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We study non-totally geodesic Lagrangian submanifolds of the nearly Kähler S3 × S3

for which the projection on the first component is nowhere of maximal rank. We
show that this property can be expressed in terms of the so-called angle functions
and that such Lagrangian submanifolds are closely related to minimal surfaces in S3.
Indeed, starting from an arbitrary minimal surface, we can construct locally a large
family of such Lagrangian immersions, including one exceptional example. We also
show that locally all such Lagrangian submanifolds can be obtained in this way.
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1. Introduction

The nearly Kähler manifolds are almost Hermitian manifolds with almost complex
structure J for which the tensor field ∇̃J is skew-symmetric, where ∇̃ is the Levi
Civita connection. They have been studied intensively in the 1970s by Gray ([12]).
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Nagy ([17,18]) made a further contribution to the classification of nearly Kähler
manifolds and more recently, it has been shown by Butruille ([4]) that the only
homogeneous 6-dimensional nearly Kähler manifolds are the nearly Kähler 6-sphere
S

6, S
3 × S

3, the projective space CP 3 and the flag manifold SU(3)/U(1) × U(1),
where the last three are not endowed with the standard metric. All these spaces
are compact 3-symmetric spaces. Note that in 2014, V. Cortés and J. J. Vásquez
have discovered the first non homogeneous (but locally homogeneous) nearly Kähler
structures in [5], while more recently, the first complete non homogeneous nearly
Kähler structures were discovered on S

6 and S
3 × S

3 in [11].
A natural question for the above mentioned four homogeneous nearly Kähler

manifolds is to study their submanifolds. There are two natural types of subman-
ifolds of nearly Kähler (or more generally, almost Hermitian) manifolds, namely
almost complex and totally real submanifolds. Almost complex submanifolds are
submanifolds whose tangent spaces are invariant under J . For a totally real sub-
manifold, a tangent vector is mapped by the almost complex structure J into a
normal vector. In this case, if additionally, the dimension of the submanifold is half
the dimension of the ambient manifold, then the submanifold is Lagrangian.

Note that the Lagrangian submanifolds of nearly Kähler manifolds are espe-
cially interesting as they are always minimal and orientable (see [9] for S

6 or
[13,20] for the general case). Lagrangian submanifolds of S

6 have been studied by
many authors (see, amongst others, [6,7,9,10,15,19,22,23]), whereas the study
of Lagrangian submanifolds of S

3 × S
3 only started recently. The first examples of

those were given in [16,20]. Moreover, in [8,24], the authors obtained a classifi-
cation of the Lagrangian submanifolds, which are either totally geodesic or have
constant sectional curvature. An important tool in the study in [8,24] is the use of
an almost product structure P on S

3 × S
3, which was introduced in [2]. Its definition

is recalled in §2. The decomposition of P into a tangential part and a normal part
along a Lagrangian submanifold allows us to introduce three principal directions,
E1, E2, E3, with corresponding angle functions θ1, θ2, θ3.

In this paper, we are interested in studying non-totally geodesic Lagrangian sub-
manifolds f : M → S

3 × S
3 : x �→ f(x) = (p(x), q(x)), for which the first component

has nowhere maximal rank. Basic properties of the structure and its Lagrangian sub-
manifolds are given in §2. In §3, we show that in this case θ1 = π/3 (theorem 1) and
p(M) has to be a (branched) minimal surface in S

3 (theorem 3). Conversely, for a
non-totally geodesic minimal surface in S

3 which locally corresponds to a solution of
the Sinh–Gordon equation, Δω = −8 sinh ω, and for an additional arbitrary solution
of the Liouville equation, Δμ = −eμ, we can construct locally a Lagrangian immer-
sion of S

3 × S
3. Thus, we obtain a large class of examples of Lagrangian immersions.

We also obtain that a similar class of Lagrangian immersions can be associated with
a totally geodesic surface in S

3. This last case contains, in particular, the constant
curvature sphere obtained in [8]. Additionally, for each non-totally geodesic mini-
mal surface, we obtain also one exceptional example. In case of the Clifford torus
in S

3, this additional example is the flat Lagrangian torus in S
3 × S

3 discovered in
[8]. We also show that any non-totally geodesic Lagrangian immersion for which
the first component has nowhere maximal rank is obtained by applying one of
the three previously mentioned constructions. The main results are summarized
in §4.
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2. Preliminaries

In this section, we recall the homogeneous nearly Kähler structure of S
3 × S

3 and
we mention some of the known results from [8,24].

By the natural identification T(p,q)(S3 × S
3) ∼= TpS

3 ⊕ TqS
3, we write a tangent

vector at (p, q) as Z(p, q) = (U(p, q), V (p, q)) or simply Z = (U, V ). We regard the
3-sphere as the set of all unit quaternions in H and we use the notations i, j, k to
denote the imaginary units of H. In computations it is often useful to write a tangent
vector Z(p, q) at (p, q) on S

3 × S
3 as (pα, qβ), with α and β imaginary quaternions.

This is also possible for v ∈ TpS
3 as we know that 〈v, p〉 = 0 and, in addition,

for p ∈ S
3 we can always find ṽ ∈ H such that v = pṽ . Moreover, Re(ṽ) = 0 as

0 = 〈p, v〉 = Re(p̄v) = Re(p̄pṽ) = Re(ṽ). We define the vector fields

Ẽ1(p, q) = (pi, 0), F̃1(p, q) = (0, qi),
Ẽ2(p, q) = (pj, 0), F̃2(p, q) = (0, qj),
Ẽ3(p, q) = −(pk, 0), F̃3(p, q) = −(0, qk),

(1)

which are mutually orthogonal with respect to the usual Euclidean product met-
ric on S

3 × S
3. The Lie brackets are [Ẽi, Ẽj ] = −2εijkẼk, [F̃i, F̃j ] = −2εijkF̃k and

[Ẽi, F̃j ] = 0, where

εijk =

⎧⎨
⎩

1, if (ijk) is an even permutation of (123),
−1, if (ijk) is an odd permutation of (123),
0, otherwise.

The almost complex structure J on the nearly Kähler S
3 × S

3 is defined by

J(U, V )(p,q) =
1√
3
(2pq−1V − U,−2qp−1U + V ), (2)

for (U, V ) ∈ T(p,q)(S3 × S
3). The nearly Kähler metric on S

3 × S
3 is the Hermitian

metric associated with the usual Euclidean product metric on S
3 × S

3:

g(Z,Z ′) =
1
2
(〈Z,Z ′〉 + 〈JZ, JZ ′〉) (3)

=
4
3
(〈U,U ′〉 + 〈V, V ′〉) − 2

3
(〈p−1U, q−1V ′〉 + 〈p−1U ′, q−1V 〉),

where Z = (U, V ) and Z ′ = (U ′, V ′). In the first line 〈·, ·〉 stands for the usual
Euclidean product metric on S

3 × S
3 and in the second line 〈·, ·〉 stands for the usual

Euclidean metric on S
3. By definition, the almost complex structure is compatible

with the metric g.
From [2], we have the following lemma.

Lemma 1. The Levi-Civita connection ∇̃ on S
3 × S

3 with respect to the metric g is
given by

∇̃Ẽi
Ẽj = −εijkẼk ∇̃Ẽi

F̃j =
εijk

3
(Ẽk − F̃k)

∇̃F̃i
Ẽj =

εijk

3
(F̃k − Ẽk) ∇̃F̃i

F̃j = −εijkF̃k.
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Then we have

(∇̃Ẽi
J)Ẽj = − 2

3
√

3
εijk(Ẽk + 2F̃k), (∇̃Ẽi

J)F̃j = − 2
3
√

3
εijk(Ẽk − F̃k),

(∇̃F̃i
J)Ẽj = − 2

3
√

3
εijk(Ẽk − F̃k), (∇̃F̃i

J)F̃j = − 2
3
√

3
εijk(2Ẽk + F̃k).

(4)

Let G := ∇̃J . Then G is skew-symmetric and satisfies

G(X,JY ) = −JG(X,Y ), g(G(X,Y ), Z) + g(G(X,Z), Y ) = 0, (5)

for any vectors fields X,Y,Z tangent to S
3 × S

3. Therefore, S
3 × S

3 equipped with
g and J , becomes a nearly Kähler manifold.
The almost product structure P introduced in [2] is defined as

PZ = (pq−1V, qp−1U), ∀Z = (U, V ) ∈ T(p,q)(S3 × S
3) (6)

plays an important role in the study of the Lagrangian submanifolds of the nearly
Kähler S

3 × S
3. It has the following properties:

P 2 = Id (P is involutive),

PJ = −JP (P and J anti-commute),

g(PZ,PZ ′) = g(Z,Z ′) (P is compatible with g),

g(PZ,Z ′) = g(Z,PZ ′) (P is symmetric).

Moreover, the almost product structure P can be expressed in terms of the usual
product structure QZ = Q(U, V ) = (−U, V ) and vice versa:

QZ =
1√
3
(2PJZ − JZ),

PZ =
1
2
(Z −

√
3QJZ).

Next, we recall the relation between the Levi-Civita connections ∇̃ of g and ∇E of
the Euclidean product metric 〈·, ·〉.

Lemma 2 [8]. The relation between the nearly Kähler connection ∇̃ and the
Euclidean connection ∇Eis

∇E
XY = ∇̃XY +

1
2
(JG(X,PY ) + JG(Y, PX)).

We recall here a useful formula, already known in [8].
Let D be the Euclidean connection on R

8. For vector fields X = (X1,X2) and
Y = (Y1, Y2) on S

3 × S
3, we may decompose DXY along the tangent and the normal
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directions as follows:

DXY = ∇E
XY +

1
2
〈DXY, (p, q)〉(p, q) +

1
2
〈DXY, (−p, q)〉(−p, q). (7)

Here, notice the factor 1/2 due to the fact that (p, q) and (−p, q) have length
√

2.
Moreover, as 〈Y, (p, q)〉 = 0, (7) is equivalent with

DXY = ∇E
XY − 1

2
〈Y,X〉(p, q) − 1

2
〈Y, (−X1,X2)〉(−p, q).

In the special case that Y2 = 0, the previous formula reduces to

DX(Y1, 0) = ∇E
X(Y1, 0) − 〈X1, Y1〉(p, 0). (8)

We find it appropriate here to prove an additional important formula not explicitly
mentioned in [2], that allows us to evaluate G for any tangent vector fields.

Proposition 1. Let X = (pα, qβ), Y = (pγ, qδ) ∈ T(p,q)S
3 × S

3. Then

G(X,Y ) =
2

3
√

3
(p(β × γ + α × δ + α × γ − 2β × δ),

× q(−α × δ − β × γ + 2α × γ − β × δ)). (9)

Proof. As α is an imaginary unit quaternion, we may write α = α1 · i + α2 · j +
α3 · k and similarly for β, γ, δ. Then, using (1), we write for more convenience in
computations X = Uα + Vβ , where Uα = α1Ẽ1 + α2Ẽ2 − α3Ẽ3 and Vβ = β1F̃1 +
β2F̃2 − β3F̃3. Similarly, Y = Uγ + Vδ. We now use the relations in (4) and compute

G(Uα, Vβ) =
2

3
√

3
(Uα×β − Vα×β), G(Uα, Uβ) =

2
3
√

3
(Uα×β + 2Vα×β).

As PUα = Vα, we obtain

G(Vα, Vβ) = − 2
3
√

3
(Vα×β + 2Uα×β).

Finally, by linearity, we get the relation in (9). �

From now on we will restrict ourselves to 3-dimensional Lagrangian submanifolds
M of S

3 × S
3. It is known from [8,24] that, as the pull-back of T (S3 × S

3) to
M splits into TM ⊕ JTM , there are two endomorphisms A,B : TM → TM such
that the restriction P |TM of P to the submanifold equals A + JB, that is PX =
AX + JBX, for all X ∈ TM . Note that the previous formula, together with the
fact that P and J anti-commute, also determines P on the normal space by PJX =
−JPX = BX − JAX. In addition, from the properties of J and P it follows that A
and B are symmetric operators which commute and satisfy moreover, A2 + B2 = Id
(see [8]). Hence A and B can be diagonalized simultaneously at a point p in M and
there is an orthonormal basis e1, e2, e3 ∈ TpM such that

Pei = cos(2θi)ei + sin(2θi)Jei. (10)

The functions θi are called the angle functions of the immersion. Next, for a point
p belonging to an open dense subset of M on which the multiplicities of the eigen-
values of A and B are constant (see [21]), we may extend the orthonormal basis
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e1, e2, e3 to a frame on a neighbourhood in the Lagrangian submanifold. Finally, tak-
ing into account the properties of G, we know that there exists a local orthonormal
frame {E1, E2, E3} on an open subset of M such that

AEi = cos(2θi)Ei, BEi = sin(2θi)Ei (11)

and

JG(Ei, Ej) =
1√
3
εijkEk. (12)

The following result is known ([8]):

Proposition 2. The sum of the angles θ1 + θ2 + θ3 is zero modulo π.

For the Levi-Civita connection ∇ on M, we introduce (see [8]) the functions ωk
ij

satisfying

∇Ei
Ej =

3∑
k=1

ωk
ijEk and ωk

ij = −ωj
ik.

As usual, we write:

∇̃XY = ∇XY + h(X,Y ),

∇̃XJY = −SJY X + ∇⊥
XJY,

where h is the second fundamental form on M and SJY is the shape operator in the
direction of JY . As for the Lagrangian manifolds of a strict 6-dimensional nearly
Kähler manifold, we have G(X,Y ) that is normal (see [13,20]) and follows

∇⊥
XJY = J∇XY + G(X,Y ),

Jh(X,Y ) = −SJY X.

The latter equation implies, in particular, that the cubic form g(h(X,Y ), JZ) is
totally symmetric. We denote by hk

ij the components of this cubic form on M :

hk
ij = g(h(Ei, Ej), JEk). (13)

3. Results

3.1. Elementary properties of orientable minimal surfaces in S
3

We recall some elementary properties of minimal surfaces. Let p : S → S
3 ⊂ R

4

be an oriented minimal surface. We are going to check that the immersion either
admits local isothermal coordinates for which the conformal factor satisfies the
Sinh–Gordon equation or is totally geodesic. First, we take isothermal coordi-
nates u, v such that ∂u, ∂v is positively oriented, 〈∂u, ∂u〉 = 〈∂v, ∂v〉 = 2eω and
〈∂u, ∂v〉 = 0 in a neighbourhood of a point of S. As it is often more useful to
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use complex notation, we write z = u + Iv and consider ∂z = 1/2(∂u − I∂v) and
∂z̄ = 1/2(∂u + I∂v). Note that we use I here in order to distinguish between the
i, j, k introduced in the quaternions. We also extend everything in a linear way in
I. This means that 〈∂z, ∂z〉 = 〈∂z̄, ∂z̄〉 = 0 and 〈∂z, ∂z̄〉 = eω. If we write ∂u = pα
and ∂v = pβ, the unit normal is given by N = p((α × β)/(2eω)). It is elementary
to check that this is independent of the choice of complex coordinate and that
the matrix (p((∂u)/(|∂u|))((∂v)/(|∂v|)) N) belongs to SO(4). We denote by σ the
component of the second fundamental form in the direction of N . Remark that
with this choice, the minimality of the surface implies σ(∂z, ∂z̄) = 0 and we may
determine the components of the connection ∇ on the surface:

∇∂z∂z = ωz∂z, ∇∂z∂z̄ = ∇∂z̄∂z = 0 and ∇∂z̄ = ωz̄∂z̄. (14)

The Codazzi equation of a surface in S
3 states that

∇σ(∂z, ∂z̄, ∂z) = ∇σ(∂z̄, ∂z, ∂z).

So it follows that ∂z̄(σ(∂z, ∂z)) = 0. Hence σ(∂z, ∂z) is a holomorphic function.
Then we have two cases:
Case 1. If σ(∂z, ∂z) = 0 on an open set, then by conjugation σ(∂z̄, ∂z̄) = 0 and
therefore, using the analyticity of a minimal surface, σ = 0 everywhere.
Case 2. If σ(∂z, ∂z) 
= 0, then there exists a function g(z) such that σ(∂z, ∂z) = g(z).
Away from isolated points, we can always make a change of coordinates if necessary
such that σ(∂z, ∂z) = −1. Notice that by conjugation, we also get σ(∂z̄, ∂z̄) = −1.
Such a change of coordinates is unique up to translations and replacing z by −z.
Next, given the immersions p : S → S

3(1)
i

↪→ R
4, from the Gauss formula, we

obtain:

pzz = ωzpz − N,

pzz̄ = −eωp, (15)

pz̄z̄ = ωz̄pz̄ − N,

where N is the normal on S
3 and Nz = e−ωpz̄, Nz̄ = e−ωpz. Therefore,

pzzz̄ = (ωzz̄ − e−ω)pz − ωze
ωp, pzz̄z = −eωωzp − eωpz,

which shows that ω satisfies

ωzz̄ = −2 sinh ω ⇐⇒
Δω = −8 sinh ω (Sinh–Gordon equation). (16)

Notice that by Δω, we denote the Euclidean Laplacian of ω in R
2 = C.

Let P be the lift of the minimal immersion to the immersion of the frame bundle
in SO(4), that is,

P : US → SO(4) : w �→ (p w J̃w N),
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where US denotes the unit tangent bundle of S and J̃ denotes the natural complex
structure on an orientable surface. In terms of our chosen isothermal coordinate
this map can be parametrized by

P(u, v, t) =
(

p(u, v), cos t
pu

| pu | + sin t
pv

| pv | ,− sin t
pu

| pu | + cos t
pv

| pv | , N(u, v)
)

,

for some real parameter t. Note that we have the frame equations which state

dP = PΩt = −PΩ,

where in terms of the coordinates u, v and t the matrix Ω is given by

⎛
⎜⎜⎝

0
√

2eω/2(cos(t)du + sin(t)dv)
−√

2eω/2(cos(t)du + sin(t)dv) 0
−√

2eω/2(cos(t)dv − sin(t)du) − 1
2 (ωudv − ωvdu) − dt

0
√

2e−ω/2(cos(t)du − sin(t)dv)

√
2eω/2(cos(t)dv − sin(t)du) 0

1
2 (ωudv − ωvdu) + dt −√

2e−ω/2(cos(t)du − sin(t)dv)
0

√
2e−ω/2(sin(t)du + cos(t)dv)

−√
2e−ω/2(sin(t)du + cos(t)dv) 0

⎞
⎟⎟⎠.

3.2. From the Lagrangian immersion to the minimal surface

Now we will consider Lagrangian submanifolds in the nearly Kähler S
3 × S

3. We
write the Lagrangian submanifold M as

f : M → S
3 × S

3

x �→ f(x) = (p(x), q(x)),

and we assume that the first component has nowhere maximal rank. We have the
following:

Theorem 1. Let

f : M → S
3 × S

3

x �→ f(x) = (p(x), q(x)),

be a Lagrangian immersion such that p : M → S
3 has nowhere maximal rank. Then

π/3 is an angle function up to a multiple of π. The converse is also true.

Proof. It is clear that p has nowhere maximal rank if and only if there exists a non
zero vector field X such that dp(X) = 0. As usual, we identify df(X) with X, so we
have that X = df(X) = (dp(X), dq(X)) and QX = (−dp(X), dq(X)). Therefore p
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has nowhere maximal rank if and only if

X = QX

=
1√
3
(2PJX − JX)

=
1√
3
(2BX − 2JAX − JX).

Comparing tangent and normal components, we see that this is the case if and
only if

AX = −1
2
X BX =

√
3

2
X.

So we see that X is an eigenvector of both A and B and that the corresponding
angle function is π/3 (up to a multiple of π). �

For the remainder of the paper, we will consider Lagrangian immersions for which
the map p has nowhere maximal rank. In view of the previous lemma, this means
that one of the angle functions is constant, namely θ1 = π/3. Then using that the
angles are only determined up to a multiple of π and given that 2θ1 + 2θ2 + 2θ3 is
a multiple of 2π, we may write

2θ1 =
2π

3
,

2θ2 = 2Λ +
2π

3
,

2θ3 = −2Λ +
2π

3
,

(17)

for Λ is an arbitrary function which takes values in [−π/2, π/2]. If necessary by inter-
changing E2, E3 with −E3, E2, we may assume that Λ � 0 and, therefore, Λ takes
values only in [0, π/2]. Similarly, if necessary interchanging E1, E3 by −E1,−E3,
we may also assume that h3

13 � 0 (see equation (13)).
Note, however, that at the points where Λ is 0 or π/2 modulo π, we have that two

of the angle functions coincide. If this is true on an open set, it follows from [24] that
the Lagrangian submanifold is totally geodesic and is congruent either with f : S

3 →
S

3 × S
3 : u �→ (1, u) or f : S

3 → S
3 × S

3 : u �→ (uiu−1, u−1). So by restricting to an
open dense subset of M which we denote by M∗, we may actually assume that
Λ ∈ (0, π/2), in which case the function Λ, as well as the vector fields E1, E2, E3

are differentiable.
Notice that the case when Λ is constant is treated in [1], where such Lagrangian

submanifolds are determined to be either totally geodesic or of constant sectional
curvature. As we consider here Λ ∈ (0, π/2), the only possibility is Λ = π/3, in which
case the Lagrangian submanifold is not totally geodesic, but of constant sectional
curvature.
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Theorem 2. Let M be a Lagrangian submanifold of constant sectional curvature
in the nearly Kähler S

3 × S
3. If M is not totally geodesic, then up to an isome-

try of the nearly Kähler S
3 × S

3, M is locally congruent with one of the following
immersions:

(1) f : S
3 → S

3 × S
3 : u �→ (uiu−1, uju−1),

(2) f : R
3 → S

3 × S
3 : (u, v, w) �→ (p(u,w), q(u, v)), where p and q are constant

mean curvature tori in S
3 is given by

p(u,w) = (cos u cos w, cos u sin w, sin u cos w, sin u sin w),

q(u, v) =
1√
2

(cos v (sin u + cos u) , sin v (sin u + cos u) ,

cos v (sin u − cos u) , sin v (sin u − cos u)).

Note that these are precisely the two Lagrangian immersions with constant sectional
curvature obtained in [8]. These two examples will appear as special solutions in
respectively, Case 2 and Case 3. However, we will mainly focus on the case that Λ
is not constant.

In the following, we will identify a tangent vector X in TxM with its image
through df in T(p,q)S

3 × S
3, that is, X ≡ df(X) = (dp(X), dq(X)), and we can write

QX ≡ Q(df(X)) = (−dp(X), dq(X)). Therefore, if we see dp(X) projected on the
first factor of S

3 × S
3 , that is dp(X) ≡ (dp(X), 0), we can write

dp(X) =
1
2
(X − QX). (18)

We use relations (10) and (17) to compute PE1 = −1/2E1 +
√

3/2JE1. As men-
tioned before, this is equivalent with stating that dp(E1) = 0 and that p has nowhere
maximal rank. By straightforward computations, we obtain

(dp(E2), 0) =
(

1
2
− 1√

3
sin(2Λ +

2π

3
)
)

E2 +
1√
3

(
1
2

+ cos(2Λ +
2π

3
)
)

JE2,

(dp(E3), 0) =
(

1
2
− 1√

3
sin(−2Λ +

2π

3
)
)

E3 +
1√
3

(
1
2

+ cos(−2Λ +
2π

3
)
)

JE3

(19)
and

〈dp(E2), dp(E2)〉 = sin2 Λ,

〈dp(E3), dp(E3)〉 = sin2 Λ, (20)

〈dp(E2), dp(E3)〉 = 0.

We denote

v2 := dp(E2) ≡ (dp(E2), 0),

v3 := dp(E3) ≡ (dp(E3), 0), (21)

ξ =
1√
3
E1 − JE1

https://doi.org/10.1017/prm.2018.43 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.43


Lagrangian submanifolds of the nearly Kähler S
3 × S

3 665

and we may easily see that Qξ = −ξ, that is, ξ lies entirely on the first fac-
tor of S

3 × S
3. Moreover, 〈vi, vj〉 = δij sin Λ, 〈ξ, v2〉 = 〈ξ, v3〉 = 0 and 〈ξ, ξ〉 = 1.

Therefore, p(M) is a surface in S
3 and ξ can be seen as a unit normal to the

surface.
As far as the Lagrangian immersion itself is concerned, we also have due to the
minimality that

h1
11 + h2

12 + h3
13 = 0,

h2
11 + h2

22 + h3
23 = 0,

h3
11 + h3

22 + h3
33 = 0.

(22)

From [8], we know that the covariant derivatives of the endomorphisms A and B
are

(∇XA)Y = BSJXY − Jh(X,BY ) +
1
2
(JG(X,AY ) − AJG(X,Y )), (23)

(∇XB)Y = −ASJXY + Jh(X,AY ) +
1
2
(JG(X,AY ) − AJG(X,Y )). (24)

We are going to use the definition of ∇A and ∇B in the previous expressions and
then evaluate them for different vectors in the basis in order to get information
about the functions ωk

ij and hk
ij . For X = Y = E1 in (23), we obtain

h2
12 = −h3

13,

ω2
11 = h2

11 cot Λ,

ω3
11 = −h3

11 cot Λ.

(25)

If we take X = E1 and Y = E2 in (23) and (24), we see

E1(Λ) = h3
13, (26)

ω3
12 =

√
3

6
− h3

12 cot 2Λ (27)

and, for X = E2 and Y = E1 in (23), we obtain

h2
11 = 0, (28)

ω2
21 = − cot Λh3

13, (29)

ω3
21 = −

√
3

6
− h3

12 cot Λ. (30)

Then we choose successively X = E3, Y = E1, X = E2, Y = E3 and X = E3,
Y = E2 in relations (23) and (24) and obtain

h3
11 = 0, (31)

ω2
31 =

√
3

6
+ cot Λh3

12, (32)
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ω3
31 = − cot Λh3

13, (33)

ω3
22 = − cot 2Λh3

22, (34)

ω3
32 = − cot 2Λh3

23, (35)

E2(Λ) = h3
23, (36)

E3(Λ) = −h3
22. (37)

We can easily see from (25), (28) and (31) that

ω2
11 = 0 and ω3

11 = 0

and, if we consider as well the relations in (22), we have

h3
33 = −h3

22, h1
11 = 0 and h2

22 = −h3
23.

Later on, we will also need to study the Codazzi equations for M . From [8] we
know their general form:

∇h(X,Y,Z) −∇h(Y,X,Z) =
1
3
(g(AY,Z)JBX − g(AX,Z)JBY

− g(BY,Z)JAX + g(BX,Z)JAY ). (38)

We are going to use the definition for ∇h in the previous relation and take different
values for the vectors X,Y and Z. Thus, we evaluate it successively for E1, E2, E1;
E1, E2, E2; E1, E3, E3; E1, E3, E2 and E2, E3, E3 and we obtain the following
relations, respectively:

E1(h3
13) =

1
3
(−

√
3h3

12 + 6(h3
13)

2 cot Λ − 6(h3
12)

2csc(2Λ) + sin(2Λ)),

E1(h3
12) =

1
3
h3

13(
√

3 + 9h3
12 cot Λ + 3h3

12 tan Λ), (39)

E2(h3
13) − E1(h3

23) =
1√
3
h3

22 + h3
12h

3
22 cot Λ − h3

13h
3
23 cot Λ − h3

12h
3
22 cot(2Λ),

E1(h3
22) − E2(h3

12) = h3
13h

3
22(2 cot Λ − tan Λ)

+
1
6
h3

23(2
√

3 − 3h3
12 cot Λ + 9h3

12 tan Λ),

E3(h3
12) − E1(h3

23) =
1√
3
h3

22 + (h3
12h

3
22 − h3

13h
3
23) cot Λ

− (3h3
12h

3
22 + 2h3

13h
3
23) cot(2Λ),
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E3(h3
13) + E1(h3

22) =
1√
3
h3

23 + h3
13h

3
22 cot Λ + h3

12h
3
23 cot Λ − h3

12h
3
23 cot(2Λ), (40)

E2(h3
13) − E3(h3

12) = 2(h3
12h

3
22 + h3

13h
3
23) cot(2Λ),

E3(h3
22) − E2(h3

23) = −1
2
(8(h3

12)
2 + 4(h3

13)
2 + 3((h3

22)
2 + (h3

23)
2)) cot Λ

− 1
3
(
√

3h3
12 + sin 4Λ) +

3
2
((h3

22)
2 + (h3

23)
2) tan Λ,

E2(h3
22) + E3(h3

23) = −1
3
h3

13(
√

3 + 6h3
12 cot Λ).

Theorem 3. Let

f : M → S
3 × S

3

x �→ f(x) = (p(x), q(x)),

be a Lagrangian immersion such that p : M → S
3 has nowhere maximal rank.

Assume that M is not totally geodesic. Then p(M) is a (branched) minimal surface
in S

3. Moreover,

P̃ : M∗ → SO(4) : x �→
(
p(x)

v2

sin Λ
v3

sin Λ
ξ
)
,

where v2, v3 and ξ are defined by (21), is a map which is contained into the frame
bundle over the minimal surface p.

Proof. Recall that dp(E1) = 0, hence p(M) is a surface. Denoting the second funda-
mental form of the surface in the direction of ξ by σ, a straightforward computation
yields

σ(E2, E2) = h3
13,

σ(E2, E3) = σ(E3, E2) =
1√
3

cos Λ sin Λ − h3
12,

σ(E3, E3) = −h3
13.

(41)

As dp(E2) and dp(E3) are orthogonal and have the same length, the above formulas
indeed imply that the surface is minimal.
Moreover, we also see that the surface is totally geodesic if and only if h3

13 = 0
and h3

12 = 1/
√

3 cos Λ sin Λ. Note also that if we write (dp(E2), 0) = (pα, 0) and
(dp(E3), 0) = (pγ, 0), we have

G((dp(E2), 0), (dp(E3), 0)) = G((pα, 0), (pγ, 0))

=
2

3
√

3
(p(α × γ), 2q(α × γ)).

Therefore,

(p(α × γ), 0) =
3
√

3
4

(G((dp(E2), 0), (dp(E3), 0)) − Q(G((dp(E2), 0), (dp(E3), 0)))).
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A straightforward computation, using (19) and (12), shows that this gives

(p(α × γ), 0) = (sin Λ)2ξ.

Therefore, ξ corresponds with the normal N on the surface. �

3.3. The reverse construction

In the following, we will separate the study of the submanifold into three cases,
according to whether the surface is totally geodesic or not and whether the map to
the frame bundle is an immersion or not.

3.3.1. Case 1. p(M) is not a totally geodesic surface and the map P̃ is an immer-
sion. In that case, we can identify M with the frame bundle on the minimal surface
induced earlier. Recall that

P̃ : x ∈ M∗ �→
(
p

v2

sin Λ
v3

sin Λ
ξ
)
.

Writing again dP̃ = −P̃Ω̃, we can express the matrix Ω̃ in terms of {E1, E2, E3}
by

⎛
⎜⎜⎜⎜⎜⎜⎝

0 sin(Λ)ω2

− sin(Λ)ω2 0

− sin(Λ)ω3 −
(

1√
3

+ h3
12csc(2Λ)

)
ω1 − h3

22csc(2Λ)ω2 − h3
23csc(2Λ)ω3

0
(
−cos Λ√

3
+ h3

12cscΛ
)

ω3 − h3
13csc(Λ)ω2

sin(Λ)ω3 0(
1√
3

+ h3
12csc(2Λ)

)
ω1 h3

13csc(Λ)ω2

+h3
22csc(2Λ)ω2 + h3

23csc(2Λ)ω3 +
(

cos Λ√
3

− h3
12cscΛ

)
ω3

0
(

cos Λ√
3

− h3
12csc(Λ)

)
ω2

−h3
13csc(Λ)ω3(

−cos Λ√
3

− h3
12csc(Λ)

)
ω2 − h3

13csc(Λ)ω3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where ωi(Ej) = δij . The above matrix implies that the map P̃ into SO(4) ⊂ R
16 is

an immersion if and only if

1√
3

+ h3
12csc(2Λ) 
= 0.

As it is an immersion, in view of the dimensions, its image is an open part of the
frame bundle and we can identify M with an open part of the frame bundle on the
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minimal surface. Moreover, we can write
v2

sin Λ
= cos(t + γ(t, u, v))

pu

| pu | + sin(t + γ(t, u, v))
pv

| pv | ,

where γ is some function. As P̃ is an immersion, we have t + γ(t, u, v) that depends
on t and can be taken as the new variable t on the frame bundle. Doing so, we have
P̃ = P and Ω̃ = Ω (for P,Ω as in §3.1). Comparing both expressions for the matrix
Ω, we deduce

ω1 =
1

1/
√

3 + h3
12csc2Λ

(
−
(√

2
csc2Λ
sin Λ

eω/2(h3
22 cos t − h3

23 sin t) +
1
2
ωv

)
du

−
(√

2
csc2Λ
sin Λ

eω/2(h3
22 sin t + h3

23 cos t) − 1
2
ωu

)
dv + dt

)
,

ω2 =
1

sin Λ

√
2eω/2(cos(t)du + sin(t)dv),

ω3 =
1

sin Λ

√
2eω/2(cos(t)dv − sin(t)du),

as well as ⎧⎪⎪⎨
⎪⎪⎩

e−ω cos(2t) + h3
13

1
sin2 Λ

= 0,

e−ω sin(2t) +
(

h3
12cscΛ − cos Λ√

3

)
1

sin Λ
= 0,

(42)

which implies ⎧⎪⎨
⎪⎩

h3
13 = −e−ω cos(2t) sin2 Λ,

h3
12 =

(
−e−ω sin(2t) sin Λ +

cos Λ√
3

)
sin Λ.

(43)

We may express E1, E2, E3 with respect to the basis {∂t, ∂u, ∂v} as follows. For Ei =
ai∂t + bi∂u + ci∂v, we use the previously obtained expressions of ωj in ωj(Ei) = δij

and by straightforward computations we get

E1 =
(

1√
3

+ h3
12csc(2Λ)

)
∂t,

E2 =
(

csc(2Λ)h3
22 +

1
2
√

2
sin Λe−ω/2(cos(t)ωv − sin(t)ωu)

)
∂t

+
e−ω/2 cos t sin Λ√

2
∂u +

e−ω/2 sin t sin Λ√
2

∂v, (44)

E3 =
(

csc(2Λ)h3
23 −

1
2
√

2
sin Λ e−ω/2(cos(t)ωu + sin(t)ωv)

)
∂t

− e−ω/2 sin t sin Λ√
2

∂u +
e−ω/2 cos t sin Λ√

2
∂v.

In order to be able to proceed with the reverse construction, that is, in order to
be able to construct a Lagrangian immersion starting from the minimal surface, we
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need to express Λ, h3
22 and h3

23 in terms of the variables t, u, v. Remark that, as
E1(Λ) = h3

13, we may use (43) and the expression of E1 in (44) to determine how
Λ depends on the variable t. We get

Λt = − 2 cos(2t) sin2 Λ√
3eω − 2 cos t sin t tan Λ

. (45)

In order to solve the above differential equation, we use (45) to compute the
derivative of the expression ((

√
3eω)/(tan Λ)) − sin(2t):

∂t

(√
3eω

tan Λ
− sin(2t)

)2

= 2 sin(4t),

which, by integration, gives(√
3eω

tan Λ
− sin(2t)

)2

= −1
2

cos(4t) +
c1

4
,

where c1 does not depend on t. Notice that this implies

tan Λ =
2
√

3eω

ε1

√
c1 − 2 cos(4t) + 2 sin(2t)

, (46)

where ε1 = ±1 and, at the same time, the surface is defined on an open set where
c1 − 2 cos(4t) � 0. Note that as the above expression contains a square root which
would complicate simplifications later on, we will avoid its use as much as possible.
For later use, remark that we can write(

2
√

3eω

tan Λ
− 2 sin(2t)

)2

= c1 − 2 cos(4t). (47)

As we can rewrite the above equation as(
2
√

3eω

tan Λ
− 2 sin(2t)

)2

+ 2 cos(4t) + 2 = c1 + 2,

we see that c1 � −2 and equality can hold if t ∈ {±π/4,±5π/4} and
((2

√
3eω)/(tan Λ)) ± 2 = 0. So on an open dense subset we can write

c1 = eω+μ − 2.

Combining this with the previous expression of c1 and taking the derivative with
respect to u and v, we can compute

Λu = − sin2 Λ
(
μu + eω cot Λ

(
3eω cot Λ(μu − ωu) − 2

√
3μu sin(2t)

)
+ ωu

)
6e2ω cot Λ − 2

√
3eω sin(2t)

Λv = − sin2 Λ
(
μv + eω cot Λ

(
3eω cot Λ(μv − ωv) − 2

√
3μv sin(2t)

)
+ ωv

)
6e2ω cot Λ − 2

√
3eω sin(2t)

.
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Using this, together with (44), we can solve in (36) and (37), for h3
22 and h3

23.
This gives us

h3
22 =

e−3ω/2 sin2 Λ
6
√

2

(
3eω cos Λ((ωu − μu) sin t + (μv − ωv) cos t)

−
√

3 sin Λ((μu + ωu) cos(3t) + (μv + ωv) sin(3t))
)
,

h3
23 =

e−3ω/2 sin2 α

6
√

2

(√
3 sin Λ((μu + ωu) sin(3t) + (−μv − ωv) cos(3t))

− 3eω cos Λ(μu − ωu) cos t − 3eω cos Λ(μv − ωv) sin t) .

In order to determine a differential equation for the function μ, we now apply the
previously obtained Codazzi equations for M . By (44), it turns out (39) and the first
five equations of (40) are trivially satisfied. Recall from (16) that Δω = −8 sinh ω.
The seventh equation of (40) reduces to

Δμ = −4eω(cos(2Λ) + 2)csc2Λ + 8
√

3 cot Λ sin(2t) + 8 sinh ω. (48)

A straightforward computation, using the definition of μ and (47) shows that this
reduces to

Δμ = −eμ. (49)

Further on, with these new notations, we may see by straightforward computations
that the sixth equation of (40) is now trivially satisfied.

Reverse construction
We denote by p : S → S

3 ⊂ R
4 a given minimal surface S which is not totally

geodesic, on which we take suitable isothermal coordinates as introduced before.
Hence we have a solution ω of Δω = −8 sinh ω. Additionally, we take a solution of

Δμ = −eμ (50)

and we take the open part of the frame bundle such that

(
2
√

3eω

tan Λ
− 2 sin(2t)

)2

= eω+μ − 2 − 2 cos(4t) (51)

has a solution for the function Λ on an open domain. We define

h3
13 = −eω cos(2t) sin2 Λ,

h3
12 =

(
−e−ω sin(2t) sin Λ +

cos Λ√
3

)
sin Λ,
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h3
22 =

e−3ω/2 sin2 Λ
6
√

2

(
3eω cos Λ((ωu − μu) sin t + (μv − ωv) cos t)

−
√

3 sin Λ((μu + ωu) cos(3t) + (μv + ωv) sin(3t))
)
,

h3
23 =

e−3ω/2 sin2 Λ
6
√

2

(√
3 sin Λ((μu + ωu) sin(3t) + (−μv − ωv) cos(3t))

− 3eω cos Λ(μu − ωu) cos t − 3eω cos Λ(μv − ωv) sin t)

and we define as well a metric on the open part of the frame bundle by assuming
that the vectors

E1 =
1
2

(√
3 − 2e−ω tan Λ sin t cos t

)
∂t,

E2 = −e−3ω/2 sin Λ
12
√

2

(√
3 tan Λ((μu + ωu) cos(3t) + (μv + ωv) sin(3t))

+ 3eω((μu + ωu) sin t + (−μv − ωv) cos t)
)
∂t

+
e−ω/2 cos t sin Λ√

2
∂u +

e−ω/2 sin t sin Λ√
2

∂v, (52)

E3 =
e−3ω/2 sin Λ

12
√

2

(√
3 tan Λ((μu + ωu) sin(3t) + (−μv − ωv) cos(3t))

− 3eω((μu + ωu) cos t + (μv + ωv) sin t)
)
∂t

− e−ω/2 sin t sin Λ√
2

∂u +
e−ω/2 cos t sin Λ√

2
∂v

form an orthonormal basis.
We now want to determine the Lagrangian immersion

f : S × I → S
3 × S

3

(u, v, t) �→ f(u, v, t) = (p(u, v, t), q(u, v, t)).

We already know that the first component is the given minimal surface p. We write
for both bases

∂

∂t
(q) = qβ1,

∂

∂t
(p) = pα1,

∂

∂u
(q) = qβ2,

∂

∂u
(p) = pα2,

∂

∂v
(q) = qβ3,

∂

∂v
(p) = pα3,

and

E1(q) = qβ̃1, E1(p) = pα̃1,

E2(q) = qβ̃2, E2(p) = pα̃2,

E3(q) = qβ̃3, E3(p) = pα̃3.

Note that α1 = 0 and α2 and α3 are determined by the minimal surface. In particu-
lar, α2 and α3 are mutually orthogonal imaginary quaternions with length squared
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2eω. From (52), we then get

α̃1 = 0,

α̃2 =
e−ω/2 cos t sin Λ√

2
α2 +

e−ω/2 sin t sin Λ√
2

α3,

α̃3 = −e−ω/2 sin t sin Λ√
2

α2 +
e−ω/2 cos t sin Λ√

2
α3

and from the properties of the minimal surface, we obtain

∂α2

∂u
= −∂α3

∂v
=

1
2
ωuα2 − 1

2
ωvα3 − eωα2 × α3,

∂α2

∂v
=

1
2
ωvα2 +

1
2
ωuα3 + α2 × α3,

∂α3

∂u
=

1
2
ωvα2 +

1
2
ωuα3 − α2 × α3.

Using the properties of the vector cross product, this also implies

∂α2 × α3

∂u
= 2α2 + 2eωα3 + ωuα2 × α3,

∂α2 × α3

∂v
= −2eωα2 − 2α3 + ωvα2 × α3.

Now, in order to find β̃i, we remark that the vectors E1, E2 and E3 need to cor-
respond with eigenvectors of the operators A and B with suitable eigenfunctions.
We have

E1 = (0, qβ̃1),

E2 = (pα̃2, qβ̃2), (53)

E3 = (pα̃3, qβ̃3).

The angle functions are θ1 = 2π/3, θ2 = 2Λ + 2π/3, θ3 = −2Λ + 2π/3 and

PEi = cos(2θi)Ei + sin(2θi)JEi, (54)

for i = 1, 2, 3. At the same time, by the definition of P in (6) and by (53), we have

PE1 = (pβ̃1, 0), PE2 = (pβ̃2, qα̃2), PE3 = (pβ̃3, qα̃3). (55)

Now we use the definition of J to write out JEi:

JE1 =
1√
3
(2pβ̃1, qβ̃1),

JE2 =
1√
3
(p(2β̃2 − α̃2), q(−2α̃2 + β̃2)), (56)

JE3 =
1√
3
(p(2β̃3 − α̃3), q(−2α̃3 + β̃3)).
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Then, by using (56), (53) and the values of θi in (17), we rewrite equation (54) and,
by comparing it with (55), we obtain

β̃2 =
cos(2Λ + 2π/3) − 1/

√
3 sin(2Λ + 2π/3)

1 − 2/
√

3 sin(2Λ + 2π/3)
α̃2 =

1
2
(1 −

√
3 cot Λ)α̃2,

β̃3 =
cos(−2Λ + 2π/3) − 1/

√
3 sin(−2Λ + 2π/3)

1 − 2/
√

3 sin(−2Λ + 2π/3)
α̃3 =

1
2
(1 +

√
3 cot Λ)α̃3.

Next, we continue the computations in order to determine β̃1. For this, we compute
G(E2, E3) in two different ways, once using (12) and once using (9). We obtain,
respectively,

G(E2, E3) = − 1√
3
JE1 = −1

3
(p2β̃1, qβ̃1),

and

G(E2, E3) = G((pα̃2, qβ̃2), (pα̃3, qβ̃3))

=
2

3
√

3
(p(β̃2 × α3 + α̃2 × β̃3 + α̃2 × α̃3 − 2β̃2 × β̃3,

q(−β̃2 × α3 − α̃2 × β̃3 + 2α̃2 × α̃3 − β̃2 × β̃3)

=
2

3
√

3

(
p

(
2 − 1

2
(1 − 3 cot2 Λ)

)
α̃2 × α̃3,

q

(
1 − 1

3
(1 − 3 cot2 Λ)

)
α̃2 × α̃3

)

=
1

2
√

3
(1 + cot2 Λ)(2pα̃2 × α̃3, qα̃2 × α̃3).

Hence, comparing both expressions, we get

β̃1 = −
√

3
2

csc2Λ α̃2 × α̃3 = −
√

3
4

e−ωα2 × α3.

Moreover, we also obtain

β̃2 =
1

2
√

2
(1 −

√
3 cot Λ)e−ω/2 sin Λ(cos tα2 + sin tα3),

β̃3 =
1

2
√

2
(1 +

√
3 cot Λ)e−ω/2 sin Λ(− sin tα2 + cos tα3).
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We then take the inverse of (52) and deduce

β1 = −
√

3α2 × α3

2
√

3eω − 2 sin(2t) tan(Λ)
,

β2 =
1
8

(
e−ω

(
μv + ωv − (μu + ωu) cos(2t) tan(Λ)√

3eω − sin(2t) tan(Λ)

)
α2

× α3 − 4(
√

3 cot(Λ) cos(2t) + 1)α2 − 4
√

3 sin(2t) cot Λα3

)
,

β3 =
1
8

(
−e−ω

(
μu + ωu +

(μv + ωv) cos(2t) tan(Λ)√
3eω − sin(2t) tan(Λ)

)
α2

× α3 − 4
√

3 cot(Λ) sin(2t)α2 + 4(1 +
√

3 cos(2t) cot Λ)α3

)
.

By straightforward computations, it now follows

∂β1

∂u
− ∂β2

∂t
− 2β1 × β2 = 0,

∂β1

∂v
− ∂β3

∂t
− 2β1 × β3 = 0,

∂β3

∂u
− ∂β2

∂v
− 2β3 × β2 = 0,

from which we deduce that the integrability conditions for the immersion q are
satisfied.

3.3.2. Case 2. The minimal surface p(M) is totally geodesic, that is, σ = 0. As men-
tioned before, this means that h3

13 = 0, h3
12 = ((cos Λ sin Λ)/(

√
3)). The equations

following from (23) and (24), just like in the first case, give

h2
12 = 0, ω2

11 = 0, ω3
21 = −2 + cos(2Λ)

2
√

3
,

h2
11 = 0, ω3

11 = 0, ω3
22 = −h3

22 cot(2Λ),

h3
11 = 0, ω3

12 =
sin2 Λ√

3
, ω2

31 =
2 + cos(2Λ)

2
√

3
,

ω2
21 = 0, ω3

31 = 0, ω3
32 = −h3

23 cot(2Λ)

(57)

and

E1(Λ) = 0,

E2(Λ) = h3
23,

E3(Λ) = −h3
22.

(58)

In this case, the equations of Codazzi become

E1(h3
23) = −

√
3

2
h3

22, E1(h3
22) =

√
3

2
h3

23, E2(h3
22) = −E3(h3

23) (59)
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and

− 1 − (1 + 12(h3
22)

2 + 12(h3
23)

2) cos(2Λ) + cos(4Λ) + cos(6Λ)

+ 4(E2(h3
23) − E3(h3

22)) sin(2Λ) = 0. (60)

In what follows, we are going to introduce new vector fields on M by:

X1 =
4√
3
E1,

X2 = −2h3
22csc

2Λ sec Λ√
3

E1 + 2cscΛ E2, (61)

X3 = −2h3
23csc

2Λ sec Λ√
3

E1 + 2cscΛ E3.

We can easily check

[X1,X2] = 2X3,

[X2,X3] = 2X1, (62)

[X3,X1] = 2X2.

Taking a canonical metric on M such that X1, X2 and X3 have unit length and are
mutually orthogonal, it follows from the Koszul formula that all connection com-
ponents are determined. From (4.1), proposition 5.2 and its preceding paragraph in
[8], it follows that we can locally identify M with S

3 and we can consider X1, X2

and X3 as the standard vector fields on S
3 with

X1(x) = xi,

X2(x) = xj, (63)

X3(x) = xk.

Using the above formulas, the component p of the map can now be determined
explicitly. First, we write

DXi
p = pαi, (64)

for i = 1, 2, 3, where D denotes the Euclidean covariant derivative. Of course, by
theorem 1, DX1p = 0. Then, we may compute by (18)

(dp(X2), 0) =
(

2 cos Λ√
3

+ 2 sin Λ
)

E2 +
(
−2 cos Λ +

sin Λ√
3

)
JE2,

(dp(X3), 0) =
(
−2 cos Λ√

3
+ 2 sin Λ

)
E3 +

(
2 cos Λ +

sin Λ√
3

)
JE3

and we see that

∇E
X1

(dp(X2), 0) = (2dp(X3), 0), ∇E
X2

(dp(X3), 0) = (0, 0),

∇E
X1

(dp(X3), 0) = (−2dp(X2), 0), ∇E
X3

(dp(X2), 0) = (0, 0),

∇E
X2

(dp(X2), 0) = (0, 0), ∇E
X3

(dp(X3), 0) = (0, 0).

(65)
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Moreover, it is straightforward to get

〈dp(X2), dp(X2)〉 = 〈dp(X3), dp(X3)〉 = 4, 〈dp(X2), dp(X3)〉 = 0. (66)

Next, we want to determine a system of differential equations satisfied by α2 and
α3. For this, we consider S

3 × S
3 ∈ R

4 × R
4. On the one hand, we use (64) together

with DX(dp(Y ), 0) = (DXdp(Y ), 0). On the contrary, we use (8) and, therefore, we
obtain

X1(α2) = 2α3, X1(α3) = −2α2,
X2(α2) = 0, X2(α3) = −α2 × α3,
X3(α2) = −α3 × α2, X3(α3) = 0.

(67)

We choose a unit quaternion h such that at the point p(x) = 1 we have

α2(1) = −2hjh−1,

α3(1) = −2hkh−1,

α2 × α3(1) = 4hih−1.

Using (63), we can check that α2 = −2hxjx−1h−1, α3 = −2hxkx−1h−1 and α2 ×
α3 = 4hxix−1h−1 are the unique solutions for the system of differential equations
in (67):

X1(α2) = X1(−2hxjx−1h−1) = −2(hX1(x)jx−1h−1 + hxjX1(x−1)h−1)

= −4hxkx−1h−1

= 2α3,

X1(α3) = X1(−2hxkx−1h−1) = −2(hX1(x)kx−1h−1 + hxkX1(g−1)h−1)

= 4hxjx−1h−1

= −2α2,

X2(α3) = X2(−2hxkx−1h−1) = −2(hxjkx−1h−1 + hxk(−j)x−1h−1)

= −4hxix−1h−1

= −α2 × α3,

X2(α2) = X2(−2hxjx−1h−1) = −2(hxjjx−1h−1 + hxj(−j)x−1h−1)

= 0,

X3(α3) = X3(−2hxkx−1h−1) = −2(hxkkx−1h−1 + hxk(−k)x−1h−1)

= 0,

X3(α2) = X3(−2hxjx−1h−1) = −2(hxkjx−1h−1 + hxj(−k)x−1h−1)

= 4hxix−1h−1

= α2 × α3.

This in its turn implies

p(x) = −hixix−1h−1 (68)
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is the unique solution of Xi(p) = pαi with initial conditions p(1) = 1. Indeed, we
have

X1(p) = X1(−hixix−1h−1) = 0 = pα1,

X2(p) = X2(−hixix−1h−1) = 2hixkx−1h−1

= (−hixix−1h−1)(−2hxjx−1h−1) = pα2,

X3(p) = X3(−hixix−1h−1) = −2hixjx−1h−1

= (−hixix−1h−1)(−2hxkx−1h−1) = pα3.

Before we can determine the second component q of the Lagrangian immersion,
we need to explore the Codazzi equations further. First, we look at the system of
differential equations for the function Λ in (59) and (60). Notice that by using the
relations in (61), we have

X1(Λ) = 0,

X2(Λ) = 2h3
23cscΛ,

X3(Λ) = −2h3
22cscΛ,

(69)

where the last two equations can be seen as the definition for the functions h3
23 and

h3
22. The first one is, of course, a condition for the unknown function of Λ. Three

out of the four Codazzi equations then can be seen as integrability conditions for
the existence of a solution of this system, whereas the last one reduces to

X2(X2(Λ)) + X3(X3(Λ)) = (cot(Λ) − tan(Λ))((X2(Λ))2

+ (X3(Λ))2) + 4(1 + 2 cos(2Λ)) cot(Λ).

Under the change of variable Λ = arctan(e2β), this equation simplifies to

X2(X2(β)) + X3(X3(β)) =
2(3 − e4β)

e4β
. (70)

Note also that for Λ = π/3, we get the solution corresponding to example (1) in
theorem 2, as it follows. From (61) and (69), we see

X1 =
4√
3
E1,

X2 =
4√
3
E2,

X3 =
4√
3
E3.

This implies that M has constant sectional curvature
√

3/4. Hence this corresponds
to example (1) in theorem 2.
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Remark 1. Note that there exist at least locally many solutions of the system

X1(β) = 0,

X2(X2(β)) + X3(X3(β)) =
2(3 − e4β)

e4β
.

This can be seen by choosing special coordinates on the usual S
3. We take

x1 = cos v cos(t + u),

x2 = cos v sin(t + u),

x3 = sin v cos(u − t),

x4 = sin v sin(u − t).

As given (63), at the point x = (x1, x2, x3, x4), the vectors in the basis are

X1(x) = (−x2, x1, x4,−x3),

X2(x) = (−x3,−x4, x1, x2),

X3(x) = (−x4, x3,−x2, x1),

it is straightforward to see

∂t = X1,

∂u = cos(2v)X1 + sin(2t) sin(2v)X2 + cos(2t) sin(2v)X3,

∂v = cos(2t)X2 − sin(2t)X3,

and conversely,

X1 = ∂t,

X2 =
sin(2t)
sin(2v)

∂u − sin(2t)
cos(2v)
sin(2v)

∂t + cos(2t)∂v,

X3 =
cos(2t)
sin(2v)

∂u − cos(2t)
cos(2v)
sin(2v)

∂t − sin(2t)∂v.

At last, the equations in (70) become ((∂)/(∂t))β = 0 and

csc2(2v)
∂2β

∂u2
+

∂2β

∂v2
+ 2 cot(2v)

∂β

∂v
= 2(3e−4β − 1). (71)

The above differential equation is an elliptic quasilinear second order PDE. Hence,
we can apply the Cauchy–Kowalevskaya theorem (see [14]). Therefore, if we start
with an analytic regular curve without self-intersections and analytic Cauchy data
along the curve, we locally have a unique (analytic) solution. Given that we can
choose arbitrarily both the curve and the Cauchy data along the curve, locally there
exist many solutions for the system in (71).
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In the following part, we are going to determine the second part of the immersion.
We start with an arbitrary solution of

X1(β) = 0,

X2(X2(β)) + X3(X3(β)) =
2(3 − e4β)

e4β

and we are going to find a system of differential equations determining the immer-
sion q. We define h3

22 and h3
23 as in (69) and such that Λ = arctan(e2β). First, we

can write for each of the bases that we took, {Ei} and {Xi}, the following:

X1(q) = qβ1, X1(p) = pα1,
X2(q) = qβ2, X2(p) = pα2,
X3(q) = qβ3, X3(p) = pα3,

and
E1(q) = qβ̃1, E1(p) = pα̃1,

E2(q) = qβ̃2, E2(p) = pα̃2,

E3(q) = qβ̃3, E3(p) = pα̃3,

where α1 = 0 and α2 and α3 are as determined previously. Then, we prove as before

β̃1 = −
√

3
2 sin2 Λ

α̃2 × α̃3,

β̃2 =
cos(2Λ + 2π/3) − 1/

√
3 sin(2Λ + 2π/3)

1 − 2/
√

3 sin(2Λ + 2π/3)
α̃2 =

1
2
(1 −

√
3 cot Λ)α̃2, (72)

β̃3 =
cos(−2Λ + 2π/3) − 1/

√
3 sin(−2Λ + 2π/3)

1 − 2/
√

3 sin(−2Λ + 2π/3)
α̃3 =

1
2
(1 +

√
3 cot Λ)α̃3

and we continue the computations in order to find the system of differential equa-
tions for the immersion q in terms of the basis {Xi}. As we identify df(X1) ≡ X1,
we have

DX1f = (X1(p),X1(q)) = (0, qβ1) ≡ X1
(61)
=

4√
3
E1 =

4√
3
(pα̃1, qβ̃1).

Therefore, β1 = 4/
√

3β̃1. We may compute similarly for DX2f and DX3f and find
⎧⎪⎪⎨
⎪⎪⎩

β2 = 2cscΛ β̃2 − 2√
3
h3

22csc
2Λ sec Λβ̃1,

β3 = 2cscΛ β̃3 − 2√
3
h3

23csc
2Λ sec Λβ̃1,

⎧⎪⎨
⎪⎩

α̃2 = − 1
cscΛ

hxjx−1h−1,

α̃3 = − 1
cscΛ

hxkx−1h−1

and

β̃1 = −
√

3
2

hxix−1h−1.

Using now relations (72), we may express

β2 = −(1 −
√

3 cot Λ) hxjx−1h−1 + h3
22csc

2Λ sec Λ hxix−1h−1,

β3 = −(1 +
√

3 cot Λ) hxkx−1h−1 + h3
23csc

2Λ sec Λ hxix−1h−1.
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Finally, as Xi(q) = qβi, we find⎧⎪⎪⎨
⎪⎪⎩

X1(q) = −2qhxix−1h−1,

X2(q) = q(h3
22csc

2Λ sec Λ hxix−1h−1 − (1 −√
3 cot Λ) hxjx−1h−1),

X3(q) = q(h3
23csc

2Λ sec Λ hxix−1h−1 − (1 +
√

3 cot Λ) hxkx−1h−1),

which, given (69) and Λ = arctan(e2β), is equivalent to⎧⎪⎪⎨
⎪⎪⎩

X1(q) = −2qhxix−1h−1,

X2(q) = q(−X3(β)hxix−1h−1 − (1 −√
3e−2β) hxjx−1h−1),

X3(q) = q(X2(β) hxix−1h−1 − (1 +
√

3e−2β) hxkx−1h−1).

(73)

By straightforward computations, one may see that Xi(Xj(q)) − Xj(Xi(q)) =
[Xi,Xj ](q) hold for i, j = 1, 2, 3. Therefore, the immersion f is completely deter-
mined by (68) and (73).

3.3.3. Case 3. The minimal surface p(M) is not totally geodesic, but the map P̃ is
not an immersion. As mentioned before, this means

h3
12 = − sin(2Λ)√

3
. (74)

Therefore, the equations in §3.2 which follow from (23) and (24) become

h2
12 = −h3

13, ω3
12 =

1 + 2 cos(2Λ)
2
√

3
, ω2

21 = ω3
31 = −h3

13 cot Λ,

h2
11 = h3

11 = 0, ω3
21 =

1 + 2 cos(2Λ)
2
√

3
, ω2

31 = −1 + 2 cos(2Λ)
2
√

3
,

ω2
11 = ω3

11 = 0, ω3
22 = −h3

22 cot(2Λ), ω3
32 = −h3

23 cot(2Λ)

and

E1(Λ) = h3
13, E2(Λ) = h3

23, E3(Λ) = −h3
22. (75)

Moreover, the equations of Codazzi in (39) yield h3
13 = 0 and, therefore,

ω2
21 = ω3

31 = 0. The first two equations in (40) imply

E1(h3
23) = 0 and E1(h3

22) = 0,

while the next three ones vanish identically. The last two equations in (40) become

E2(h3
22) = −E3(h3

23) (76)

and

− 1 − [1 + 6(h3
22)

2 + 6(h3
23)

2] cos 2Λ + cos 4Λ + cos 6Λ

+ 2[−E3(h3
22) + E2(h3

23)] sin 2Λ = 0, (77)
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respectively. The Lie brackets of the vector fields E1, E2, E3 give

[E1, E2] = 0,

[E1, E3] = 0,

[E2, E3] = −1 + 2 cos(2Λ)√
3

E1 + h3
22 cot(2Λ)E2 + h3

23 cot(2Λ)E3.

Next, we take new vector fields X1,X2,X3 of the form

X1 = E1,

X2 =
√

2(h3
22 − h3

23)
33/4(sin(2Λ))3/2

E1 +
√

2
31/4

√
sin(2Λ)

E2 −
√

2
31/4

√
sin(2Λ)

E3, (78)

X3 =
√

2(h3
22 + h3

23)
33/4(sin(2Λ))3/2

E1 +
√

2
31/4

√
sin(2Λ)

E2 +
√

2
31/4

√
sin(2Λ)

E3.

We can easily check that [X1,X2] = 0, [X1,X3] = 0 and [X2,X3] = 0, therefore, by
the lemma on page 155 in [3], we know that there exist coordinates {t, u, v} on M
such that

X1 = ∂t,

X2 = ∂u,

X3 = ∂v.

Using (75), we obtain:

Λt = 0,

Λu =
h3

22 + h3
23

31/4
√

cos Λ sin Λ
,

Λv =
−h3

22 + h3
23

31/4
√

cos Λ sin Λ
.

Furthermore, we express h3
22 and h3

23 from the previous relations as

h3
22 =

1
2
31/4(Λu − Λv)

√
cos Λ sin Λ,

h3
23 =

1
2
31/4(Λu + Λv)

√
cos Λ sin Λ

and therefore, the expression of (78) becomes

X1 = E1,

X2 = −Λvcsc(2Λ)√
3

E1 +
1

31/4
√

cos Λ sin Λ
E2 − 1

31/4
√

cos Λ sin Λ
E3, (79)

X3 =
Λucsc(2Λ)√

3
E1 +

1
31/4

√
cos Λ sin Λ

E2 +
1

31/4
√

cos Λ sin Λ
E3.
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Finally, by straightforward computations, one may see that equation (77) becomes

−
√

3(Λ2
u + Λ2

v) cos(2Λ) + 31/4(E2(Λu) − E3(Λu)

+ E2(Λv) + E3(Λv))
√

cos Λ sin Λ − 2(sin(2Λ) + sin(4Λ)) = 0. (80)

We compute dp(∂u) and dp(∂v):

dp (∂u) =
√

3 − 2 cos (2Λ + π/6)
33/4

√
2
√

sin(2Λ)
E2 +

2 sin (2Λ + π/3) −√
3

33/4
√

2
√

sin(2Λ)
E3

+
2 cos (2Λ + 2π/3) + 1

33/4
√

2
√

sin(2Λ)
JE2 +

2 cos (2Λ + π/3) − 1
33/4

√
2
√

sin(2Λ)
JE3,

dp(∂v) =
√

3 − 2 cos (2Λ + π/6)
33/4

√
2
√

sin(2Λ)
E2 − 2 sin (2Λ + π/3) −√

3
33/4

√
2
√

sin(2Λ)
E3

+
2 cos (2Λ + 2π/3) + 1

33/4
√

2
√

sin(2Λ)
JE2 − 2 cos (2Λ + π/3) − 1

33/4
√

2
√

sin(2Λ)
JE3,

and we remark that they are mutually orthogonal and that their length is
((2 tan Λ)/(

√
3)). So, as u, v are isothermal coordinates on the surface, for which

〈∂u, ∂u〉 = 〈∂v, ∂v〉 = 2eω, we obtain

eω =
tan Λ√

3
. (81)

On the one hand, for z = x + Iy as in §3.1, we may compute dp(∂z):

dp(∂z) =
1
2

[dp (∂u) − I · dp (∂v)]

=
1

2
√

2 33/4
√

sin(2Λ)

[
(1 − I)

(√
3 − 2 cos

(
2Λ +

π

6

))
E2

− (1 + I)
(√

3 − 2 sin
(
2Λ +

π

3

))
E3

+ (1 − I)
(

2 cos
(

2Λ +
2π

3

)
+ 1
)

JE2

+ (1 + I)
(
2 cos

(
2Λ +

π

3

)
− 1
)

JE3

]
.

As
√

3 − 2 cos
(
2Λ +

π

6

)
= 2 sin Λ(

√
3 sin Λ + cos Λ),

2 sin
(
2Λ +

π

3

)
−
√

3 = 2 sin Λ(cos Λ −
√

3 sin Λ),

2 cos
(

2Λ +
2π

3

)
+ 1 = 2 sin Λ(sin Λ −

√
3 cos Λ),

2 cos
(
2Λ +

π

3

)
− 1 = −2 sin Λ(sin Λ +

√
3 cos Λ),
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we finally have

dp(∂z) =
sin Λ√

2 33/4
√

sin(2Λ)

[
(1 − I)

(√
3 sin Λ + cos Λ

)
E2

+ (1 + I)
(
cos Λ −

√
3 sin Λ

)
E3 + (1 − I)

(
sin Λ −

√
3 cos Λ

)
JE2

− (1 + I)
(
sin Λ +

√
3 cos Λ

)
JE3

]
.

Moreover, from (81), it follows that ωz = ((1)/(sin(2Λ)))(Λu − iΛv).
On the contrary, we may compute ∇E

∂zdp(∂z) using the Euclidean connection ∇E :

∇E
∂zdp(∂z) = − 1√

3
E1 +

e−iπ/4 sin2 Λ
(√

3 cot Λ + 3
)
(Λu − iΛv)

3 4
√

3 sin3/2(2Λ)
E2

+
e−iπ/4 sin Λ(Λv + iΛu)

(√
3 cos Λ − 3 sin Λ

)
3 4
√

3 sin3/2(2Λ)
E3 + JE1

+
e−iπ/4 sin Λ(Λu − iΛv)

(√
3 sin Λ − 3 cos Λ

)
3 4
√

3 sin3/2(2Λ)
JE2

− (1/3 + i/3) sin Λ(Λu − iΛv)
(√

3 sin Λ + 3 cos Λ
)

√
2 4
√

3 sin3/2(2Λ)
JE3.

From the previous computations we see, indeed, that

∇E
∂zdp(∂z) = −N + ωzdp(∂z),

which corresponds to (15). From here, we remark the component in the direction
of the normal N = ξ (see §3.2) and we see that the choice of coordinates {t, u, v}
following from (78) is the right one, as we have indeed σ(∂z, ∂z) = −1, as in §3.1.
Using (81), together with the fact that by taking the inverse in (79), we have

E1 = ∂t,

E2 =
31/4

√
sin(2Λ)

2
√

2

(
Λv − Λu√
3 sin(2Λ)

∂t + ∂u + ∂v

)
,

E3 = −31/4
√

sin(2Λ)
2
√

2

(
Λv + Λu√
3 sin(2Λ)

∂t + ∂u − ∂v

)
,

we may prove that equation (80) is equivalent to the Sinh–Gordon equation in (16),
which characterizes the minimal surface.

Reverse construction

Let S be a minimal surface given by p : S → S
3 ⊂ R

4, on which we take isothermal
coordinates u and v as in §3.1. Hence, we have a solution ω of the Sinh–Gordon
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equation Δω = −8 sinh ω. Next, we define a function Λ ∈ (0, π/2) such that

eω =
tan Λ√

3
.

Remark 2. If ω = 0, then Λ = π/3, which corresponds to example (2) in
theorem 2.

We then define a metric on an open part of the unit frame bundle of the surface by
assuming that the vectors

E1 = ∂t,

E2 =
√

3eω/2

2
√

1 + 3e2ω

(
ωv − ωu

2
√

3
∂t + ∂u + ∂v

)
, (82)

E3 = −
√

3eω/2

2
√

1 + 3e2ω

(
ωv + ωu

2
√

3
∂t + ∂u − ∂v

)

form an orthonormal basis. Next, we want to determine the Lagrangian immersion

f : S × I → S
3 × S

3

(u, v, t) �→ f(u, v, t) = (p(u, v, t), q(u, v, t)),

for which we already know that the first component is the given minimal surface p.
We write for both bases

∂

∂t
(q) = qβ1,

∂

∂t
(p) = pα1,

∂

∂u
(q) = qβ2,

∂

∂u
(p) = pα2,

∂

∂v
(q) = qβ3,

∂

∂v
(p) = pα3

and

E1(q) = qβ̃1, E1(p) = pα̃1,

E2(q) = qβ̃2, E2(p) = pα̃2,

E3(q) = qβ̃3, E3(p) = pα̃3.

Note that α1 = 0 and α2 and α3 are determined by the minimal surface. In particu-
lar, α2 and α3 are mutually orthogonal imaginary quaternions with length squared
2eω. From the derivates of p in the latter relations together with (82), we obtain

α̃1 = 0,

α̃2 =
√

3eω/2

2
√

1 + 3e2ω
(α2 + α3), (83)

α̃2 = −
√

3eω/2

2
√

1 + 3e2ω
(α2 − α3).
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We then follow the same steps as in Case 1 and obtain

β̃1 = −
√

3e−ω

4
α2 × α3,

β̃2 =
√

3(eω/2 − e−ω/2)
4
√

1 + 3e2ω
(α2 + α3), (84)

β̃3 = −
√

3(eω/2 − e−ω/2)
4
√

1 + 3e2ω
(α2 − α3).

Finally, we take the inverse of the matrix which give {Ei} on the basis of {∂t, ∂u, ∂v}
in (82) and obtain

β1 = −
√

3e−ω

4
α2 × α3,

β2 =
e−ω

8
(4eωα2 − 4α3 + ωvα2 × α3),

β3 = −e−ω

8
(4α2 − 4eωα3 + ωuα2 × α3).

By straightforward computations, it now follows that

∂β1

∂u
− ∂β2

∂t
− 2β1 × β2 = 0,

∂β1

∂v
− ∂β3

∂t
− 2β1 × β3 = 0,

∂β3

∂u
− ∂β2

∂v
− 2β3 × β2 = 0,

from which we deduce that the integrability conditions for the immersion q are
satisfied.

4. Conclusion

The results in §3.3 can now be summarized in the following theorems.

Theorem 4. Let ω and μ be solutions of, respectively, the Sinh–Gordon equation
Δω = −8 sinh ω and the Liouville equation Δμ = −eμ on an open simply connected
domain U ⊆ C and let p : U → S

3 be the associated minimal surface with complex
coordinate z such that σ(∂z, ∂z) = −1.
Let V = {(z, t) | z ∈ U, t ∈ R, eω+μ − 2 − 2 cos(4t) > 0} and let Λ be a solution of

(
2
√

3eω

tan Λ
− 2 sin(2t)

)
= eω+μ − 2 − 2 cos(4t)
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on V . Then, there exists a Lagrangian immersion f : V → S
3 × S

3 : x �→
(p(x), q(x)), where q is determined by

∂q

∂t
= −

√
3

2
√

3eω − 2 sin(2t) tan Λ
q α2 × α3,

∂q

∂u
=

1
8

(
e−ω

(
μv + ωv − (μu + ωu) cos(2t) tan Λ√

3eω − sin(2t) tan Λ

)
q α2 × α3

− 4(
√

3 cot Λ cos(2t) + 1) q α2 − 4
√

3 sin(2t) cot Λ q α3

)
,

∂q

∂v
=

1
8

(
−e−ω

(
μu + ωu +

(μv + ωv) cos(2t) tan Λ√
3eω − sin(2t) tan Λ

)
q α2 × α3

− 4
√

3 cot Λ sin(2t) q α2 + 4(1 +
√

3 cos(2t) cot Λ) q α3

)
,

where α2 = p̄pu and α3 = p̄pv.

Theorem 5. Let X1,X2,X3 be the standard vector fields on S
3. Let β be a solution

of the differential equations

X1(β) = 0,

X2(X2(β)) + X3(X3(β)) =
2(3 − e4β)

e4β
,

on a connected, simply connected open subset U of S
3.

Then there exists a Lagrangian immersion f : U → S
3 × S

3 : x �→ (p(x), q(x)),
where p(x) = xix−1 and q is determined by

X1(q) = −2qhxix−1h−1,

X2(q) = q
(−X3(β)hxix−1h−1 − (1 −√

3e−2β) hxjx−1h−1
)
,

X3(q) = q
(
X2(β) hxix−1h−1 − (1 +

√
3e−2β) hxkx−1h−1

)
.

Note that in the previous theorem the image of p is a totally geodesic surface
in S

3.

Theorem 6. Let ω be a solution of the Sinh–Gordon equation Δω = −8 sinh ω
on an open connected domain of U in C and let p : U → S

3 be the associated
minimal surface with complex coordinate z such that σ(∂z, ∂z) = −1. Then, there
exists a Lagrangian immersion f : U × I → S

3 × S
3 : x �→ (p(x), q(x)), where q is

determined by

∂q

∂t
= −

√
3e−ω

4
q α2 × α3,

∂q

∂u
=

e−ω

8
(4eωqα2 − 4qα3 + ωvq α2 × α3),

∂q

∂v
= −e−ω

8
(4qα2 − 4eωqα3 + ωuq α2 × α3).

where α2 = p̄pu and α3 = p̄pv.
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Theorem 7. Let f : M → S
3 × S

3 : x �→ (p(x), q(x)) be a Lagrangian immersion
such that p has nowhere maximal rank. Then every point x of an open dense subset
of M has a neighbourhood U such that f |U is obtained as described in theorems 4,
5 or 6.
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Eur. Math. Soc., 2010).

5 V. Cortés and J. J. Vásquez. Locally homogeneous nearly Kähler manifolds. Ann. Global
Anal. Geom. 48 (2015), no. 3, 269–294.

6 F. Dillen and L. Vrancken. Totally real submanifolds in S6(1) satisfying Chen’s equality.
Trans. Amer. Math. Soc. 348(4) (1996), 1633–1646.

7 F. Dillen, L. Verstraelen and L. Vrancken. Classification of totally real 3-dimensional
submanifolds of S6(1) with K � 1/16. J. Math. Soc. Japan 42(1990), 565–584.

8 B. Dioos, L. Vrancken and X. Wang. Lagrangian submanifolds in the homogeneous nearly
Kähler S3 × S3. Ann. Global Anal. Geom. 53(2018), no. 1, 39–66.

9 N. Ejiri. Totally real submanifolds in a 6-sphere. Proc. Amer. Math. Soc. 83(1981), 759–763.

10 N. Ejiri. Equivariant minimal immersions of S2 into S2m(1). Trans. Amer. Math. Soc.
297(1986), 105–124.

11 L. Foscolo and M. Haskins. New G2-holonomy cones and exotic nearly Kähler structures
on S6 and S3 × S3. Ann. of Math. (2) 185(2017), no. 1,59–130.

12 A. Gray. Nearly Kähler manifolds. J. Diff. Geom. 4 (1970), 283–309.

13 J. Gutowski, S. Ivanov and G. Papadopoulos. Deformations of generalized calibrations and
compact non-Kähler manifolds with vanishing first Chern class. Asian J. Math. 7(2003),
039–080.

14 F. John. Partial differential equations, vol. 1 (US: Springer, 1978).

15 J. D. Lotay. Ruled Lagrangian submanifolds of the 6-sphere. Trans. Amer. Math. Soc.
363(2011), 2305–2339.

16 A. Moroianu and U. Semmelmann. Generalized Killing spinors and Lagrangian graphs. Diff.
Geom. Appl. 37 (2014), 141–151.

17 P.-A. Nagy. Nearly Kähler geometry and Riemannian foliations. Asian J. Math. 6(2002a),
481–504.

18 P.-A. Nagy. On nearly- Kähler geometry. Ann. Global Anal. Geom. 22(2002b), 167–178.

19 B. Palmer. Calibrations and Lagrangian submanifolds in the six sphere (English summary).
Tohoku Math. J. (2) 50(1998), 303–315.

https://doi.org/10.1017/prm.2018.43 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.43


Lagrangian submanifolds of the nearly Kähler S
3 × S

3 689
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