FE; + E
o p( ) \/g 1 3\4/3511/13/2(2/\) 2
e~/ gin A(A, + iAy) (V3cos A — 3sin A
+ ot A iu v,
3v/3sin/2(2A)
—im /% gin A(Ay, — i, inA — A
N e sin A( iAy,) (V3sin 3cosA) JE,
3v/3sin®/2(2A)

(1/3+i/3)sin A(A, —iA,) (V3sinA + 3cos A)
_ s JEs.
V23 sin (2A)

From the previous computations we see, indeed, that

VE dp(92) = =N + w.dp(dz),

which corresponds to (15). From here, we remark the component in the direction
of the normal N = ¢ (see §3.2) and we see that the choice of coordinates {t,u,v}
following from (78) is the right one, as we have indeed 0(9z,0z) = —1, as in §3.1.
Using (81), together with the fact that by taking the inverse in (79), we have

E, = 0t,
314 /sin(2A) [ A, — A,
E, = Ot + du+ v |,
: 2V2 (\/5 sin(2A) ! U)
3Y4/sin(2A) [ A, + A,
By — — At + u — dv |,
’ 22 (ﬁ sin(2A) B U)

we may prove that equation (80) is equivalent to the Sinh—Gordon equation in (16),
which characterizes the minimal surface.

Reverse construction

Let S be a minimal surface given by p : S — S* C R*, on which we take isothermal
coordinates u and v as in §3.1. Hence, we have a solution w of the Sinh—Gordon
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equation Aw = —8sinhw. Next, we define a function A € (0,7/2) such that

W  tanA

V3

REMARK 2. If w =0, then A=x/3, which corresponds to example (2) in
theorem 2.

We then define a metric on an open part of the unit frame bundle of the surface by
assuming that the vectors

E, = ot,

B, = \/gew/2 (Wv

T o113 \ 23

By — - V/3ew/2 (wv + wy
2v/1 4 3e2v 2V/3

“Ot + Ou + 811) (82)

ot + ou — 61})

form an orthonormal basis. Next, we want to determine the Lagrangian immersion

f:SxI—S*xS?
(U>U7t) = f(U,U,t) = (p(u,v,t),q(u,v,t)),

for which we already know that the first component is the given minimal surface p.
We write for both bases

0 0

at( ) Q/Bh a(p) = paiq, (q) qﬂl, E1 (p) — péy,
S =ah o p)=pos  ad  Eafq) =k, Eap) = pii,
9 9 Es(q) = qfs, FEs(p) = pas.

8v( q) = q0s, %(p) = pas

Note that a; = 0 and as and ag are determined by the minimal surface. In particu-
lar, as and ag are mutually orthogonal imaginary quaternions with length squared
2e“. From the derivates of p in the latter relations together with (82), we obtain

a1 =0,

\/gew/2
Gy = (a2 + ), 83
2 ,714—362“’( 2 3) ( )

B} V3ew/?
(0% g — (X3 ).
? W( 2= )
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We then follow the same steps as in Case 1 and obtain

~ \/ge_w
B =- 12 X0

- \/g(ew/2 _ e—w/2)
[ = e (a2 +az), (84)
- \/g(ew/2 _efw/2)

= — o — Qg ).
b= T 27

Finally, we take the inverse of the matrix which give { E; } on the basis of {9t, du, dv}
in (82) and obtain

V3e v
ﬁl = - 4 Q2 X (3,

—w

%(46“’@2 —4as + wyas X ag),

Pa

—w

B3 = —%(4042 —4e¥ a3 + wyag X az).

By straightforward computations, it now follows that

opr 0B B
ou o R0
IB1 0P B
I
9B 0P B
u v R0

from which we deduce that the integrability conditions for the immersion ¢ are
satisfied.

4. Conclusion

The results in §3.3 can now be summarized in the following theorems.

THEOREM 4. Let w and i be solutions of, respectively, the Sinh—Gordon equation
Aw = —8sinhw and the Liouville equation Ap = —e* on an open simply connected
domain U C C and let p: U — S? be the associated minimal surface with complex
coordinate z such that o(90z,0z) = —1.

Let V. ={(z,t) | z € U,t € R,e“TH —2—2cos(4t) > 0} and let A be a solution of

(2\/56”

— 2sin(2 = et — 2 —2cos(4
Y sin( t)) e cos(4t)
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on V. Then, there exists a Lagrangian immersion f:V —S>xS3:zx—
(p(x),q(x)), where q is determined by

dq _ V3

ot 2v/3e — 2sin(2t) tan A
dq 1/ _, (py + wy) cos(2t) tan A>

a. - o v+ Wy — X
ou 8 (e <H “ V/3ew — sin(2t) tan A s

—4(v3cot Acos(2t) + 1) q ay — 4V/3sin(2t) cot A ¢ ag),

q tig X g,

dq 1 W
%:g(—e <Mu+wu+

(f1y + wy) cos(2t) tan A
V3ew — sin(2t) tan A

)qa2><043

—4v/3cot Asin(2t) q ao + 4(1 + V3 cos(2t) cot A) ¢ ozg),
where ag = Pp,, and ag = Ppy, .

THEOREM 5. Let X1, Xo, X3 be the standard vector fields on S3. Let 3 be a solution
of the differential equations
X1(B) =0,
2(3 — %
X(Xa(B) + Xa(Xy(8) = 2020,

on a connected, simply connected open subset U of S3.
Then there exists a Lagrangian immersion f:U — S* x S3: 2 (p(x),q(x)),
where p(x) = xiz~™" and q is determined by

X1(q) = —2qhxiz=th™1,
Xs(q) = q (= X3(B)hwiz='h™' — (1 — V3e=28) hzja='h™1),
X3(q) = ¢ (Xa2(B) haiz='h™! — (14 V3e 28) hakz~'h~1).
N?())te that in the previous theorem the image of p is a totally geodesic surface
in S°.

THEOREM 6. Let w be a solution of the Sinh—Gordon equation Aw = —8sinhw
on an open connected domain of U in C and let p:U — S® be the associated
minimal surface with complex coordinate z such that 0(0z,0z) = —1. Then, there
exists a Lagrangian immersion f:U x I — S* x S3 : 2 — (p(z),q(x)), where q is
determined by

o _ e

ot = 1 q 0 X (3,

0 e v

aTqL = 7(46“)(]0[2 —4dqo + wyq az X ag),
6(] e v w

i —T(Zlqozg —4e¥qaz +wyuq az X az).

where cg = PPy, and g = PPy .
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THEOREM 7. Let f: M — S? x S3: 2 — (p(x),q(z)) be a Lagrangian immersion
such that p has nowhere maximal rank. Then every point x of an open dense subset
of M has a neighbourhood U such that f|y is obtained as described in theorems 4,
5 or 6.
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