
The Review of Symbolic Logic

Volume 15, Number 4, December 2022

A MATHEMATICAL COMMITMENT WITHOUT
COMPUTATIONAL STRENGTH

ANTON FREUND

Technical University of Darmstadt

Abstract. We present a new manifestation of Gödel’s second incompleteness theorem and
discuss its foundational significance, in particular with respect to Hilbert’s program. Specifically,
we consider a proper extension of Peano arithmetic (PA) by a mathematically meaningful axiom
scheme that consists of Σ0

2-sentences. These sentences assert that each computably enumerable
(Σ0

1-definable without parameters) property of finite binary trees has a finite basis. Since this
fact entails the existence of polynomial time algorithms, it is relevant for computer science.
On a technical level, our axiom scheme is a variant of an independence result due to Harvey
Friedman. At the same time, the meta-mathematical properties of our axiom scheme distinguish
it from most known independence results: Due to its logical complexity, our axiom scheme does
not add computational strength. The only known method to establish its independence relies on
Gödel’s second incompleteness theorem. In contrast, Gödel’s theorem is not needed for typical
examples of Π0

2-independence (such as the Paris–Harrington principle), since computational
strength provides an extensional invariant on the level of Π0

2-sentences.

§1. Summary of mathematical results. This paper consists of mathematical results
and a foundational discussion. The former are summarized in the present section; the
latter can be found in Section 2. In the remaining sections we provide detailed proofs
of all mathematical claims.

First and foremost, our paper is based on a result by Dick de Jongh (unpublished; cf.
the introduction to [35]) and Diana Schmidt [36]: The embeddability relation on finite
binary trees yields a well partial order with maximal order type ε0 (see below for an
explanation). Harvey Friedman [38] has shown that this type of result yields statements
of finite combinatorics that are independent of important mathematical axiom systems.
Against this background, many arguments in the present paper may be considered
folklore. Nevertheless we find it worthwhile to give an explicit presentation, not least
because the arguments are rather sensitive with respect to quantifier complexity and
the presence of parameters. At some places we provide more details than the expert
may find necessary. The aim is to make the paper as accessible and self-contained as
possible.

We write B for the set of finite binary trees. More precisely, we assume that each tree
has a distinguished root node, that nodes have either zero or two children, and that left

Received: April 15, 2020.
2020 Mathematics Subject Classification: 03F30, 03F40, 03A05, 68R10.
Keywords and phrases: independence, computational strength, Gödel’s second incompleteness theorem,

Hilbert’s program, Kruskal’s theorem, polynomial-time algorithm.

© The Author(s), 2021. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

880 doi:10.1017/S1755020321000265

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S1755020321000265
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1755020321000265&domain=pdf
https://doi.org/10.1017/S1755020321000265

A MATHEMATICAL COMMITMENT WITHOUT COMPUTATIONAL STRENGTH 881

child and right child can be distinguished. Furthermore, we identify isomorphic trees.
Formally, we view B as the least fixed point of the following inductive clauses:

(i) There is an element ◦ ∈ B (the tree that consists of a single root node).
(ii) Given s and t in B, we obtain an element ◦(s, t) ∈ B (the tree in which the root

has left subtree s and right subtree t).

For s, t ∈ B we write s ≤B t if there is a tree embedding of s into t. Such an
embedding can either map the root to the root and the immediate subtrees of s into
the corresponding subtrees of t; or it maps all of s into one subtree of t. Hence we have
◦ ≤B t for any t ∈ B; we have s ≤B ◦ precisely for s = ◦; and we have

◦(s0, s1) ≤B ◦(t0, t1) ⇔
{
s0 ≤B t0 and s1 ≤B t1,

or ◦ (s0, s1) ≤B ti for some i ∈ {0, 1}.

These clauses provide a recursive definition of ≤B.
Recall that a partial order consists of a set X and a binary relation ≤X on X that

is reflexive, antisymmetric and transitive. A finite or infinite sequence x0, x1, ... in X
is called good if there are indices i < j such that we have xi ≤X xj ; otherwise, the
sequence is called bad. If there is no infinite bad sequence, then (X,≤X) is called a well
partial order (wpo). Equivalently, a partial order (X,≤X) is a wpo if, and only if, every
subset Y ⊆ X has a finite “basis” a ⊆ Y with the following property: for any y ∈ Y
there is an x ∈ a with x ≤X y (cf. the argument in Remark 3.1 below).

If X is a wpo, then all its linearizations are well orders (since a strictly decreasing
sequence in a linearization would be a bad sequence in X). Hence the order type of
each linearization is an ordinal number. The supremum of these ordinals is called the
maximal order type of X. As shown by D. de Jongh and R. Parikh [8], the maximal
order type of any wpo is realized by one of its linearizations (i.e., the supremum is a
maximum).

Kruskal’s theorem [28] implies that (B,≤B) is a well partial order. We point out that
the theorem applies to arbitrary (i.e., not necessarily binary) finite trees; the “most
general” version of Kruskal’s theorem is investigated in [14]. Concerning the binary
case, de Jongh and Schmidt have proved the finer result that B has maximal order
type ε0, which is the least fixed point of ordinal exponentiation with base � (read [36,
theorem II.2] in combination with the example after [36, definition I.15]). A classical
result of G. Gentzen [18, 19] establishes ε0 as the proof theoretic ordinal of Peano
arithmetic (PA). This explains the connection with independence results.

In the present paper we consider the binary Kruskal theorem (i.e., the result that
B is a wpo) in the context of first order arithmetic; an introduction to this setting
can be found in [20]. We will be particularly interested in questions of quantifier
complexity: Recall that a formula lies in the class Δ0

0 = Σ0
0 = Π0

0 if it only contains
bounded quantifiers. Since the latter range over a finite domain, the truth of closed
Δ0

0-formulas is decidable. A Σ0
n+1-formula (Π0

n+1-formula) has the form ∃xϕ (the form
∀xϕ), where ϕ is a Π0

n-formula (Σ0
n-formula). Recall that the Σ0

1-formulas correspond
to the computably enumerable relations. A relation is Δ0

1-definable (in PA) if it has a
Σ0

1-definition and a Π0
1-definition (which PA proves to be equivalent). The Δ0

1-relations
coincide with the decidable ones.

Working in PA, the elements of B can be represented by numerical codes for finite
sets of sequences with entries from {0, 1}. Note that the relations s ∈ B and s ≤B t are

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

882 ANTON FREUND

Δ0
1-definable in PA. As mentioned above, the fact that B is a wpo can be expressed in

terms of a finite basis property. To state the latter we abbreviate

∃fin
a �(a) :≡ ∃a(“a ∈ N codes a finite set” ∧ �(a)).

In the context of PA it is natural to focus on definable sets. Given a formula ϕ(s) with
a distinguished free variable, the finite basis property for {s ∈ B |ϕ(s)} ⊆ B can be
formalized as

Kϕ :≡ ∃fin
a⊆B(∀s∈aϕ(s) ∧ ∀t∈B(ϕ(t) → ∃s∈as ≤B t)).

Note that the quantifiers with subscript s ∈ a are bounded, since a is a code for a finite
set (cf. [20, lemma I.1.32]); in contrast, the quantifiers with subscripts a ⊆ B and t ∈ B
are unbounded. The symbol K alludes to Kruskal’s theorem, which implies that all
instances Kϕ are true (see Remark 3.1 for details). We will be most interested in the
axiom scheme

KΣ–
1 := {Kϕ | “ϕ a Σ0

1-formula with exactly one free variable”}.
The superscript of Σ–

1 emphasizes the fact that no further free variables are allowed.
This ensures that each instance of KΣ–

1 is a closed Σ0
2-formula.

To motivate the restrictions on the quantifier complexity and the parameters, we
recall the notion of computational strength: A computable function f : N → N is
provably total in a suitable theory T if the latter proves ∀x∃!y ϕ(x, y) for some Σ0

1-
definition ϕ of the graph of f (where ∃! abbreviates the existence of a unique witness).
The computational strength of a theory is commonly identified with the collection of
its provably total computable functions.

It is known that the computational strength of a theory does not increase when
we add a true Π0

1-sentence � as an axiom. Essentially, this is due to the fact that the
Σ0

1-formula � → ϕ(x, y) defines the same graph as ϕ(x, y) (note that the definition of
provably total function is extensional). A simple but fundamental observation shows
that the same is true for closed Σ0

2-axioms: It suffices to note that any true Σ0
2-sentence

∃x�(x) follows from some true Π0
1-instance �(n) (see Proposition 3.2 for details).

Note that we may not be able to compute the correct witness n ∈ N; this issue will
resurface at the end of the present section.

The general facts from the previous paragraph imply that PA + KΣ–
1 has the same

computational strength as PA. At this point it is crucial that we exclude parameters:
If the Σ0

1-formula ϕ contains further free variables, then the universal closure of Kϕ is
a Π0

3-formula, so that our argument does not longer apply. Note that the version with
parameters can be expressed by a single Π0

3-sentence (rather than a scheme), due to
the existence of a universal computably enumerable set.

Next, we explain why PA + KΣ–
1 is a proper extension of PA. Based on a notation

system for the ordinal ε0 (see Section 4 for details), transfinite induction can be
expressed in first order arithmetic: Given a formula �(α) with a distinguished free
variable, we set

Progε0(�) :≡ ∀�≺ε0(∀�≺��(�) → �(�)),

T I(ε0, �) :≡ Progε0(�) → ∀α≺ε0�(α).

The scheme of parameter-free Π0
1-induction up to ε0 is the collection

T I(ε0,Π–
1) := {T I(ε0, �) | “� a Π0

1-formula with exactly one free variable”}.

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

A MATHEMATICAL COMMITMENT WITHOUT COMPUTATIONAL STRENGTH 883

In Section 4 we show that each instance of T I(ε0,Π–
1) can be proved in PA + KΣ–

1.
This is a straightforward consequence of the fact that ε0 is bounded by (and in fact
equal to) the maximal order type of B. Nevertheless we find it worthwhile to give
a detailed proof, which pays attention to the quantifier complexities and the role of
parameters. Gentzen [18] has used Π0

1-induction up to ε0 to establish the consistency
of PA. This induction does not require parameters, as we will check in Section 5. Hence
the consistency of PA can be proved in PA + KΣ–

1. The latter must thus be a proper
extension, due to Gödel’s second incompleteness theorem.

In Section 6 we review the proof that B has maximal order type ε0. This will allow us
to show that, conversely, PA + T I(ε0,Π–

1) proves each instance of KΣ–
1. To complete

the picture, we relate transfinite induction and reflection. Let PrPA(ϕ) be a standard
formalization of the statement that the formulaϕ is provable in PA (see [20, sec. I.4(a)];
we will also write ϕ for �ϕ�). Given a sentence ϕ of first order arithmetic, we put

RfnPA(ϕ) :≡ PrPA(ϕ) → ϕ.

The local (i.e., parameter-free) Σ0
2-reflection principle over PA is the collection

RfnPA(Σ0
2) :≡ {RfnPA(ϕ) | “ϕ a closed Σ0

2-formula”}.

Due to G. Kreisel and A. Lévy [27], uniform reflection over PA is equivalent to ε0-
induction for formulas with parameters. We will show that the proof can be adapted
to the parameter free case (which can also be inferred from work of L. Beklemishev
[2, 3], cf. Remark 5.2 below). This results in Theorem 7.3, which asserts

PA + KΣ–
1 ≡ PA + T I(ε0,Π–

1) ≡ PA + RfnPA(Σ0
2). (∗)

In view of Goryachev’s theorem (see, e.g., [30, theorem IV.5]), we can conclude the
following (cf. Corollary 7.4 below): Over Peano arithmetic, the Π0

1-consequences of
KΣ–

1 are precisely those of the finitely iterated consistency statements for PA. Due to
another result of Kreisel and Lévy [27], we can also deduce that PA + KΣ–

1 is not
contained in any consistent extension of PA by a computably enumerable set of Π0

2-
sentences (see Corollary 5.4).

Concerning the structure of our paper, we point out that the inclusions ⊇ from (∗)
are proved in Sections 4 and 5, while the inclusions ⊆ are proved in Sections 6 and 7. As
we will see in the next section, the inclusions ⊇ suffice to ensure many (but not all) of
the properties that make KΣ–

1 foundationally significant. Some readers may thus prefer
to skip Sections 6 and 7. For others, these sections may constitute the most interesting
part of our paper.

§2. Foundational considerations. In the previous section we have presented an
extension of Peano arithmetic by an axiom scheme KΣ–

1 that is related to Kruskal’s
theorem. The present section is concerned with the foundational significance of this
extension.

Let us first recall some aspects of Hilbert’s program; for a more thorough discussion
and further references we refer to the introduction by R. Zach [49]. To secure the
abstract methods that are central to modern mathematics, Hilbert wanted to justify
them by finitist reasoning about natural numbers, which he views as “extralogical
concrete objects that are intuitively present as immediate experience prior to all
thought” [22, p. 171]. (All quotations from [22, 23] are translated as in [48].) The status

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

884 ANTON FREUND

of the natural numbers entails that certain statements about them are finitistically
meaningful. This includes, first of all, statements which assert that a given tuple of
numbers satisfies some primitive recursive relation. Such a statement can be verified
explicitly, which explains its privileged role, but also entails—as Hilbert [22, p. 165]
puts it—that it is “of no essential interest when considered by itself.” In addition, one
admits universal statements with verifiable instances. According to Hilbert [22, p. 173],
such a statement can be accepted as “a hypothetical judgement that comes to assert
something when a numeral is given.” In contrast, unbounded existential statements are
not seen as finitistically meaningful, as “one cannot [...] try out all numbers” [23, p. 73].
At the same time, Hilbert [23, p. 77f] emphasizes the fact that existential statements
play an extremely fruitful role in abstract mathematics. One could even be tempted
to say that abstract notions acquire meaning through their role in the mathematical
development, a position that seems to resonate with the following statement by Hilbert
[23, p. 79]:

“To make it a universal requirement that each individual formula [...]
be interpretable by itself is by no means reasonable; on the contrary,
a theory by its very nature is such that we do not need to fall back
upon intuition or meaning in the midst of some argument.”

However, such a conception of meaning is very different from the finitist one.
The extent of finitist reasoning is commonly identified with primitive recursive

arithmetic (PRA). This identification has been justified by W. Tait [44]; in [45] he
lists and refutes some objections. A quantifier-free formulation seems to be most
appropriate: In a such a setting, one can only express statements that are finitistically
meaningful; universal statements correspond to open formulas. We will, nevertheless,
work in the usual framework of first order arithmetic with quantifiers, since the latter
are needed to express our existential statements Kϕ. Following C. Smoryński [42], we
agree to identify the finitistically meaningful statements with the Π0

1-sentences.
More specifically, then, Hilbert’s program suggested to formalize all of abstract

mathematics as an axiom system T. In order to obtain a finitist justification, one was
supposed to prove the consistency of T in the theory PRA. At this point it is important
to note that consistency is not merely a minimal requirement: If the consistency of a
theory T is provable in PRA, then the latter proves all Π0

1-theorems of T, i.e., all results
that are finitistically meaningful (see [23, p. 78f]). Gödel’s incompleteness theorems
show that Hilbert’s program cannot be carried out: It is impossible for T to prove its
own consistency; a fortiori, the consistency of T cannot be established in the weaker
theory PRA.

Despite Gödel’s theorems, the aims of Hilbert’s program have been achieved to an
astonishing extent: A substantial part of contemporary mathematics can indeed be
formalized in rather weak axiom systems (see, e.g., the work of S. Feferman [10], as
well as U. Kohlenbach’s proof mining program [24]). In view of these positive results,
it is all the more intriguing to ask: Are there natural mathematical theorems that can
be expressed but not proved in PRA, or in some stronger theory? To count as a natural
theorem, the unprovable statement should arise from mathematical practice; it should
not involve the logical notions of proof or model. In particular, consistency statements
(which are unprovable by Gödel’s theorem) are not seen as examples of this type.

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

A MATHEMATICAL COMMITMENT WITHOUT COMPUTATIONAL STRENGTH 885

We do have good examples of true Π0
2-statements that are unprovable in relevant

axiom systems: The Paris–Harrington principle cannot be proved in Peano arithmetic
[31]; Friedman’s miniaturization of Kruskal’s theorem is independent of an even
stronger system [38], which is associated with predicative mathematics. The situation
is less satisfactory when it comes to Π0

1-sentences, which are most important from
the finitist viewpoint: The independent statement due to S. Shelah [37] involves
notions from model theory, so that its status as a natural mathematical theorem can
be questioned. Friedman has presented work on Π0

1-independence from Zermelo–
Fraenkel set theory (see, e.g., [15]), but his results are not yet published in final form.
In the present author’s opinion, the search for mathematical Π0

1-sentences that are
independent of relevant axiom systems remains one of the most interesting challenges
in mathematical logic.

The axiom scheme KΣ–
1 from the previous section does not settle the challenge of

natural Π0
1-independence. The latter can, nevertheless, serve as a benchmark that helps

us to assess the foundational significance of KΣ–
1. In the rest of this section we carry

out such an assessment.
First, we will argue that KΣ–

1 is a natural mathematical commitment. In the previous
section we have seen that KΣ–

1 is a restricted version of Kruskal’s theorem. The latter
is firmly established as a natural result of mathematical practice. Hence it remains to
argue that the restrictions that lead to KΣ–

1 are natural as well.
In formulating KΣ–

1, we have restricted Kruskal’s theorem in two ways: Firstly, we
have decided to work with binary rather than arbitrary finite trees. This restriction
makes it easier to determine the precise strength of KΣ–

1 (i.e., to prove the equivalence
with transfinite induction and local reflection), but it is not essential: If we extend our
axiom scheme to arbitrary finite trees, then it will imply the consistency of stronger
axiom systems; at the same time, it will still not increase the computational strength,
since it also consists of Σ0

2-statements. The graph minor theorem of N. Robertson and
P. Seymour [34] suggests a very intriguing axiom scheme that is even stronger (cf. [16])
but does not have computational strength either (for the same general reason). In
summary, the restriction to binary trees is purely pragmatic and does not change the
general foundational behavior. Secondly, the scheme KΣ–

1 is a restriction of Kruskal’s
theorem insofar as it demands a finite basis for computably enumerable—rather than
arbitrary—sets of trees. In the following we give two justifications for the restriction to
computably enumerable sets.

The first justification is thatKΣ–
1 suffices for certain applications in computer science:

Assume that P is an upward closed property of finite binary trees, which means that
P(s) and s ≤B t implyP(t). Often (but not always, cf. [11, theorem 3]) one will already
know that P is decidable. Then P can be defined by a Σ0

1-formula, and KΣ–
1 yields a

finite a ⊆ B such that P(t) is equivalent to ∃s∈as ≤B t. The latter can be decided in
polynomial time (in the size of t). The author knows of no concrete applications in the
context of trees, but the analogous argument for the graph minor relation has many
applications (see, e.g., [12]).

The second justification for the restriction to computably enumerable sets is based
on the idea that one can have reasons to accept KΣ–

1 but not the full Kruskal theorem
for binary trees. To make this plausible we recall that KΣ–

1 is equivalent to the principle
T I(ε0,Π–

1) of parameter-free Π0
1-induction up to ε0. The latter is no stronger than

induction for decidable (i.e., finitistically meaningful) properties, still up to ε0 (see,

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

886 ANTON FREUND

e.g., [43, lemma 4.5]). On the other hand, the full Kruskal theorem for binary trees is
naturally formulated in second order arithmetic. Over the theory ACA0 from reverse
mathematics (see [40] for an introduction), it is equivalent both to our statement
∀X⊆N Kϕ with ϕ(s) ≡ s ∈ X and to the well-foundedness of ε0 (see [33] for the
crucial direction from well-foundedness to Kruskal’s theorem). Now from a finitist
standpoint it makes sense to accept T I(ε0,Π–

1) but not the second order statement
that ε0 is well-founded. Indeed, Tait [45, p. 411] states that Kreisel [25] accepts
quantifier-free induction up to each ordinal below ε0 as finitist. Also, G. Takeuti’s
justification of transfinite induction is supposed to “involve ‘Gedankenexperimente’
[thought experiments] only on clearly defined operations applied to some concretely
given figures” [46, p. 97].

Next, we discuss the fact that KΣ–
1 is a scheme rather than a single statement. In the

previous section we have explained that PA + KΣ–
1 proves the consistency of PA. Of

course, this proof involves only finitely many instances Kϕ1, ... ,Kϕn. However, we see
no basis for the claim that these particular instances constitute a natural mathematical
commitment—in contrast to the axiom scheme as a whole. In this sense our reference to
an axiom scheme is essential. What does this entail? We think that the answer depends
on our attitude toward independence phenomena.

One possibility is to think of independent statements as “unsolvable conjectures.”
More explicitly, one might imagine a mathematician immersed in Peano arithmetic,
who is challenged to prove or refute the Paris–Harrington principle. The independence
result tells us that this mathematician can never succeed. This conception of
independence is clearly concerned with single statements rather than schemes.
However, one can also think of independence in terms of “potential axioms.” For
example, one may view the principle of induction for arbitrary first order formulas as
a mathematical commitment beyond the finitist standpoint. This example shows that
schemes play a natural role within such a conception of independence.

A broad conception of independence may even incorporate rules, in addition to
axiom schemes. In the present context it is interesting to consider the rule

∀�≺ε0(∀�≺��(�) → �(�))

∀α≺ε0�(α)

of Π0
1-induction along ε0, which allows us to infer ∀α≺ε0�(α) once we have given

a proof of ∀�≺ε0(∀�≺��(�) → �(�)), where �(α) can be any Π0
1-formula without

further free variables. Note that the rule does not commit us to the contrapositive
of the corresponding axiom, i.e., to the least element principle. Hence the rule avoids
certain existential commitments, which is well motivated in a finitist context. As shown
by Beklemishev [2, theorem 3], the closure of PA under the rule of Π0

1-induction along
ε0 proves the same theorems as the extension of PA by finitely iterated consistency
statements. Note that the rule does not refer to logical notions such as proof or
model. Insofar as induction up to ε0 is a result of mathematical practice, we have a
mathematical commitment on the level of Π0

1-statements.
Let us now discuss the fact that KΣ–

1 consists of Σ0
2-statements rather than Π0

1-
statements. At the end of the previous section we have mentioned that there is no
computably enumerable set Ψ of Π0

1-sentences (or even Π0
2-sentences) such that PA + Ψ

is consistent and contains PA + KΣ–
1. This shows that our use of Σ0

2-sentences is essential
in a rather strong sense. How, then, do Σ0

2- and Π0
2-independence compare from a

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

A MATHEMATICAL COMMITMENT WITHOUT COMPUTATIONAL STRENGTH 887

foundational perspective? To set the stage for this question, we first situate KΣ–
1 within

the context of Gentzen’s ordinal analysis.
Gentzen showed that each purported proof of a contradiction can be reduced to a

proof with smaller ordinal label. To establish consistency, one can use this reduction
in two different ways: First, it follows that a purported proof p of a contradiction
leads to an infinite sequence of such proofs, labeled by a strictly decreasing sequence
of ordinals. These sequences are primitive recursive with parameter p. To derive
consistency, one can then invoke the primitive recursive well-foundedness of ε0. The
latter is, in fact, equivalent to uniform Σ0

1-reflection (see [17, theorem 4.5]), which can
be expressed by a single Π0

2-statement. Secondly, one can use induction on α ≺ ε0 to
show that no proof with label α can produce a contradiction. This avoids parameters
but involves a universal quantification over ordinals. As we will show, it leads to
an equivalence between T I(ε0,Π–

1) and RfnPA(Σ0
2), which are axiom schemes with

instances of complexity Σ0
2.

It seems that the route via primitive recursive well-foundedness is preferred in the
finitist literature. For example, Takeuti writes that the consistency proof is based on
the following [46, p. 92]:

“Whenever a concrete method of constructing decreasing sequences
of ordinals is given, any such decreasing sequence must be finite.”

This preference may help to explain the pre-eminence of Π0
2-independence. As an

exception, we mention that L. Beklemishev and A. Visser [4] have characterized the
Σ0
n-consequences of PA (and of its fragments) in terms of iterated reflection. Kreisel

[26] has initiated work on finiteness theorems of complexity Σ0
2, but here the focus is

on proof-mining rather than independence.
We have seen that Gentzen’s consistency proof can be concluded in two subtly

different ways. These correspond to different mathematical principles that are
independent of Peano arithmetic: It is well known that the strengthened finite Ramsey
theorem of J. Paris and L. Harrington is equivalent to uniform Σ0

1-reflection (see [31,
theorem 3.1]) and hence to the primitive recursive well-foundedness of ε0. The present
paper complements this classical result by the equivalence between the Kruskal scheme
KΣ–

1, the scheme RfnPA(Σ0
2) of local Σ0

2-reflection, and the transfinite induction principle
T I(ε0,Π–

1).
Finally, let us take up the comparison of Σ0

2- and Π0
2-independence. Extending

Hilbert’s view on Π0
1-sentences, one could see Π0

2-sentences as “hypothetical judge-
ment[s]” [22, p. 173] of complexity Σ0

1. This might suggest that Π0
2-sentences are

less abstract—in the finitist sense—than Σ0
2-statements. From this viewpoint, the

independence of KΣ–
1 would be less significant than classical independence results,

such as the one by Paris and Harrington.
On the other hand, Σ0

2-independence has particularly interesting properties with
respect to provably total functions and computational strength (see the previous section
for a definition). An independent Π0

2-statement will typically add a provably total
function: For the Paris–Harrington principle this is the case by [31, theorem 3.2]; the
general claim is plausible in view of [17, theorems 2.24 and 4.5] and [41, theorem 5]. In
contrast, we have seen that KΣ–

1 does not increase the computational strength of PA.
The fact thatKΣ–

1 does not add provably total functions is interesting in its own right,
but it becomes even more relevant in view of the following: The notion of computational

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

888 ANTON FREUND

strength is a relatively robust extensional invariant. Bounds on provably total functions
can be established without the use of Gödel’s theorem, e.g., by induction over cut-free
infinite proofs (see [6]). This means that Gödel’s theorem is not needed to prove that the
Paris–Harrington principle is independent of PA (see [7] for an analogous argument
with respect to Goodstein’s theorem). It appears that no similar invariants are available
on the level of Σ0

2-statements. The only known proof of the fact that PA does not prove
all instances of KΣ–

1 appeals to Gödel’s theorem. In our opinion, this means that KΣ–
1 is

a conceptually different and foundationally significant manifestation of mathematical
independence.

§3. Analyzing the computational strength. In this section we give a detailed proof of
the claim thatKΣ–

1 does not increase the computational strength of PA. As preparation,
we need to show that all instances of KΣ–

1 are true. In the following remark we argue in
a strong meta theory; this will later be superseded by a proof in PA + T I(ε0,Π–

1) (see
Proposition 7.2).

Remark 3.1. As a consequence of Kruskal’s theorem [28], the partial order (B,≤B)
does not contain any infinite bad sequence. We will use this fact to justify an arbitrary
instance

Kϕ ≡ ∃fin
a⊆B(∀s∈aϕ(s) ∧ ∀t∈B(ϕ(t) → ∃s∈as ≤B t))

of the axiom scheme KΣ–
1. Aiming at a contradiction, assume that Kϕ is false. By a

bad ϕ-sequence we mean a bad sequence t0, t1, ... ⊆ B such that ϕ(ti) holds for each i.
Note that the empty sequence is a bad ϕ-sequence. Furthermore, each bad ϕ-sequence
t0, ... , tn–1 can be extended into a bad ϕ-sequence t0, ... , tn–1, tn. To see that this is
the case, consider a := {t0, ... , tn–1}. As ∀s∈aϕ(s) holds, the assumption that Kϕ is
false yields an element tn ∈ B with ϕ(tn) and ∀s∈as �≤B tn. The latter ensures that
t0, ... , tn–1, tn is still bad. By dependent choice we now get an infinite bad ϕ-sequence,
which contradicts Kruskal’s theorem.

The following result is folklore, but we provide details in order to make the paper as
accessible as possible.

Proposition 3.2. If Ψ is a set of true Σ0
2-sentences, then the provably total functions of

PA + Ψ and of PA coincide. In particular, this applies to Ψ = KΣ–
1.

Proof. Consider a provably total function f : N → N of the theory PA + Ψ. For
some Σ0

1-definition 	(x, y) of the graph of f, there are sentences �0, ... , �n–1 ∈ Ψ such
that we have

PA + {�0, ... , �n–1} � ∀x∃!y 	(x, y).

To show that f is a provably total function of PA, we will define the graph of f by
a modified Σ0

1-formula 	 ′(x, y) such that PA alone proves ∀x∃!y 	 ′(x, y). For this
purpose we observe that the conjunction �0 ∧ ··· ∧ �n–1 is equivalent to a true Σ0

2-
sentence ∃m�(m). Pick a number n ∈ N such that the Π0

1-sentence �(n) is true. Then
write

∃z	0(x, y, z) ≡ �(n) → 	(x, y)

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

A MATHEMATICAL COMMITMENT WITHOUT COMPUTATIONAL STRENGTH 889

for a Δ0
0-formula 	0. Since �(n) is true and implies each sentence �i , we do have

f(k) = m ⇔ N � ∃z	0(k,m, z),

PA � ∀x∃y∃z	0(x, y, z).

However, if PA does not prove �(n), then it will not prove that the value y is unique.
It is well known that one can restore uniqueness by minimizing over the code of the
pair 〈y, z〉. Note that minimizing over y alone would lead out of the Σ0

1-formulas: the
minimal y that satisfies ∃z	0(x, y, z) is specified by a Δ0

2-formula. To provide details we
write w = 〈y, z〉 for a Δ0

1-definition of Cantor’s pairing function; recall that w = 〈y, z〉
implies y, z ≤ w. Let 	 ′(x, y) be the Σ0

1-formula

∃w(∃z≤w(w = 〈y, z〉 ∧ 	0(x, y, z)) ∧ ∀w′<w∀y′,z′≤w′(w′ = 〈y′, z ′〉 → ¬	0(x, y′, z ′))).

It is straightforward to see that 	 ′ defines f and that PA proves ∀x∃! y	 ′(x, y).

§4. From the finite basis property to transfinite induction. In this section we show
that PA + KΣ–

1 proves each instance of T I(ε0,Π–
1). As we will see, it follows that PA +

KΣ–
1 is a proper extension of PA. The result of this section is a relatively straightforward

consequence of the existing literature. We provide details in order to demonstrate that
the argument works out with respect to formula complexity and the role of parameters.

Let us first recall the usual notation system for ordinals below ε0. According to
Cantor’s normal form theorem, any ordinal α can be uniquely written as

α = �α0 + ··· + �αn–1 with α � α0 � ··· � αn–1,

with α = 0 for n = 0. For α ≺ ε0 = min{� |�� = �} we have α0 ≺ α. Recursively, this
yields finite terms that represent all ordinals below ε0 and, simultaneously, a definition
of the order on the level of terms. Working in PA, one can develop basic ordinal
arithmetic in our term system (see, e.g., [32, 43]). In the following we always refer to
term representations rather than actual ordinals. The set of and the order between
terms will also be denoted by ε0 and ≺, respectively (in addition we write α ≺ ε0 to
express that α is one of our terms).

In the introduction we have defined a set B of binary trees and an embeddability
relation ≤B. To establish a connection with the ordinals below ε0, it is convenient to
have a binary normal form: If α � 0 has Cantor normal form as above, we write

α =NF �
� + � for � = α0 and � = �α1 + ··· + �αn–1 .

Note that � and � can be seen as proper subterms of α. The following construction is
well-known (cf. [46, sec. 12]).

Definition 4.1 (PA). We construct a function f : ε0 → B by setting

f(α) =

{
◦ if α = 0,
◦(f(�), f(�)) if α =NF �

� + �,

which amounts to a recursion over term representations of ordinals.

Concerning the formalization in PA, we note that f is primitive recursive. Hence f
is PA-provably total. In particular, the graph of f is Δ0

1-definable in PA. The following
folklore result shows that f satisfies the definition of a quasi embedding.

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

890 ANTON FREUND

Lemma 4.2 (PA). For α, � ≺ ε0, the inequality f(α) ≤B f(�) implies α � � .

Proof. Define a height function h : ε0 → N by recursion over terms, setting

h(α) =

{
0 if α = 0,
max{h(�), h(
)} + 1 if α =NF �

� +
.

The claim from the lemma can now be verified by induction over h(�). For α = 0
the implication holds because α � � is true. In the remaining case we may write
α =NF �

� +
. By the definition of ≤B, the inequalityf(α) = ◦(f(�), f(
)) ≤B f(�)
fails for f(�) = ◦. Hence we may also assume � � 0, say � =NF �

�′ +
′. Again by
the definition of ≤B, the inequality

f(α) = ◦(f(�), f(
)) ≤B ◦(f(� ′), f(
′)) = f(�)

can hold for two reasons: First assume we have f(�) ≤B f(� ′) and f(
) ≤B f(
′).
In view of h(� ′), h(
′) < h(�), the induction hypothesis yields � � � ′ and
 �
′. By
basic ordinal arithmetic we get

α = �� +
 � ��′ +
′ = �.

Now assumef(α) ≤B f(�) holds because we havef(α) ≤B f(� ′) orf(α) ≤B f(
′).
Inductively we get α � � ′ � ��′ or α �
′. Either way we have α � ��′ +
′ = � .

In addition to the lemma itself, we will need the following standard consequence:

Corollary 4.3 (PA). The function f : ε0 → B is injective.

Proof. Consider α, � ≺ ε0 with f(α) = f(�). A straightforward induction over B
shows that ≤B is reflexive. Hence we have f(α) ≤B f(�) and f(�) ≤B f(α). By the
previous lemma this implies α � � and � � α. Since the order relation on the ordinals
is antisymmetric, we obtain α = � .

We can now show that the finite basis property implies transfinite induction. The
converse implication will be established in Section 7.

Proposition 4.4. Each instance of T I(ε0,Π–
1) can be proved in PA + KΣ–

1.

Proof. Working in PA + KΣ–
1, we establish T I(ε0, �) for a given Π0

1-formula� with
a single free variable. For this purpose we consider the formula

ϕ(t) :≡ t ∈ B ∧ ∃α≺ε0(f(α) = t ∧ ¬�(α)),

where f : ε0 → B is the function from Definition 4.1. Since the graph of f is Δ0
1-

definable in PA, we see thatϕ(t) is (provably equivalent to) a Σ0
1-formula with the single

free variable t. Hence we may use Kϕ to get (a code for) a finite set a ⊆ B that satisfies

∀s∈aϕ(s) ∧ ∀t∈B(ϕ(t) → ∃s∈as ≤B t).

First assume that a is empty. Then ∃s∈as ≤B t fails for all t ∈ B, so that the second
conjunct enforces ∀t∈B¬ϕ(t). Given α ≺ ε0, it is straightforward to see that ¬ϕ(t)
for t := f(α) ∈ B implies �(α). We thus have ∀α≺ε0�(α), which is the conclusion of
T I(ε0, �). Now assume that the finite set a ⊆ B is non-empty. Due to ∀s∈aϕ(s), we
see that a is contained in the range of f. Also recall that f is injective. By induction on
the cardinality of a, one can infer that there is an ordinal � ≺ ε0 with

f(�) ∈ a ∧ ∀
≺�f(
) /∈ a.

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

A MATHEMATICAL COMMITMENT WITHOUT COMPUTATIONAL STRENGTH 891

Given an ordinal � with this property, we now establish

∀�≺��(�) ∧ ¬�(�),

which implies that T I(ε0, �) holds because its antecedent Progε0(�) fails. Aiming at
the first conjunct, we consider an ordinal � ≺ �. If �(�) was false, then ϕ(t) would
hold for t := f(�) ∈ B. Since a ⊆ B witnesses the conclusion of Kϕ, we would get
an element s ∈ a with s ≤B t. Writing s = f(
) with
 ≺ ε0, we could invoke Lemma
4.2 to conclude
 � � ≺ �. By the above this would imply s = f(
) /∈ a, which yields
the desired contradiction. To establish the second conjunct we observe that f(�) ∈ a
implies ϕ(f(�)). According to the definition of ϕ, this means that there is an ordinal
α ≺ ε0 withf(α) = f(�) and ¬�(α). Since f is injective we getα = � and thus¬�(�),
as required.

According to Gentzen’s ordinal analysis [18], the consistency of Peano arithmetic
is provable in PA + T I(ε0,Π–

1). A detailed proof of a stronger result can be found in
the next section. Together with Proposition 4.4 and Gödel’s theorem, it follows that
PA + KΣ–

1 is a proper extension of PA.

§5. From transfinite induction to reflection. Working over PA, we show that the
parameter-free induction scheme T I(ε0,Π–

1) implies the local reflection principle
RfnPA(Σ0

2). The converse direction will be established in Section 7. The result is rather
similar to one by Kreisel and Lévy [27], who show that induction with parameters
corresponds to uniform reflection. As we will see, the connection with reflection implies
that PA + KΣ–

1 is not contained in any consistent extension of PA by a computably
enumerable set of Π0

2-sentences.
As preparation, we review the ordinal analysis of Peano arithmetic and its

formalization in PA itself. First note that we cannot formalize the usual soundness
argument by induction over formal proofs, since there is no arithmetical truth definition
that would cover all relevant formulas (due to Tarski [47]). Even when we restrict
attention to theorems of restricted complexity, their proofs may involve detours through
more complex lemmata. The method of cut elimination aims to remove such detours in
order to permit a soundness argument that is based on partial truth definitions (cf. [20,
sec. I.1(d)]). However, it is not immediately possible to eliminate complex lemmata
from proofs in Peano arithmetic, which may use complex instances of induction in
an essential way. To resolve this problem, ordinal analysis transforms the usual finite
proofs into infinite proof trees: In the realm of infinite proofs, induction can be deduced
from axioms of low complexity, so that cut elimination becomes possible. Soundness
can then be proved by transfinite induction over the rank of infinite proof trees.

Our ordinal analysis works with proofs in a Tait-style sequence calculus. In
particular, this means that all formulas are in negation normal form, and that negation
is a defined operation based on De Morgan’s laws. Each node in a proof tree deduces a
sequent, i.e., a finite set Γ = {ϕ0, ... , ϕn–1} of formulas. The latter is to be interpreted
as the disjunction

∨
Γ = ϕ0 ∨ ··· ∨ ϕn–1. In the context of sequents we write Γ, ϕ for

Γ ∪ {ϕ}. Detours in proofs are implemented via the cut rule

Γ, ϕ Γ,¬ϕ ,
Γ

which has the following intuitive significance: In order to show
∨

Γ, it suffices to

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

892 ANTON FREUND

• prove a lemma ϕ (more precisely, the left premise proves
∨

Γ ∨ ϕ) and to
• prove that ϕ implies

∨
Γ (i.e., to prove

∨
Γ ∨ ¬ϕ, as in the right premise).

The crucial feature of the infinite proof system is the �-rule

Γ, ϕ(0) Γ, ϕ(1) ··· ,
Γ,∀nϕ(n)

which allows to infer ∀nϕ(n) if there is a proof of ϕ(n) for each numeral n. Induction
can be derived from the �-rule, since

ϕ(0) ∧ ∀m(ϕ(m) → ϕ(m + 1)) → ϕ(n)

has a straightforward proof for each number n. It follows that any finite proof in Peano
arithmetic can be translated (or “embedded”) into the infinite system.

It is not immediately clear how infinite proof trees can be formalized in Peano
arithmetic. In the following we recall a very elegant approach due to Buchholz [5]
(see his paper for all missing details): The idea is to work with a set Z∗ of finite
terms. Each term names an infinite proof by specifying its role in the cut elimination
process. Specifically, each finite proof d in Peano arithmetic gives rise to a constant
symbol [d] ∈ Z∗, which denotes the translation of d into the infinite system. For each
term h ∈ Z∗ there is a term Eh ∈ Z∗ that names the proof that results from h by a
single application of cut elimination. The intermediate steps of cut elimination give
rise to auxiliary function symbols. By primitive recursion over terms one can define
an ordinal o(h) ≺ ε0 that bounds the rank of the proof tree represented by h; for
example, the well-known fact that cut elimination leads to an exponential increase of
the ordinal rank suggests the recursive clause o(Eh) = �o(h). Also by recursion over
terms, one can determine the end sequent e(h), the last rule r(h), the cut rank d(h),
and terms s(h, n) ∈ Z∗ that denote the immediate subtrees of the proof tree that is
represented by h. Working in PA (or even in PRA), one can show that the term system
Z∗ is “locally correct” (see [5, theorem 3.8]); in particular this means that we have
o(s(h, n)) ≺ o(h), except when r(h) signifies an axiom. To ensure “global correctness,”
one needs transfinite induction up to ε0, which is not available in PA. In the sequel we
abbreviate

h �α0 Γ :⇔ h ∈ Z∗ ∧ o(h) = α ∧ d(h) = 0 ∧ e(h) ⊆ Γ.

Intuitively, this asserts that h is a cut-free infinite proof tree with rank α and end
sequent Γ (note that

∨
e(h) implies

∨
Γ). Crucially, the relation h �α0 Γ is primitive

recursive and hence Δ0
1-definable in PA. This implies that

Z∗ �α0 Γ :⇔ ∃h∈Z∗h �α0 Γ

is a Σ0
1-formula with parameters α and Γ. We can now show the promised result:

Proposition 5.1. Each instance of RfnPA(Σ0
2) can be proved in PA + T I(ε0,Π–

1).

Proof. Consider a closed Σ0
2-formula ϕ. Working in PA + T I(ε0,Π–

1), we assume
that we have PrPA(ϕ). In order to establish RfnPA(ϕ), we need to derive ϕ. We use
Buchholz’ formalization of ordinal analysis, as discussed above. By embedding and
cut elimination (cf. [5, definitions 3.4 and 3.7]), the assumption PrPA(ϕ) implies

∃α≺ε0Z∗ �α0 {ϕ}.

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

A MATHEMATICAL COMMITMENT WITHOUT COMPUTATIONAL STRENGTH 893

Write Γ ⊆ {ϕ} ∪ Π–
1 to express that Γ is a sequent that consists of Π0

1-sentences and
(possibly) the formula ϕ. The statement that Γ contains a true Π0

1-sentence can be
expressed by a Π0

1-formula TrΠ–
1
(Γ) (cf. [20, theorem I.1.75]). Aiming at a contradiction,

we assume that ϕ is false. Under this assumption we will derive

∀α≺ε0∀Γ(Γ ⊆ {ϕ} ∪ Π–
1 ∧ Z∗ �α0 Γ → TrΠ–

1
(Γ)),

arguing by transfinite induction on α ≺ ε0. Note that the sentence ϕ is represented by
a fixed numeral. Hence α is the only free variable of the induction formula, and the
induction is covered by the scheme T I(ε0,Π–

1). Once the induction is carried out, it is
straightforward to derive the desired contradiction: By the above we have Z∗ �α0 {ϕ}
for some α ≺ ε0. However, we cannot have TrΠ–

1
({ϕ}), since ϕ was assumed to be

false (note that this covers both ϕ ∈ Π0
1 ⊆ Σ0

2 and ϕ ∈ Σ0
2\Π0

1). It remains to carry out
the induction. In the step we consider a sequent Γ ⊆ {ϕ} ∪ Π–

1 and assume h �α0 Γ for
some h ∈ Z∗. We distinguish cases according to the last rule r(h). Note that this cannot
be a cut, since h �α0 Γ entails d(h) = 0. If r(h) is an axiom, then e(h) ⊆ Γ contains a
true literal (cf. [5, definition 2.2]). To complete the proof, we consider the introduction
of a quantifier; the introduction of a propositional connective is similar and simpler.
First assume that h ends with an �-rule, which introduces a formula ∀n	(n) ∈ Γ. Due
to Γ ⊆ {ϕ} ∪ Π–

1 we see that ∀n	(n) must be a Π0
1-sentence. Local correctness (see [5,

theorem 3.8]) yields

Z∗ �o(s(h,n))
0 Γ, 	(n) with o(s(h, n)) ≺ o(h) = α,

for all n ∈ N. The induction hypothesis implies that each sequent Γ, 	(n) contains a
true Π0

1-sentence. Hence we get such a sentence in Γ, or all instances 	(n) are true. In
the latter case, it follows that Γ contains the true Π0

1-sentence ∀n	(n). Finally, assume
that r(h) introduces an existential formula ∃n�(n). In view of Γ ⊆ {ϕ} ∪ Π–

1 we must
have ∃n�(n) ≡ ϕ (note that [5] does not work with bounded quantifiers but treats
primitive recursive relations as atomic). By local correctness there is some existential
witness k ∈ N such that we have

Z∗ �o(s(h,0))
0 Γ, �(k) with o(s(h, 0)) ≺ o(h) = α.

The induction hypothesis yields a true Π0
1-sentence in Γ, �(k). To establish TrΠ–

1
(Γ) it

suffices to show that �(k) cannot be true: if it was, then ϕ ≡ ∃n�(n) would be true as
well, which contradicts our assumption.

As mentioned in the introduction, the previous proposition can also be derived from
work of Beklemishev:

Remark 5.2. By the paragraph before Proposition 5.18 in [3], the consistency of PA +
Con(PA) can be derived by a single application of the (parameter-free) induction
rule up to ε0 over EA+ + Con(PA), where EA+ denotes the extension of elementary
arithmetic by superexponentiation. As pointed out by one of the referees, the argument
remains valid when the statement Con(PA) is replaced by an arbitrary Π0

2-sentence �.
In particular, this yields

PA + T I(ε0,Π–
1) � � → Con(PA + �).

If we take � = ¬ϕ, then the right side is the contrapositive of local reflection for ϕ.

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

894 ANTON FREUND

The following is folklore (cf. the related result by Kreisel and Lévy [27, sec. 8]; see
also [1, lemma 2] for an argument that takes the formula complexity into account).

Proposition 5.3. There is no computably enumerable set Ψ of Π0
2-sentences such that

PA + Ψ is consistent and contains PA + RfnPA(Σ0
2).

Proof. Consider a computably enumerable set Ψ of Π0
2-sentences such that PA + Ψ

proves each instance of RfnPA(Σ0
2). We need to show that PA + Ψ is inconsistent.

According to [29, theorem 4], there is a single Π0
2-sentence � such that PA + � is a

Σ0
2-conservative extension of PA + Ψ. In view of conservativity, it suffices to establish

the inconsistency of PA + �. We have

PA + � � PrPA(¬�) → ¬�,

since the right side is an instance of RfnPA(Σ0
2). Considering the contrapositive, we learn

that PA + � proves its own consistency statement ¬PrPA(¬�), so that it is inconsistent
by Gödel’s theorem.

By Propositions 4.4 and 5.1 we have

PA + RfnPA(Σ0
2) ⊆ PA + T I(ε0,Π–

1) ⊆ PA + KΣ–
1.

Hence the previous proposition has the following consequence:

Corollary 5.4. There is no computably enumerable set Ψ of Π0
2-sentences such that

PA + Ψ is consistent and contains PA + KΣ–
1. In particular, the latter is a proper extension

of PA.

Since any true Σ0
2-sentence follows from a true Π0

1-sentence, there is a set Ξ of Π0
1-

sentences such that PA + Ξ is consistent and contains PA + KΣ–
1. The corollary tells

us that Ξ cannot be computably enumerable.

§6. A primitive recursive reification. In the rest of this paper we complete the proof
that KΣ–

1, T I(ε0,Π–
1) and RfnPA(Σ0

2) are equivalent over PA. The present section is
concerned with a technical result that will be crucial for this purpose.

Write Bad–(B) for the set of non-empty finite bad sequences in B. We want to
construct a primitive recursive function r : Bad–(B) → ε0 such that we have

r(〈t0, ... , tn, tn+1〉) ≺ r(〈t0, ... , tn〉)
whenever 〈t0, ... , tn+1〉 is an element of Bad–(B), provably in PA (in fact in primitive
recursive arithmetic). Such a function is called a reification. It ensures that B is a well
partial order with maximal order type at most (and in fact equal to) ε0.

As mentioned in the introduction, the result that B has maximal order type ε0 is
due to de Jongh and Schmidt. Experience shows that maximal order types can be
witnessed by effective reifications. For the case of finite (and in particular binary) trees
this has been established by M. Rathjen and A. Weiermann [33, sec. 2]. Unfortunately,
we cannot simply cite their result: In [33] it is shown that ACA0 proves the existence
of a reification; however, it is not entirely trivial to see that the constructed reification
is (primitive) recursive. In the rest of this section we verify this fact in detail. Some
readers may prefer to skip this verification and to continue with the applications in the
next section. We point out that the following presentation is influenced by the more
general construction in [21].

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

A MATHEMATICAL COMMITMENT WITHOUT COMPUTATIONAL STRENGTH 895

The reification ofB will depend on reifications of various other orders. In the context
of first order arithmetic it helps to think of these orders as types, which are represented
by finite expressions.

Definition 6.1 (PA). The following recursive clauses generate a collection of types
and a subcollection of indecomposable types:

(i) The symbols B and E are indecomposable types.
(ii) If A,B are types, then A+ B is a type.
(iii) If A,B are indecomposable types, then A× B is an indecomposable type.
(iv) If A is any type, then A∗ is an indecomposable type.

On an intuitive level, one should think of B as the collection B of binary trees and
of E as the empty order. The expressions A+ B and A× B refer to the usual notions
of sum (disjoint union) and product, while A∗ stands for the set of finite sequences
with entries from A (with the order from Higman’s lemma). Officially, the elements of
these orders are represented by the terms from Definition 6.2 below, while the order
relations are recovered via Definition 6.3.

Note that it is not allowed to form types such as (A+ B) × C , since A+ B is
not indecomposable. This restriction corresponds to the notion of normal form from
[21, definition 4.15]. We will eventually assign an (additively indecomposable) ordinal
to each (indecomposable) type that does not contain B. In particular, the ordinals
assigned to product types will be additively indecomposable. This ensures that the
ordinal assignment satisfies the monotonicity property from Proposition 6.12 below
(cf. the role of indecomposable ordinals in the proof of this proposition, as well as the
counterexample in the paragraph after Proposition 5.10 in [21]).

As mentioned above, the elements of our orders are represented by terms of the
corresponding types. To obtain primitive recursive constructions, it is crucial to work
with terms of all types simultaneously. For example, it is neither possible nor necessary
to construct all terms of type A before one constructs a term of type A∗. Let us point
out that each term has a unique type, which can be read off by a primitive recursive
function. Also recall that E represents the empty order, so that no terms of this type
are specified.

Definition 6.2 (PA). The following recursive clauses generate a collection of terms.
We simultaneously specify the types of these terms:

(i) Each binary tree t ∈ B is a term of type B.
(ii) If a is a term of type A and B is a type, then �B0 a is a term of type A+ B . If b

is a term of type B and A is a type, then �A1 b is a term of type A+ B .
(iii) If a and b are terms of types A and B, then 〈a, b〉 is a term of type A× B .
(iv) If a0, ... , an–1 have type A, then 〈a0, ... , an–1〉A is a term of type A∗.

Note that (iii) does only apply when A and B are indecomposable.

One readily constructs a Gödel numbering # with the monotonicity properties

#s,#t < #◦(s, t) for s, t ∈ B, #a < #�B0 a, #b < #�A1 b,

#a,#b < #〈a, b〉, #a0,#〈a1, ... , an〉A < #〈a0, ... , an〉A.

We will use this Gödel numbering to construct primitive recursive functions by course-
of-values recursion. Binary functions can be constructed with the help of the Cantor

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

896 ANTON FREUND

pairing function, which is monotone in both components. For example, the following
definition decides a ≤A a′ by recursion over the code of 〈#a,#a′〉.

Definition 6.3 (PA). The relation a ≤A a′ between terms a and a′ of the same type
A is generated by the following recursive clauses (i.e., it is the smallest relation that
satisfies them):

(i) If s ≤B t, then s ≤B t.
(ii) If a ≤A a′, then �B0 a ≤A+B �

B
0 a

′. If b ≤B b′, then �A1 b ≤A+B �
A
1 b

′.
(iii) If a ≤A a′ and b ≤B b′, then 〈a, b〉 ≤A×B 〈a′, b′〉.
(iv) If there is a strictly increasing f : {0, ... , m – 1} → {0, ... , n – 1} such that
ai ≤A a′f(i) holds for all i < m, then 〈a0, ... , am–1〉A ≤A∗ 〈a′0, ... , a′n–1〉A.

Let us record the expected property:

Lemma 6.4 (PA). Each relation ≤A is a partial order on the terms of type A.

Proof. First check a ≤A a by induction over #a, simultaneously for all types A.
Then use induction over #a + #a′ to verify that a ≤A a′ and a′ ≤A a imply a = a′.
Finally, show a ≤A a′ & a′ ≤A a′′ ⇒ a ≤A a′′ by induction over #a + #a′ + #a′′.

From now on we write a ∈ A to express that a is a term of type A. Despite this
notation, one should keep in mind that A is a finite expression rather than an infinite
set. The following provides a substitute for the “missing” types A× B .

Definition 6.5 (PA). For arbitrary types A and B we recursively define a type A⊗ B
and terms [a, b] ∈ A⊗ B for all a ∈ A and b ∈ B : First put

A⊗ B = A× B and [a, b] = 〈a, b〉 when A,B are indecomposable.

Now consider A = C +D and an arbitrary B. To save parentheses, we assume that ⊗
binds stronger than +. We then define

(C +D) ⊗ B = C ⊗ B +D ⊗ B and [�D0 c, b] = �D⊗B0 [c, b], [�C1 d, b] = �C⊗B1 [d, b].

For indecomposable A and B = C +D we set

A⊗ (C +D) = A⊗ C +A⊗D and [a, �D0 c] = �A⊗D0 [a, c], [a, �C1 d] = �A⊗C1 [a, d].

The following is readily checked by induction on #a + #a′ + #b + #b′.

Lemma 6.6 (PA). We have

[a, b] ≤A⊗B [a′, b′] ⇔ a ≤A a′ and b ≤B b′

for arbitrary terms a, a′ ∈ A and b, b′ ∈ B .

For a ∈ A we will abbreviate

a′ ∈ Aa :⇔ a′ ∈ A and a �≤A a′.

Recall that, officially, A is not an infinite set but a finite expression that denotes a
type. Similarly, a′ ∈ Aa does officially refer to a primitive recursive relation between
the finite expressions a, a′ and A. Informally, Aa stands for the set of all a′ ∈ A that
can follow a in a bad sequence. It is known that these sets play an important role
in the analysis of maximal order types. While Aa itself is not a type, it admits a
quasi embedding into a type A(a), as we show next. To save parentheses we agree

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

A MATHEMATICAL COMMITMENT WITHOUT COMPUTATIONAL STRENGTH 897

on A⊗ B ⊗ C = (A⊗ B) ⊗ C and [a, b, c] = [[a, b], c]. The following construction is
similar to the one in [21, definition 5.3 and example 5.4].

Definition 6.7 (PA). By recursion over #a we define a type A(a) for each a ∈ A:

(i) We have B(◦) = E and B(◦(s, t)) = (B(s) + B(t))∗.
(ii) We have (A+ B)(�B0 a) = A(a) + B and (A+ B)(�A1 b) = A+ B(b).
(iii) We have (A× B)(〈a, b〉) = A(a) ⊗ B + A⊗ B(b).
(iv) We have A∗(〈〉A) = E and

A∗(〈a0, ... , an〉A) = A(a0)∗ +A(a0)∗ ⊗ A⊗ A∗(〈a1, ... , an〉A).

As promised, we get the following quasi embeddings:

Proposition 6.8. There is a primitive recursive function e such that PA proves the
following: For any type A and terms a ∈ A, b ∈ Aa we have eA(a, b) = e(a, b) ∈ A(a)
(note that A can be inferred from a). Furthermore we have

eA(a, b) ≤A(a) eA(a, b′) ⇒ b ≤A b′

for any terms b, b′ ∈ Aa .

Proof. The value eA(a, b) is defined by recursion over the code of the pair 〈#a,#b〉,
simultaneously for all types A. Once the construction of e is complete, the second part
of the proposition can be verified by induction on #a + #b + #b′. In the following we
distinguish cases according to the form of a.

First consider a = ◦ ∈ B = A. Since ◦ ≤B t is true for any t ∈ B, the set Aa is
empty and there are no values to define. Now assume a = ◦(s0, s1) ∈ B = A. For the
term b = ◦ ∈ B we put

eB(◦(s0, s1), ◦) = 〈〉B(s0)+B(s1) ∈ (B(s0) + B(s1))∗ = B(◦(s0, s1)).

Now assume that we have b = ◦(t0, t1) ∈ B. The condition b ∈ Aa amounts to
◦(s0, s1) �≤B ◦(t0, t1), which yields s0 �≤B t0 or s1 �≤B t1. Let us assume that we have
s0 �≤B t0, which amounts to t0 ∈ Bs0 . We may then refer to the recursively defined
value

eB(s0, t0) ∈ B(s0).

More formally, the recursive definition of eA(a, b) and the inductive verification of
eA(a, b) ∈ A(a) should be separated. In order to do so, we can agree on a default
value for the hypothetical case that the decidable property eB(s0, t0) ∈ B(s0) fails; the
induction shows that the default value is never called. By ◦(s0, s1) �≤B ◦(t0, t1) we also
have ◦(s0, s1) �≤B t1, which amounts to t1 ∈ B◦(s0,s1) and provides

eB(◦(s0, s1), t1) ∈ B(◦(s0, s1)) = (B(s0) + B(s1))∗.

Let us agree to write c0 � 〈c1, ... , cn〉C := 〈c0, c1, ... , cn〉C ∈ C ∗ for terms c0, ... , cn of a
type C. We can now state our recursive clause as

eB(◦(s0, s1), ◦(t0, t1)) =

⎧⎨
⎩
�
B(s1)
0 eB(s0, t0) � eB(◦(s0, s1), t1) if s0 �≤B t0,

�
B(s0)
1 eB(s1, t1) � eB(◦(s0, s1), t0) otherwise.

To explain the second case we recall that s1 �≤B t1 must hold if s0 �≤B t0 fails.

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

898 ANTON FREUND

Before we state the other recursive clauses, let us verify that the second part of the
proposition holds for A = B. As above we write a = ◦(s0, s1). In the case of the term
b′ = ◦ we observe

eB(a, b) ≤B(s) eB(a, b) = 〈〉B(s0)+B(s1) ⇒ eB(a, b) = 〈〉B(s0)+B(s1).

The consequent of this implication can only hold for b = ◦. In this case b ≤B b
′ is

satisfied for any b′ ∈ B. Hence it remains to consider terms of the form b = ◦(t0, t1)
and b′ = ◦(t′0, t

′
1). In general we have

c � ≤C∗ c′ � ′ ⇔ c � ≤C∗ ′ or (c ≤C c′ and ≤C∗ ′).

First assume that eB(s, b) ≤B(s) eB(s, b′) holds because of eB(s, b) ≤B(s) eB(s, t′i).
Then the induction hypothesis yields b ≤B t

′
i , which implies b ≤B ◦(t′0, t

′
1) = b′. Now

assume we have eB(s, b) ≤B(s) eB(s, b′) because there are i, j ∈ {0, 1} with

�
B(s1–i)
i eB(si , ti) ≤B(s0)+B(s1) �

B(s1–j)
j eB(sj, t′j),

eB(s, t1–i) ≤B(s) eB(s, t′1–j).

The first inequality can only hold for i = j. It yields eB(si , ti) ≤B(si) eB(si , t′i), which
implies ti ≤B t

′
i by induction hypothesis. From the second inequality we can infer

t1–i ≤B t
′
1–i . Together we get b = ◦(t0, t1) ≤B ◦(t′0, t

′
1) = b′, as desired.

Sum and product types are considerably easier to handle. We only state the recursive
clauses and leave all verifications to the reader:

eA+B(�B0 a, �
B
0 a

′) = �B0 eA(a, a′), eA+B(�B0 a, �
A
1 b

′) = �A(a)
1 b′,

eA+B(�A1 b, �
B
0 a

′) = �B(b)
0 a′, eA+B(�A1 b, �

A
1 b

′) = �A1 eB(b, b′).

eA×B(〈a, b〉, 〈a′, b′〉) =

⎧⎨
⎩
�A⊗B(b)
0 [eA(a, a′), b′] if a �≤A a′,

�A(a)⊗B
1 [a′, eB(b, b′)] otherwise.

Finally, we consider the case of a type A∗. For a = 〈〉A ∈ A∗ it suffices to observe
that (A∗)a is empty, since 〈〉A ≤A∗ � holds for any � ∈ A∗. Now consider a term of the
form a = a0 � ∈ A∗. We write b = 〈b0, ... , bn–1〉A ∈ (A∗)a and distinguish two cases.
If we have a0 �≤A bi for all i < n, then we set

eA∗(a, b) = �A(a0)∗⊗A⊗A∗()
0 〈eA(a0, b0), ... , eA(a0, bn–1)〉A(a0).

Note that this is an element of A(a0)∗ +A(a0)∗ ⊗ A⊗ A∗() = A∗(a), as required.
Otherwise we fix the smallest number i < n with a0 ≤A bi . In view of b ∈ (A∗)a we
must have �≤A∗ 〈bi+1, ... , bn–1〉A. We can thus define eA∗(a, b) as

�
A(a0)∗

1 [〈eA(a0, b0), ... , eA(a0, bi–1)〉A(a0), bi , eA∗(, 〈bi+1, ... , bn–1〉A)].

Using the induction hypothesis, one readily checks that eA∗(a, b) ≤A∗(a) eA∗(a, b′)
implies b ≤A∗ b′.

Our next aim is to iterate the previous construction along bad sequences. Given
a type A, we write ∈ Bad(A) to express that is a finite bad sequence in A. This
means that we have = 〈a0, ... , an–1〉 for terms a0, ... , an–1 ∈ A that satisfy ai �≤A aj
for all i < j < n. If we have ∈ Bad(A) and is different from the empty sequence

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

A MATHEMATICAL COMMITMENT WITHOUT COMPUTATIONAL STRENGTH 899

〈〉, then we write ∈ Bad–(A). For = 〈a0, ... , an–1〉 ∈ Bad(A) we abbreviate �a =
〈a0, ... , an–1, a〉 and put

a ∈ A :⇔ a ∈ A and �a ∈ Bad–(A).

Once again, note that we officially define a primitive recursive relation a ∈ A between
finite objects, rather than an infinite set A . The expressions A(a) and eA(a, b) have
only been explained for a ∈ A and b ∈ Aa . We will see that the following definition
does conform with these restrictions. Before this is established, we may simply assume
that some default value is assigned outside of the intended domain of definition.

Definition 6.9 (PA). Consider a type A. For a sequence ∈ Bad(A) and a term
b ∈ A we define A[] and êA(, b) by the recursive clauses

A[〈〉] = A, A[�a] = A[](êA(, a)),

êA(〈〉, b) = b, êA(�a, b) = eA[](êA(, a), êA(, b)).

In order to justify the recursion in detail, we consider = 〈a0, ... , an–1〉 and write �
i = 〈a0, ... , ai–1〉. ThenA[� i] and the values êA(� i, aj) for i ≤ j < n are constructed
simultaneously by recursion on i < n. For ′ := �an with an := b this also explains
the value êA(, b) = êA(′ �n, an).

Corollary 6.10 (PA). If is a finite bad sequence in the type A, then A[] is a type.
For any b ∈ A the value êA(, b) is a term of this type. Furthermore we have

êA(, b) ≤A[] êA(, b′) ⇒ b ≤A b′

for any terms b, b′ ∈ A .
Proof. We use induction on to verify all claims simultaneously. The case of = 〈〉

is immediate. Now assume that we have = 0
�a. The induction hypothesis tells

us that êA(0, a) is a term of type A[0]. In view of Definition 6.7 it follows that
A[] = A[0](êA(0, a)) is a type. For b ∈ A we have a �≤A b, so that the induction
hypothesis yields êA(0, a) �≤A[0] êA(0, b). By Proposition 6.8 we get

êA(, b) = eA[0](êA(0, a), êA(0, b)) ∈ A[0](êA(0, a)) = A[].

From êA(, b) ≤A[] êA(, b′) we get êA(0, b) ≤A[0] êA(0, b
′), also by Proposition

6.8. Then b ≤A b′ follows by induction hypothesis.

In order to obtain a reification, it remains to assign a suitable ordinal to each
type. Let us write α ⊕ � and α ⊗ � for the natural (“Hessenberg”) sum and product
of ordinals α, � ≺ ε0 (see, e.g., [39, sec. 4]). In contrast to the usual operations of
ordinal arithmetic, the natural variants are commutative and strictly increasing in
both arguments. Ordinals of the form �� are additively indecomposable, in the sense
that α, � ≺ �� implies α ⊕ � ≺ �� ; conversely, any additively indecomposable ordinal

 �= 0 has the form
 = �� . For α, � ≺ ��2 := �(��) we have α ⊗ � ≺ ��2 .

Definition 6.11 (PA). Let us say that a type is low if it does not involve the constant
symbol B. We recursively assign an ordinal o(A) to each low type A:

o(E) = 0, o(A+ B) = o(A) ⊕ o(B),

o(A× B) = o(A) ⊗ o(B), o(A∗) = �o(A)
2 .

The following is crucial for the construction of a reification.

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

900 ANTON FREUND

Proposition 6.12 (PA). If A is a low type and a ∈ A is a term, then A(a) is a low type
and we have o(A(a)) ≺ o(A).

Proof. As preparation we note that A⊗ B is low if the same holds for A and
B. A straightforward induction shows o(A⊗ B) = o(A) ⊗ o(B); for example, the
distributivity property from [39, lemma 4.5(8)] accounts for the inductive verification

o((C +D) ⊗ B) = o(C ⊗ B +D ⊗ B) = o(C ⊗ B) ⊕ o(D ⊗ B)

= (o(C) ⊗ o(B)) ⊕ (o(D) ⊗ o(B)) = (o(C) ⊕ o(D)) ⊗ o(B) = o(C +D) ⊗ o(B).

By induction on A one can show that o(A) is additively indecomposable when A is
an indecomposable type. The most interesting step concerns a type A = B × C , where
B and C are indecomposable according to Definition 6.1. Inductively we may write
o(B) = �� and o(C) = �� (unless we have o(A) = 0). Then

o(B × C) = o(B) ⊗ o(C) = �� ⊗ �� = ��⊕�

is an additively indecomposable ordinal as well. The claim of the proposition can now
be verified by induction over #a, for all types A simultaneously. First consider the
case of a term �B0 a ∈ A+ B . The induction hypothesis tells us that A(a) is low with
o(A(a)) ≺ o(A). Hence (A+ B)(�B0 a) = A(a) + B is low and we have

o((A+ B)(�B0)) = o(A(a) + B) = o(A(a)) ⊕ o(B) ≺ o(A) ⊕ o(B) = o(A+ B).

The case of �A1 b ∈ A+ B is analogous. Now consider a term 〈a, b〉 ∈ A× B . In view
of the above, the induction hypothesis implies that A(a) ⊗ B is low with ordinal

o(A(a) ⊗ B) = o(A(a)) ⊗ o(B) ≺ o(A) ⊗ o(B) = o(A× B).

In the same way we get o(A⊗ B(b)) ≺ o(A× B). In view of Definition 6.1, a type of
the form A× B is always indecomposable. By the above this entails that o(A× B) is
an additively indecomposable ordinal. Hence we obtain

o((A× B)(〈a, b〉)) = o(A(a) ⊗ B +A⊗ B(b))

= o(A(a) ⊗ B) ⊕ o(A⊗ B(b)) ≺ o(A× B).

Finally, we consider the case of a type A∗. Concerning the term 〈〉A ∈ A∗, we note

o(A∗(〈〉A)) = o(E) = 0 ≺ �o(A)
2 = o(A∗).

Now consider a term a � ∈ A∗ (see the proof of Proposition 6.8 for the notation).
In view of #a,# < #a � the induction hypothesis yields o(A∗()) ≺ o(A∗) = �o(A)

2

and o(A(a)) ≺ o(A). The latter implies o(A(a)∗) = �o(A(a))
2 ≺ �o(A)

2 . Since we are

concerned with ordinals below ε0, we also have o(A) ≺ �o(A)
2 . Using the fact that�o(A)

2
is additively and multiplicatively indecomposable, we can deduce

o(A∗(a �)) = o(A(a)∗ +A(a)∗ ⊗ A⊗ A∗())

= o(A(a)∗) ⊕ o(A(a)∗) ⊗ o(A) ⊗ o(A∗()) ≺ �o(A)
2 = o(A∗),

as required.

Recall that the terms of type B coincide with the finite binary trees, i.e., with the
elements of B. Below we will show that the type B[] is low for any non-empty bad

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

A MATHEMATICAL COMMITMENT WITHOUT COMPUTATIONAL STRENGTH 901

sequence ∈ Bad–(B) = Bad–(B). To state the following definition, we simply assume
that the primitive recursive function o(·) is extended to arbitrary arguments.

Definition 6.13 (PA). For ∈ Bad–(B) we put r() := o(B[]).

Finally, we can deduce the promised result:

Corollary 6.14 (PA). The primitive recursive function r : Bad–(B) → ε0 is a reification,
i.e., we have

r(〈t0, ... , tn, tn+1〉) ≺ r(〈t0, ... , tn〉)

for any bad sequence 〈t0, ... , tn, tn+1〉 in B.

Proof. We use induction on ∈ Bad–(B) to show that B[] is a low type. For this
purpose it is crucial to recall that the empty sequence was included in Bad(B) but
excluded from Bad–(B). Hence the base case concerns a sequence of the form = 〈t〉.
In view of Definition 6.9 we have

B[〈t〉] = B[〈〉](êB(〈〉, t)) = B(t).

Even though the type B is not low, a straightforward induction on t ∈ B shows
that B(t) is a low type. Now consider a sequence �t ∈ Bad–(B) with �= 〈〉. The
induction hypothesis ensures that B[] is a low type. According to Corollary 6.10 we
have êB(, t) ∈ B[]. By (the easy part of) Proposition 6.12 we conclude that

B[�t] = B[](êB(, t))

is a low type as well. The more substantial part of Proposition 6.12 yields

r(�t) = o(B[�t]) ≺ o(B[]) = r().

For = 〈t0, ... , tn〉 and t = tn+1 this is the claim of the corollary.

§7. From reflection to the finite basis property. Working over PA, we show that
RfnPA(Σ0

2) entails T I(ε0,Π–
1), which does in turn entail KΣ–

1. This completes our proof
that all three principles are equivalent. Using Goryachev’s theorem, we can deduce a
characterization of the Π0

1-sentences that are provable in PA + KΣ–
1.

For the case of uniform reflection and induction with parameters, the following has
been shown by Kreisel and Lévy [27].

Proposition 7.1. Each instance of T I(ε0,Π–
1) can be proved in PA + RfnPA(Σ0

2).

Proof. Consider a Π0
1-formula�(x) with a single free variable. Arguing in the theory

PA + RfnPA(Σ0
2), we establishT I(ε0, �) by contraposition: Assume that the conclusion

of transfinite induction fails, so that we have ∃α≺ε0¬�(α). The latter is a Σ0
1-formula,

so that its truth can be established by an explicit verification. More formally, we invoke
formalized Σ0

1-completeness (cf. [20, theorem I.1.8]) to obtain

∃α≺ε0 PrPA(¬�(α̇)).

This uses Feferman’s dot notation: By �(α̇) one denotes the closed object formula
that results from �(x) when we substitute x by the α-th numeral, where the code α
is considered as a natural number (cf. the notation in [20, corollary I.1.76]). Gentzen
[19] has shown that PA proves induction up to each fixed ordinal below ε0. This result

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

902 ANTON FREUND

can itself be formalized in Peano arithmetic (and in much weaker theories, cf. [13, sec.
3]), which means that we have

∀α≺ε0 PrPA(Progε0(�) → �(α̇)).

Together with the above we get PrPA(¬Progε0(�)). By an instance of RfnPA(Σ0
2) we

obtain ¬Progε0(�), which is (provably equivalent to) a closed Σ0
2-formula. Hence the

premise of T I(ε0, �) fails, so that our proof by contraposition is complete.

The following is a consequence of the result that (B,≤B) is a well partial order with
maximal order type ε0, which is due to de Jongh (unpublished; cf. the introduction to
[35]) and Diana Schmidt (see [36, theorem II.2] in combination with the example after
[36, definition I.15]). A detailed proof in our setting has been given in the previous
section.

Proposition 7.2. Each instance of KΣ–
1 can be proved in PA + T I(ε0,Π–

1).

Proof. Let us fix an instance Kϕ, where ϕ is a Σ0
1-formula with a single free variable.

It is instructive to recall the argument from Remark 3.1, which relies on a notion
of ϕ-sequence. If {n ∈ N |ϕ(n)} is computably enumerable but not decidable, then it
is not decidable whether a given finite sequence is a ϕ-sequence. For this reason we
now introduce a finer notion: Write ϕ(x) ≡ ∃y	(x, y) with a Δ0

0-formula 	. As in the
previous section we write Bad–(B) for the set of non-empty finite bad sequences in B.
By a certified ϕ-sequence we mean a finite sequence

(t0, c0), ... , (tn, cn) ⊆ B × N

such that we have 〈t0, ... , tn〉 ∈ Bad–(B) and 	(ti , ci) for all i ≤ n. Note that the latter
implies ϕ(ti). Since 	 contains no further free variables, the notion of certified ϕ-
sequence is defined by a Δ0

1-formula without parameters. By picking the valuef(n) with
minimal code, we thus obtain a (possibly partial) computable functionf : N → B × N

with the following property:

• If the sequence 〈f(0), ... , f(n – 1)〉 is defined and can be extended into a
certified ϕ-sequence of length n + 1, then 〈f(0), ... , f(n)〉 is such a sequence.

Note that the relationf(x) = y is Σ0
1-definable without parameters. Working in PA, we

now assume that Kϕ is false and deduce that T I(ε0, �) fails for a suitable formula �.
The failure of Kϕ entails that all values f(n) are defined: Inductively, we may assume
that f(m) = (tm, cm) is defined for all m < n; in the case of n > 0, the construction of
f ensures that 〈(t0, c0), ... , (tn–1, cn–1)〉 is a certified ϕ-sequence. In order to deduce that
f(n) is defined as well, we consider the set a := {t0, ... , tn–1}. As Kϕ is false, we must
have

¬∀s∈aϕ(s) ∨ ∃t∈B(ϕ(t) ∧ ∀s∈as �≤B t).

For s = tm ∈ a, the construction of f ensures	(tm, cm) and thusϕ(s). Hence the second
disjunct yields an element tn ∈ B with ϕ(tn) and tm �≤B tn for all m < n. The latter
implies 〈t0, ... , tn〉 ∈ Bad–(B). Due to ϕ(tn) we can pick a number cn with 	(tn, cn).
Then 〈f(0), ... , f(n – 1), (tn, cn)〉 is a certified ϕ-sequence, and f(n) is defined as
the smallest pair 〈tn, cn〉 for which this holds. We can now define a total computable
function g : N → Bad–(B) by setting

g(n) := 〈t0, ... , tn〉 with f(m) = (tm, cm).

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

A MATHEMATICAL COMMITMENT WITHOUT COMPUTATIONAL STRENGTH 903

According to Corollary 6.14, there is a primitive recursive reification

r : Bad–(B) → ε0.

It follows that the total computable function r ◦ g : N → ε0 is strictly decreasing. This
is impossible in the presence of T I(ε0,Π–

1). To be more precise, we consider

�(α) :≡ ∀n α � r ◦ g(n) ≡ ∀n∀∀
≺ε0 (g(n) = ∧ r() =
 → α �
),

which is a Π0
1-formula with no other free variables than α. For α = r ◦ g(0) + 1 ≺ ε0

we clearly have ¬�(α), which refutes the conclusion of T I(ε0, �). On the other hand,
the premise of this induction statement holds: To derive Progε0(�) by contraposition,
we assume that �(�) fails, i.e., that we have r ◦ g(n) ≺ � for some n ∈ N. Since r ◦ g is
strictly decreasing, we obtain

r ◦ g(n + 1) ≺ r ◦ g(n) =: � ≺ �,

which yields ¬�(�) and thus refutes ∀�≺��(�).

Together with Propositions 4.4, 5.1 and 7.1 we obtain the following:

Theorem 7.3. We have

PA + KΣ–
1 ≡ PA + T I(ε0,Π–

1) ≡ PA + RfnPA(Σ0
2),

i.e., all three theories prove the same theorems.

Let Con(PA + ϕ) be a reasonable formalization of the statement that PA + ϕ is
consistent. We consider the recursively generated Π0

1-sentences

Con0(PA) :≡ 0 = 0,

Conn+1(PA) :≡ Con(PA + Conn(PA)).

Note that Con1(PA) is equivalent to the usual consistency statement. As mentioned in
the introduction, we obtain the following:

Corollary 7.4. We have

PA + KΣ–
1 ≡Π0

1
PA + {Conn(PA) | n ∈ N},

i.e., the two theories prove the same Π0
1-sentences.

Proof. Let us write RfnPA for the full local reflection principle, i.e., the collection of
all formulas PrPA(ϕ) → ϕ, where ϕ can be any sentence in the language of first order
arithmetic. According to Goryachev’s theorem (see, e.g., [30, theorem IV.5]), any Π0

1-
theorem of PA + RfnPA can be proved in PA + {Conn(PA) | n ∈ N}. A fortiori, this
applies to all Π0

1-theorems of PA + RfnPA(Σ0
2) ≡ PA + KΣ–

1. In the other direction
we have a full inclusion: The theory PA + RfnPA(Σ0

2) proves all theorems of PA +
{Conn(PA) | n ∈ N}, because it proves each statement Conn(PA). For n = 0 this is
trivial. To conclude by meta induction on n, it suffices to observe that the formula
Conn(PA) → Conn+1(PA) is the contrapositive of

PrPA(¬Conn(PA)) → ¬Conn(PA),

which is an instance of RfnPA(Σ0
2).

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

904 ANTON FREUND

Note that the corollary does not extend to arbitrary formula complexity: In
the theory PA + {Conn(PA) | n ∈ N} one cannot prove all instances of KΣ–

1, by
Corollary 5.4.

Acknowledgments. I would like to thank Lev Beklemishev for our inspiring
discussions and his helpful comments on a first draft. Also, I am very grateful to
the anonymous referees, whose detailed feedback has helped me to improve the paper.

BIBLIOGRAPHY

[1] Beklemishev, L. (1997). Notes on local reflection principles. Theoria, 63,
139–146.

[2] ———. (2004). Provability algebras and proof-theoretic ordinals, I. Annals of
Pure and Applied Logic, 128(1–3), 103–123.

[3] ———. (2005). Reflection principles and provability algebras in formal
arithmetic. Russian Mathematical Surveys, 60(2), 197–268.

[4] Beklemishev, L., & Visser, A. (2005). On the limit existence principles in
elementary arithmetic and Σ0

n-consequences of theories. Annals of Pure and Applied
Logic, 136, 56–74.

[5] Buchholz, W. (1991). Notation systems for infinitary derivations. Archive for
Mathematical Logic, 30, 277–296.

[6] Buchholz, W., & Wainer, S. (1987). Provably computable functions and the fast
growing hierarchy. In Simpson, S. G., editor. Logic and Combinatorics. Proceedings
of the AMS-IMS-SIAM Joint Summer Research Conference 1985. Contemporary
Mathematics, Vol. 65. Providence, RI: American Mathematical Society, pp. 179–198.

[7] Cichon, E. A. (1983). A short proof of two recently discovered independence
results using recursion theoretic methods. Proceedings of the American Mathematical
Society, 87, 704–706.

[8] de Jongh, D., & Parikh, R. (1977). Well-partial orderings and hierarchies.
Indagationes Mathematicae, 80(3), 195–207.

[9] Ewald, W., & Sieg, W. (eds.). (2013). David Hilbert’s Lectures on the Foundations
of Arithmetic and Logic 1917–1933. Berlin: Springer.

[10] Feferman, S. (1992). Why a little bit goes a long way: Logical foundations
of scientifically applicable mathematics, PSA: Proceedings of the 1992 Biennial
Meeting of the Philosophy of Science Association. Chicago: University of Chicago,
pp. 442–455.

[11] Fellows, M. R., & Langston, M. A. (1988). Nonconstructive tools for proving
polynomial-time decidability. Journal of the Association for Computing Machinery,
35(3), 727–735.

[12] ———. (1992). On well-partial-order theory and its application to combinato-
rial problems of VLSI design. SIAM Journal on Discrete Mathematics, 5(1), 117–126.

[13] Freund, A., & Pakhomov, F. (2020). Short proofs for slow consistency. Notre
Dame Journal of Formal Logic, 61(1), 31–49.

[14] Freund, A., Rathjen, M., & Weiermann, A. (2020). Minimal bad sequences
are necessary for a uniform Kruskal theorem. Preprint, arXiv:2001.06380.

[15] Friedman, H. (2018). Explicitly �0
1 Status 4/20/18. Manuscript. Avail-

able from: https://cpb-us-w2.wpmucdn.com/u.osu.edu/dist/1/1952/files/2014/01/
CMI ExplicPi01042018-2ilxsqy.pdf (Accessed 31 March 2020).

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://cpb-us-w2.wpmucdn.com/u.osu.edu/dist/1/1952/files/2014/01/CMI_ExplicPi01042018-2ilxsqy.pdf
https://doi.org/10.1017/S1755020321000265

A MATHEMATICAL COMMITMENT WITHOUT COMPUTATIONAL STRENGTH 905

[16] Friedman, H., Robertson, N., & Seymour, P. (1987). Metamathematics of the
graph minor theorem. In Simpson, S. G., editor. Logic and Combinatorics. Proceedings
of the AMS-IMS-SIAM Joint Summer Research Conference 1985. Contemporary
Mathematics, Vol. 65. Providence, RI: American Mathematical Society, pp. 229–261.

[17] Friedman, H., & Sheard, M. (1995). Elementary descent recursion and proof
theory. Annals of Pure and Applied Logic, 71, 1–45.

[18] Gentzen, G. (1936). Die Widerspruchsfreiheit der reinen Zahlentheorie.
Mathematische Annalen, 112, 493–565.

[19] ———. (1943). Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der
transfiniten Induktion in der reinen Zahlentheorie. Mathematische Annalen, 119,
149–161.

[20] Hájek, P., & Pudlák, P. (1993). Metamathematics of First-Order Arithmetic.
Perspectives in Mathematical Logic, vol. 3. Berlin: Springer.

[21] Hasegawa, R. (1994). Well-ordering of algebras and Kruskal’s theorem. In
Jones, N. D., Hagiya, M., and Sato, M., editors. Logic, Language and Computation.
Lecture Notes in Computer Science, Vol. 792. Berlin: Springer, pp. 133–172.

[22] Hilbert, D. (1926). Über das Unendliche. Mathematische Annalen, 95, 161–190,
English translation in [48].

[23] ———. (1928). Die Grundlagen der Mathematik. Abhandlungen aus dem
Seminar der Hamburgischen Universität, 6, 65–85, reprinted in [9], English translation
in [48].

[24] Kohlenbach, U. (2008). Applied Proof Theory. Proof Interpretations and their
Use in Mathematics. Springer Monographs in Mathematics. Berlin: Springer.

[25] Kreisel, G. (1960). Ordinal logics and the characterization of informal notions
of proof. In Todd, J. A., editor. Proceedings of the International Congress of
Mathematicians 1958. Cambridge: Cambridge University Press, pp. 289–299.

[26] ———. (1982). Finiteness theorems in arithmetic: An application of Her-
brand’s theorem for�2-formulas. In Stern, J., editor. Proceedings of the Herbrand
Symposium. Logic Colloquium ’81. Studies in Logic and the Foundations of
Mathematics, Vol. 107. Amsterdam: North-Holland, pp. 39–55.

[27] Kreisel, G., & Lévy, A. (1968). Reflection principles and their use for
establishing the complexity of axiomatic systems. Zeitschrift für mathematische Logik
und Grundlagen der Mathematik, 14, 97–142.

[28] Kruskal, J. (1960). Well-quasi-ordering, the tree theorem, and Vazsonyi’s
conjecture. Transactions of the American Mathematical Society, 95(2), 210–225.

[29] Lindström, P. (1984). On partially conservative sentences and interpretability.
Proceedings of the American Mathematical Society, 91(3), 436–443.

[30] ———. (1997). Aspects of Incompleteness. Lecture Notes in Logic, Vol. 10.
Berlin: Springer.

[31] Paris, J., & Harrington, L. (1977). A mathematical incompleteness in Peano
arithmetic. In Barwise, J., editor. Handbook of Mathematical Logic. Amsterdam:
North-Holland, pp. 1133–1142.

[32] Pohlers, W. (2009). Proof Theory. The First Step into Impredicativity. Berlin:
Springer.

[33] Rathjen, M., & Weiermann, A. (1993). Proof-theoretic investigations on
Kruskal’s theorem. Annals of Pure and Applied Logic, 60, 49–88.

[34] Robertson, N., & Seymour, P. (2004). Graph minors. XX. Wagner’s conjecture.
Journal of Combinatorial Theory, Series B, 92(2), 325–357.

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000265

906 ANTON FREUND

[35] Schmidt, D. (1975). Bounds for the closure ordinals of replete monotonic
increasing functions. The Journal of Symbolic Logic, 40(3), 305–316.

[36] ———. (1979). Well-Partial Orderings and Their Maximal Order Types.
Habilitationsschrift, Universität Heidelberg.

[37] Shelah, S. (1984). On logical sentences in PA. In Lolli, G., Longo, G., and
Marcja, A., editors. Logic Colloquium ’82. Studies in Logic and the Foundations of
Mathematics, Vol. 122. Amsterdam: Elsevier, pp. 145–160.

[38] Simpson, S. G. (1985). Nonprovability of certain combinatorial properties of
finite trees. In Harrington, L. A., Morley, M. D., Sčědrov, A., and Simpson, S.
G., editors. Harvey Friedman’s Research on the Foundations of Mathematics. Studies
in Logic and the Foundations of Mathematics, Vol. 117. Amsterdam: North-Holland,
pp. 87–117.

[39] ———. (1988). Ordinal numbers and the Hilbert basis theorem. The Journal
of Symbolic Logic, 53(3), 961–974.

[40] ———. (2009). Subsystems of Second Order Arithmetic (second edition).
Perspectives in Logic. Cambridge: Cambridge University Press.

[41] Smith, R. L. (1985). The consistency strengths of some finite forms of the
Higman and Kruskal theorems. In Harrington, L. A., Morley, M. D., Sčědrov,
A., and Simpson, S. G., editors. Harvey Friedman’s Research on the Foundations
of Mathematics. Studies in Logic and the Foundations of Mathematics, Vol. 117.
Amsterdam: North-Holland, pp. 119–136.

[42] Smoryński, C. (1977). The incompleteness theorems. In Barwise, J., editor.
Handbook of Mathematical Logic. Studies in Logic and the Foundations of
Mathematics, Vol. 90. Amsterdam: North-Holland, pp. 821–865.

[43] Sommer, R. (1995). Transfinite induction within Peano arithmetic. Annals of
Pure and Applied Logic 76, 231–289.

[44] Tait, W. (1981). Finitism. Journal of Philosophy, 78, 524–546.
[45] ———. (2002). Remarks on finitism. In Sieg, W., Sommer, R., and Talcott,

C., editors. Reflections on the Foundations of Mathematics. Essays in Honor of Solomon
Feferman. Lecture Notes in Logic, Vol. 15. New York: A.K. Peters, pp. 410–419.

[46] Takeuti, G. (1987). Proof Theory (second edition). Studies in Logic and the
Foundations of Mathematics, Vol. 81. Amsterdam: North-Holland.

[47] Tarski, A. (1936). Der Wahrheitsbegriff in den formalisierten Sprachen. Studia
Philosophica, 1, 261–405.

[48] van Heijenoort, J. (ed.). (1967). From Frege to Gödel. A Source Book in
Mathematical Logic, 1879–1931. Cambridge, MA: Harvard University Press.

[49] Zach, R. Hilbert’s program. In Zalta, E. N., editor. The Stanford Encyclopedia
of Philosophy (fall 2019 edition). Available from: https://plato.stanford.edu/archives/
fall2019/entries/hilbert-program.

FACHBEREICH MATHEMATIK
TECHNICAL UNIVERSITY OF DARMSTADT

SCHLOSSGARTENSTR. 7
64289 DARMSTADT, GERMANY

E-mail: freund@mathematik.tu-darmstadt.de

https://doi.org/10.1017/S1755020321000265 Published online by Cambridge University Press

https://plato.stanford.edu/archives/fall2019/entries/hilbert-program
mailto:freund@mathematik.tu-darmstadt.de
https://doi.org/10.1017/S1755020321000265

	1 Summary of mathematical results
	2 Foundational considerations
	3 Analyzing the computational strength
	4 From the finite basis property to transfinite induction
	5 From transfinite induction to reflection
	6 A primitive recursive reification
	7 From reflection to the finite basis property

