ON THE DIMENSION OF GROUPS THAT SATISFY CERTAIN CONDITIONS ON THEIR FINITE SUBGROUPS

LUIS JORGE SÁNCHEZ SALDAÑA

Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Cd. Universitaria, Colonia Copilco el Bajo, Delegación Coyoacán, Mexico City 04510, Mexico e-mail: luisjorge@ciencias.unam.mx

(Received 11 January 2020; revised 12 August 2020; accepted 6 October 2020; first published online 4 November 2020)

Abstract. We say a group G satisfies properties (M) and (NM) if every nontrivial finite subgroup of G is contained in a unique maximal finite subgroup, and every nontrivial finite maximal subgroup is self-normalizing. We prove that the Bredon cohomological dimension and the virtual cohomological dimension coincide for groups that admit a cocompact model for $\underline{E}G$ and satisfy properties (M) and (NM). Among the examples of groups satisfying these hypothesis are cocompact and arithmetic Fuchsian groups, one-relator groups, the Hilbert modular group, and 3-manifold groups.

2020 Mathematics Subject Classification. Primary 20J05; Secondary 57M27.

- **1. Introduction.** For a group G, consider the following properties:
- (M) Every nontrivial finite subgroup of G is contained in a unique maximal finite subgroup of G.
- (NM) If M is a nontrivial maximal finite subgroup of G, then $N_G(M) = M$, where $N_G(M)$ denotes the normalizer of M in G.

In this paper, \mathcal{F} will always denote the *family of finite subgroups* of G. A *model for the classifying space* $E_{\mathcal{F}}G$ (usually denoted $\underline{E}G$) is a G-CW-complex X such that every isotropy group is finite and the fixed point set X^H is contractible for every finite subgroup H of G. Equivalently, X is a model for $\underline{E}G$ if for every G-CW-complex Y with finite isotropy groups, there exists a map, unique up to G-homotopy, $Y \to X$. In particular, any two models for $\underline{E}G$ are G-homotopy equivalent. We say G is of type \underline{F} if G admits a cocompact model for EG.

The *orbit category* $\mathcal{O}_{\mathcal{F}}G$ of G with respect to \mathcal{F} is the category of homogeneous G-sets G/F, where $F \in \mathcal{F}$, and morphisms are given by G-maps. A Bredon module is a contravariant functor from $\mathcal{O}_{\mathcal{F}}G$ to the category of abelian groups, and a morphism of Bredon modules is a natural transformation. The category of Bredon modules, for G and \mathcal{F} choosen, is abelian with enough projectives. The *Bredon cohomological dimension* (or proper cohomological dimension) $\underline{\operatorname{cd}}(G)$ of G is the length of the shortest projective resolution of the constant module $\mathbb{Z}_{\mathcal{F}}$. If G is torsion-free, then $\underline{\operatorname{cd}}(G)$ is the classical cohomological dimension $\operatorname{cd}(G)$ of G.

On the other hand, provided that G is a virtually torsion-free group, the *virtual* cohomological dimension vcd(G) of G is, by definition, the cohomological dimension of a finite index torsion-free group. By a well-known theorem due to Serre vcd(G) does not depend on the finite index subgroup of G that we choose, hence vcd(G) is a well-defined invariant of G.

For every group G, we have the following inequality $vcd(G) \le \underline{cd}(G)$. This inequality can be strict due to examples constructed in [7, 13, 14]. On the other hand $vcd(G) = \underline{cd}(G)$ for the following classes of groups: elementary amenable groups of type FP_{∞} [10], $SL_n(\mathbb{Z})$ [3], $Out(F_n)$ [19], the mapping class group of any surface with boundary components and punctures [2], any lattice in a classical simple Lie group [1], any lattice in the group of isometries of a symmetric space of non-compact type without Euclidean factors [11], and groups acting chamber transitively on a Euclidean building [6].

In this note, we prove $vcd(G) = \underline{cd}(G)$ for groups of type \underline{F} that satisfy properties (M) and (NM). This implies, due to the main theorem of [12], the existence of a cocompact model for $\underline{E}G$ of dimension $\max\{3, vcd(G)\}$. Among the examples of groups that satisfy these properties, we have cocompact Fuchsian groups and arithmetic Fuchsian groups, one-relator groups, the Hilbert modular group, and 3-manifold groups. It is worth noticing that the class of groups for which our main theorem applies is closed under taking free products, this is a particular case of Theorem 3.1.

The proof is very short and relies on [1, Corollary 3.4] (Theorem 2.1 below), which reduces the proof of the main theorem (Theorem 2.5) to computing the dimension of certain fixed point sets of a cocompact X model for $\underline{E}G$. For groups satisfying properties (M) and (NM), we prove that X can be chosen in such a way that the relevant fixed point sets are one-point spaces (Lemma 2.4), hence they have dimension 0.

2. Preliminaries and main theorem. We have the following criterion that we will use to prove $vcd(G) = \underline{cd}(G)$ under the hypothesis of our main theorem.

If G acts on a space X, and A is an element of G, we denote X^A the set consisting of all elements of X fixed by A. In a similar way, we define X^H for a subgroup H of G we define.

THEOREM 2.1 ([1, Corollary 3.4]). Let G be a virtually torsion-free group of type \underline{F} with a cocompact model X for $\underline{E}G$. Let K be the kernel of the G-action on X. If $\dim(X^A) < \operatorname{vcd}(G)$ for every finite order element A of $G \setminus K$, then $\operatorname{vcd}(G) = \operatorname{cd}(G)$.

REMARK 2.2. Note that if G is as in Theorem 2.1, then vcd(G) is finite. Let H be a finite index torsion-free subgroup of G. Then, a cocompact model X for $\underline{E}G$ is, by restriction, a cocompact model for $\underline{E}H = EH$. Therefore, $vcd(G) = cd(H) \le \dim(X/H) < \infty$.

Our next lemma characterizes properties (M) and (NM) in terms of the existence of a model for $\underline{E}G$ with small fix point sets. Recall that \mathcal{F} is the family of finite subgroups of G.

LEMMA 2.3. Let G be a group. Then the following to conditions are equivalent:

- (1) There exists a model X for $\underline{E}G$ with the property that X^H consists of exactly one point for every nontrivial finite subgroup H of G.
- (2) Properties (M) and (NM) are true for G.

Proof. Assume X is a model for $\underline{E}G$ such that $X^H = \{x_H\}$ for every nontrivial finite subgroup H of G. Let K be a nontrivial finite subgroup of G. Then K is contained in the stabilizer S of x_H for a unique $H \in \mathcal{F}$. Note that S is a maximal finite subgroup of G. In fact, if S is contained in $F \in \mathcal{F}$, then F must fix a unique point Y of Y since Y consists of a point. In particular, Y fixes Y. Hence by uniqueness, Y and Y fix the same point of Y. Therefore, Y is a finite maximal subgroup of Y for all Y is a finite maximal subgroup of Y for all Y is a finite maximal subgroup of Y. Therefore, Y is a satisfies Y for all Y is a finite maximal subgroup of Y. Therefore, Y is a satisfies Y for all Y is a finite maximal subgroup of Y. Therefore, Y is a satisfies Y for all Y is a finite maximal subgroup of Y.

Assume that G satisfies (M) and (NM). Let Y by any model for EG. Let I be the set of finite maximal subgroups of G. Note that G acts on I by conjugation. Moreover, the

stabilizer of $M \in I$ is $N_G(M) = M$, since G satisfies (NM). Then, the join X = Y * I is a model for $\underline{E}G$, where the G-action on X is the diagonal action. In fact, X is contractible since it can be seen as the union of copies cones of Y glued all together by their common base. Let $H \in \mathcal{F}$, then X^H consists of the conic point represented by the unique finite maximal subgroup that contains H.

Our next lemma tells us that we can collapse down to a point the fixed point sets of any cocompact model for $\underline{E}G$.

LEMMA 2.4. Let G be a group of type \underline{F} that satisfies properties (M) and (NM). Then G admits a cocompact model X for $\underline{E}G$ such that X^H consists of exactly one point for every nontrivial finite subgroup H of G.

Proof. Let Y be any cocompact model for $\underline{E}G$. Given a point $y \in Y$, we denote by Gy the G-orbit of y. Denote by Y_{sing} the subspace of Y consisting of points with nontrivial isotropy. Note that Y_{sing} is a G-CW-subcomplex of Y.

We claim that there exist a finite number of points y_1, \ldots, y_m of Y such that the disjoint union $Gy_1 \sqcup \cdots \sqcup Gy_m$ is a G-deformation retract of Y_{sing} .

By Lemma 2.3, there is a model Z for $\underline{E}G$ such that Z^H consists of exactly one point for every nontrivial finite subgroup H of G. On the other hand, we have unique (up to G-homotopy) G-maps $f: Y \to Z$ and $g: Z \to Y$ such that $f \circ g$ and $g \circ f$ are G-homotopic to the corresponding identity functions. These functions induce G-maps $f': Y_{\text{sing}} \to Z_{\text{sing}}$ and $g': Z_{\text{sing}} \to Y_{\text{sing}}$, and also, by restriction $f' \circ g'$ and $g' \circ f'$ are G-homotopic to the corresponding identity functions. By construction of Z, Z_{sing} is of the form $\bigsqcup_{M \in \mathcal{M}} Gz_M$, where \mathcal{M} is the set of representatives of conjugacy classes of maximal finite subgroups of G and the isotropy of Z_M is M. Since G admits a cocompact model for EG, by [15, Theorem 4.2] G has a finite number of conjugacy classes of finite subgroups. Therefore, $Z_{\text{sing}} = Gz_1 \sqcup \cdots \sqcup Gz_m$ for certain points z_1, \ldots, z_m of Z. Define $y_i = f'(z_i)$ for $i = 1, \ldots, m$. We can conclude that $Gy_1 \sqcup \cdots \sqcup Gy_m$ is a G-deformation retract of G-sing. Moreover, if G: G-sing G-sing such that G-sing such that G-sing G-sing G-sing G-sing G-nation retract of G-sing. Hence, the setwise stabilizer of G-sing is G-sing such that G-sing such that G-sing G-sing G-sing G-sing such that G-sing G-sing G-sing G-sing such that G-sing G-sing G-sing such that G-sing G-sing G-sing G-sing such that G-sing G-sing G-sing G-sing such that G-sing G-sing G-sing G-sing G-sing such that G-sing G-sing G-sing G-sing such that G-sing G-sing G-sing G-sing G-sing such that G-sing G-sing G-sing G-sing such that G-sing G-sing G-sing G-sing G-sing such that G-sing G-sing G-sing G-sing such that G-sing G-

Define X to be the G-CW-complex defined by Z/\sim , where \sim is the relation generated by $x \sim y$ if and only if r(x) = r(y). Hence, X is G-homotopically equivalent to Z. Therefore, X is a model for EG. Clearly, X is cocompact and by construction X^H consists of exactly one point if H is a nontrivial finite subgroup of X.

Now we are ready to prove our main theorem.

THEOREM 2.5. Let G be a virtually torsion-free group of type \underline{F} that satisfies properties (M) and (NM). Then, $vcd(G) = \underline{cd}(G)$.

Proof. If G is finite, then there is nothing to prove. From now on, we assume G is infinite.

By Lemma 2.4, there exists a cocompact model X for $\underline{E}G$ satisfying that X^H consists of one point for every nontrivial finite subgroup H of G.

On the other hand, since G is infinite and virtually torsion-free, we conclude that vcd(G) > 0. Hence, we have $dim(X^F) = 0 < vcd(G)$ for every nontrivial finite subgroup F of G. Therefore, by Theorem 2.1, we have vcd(G) = cd(G).

3. Examples. Next, we will describe some examples of groups satisfying the hypothesis of Theorem 2.5.

3.1. Groups in the literature.

- (1) Extensions $1 \to \mathbb{Z}^n \to G \to F \to 1$ such that F is finite and the conjugation action of F on \mathbb{Z}^n is free outside $0 \in \mathbb{Z}^n$, and G is of type \underline{F} . Properties (M) and (NM) for this groups are established in [5].
 - It is worth noticing that, in the more general context of virtually poly-cyclic groups, it is already known that the Bredon cohomological dimension and the virtual cohomological dimension are equal, see for instance [16, Example 5.26].
- (2) Cocompact Fuchsian groups and arithmetic Fuchsian groups. Let *G* be a Fuchsian group, that is, *G* acts properly discontinuously and by orientation-preserving isometries on the hyperbolic plane ℍ. A subgroup of *G* is finite and nontrivial if and only if it fixes a unique point in ℍ. Also any element of infinite order does not fix any point of ℍ because the action is proper. This implies that ℍ is a model for *EG* such that the point set ℍ^H consists of one point for every nontrivial finite subgroup *H* of *G*. Thus, by Lemma 2.3, we have that *G* satisfies properties (M) and (NM). If additionally *G* acts cocompactly on ℍ, then clearly satisfies the hypothesis of Theorem 2.5. If *G* is an arithmetic Fuchsian group, then the Borel–Serre bordification of ℍ is a cocompact model for *EG* with *X*^H is a one-point space for *H* finite nontrivial. For more information about Fuchsian groups, see [8].
- (3) One-relator groups admiting a cocompact model for $\underline{E}G$. Properties (M) and (NM) are verified in [5].
 - A few comments on the existence of a model for $\underline{E}G$ for one-relator groups. For one-relator groups without torsion, the Cayley 2-complex is an $\underline{E}G = EG$. For one-relator groups with torsion, if the relator has the form w^n , then the torsion is all conjugate into the cyclic subgroup generated by w, which has order n. If you take the version of the Cayley 2-complex which has just one 2-cell with label w^n bounding each such word in the Cayley graph (not the universal cover of the presentation 2-complex which would have n different 2-cells bounding each such word), this becomes a cocompact model for $\underline{E}G$ provided that the 2-cells (whose stabilizer is cyclic of order n) are subdivided to ensure that it becomes a G-CW-complex.
- (4) The Hilbert modular group. A totally real number field k is an algebraic extension of $\mathbb Q$ such that all its embeddings $\sigma_i: k \to \mathbb C$ have image contained in $\mathbb R$. Let k denotes a totally real number field of degree n and $\mathcal O_k$ its ring of integers. The Hilbert modular group is by definition $PSL_2(\mathcal O_k)$. If $K=\mathbb Q$, we recover the classical modular group $PSL_2(\mathbb Z)$. Properties (M) and (NM) are verified for the Hilbert modular group in [4, Lemma 4.3]. Since the Hilbert modular group is a lattice in $PSL_2(\mathbb R) \times \cdots \times PSL_2(\mathbb R)$, then it is an arithmetic group acting diagonally in the symmetric space $\mathbb H \times \cdots \times \mathbb H$. Hence, the Borel–Serre bordification again provides a cocompact model for $\underline{E}G$. See [8] for more information of the Hilbert modular group.
- **3.2.** Groups acting on trees and properties (M) and (NM). Let us quickly recall the notation of graph of groups from [18]. A graph of groups Y consists of a graph Y (in the sense of Serre), one group Y_y for every edge y of Y, one group Y_P for each vertex P of Y, and injective homomorphism $Y_e o Y_P$ of P is a vertex of the edge y. Recall that associated with Y, we have the fundamental group $\pi_1(Y)$ and the Bass–Serre tree T, in such a way

that $\pi_1(Y)$ acts on T by simplicial automorphism and the quotient graph is isomorphic to Y. Denote by $f: T \to Y$, the quotient projection.

We will be able to construct more examples using the following theorem.

THEOREM 3.1. Let **Y** be a graph of groups in the sense of Serre with compact underlying graph. Assume that the vertex groups are of type \underline{F} and satisfy properties (M) and (NM) and assume that the edge groups are torsion-free. Then, the fundamental group $\pi_1(\mathbf{Y})$ of Y is of type \underline{F} and satisfies properties (M) and (NM).

Proof. Let T be the Bass–Serre tree of \mathbf{Y} . Denote $G = \pi_1(\mathbf{Y})$. Choose cocompact models X_y and X_P for $\underline{E}Y_y$ and $\underline{E}Y_P$, respectively. Then, we can construct a model X for $\underline{E}G$ as follows. Replace each vertex v of T by the corresponding $X_{f(v)}$ and each edge e of T by $X_{p(e)} \times [0, 1]$. Next, if v is a vertex of e, glue one of the $X_e \times 0$ to X_v using map induced by the homomorphism $X_{p(e)} \to X_{p(v)}$ (and $X_{p(e)} \times 1 \to X_{p(v)}$) where v' is the other vertex of e). Hence, X inherits a G-action and we can easily verify that it is a model for $\underline{E}G$ (compare with $[\mathbf{9}]$, Proposition 4.8]). Moreover, the orbit space X/G can be constructed using a similar construction using instead Y, X_P/Y_P and X_y/Y_y . Therefore, since Y is compact and each X_P/Y_P and X_y/Y_y are compact, we have that X/G is also compact. This proves that G admits a cocompact model for $\underline{E}G$.

Assume now that each X_y and X_P are models satisfying the conclusion of Theorem 2.4. Let H be a nontrivial finite subgroup of G. Then, H cannot fix any edge of T because every edge group of Y is torsion-free. But, since H is finite, has to fix one vertex of T. Hence, H fixes a unique vertex v of T. Hence, H acts on $X_{p(v)}$, so H fixes a unique point of $X_{p(v)}$. Therefore, every nontrivial finite subgroup of G fixes a unique point of X, and by Theorem 2.3 we conclude that G satisfies properties (M) and (NM).

Our final example are 3-manifold groups. For more information about 3-manifold groups, JSJ-decomposition, and the geometrization theorem see [17].

3.3. 3-manifold groups. Let M be a closed, orientable, connected 3-manifold with fundamental group G. We claim that G is of type \underline{F} and satisfies properties (M) and (NM). The prime decomposition $M = N_1 \# \cdots \# N_m$ induces a splitting of $G = G_1 * \cdots * G_m$. By Theorem 3.1, it is enough to prove that each G_i is of type \underline{F} and satisfies properties (M) and (NM).

From now on, assume M is prime. Using the Perelman–Thurston geometrization theorem, we can chop off M along tori to obtain pieces that are either hyperbolic or Sifert fibered. This is the so-called JSJ-decomposition. More explicitly, we can find a collection of tori (possibly empty) T_1, \ldots, T_r embedded in M such that (abusing of notation) $M - \bigcup_i T_i$ is a disjoint union of manifolds (with boundary if the collection of tori is not empty) such that each piece is either hyperbolic or Seifert fibered. Hence, G is the fundamental group of a graph of groups Y with vertex groups the fundamental groups of Seifert fibered manifolds or hyperbolic manifolds, and edge group isomorphic to \mathbb{Z}^2 . Again, by Theorem 3.1, it is enough to prove that all vertex groups in Y are of type F and satisfy properties (M) and (NM). If the collection of tori is empty, then M itself is either hyperbolic or Seifert fibered. If M is hyperbolic, then G is torsion-free since M is aspherical, thus G satisfies properties (M) and (NM). Additionally, the universal cover of M is a cocompact model for EG. If M is Seifert fibered, then M is aspherical unless is covered by the three sphere \mathbb{S}^3 or by $\mathbb{S}^2 \times \mathbb{R}$. In the \mathbb{S}^3 case G is finite, while in the $\mathbb{S}^2 \times \mathbb{R}$ case G is either isomorphic to \mathbb{Z} or to the infinite dihedral subgroup D_{∞} . In both cases, G satisfies properties (M) and (NM) and is of type \underline{F} . Finally, we have to deal with the case of a nontrivial JSJ-decomposition. In this case, we can verify case by case that every hyperbolic and Seifert fibered manifold in the JSJ-decomposition is an aspherical manifolds, and therefore their fundamental groups are torsion-free. Hence, all vertex and edge groups of **Y** are torsion-free, thus $G = \pi_1(\mathbf{Y})$ is torsion-free. Also, we have that M is a cocompact model for G.

We can conclude that the fundamental group of every prime manifold is of type \underline{F} and satisfies properties (M) and (NM). Therefore, every 3-manifold group is of type \underline{F} and satisfies properties (M) and (NM).

ACKNOWLEDGEMENTS. The author wishes to thank Jean-François Lafont for feedback on a draft of this paper and the referee for very useful comments. This work was funded by the Mexican Council of Science and Technology via the program *Estancias postdoctorales en el extranjero*, and by the NSF, via grant DMS-1812028.

REFERENCES

- 1. J. Aramayona, D. Degrijse, C. Martínez-Pérez and J. Souto, Geometric dimension of lattices in classical simple Lie groups, *J. Topol.* **10**(2) (2017), 632–667.
- 2. J. Aramayona and C. Martínez-Pérez, The proper geometric dimension of the mapping class group, *Algebr. Geom. Topol.* **14**(1) (2014), 217–227.
- **3.** A. Ash, Small-dimensional classifying spaces for arithmetic subgroups of general linear groups, *Duke Math. J.* **51**(2) (1984) 459–468.
- **4.** M. Bustamante and L. J. Sánchez Saldaña, On the algebraic K-theory of the Hilbert modular group, *Algebr. Geom. Topol.* **16**(4) (2016), 2107–2125.
- **5.** J. F. Davis and W. Lück, The *p*-chain spectral sequence, *K-Theory* **30**(1) (2003), 71–104. Special issue in honor of Hyman Bass on his seventieth birthday. Part I.
- **6.** D. Degrijse and C. Martínez-Pérez, Dimension invariants for groups admitting a cocompact model for proper actions, *J. Reine Angew. Math.* **721** (2016), 233–249.
- 7. D. Degrijse and J. Souto, Dimension invariants of outer automorphism groups, *Groups Geom. Dyn.* **11**(4) (2017), 1469–1495.
 - 8. E. Freitag, Hilbert modular forms (Springer-Verlag, Berlin, 1990).
- **9.** K. Joecken, J.-F. Lafont and L. J. Sánchez Saldaña, Virtually cyclic dimension for 3-manifold groups. *To appear in Groups, Geometry, and Dynamics*, arXiv:1904.04632, April 2019.
- **10.** P. H. Kropholler, C. Martinez-Pérez and B. E. A. Nucinkis, Cohomological finiteness conditions for elementary amenable groups, *J. Reine Angew. Math.* **637** (2009), 49–62.
- **11.** C. Lacoste, Dimension rigidity of lattices in semisimple Lie groups, *Groups Geom. Dyn.* **13**(1) (2019), 149–189.
- 12. W. Lück and D. Meintrup, On the universal space for group actions with compact isotropy, in *Geometry and topology: Aarhus (1998)*, Contemporary Mathematics, vol. 258 (American Mathematical Society, Providence, RI, 2000), 293–305.
- **13.** I. J. Leary and B. E. A. Nucinkis, Some groups of type *VF*, *Invent. Math.* **151**(1) (2003), 135–165.
- **14.** I. J. Leary and N. Petrosyan, On dimensions of groups with cocompact classifying spaces for proper actions, *Adv. Math.* **311** (2017) 730–747.
- **15.** W. Lück, The type of the classifying space for a family of subgroups, *J. Pure Appl. Algebra* **149**(2) (2000), 177–203.
- **16.** W. Lück, Survey on classifying spaces for families of subgroups, in *Infinite groups: geometric, combinatorial and dynamical aspects*, Progress in Mathematical, vol. 248 (Birkhäuser, Basel, 2005), 269–322.
- 17. J. W. Morgan, Recent progress on the Poincaré conjecture and the classification of 3-manifolds, *Bull. Amer. Math. Soc. (N.S.)* 42(1) (2005), 57–78.
- **18.** J.-P. Serre, *Trees*, Springer Monographs in Mathematics (Springer-Verlag, Berlin, 2003). Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English translation
- **19.** K. Vogtmann, Automorphisms of free groups and outer space, in *Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000)*, vol. 94 (2002), 1–31.