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We study the motion of a viscoelastic fluid within a rigid spherical cavity with the
aim of improving understanding of the motion of the vitreous humour in the human
eye. The flow of vitreous humour leads to traction on the retina, which, once the
retina is torn or damaged, can cause it to detach from the choroid, leading to loss
of sight if left untreated. In the first part of the paper we investigate the relaxation
behaviour of the fluid, the transient flow that would be observed in the stationary
sphere starting from non-stationary initial conditions. For a general viscoelastic fluid
we calculate the growth rates and eigenfunctions associated with the system, and
we discuss two particular rheological models of the vitreous humour taken from the
literature. In the second part of the paper we consider forced oscillations of the fluid,
due to small-amplitude rotations of the sphere about a diameter, representing saccades
of the eyeball. We conclude with a discussion of the possible occurrence of resonant
phenomena and their clinical relevance.
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1. Introduction
The vitreous chamber of the eye has a near-spherical shape and is filled with

vitreous humour. This is a transparent fluid with complex mechanical properties
due to the presence of a network of collagen fibrils and polyanionic hyaluronan
macromolecules of high molecular weight (Bishop 2000). Measurement of the
rheological properties of the vitreous humour is extremely challenging, owing to its
lubricating ability and its fragile and inhomogeneous network structure. In addition,
the location within the vitreous chamber from which the sample is taken, details of the
experimental apparatus, and the duration from the dissection to the experiment are all
expected to influence the measured values.

Lee, Litt & Buchsbaum (1992) performed a systematic study of the rheological
properties of the human vitreous humour. The shear behaviour of the vitreous
humour was characterized according to a four-parameter Burgers model, consisting
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of a Maxwell element in series with a Kelvin element. In a second paper, Lee,
Litt & Buchsbaum (1994) showed that the viscoelastic behaviour of the central
region of the porcine vitreous humour closely resembles that of the human. More
recently, Nickerson et al. (2008) performed rheological measurements of bovine and
porcine vitreous humour. They showed that, during the first hour after dissection, the
shear modulus of the vitreous humour decreases significantly, eventually reaching a
steady-state value. Swindle, Hamilton & Ravi (2008) also observed variation of the
rheological properties of porcine vitreous humour with time after dissection. Both
Nickerson et al. (2008) and Swindle et al. (2008) attribute the temporal variation of
the properties to mass loss and microstructural changes within the vitreous humour,
and state that the vitreous properties in vivo should be similar to those they measured
in the initial phase of the experiments. The values of the shear moduli obtained by
Swindle et al. (2008) are lower than those of Nickerson et al. (2008), but both are of
the same order of magnitude.

During eye rotations, the vitreous humour exerts stresses on the retina that may play
a role in the development of a variety of vitreoretinal pathologies, in particular in
retinal detachment. This is a serious condition that threatens the sight of the sufferer.
The most common type is rhegmatogeneous retinal detachment, which occurs when
a tear forms in the retina, allowing fluid to enter the space between the retina and
the choroid. The mechanics of retinal tearing and the detachment process are not well
understood. An improved understanding of such processes could pave the way to new
and more efficient clinical and surgical treatments (Scott 2002).

Very few in vivo observations of the motion of the vitreous humour induced by eye
rotations are available. Zimmerman (1980) recorded the movement of the scattering
pattern induced by a point source of light during the relaxation movement of the
vitreous humour following an impulsive eye rotation. According to his measurements,
the vitreous humour behaves as an overdamped system that is close to critical
damping. Walton et al. (2002) used ultrasound films of eyes performing impulsive
rotations and tracked the speckles present in the vitreous humour. They observed that
the vitreous humour undergoes significant mechanical changes as the age of the patient
increases.

One of the first mathematical models of the motion of the vitreous humour induced
by eye rotations was due to Buchsbaum et al. (1984), who studied the linearized
behaviour of a viscoelastic fluid in a sphere performing periodic and impulsive
rotations. David et al. (1998) developed a similar model, using the mechanical
behaviour proposed by Lee et al. (1992) to describe the vitreous humour. One of their
main findings is that the shear stress at the wall grows more than linearly with the eye
radius. They propose this as a possible explanation as to why myopic eyes, which are
typically larger than normal ones, have an increased risk of retinal detachment.

The motion of a Newtonian fluid in a spherical cavity performing periodic torsional
oscillations has been studied experimentally and theoretically (Repetto, Stocchino &
Cafferata 2005; Repetto, Siggers & Stocchino 2008), with the aim of finding the stress
on the retina and understanding mixing processes in the vitreous humour, which are
relevant for intra-vitreal drug delivery.

In this paper we develop a model to improve the understanding of the stresses
exerted on the retina during eye rotations and their relationship to the mechanical
properties of the vitreous. We model the vitreous humour as a viscoelastic fluid and
the vitreous chamber as a sphere, and consider both the free motion of the fluid and
also the motion forced by rotations of the domain.
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Oscillatory motion of a viscoelastic fluid within a spherical cavity 3

The paper proceeds as follows. In § 2 we formulate the mathematical model. In § 3
we investigate the flows that are produced during relaxation of the vitreous humour
from an initially moving and deformed state. We evaluate the natural frequencies and
rates of decay of the motion associated with two simple viscoelastic models: the first
using the measurements taken by Nickerson et al. (2008) and Swindle et al. (2008),
and the second being the model proposed by Lee et al. (1992). In § 4 we consider the
flow driven by periodic, torsional rotations of the sphere, and investigate the possible
occurrence of resonant phenomena. Discussion of the results and conclusions follow
in § 5.

2. Mathematical formulation
2.1. Governing equations

We consider the slow flow of an incompressible viscoelastic fluid of density ρ

occupying a spherical region of radius R0. The governing equations are given by
the Cauchy equation and the continuity equation:

ρ

(
∂u
∂t
+ u ·∇u

)
=∇ ·σ, ∇ ·u= 0. (2.1a, b)

Here u is the velocity, t is time and σ is the stress tensor, given by σ=−pI + d , where
p is the pressure, d is the deviatoric part of the stress tensor (which, in a viscoelastic
fluid, depends on the history of the fluid motion) and I is the identity matrix. Since
we consider slow flow, we linearize in the velocity, and assuming the rheological
properties of the fluid to be steady, homogeneous and isotropic and d to be a linear
function of the velocity gradients, we can, in general, write (e.g. Tanner 2000)

d = 2
∫ t

−∞
G (t − s)D (s) ds, (2.2)

for some function G, which is the relaxation modulus of the fluid, where

D = 1
2

(
∇u+ (∇u)T) (2.3)

is the rate-of-deformation tensor. Thus, neglecting quadratic terms in the velocity,
(2.1a) becomes

ρ
∂u
∂t
=−∇p+

∫ t

−∞
G (t − s)∇2u ds. (2.4)

No-slip boundary conditions are applied at the wall of the sphere.

2.2. Eigenfunctions of the system

The system can be simplified by formulating it as nonlinear eigenvalue problem,
and working in terms of the eigenfunctions, (uλ(x), pλ(x)), which satisfy (2.1b) and
(2.4) with constant complex growth rate λ, corresponding to the relaxation time
τ = 1/Re(λ). Seeking solutions of the form u = uλeλt + c.c. and p = pλeλt + c.c.,
where c.c. denotes the complex conjugate, we obtain

ρλuλ =−∇pλ + G̃(λ)

λ
∇2uλ, ∇ ·uλ = 0, (2.5a, b)
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where

G̃(λ)= λ
∫ ∞

0
G (s) e−λs ds (2.6)

is the complex modulus of the fluid, and we also define

G′ (λ)= Re(G̃(λ)), G′′ (λ)= Im(G̃(λ)), (2.7a, b)

which respectively quantify the elastic and viscous behaviour of the fluid.
We work in spherical coordinates (r̃, θ, φ), where r̃ = rR0, r ∈ [0, 1], θ ∈ [0,π] and

φ ∈ [0, 2π), and write the velocity components of the eigenfunctions as a sum of
vector spherical harmonics Pmn(θ, φ), Bmn(θ, φ) and Cmn(θ, φ), and the pressures as a
sum of scalar spherical harmonics Ymn(θ, φ), where m, n ∈ Z, n > 0 and −n 6 m 6 n
(see the Appendix); thus

uλ =
∞∑

n=0

n∑
m=−n

umn(r; λ)Pmn(θ, φ)+ vmn(r; λ)Bmn(θ, φ)

+wmn(r; λ)Cmn(θ, φ), (2.8)

pλ =
∞∑

n=0

n∑
m=−n

pmn(r; λ)Ymn(θ, φ). (2.9)

Note that B00 and C00 are identically zero. Imposing regularity conditions at the origin
(r = 0) implies that we must impose the boundary conditions dp00/dr|r=0 = u00|r=0 = 0,
pm1|r=0 = wm1|r=0 = 0, vm1|r=0 =

√
2um1|r=0, dum1/dr|r=0 = dvm1/dr|r=0 = 0, and also for

n> 1, pmn|r=0 = umn|r=0 = vmn|r=0 = wmn|r=0 = 0. Substituting into (2.5a,b), making use
of standard orthogonality conditions for vector spherical harmonics (see the Appendix
and Quartapelle & Verri 1995) and applying the regularity conditions at the origin, we
obtain the general solution

pmn =−C(1)
mnλ

n
rn, (2.10a)

umn = C(1)
mnrn−1 + C(2)

mn

jn (ar)

r
, (2.10b)

vmn = C(1)
mnsn

n
rn−1 + C(2)

mn

arjn−1(ar)− njn(ar)

snr
, (2.10c)

wmn = C(3)
mn jn(ar), (2.10d)

for n > 0 and p00 = u00 = 0, where jn is the nth spherical Bessel function given by

jn(x) =√π/(2x)Jn+1/2(x), sn =
√

n(n+ 1), a =
√
−ρλ2R2

0/G̃(λ) and C(1)
mn , C(2)

mn and C(3)
mn

are constants to be determined by applying the boundary conditions.

3. Relaxation behaviour
3.1. Eigenvalues and eigenfunctions of the system

In this section we investigate the relaxation behaviour of the system, starting from a
prescribed non-zero velocity field at t = 0 and assuming the eyeball remains stationary
for t > 0, looking in particular for natural frequencies of oscillation that could be
resonantly excited by eye rotations.
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Oscillatory motion of a viscoelastic fluid within a spherical cavity 5

Enforcing no-slip boundary conditions on the solution (2.10a–d) and seeking a
non-trivial solution leads to

jn+1(a)= 0 or jn(a)= 0. (3.1a, b)

The roots of the function jn are all real, the eigenfunctions corresponding to −a and a
are linearly dependent, and the root a= 0 does not correspond to an eigenfunction. We
define aln as the lth positive zero of the function jn(x).

The growth rates are given by the solutions for λ of

λ=
√
− G̃ (λ)

ρR2
0

aln. (3.2)

Depending on the function G̃, (3.2) could admit several solutions. We denote the
number of solutions by Qln and let the solutions corresponding to aln be λ(q)ln , where
q= 1, 2, . . . ,Qln; we will show in the next sections that two/four solutions exist in the
case that the rheology is described by a two/four-parameter model. The eigenfunctions
can be written as

V (kq)
lmn = (u(kq)

lmn , p(kq)
lmn ), (3.3)

where k ∈ {1, 2}, q ∈ {1, 2, . . . ,Qln}, l ∈ N, m ∈ Z, and, if k = 1 then n ∈ N\{1} and
|m|6 n−1, whereas if k = 2, n ∈ N and |m|6 n. The solutions fall into two categories:
type 1 eigenfunctions (k = 1), given by

u(1q)
lmn =

(
jn−1(alnr)

rjn−1(aln)
− rn−2

)
Pmn−1

+
(

alnrjn−2(alnr)− (n− 1)jn−1(alnr)

sn−1rjn−1(aln)
− n

sn−1
rn−2

)
Bmn−1, (3.4)

p(1q)
lmn =

λ
(q)
ln

n− 1
rn−1Ymn−1, (3.5)

and type 2 eigenfunctions (k = 2),

u(2q)
lmn = jn(alnr)Cmn, (3.6)

p(2q)
lmn = 0. (3.7)

For the sake of clarity we recall the meaning of all indices appearing in
expressions (3.1)–(3.7): m and n refer to the mode of the spherical harmonic
expansions (2.8) and (2.9), l denotes the lth radial mode (lth zero of the function jn(x)),
k differentiates between the two categories of eigenfunctions, and finally q identifies
the qth solution of (3.2). Note that, although we have denoted the eigenfunctions u(kq)

lmn

and p(kq)
lmn , of these functions only p(1q)

lmn depends on the value of q. Note also that the
growth rates λ(q)ln are independent of both the type of eigenfunction, k, and of the
azimuthal wavenumber, m. In the Appendix, we show that the fact that the eigenvalues
λ
(q)
ln do not depend on the azimuthal wavenumber, m, is a consequence of the spherical

symmetry of the system. In particular, we show that an eigenfunction, V (kq)
lmn , in a

rotated coordinate system can be expressed as a linear combination of eigenfunctions
with the same value of the indices k, q, l and n. Moreover, for a given m0, every
eigenfunction, V (kq)

lmn , can be written as a linear superposition of rotations of the
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FIGURE 1. Spatial structure of the eigenfunctions (a) u(1q)
102 and (b) u(2q)

101 on the planes
φ = 0,π (x–z plane) and θ = π/2 (x–y plane), respectively.

eigenfunction V (kq)
lm0n . This indicates that, for a given growth rate λ(q)ln , there are two

distinct sets of eigenfunctions sharing the same eigenvalue, {V (1q)
lmn : |m| 6 n − 1} and

{V (2q)
lmn : |m|6 n}, such that, within each set, all the elements are related by rotations.
The eigenfunctions form a complete set, and therefore the solution of (2.5a,b) can

be written in the form

u=
∞∑

n=1

n∑
m=−n

∞∑
l=1

2∑
k=1

Qln∑
q=1

A(kq)
lmn u

(kq)
lmn (r, θ, φ)e

λ
(q)
ln t + c.c., (3.8a)

p=
∞∑

n=1

n∑
m=−n

∞∑
l=1

2∑
k=1

Qln∑
q=1

A(kq)
lmn p(kq)

lmn (r, θ, φ)e
λ
(q)
ln t + c.c., (3.8b)

where A(kq)
lmn are constants that can be found from the initial conditions (note that V (1q)

l,±n,n

and V (1q)
l01 are zero). The number of initial conditions needed is equal to Qln. It can

be shown that, in the case of a Newtonian fluid, Qln = 1, so one initial condition
(the velocity field) is needed; whereas, in the case of an elastic solid, Qln = 2, so
two initial conditions (the initial deformation and the velocity field) are needed. By
way of example, we show the spatial structure of the eigenfunctions u(1q)

102 and u(2q)
101 in

figures 1(a) and 1(b), respectively.

3.2. Two-parameter model of the viscoelastic behaviour
Nickerson et al. (2008) and Swindle et al. (2008) performed experiments on a porcine
model with angular frequencies ω = 10.0 rad s−1 and ω = 12.6 rad s−1 to obtain the
complex modulus of the fluid. To formulate a model of the shear behaviour, we must
make an assumption about the dependence of the rheology upon the frequency. We
assume that the shear behaviour can be represented by a Kelvin element (e.g. Tanner
2000) consisting of an ideal dashpot (a viscous element) with constant ηK connected
in parallel with an ideal spring (an elastic element) with constant µK . In this case the
complex modulus is given by the sum of the moduli of the elements, which can be
found from (2.6), and equals

G̃(λ)= µK + ληK. (3.9)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

26
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.263


Oscillatory motion of a viscoelastic fluid within a spherical cavity 7
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FIGURE 2. Sketch of the (a) real and (b) imaginary parts of the growth rates λ(q)ln as a
function of aln for the two-parameter model described in § 3.2. Note that the roots are ordered
a11 < a12 < a13 < a21 < · · · .

The complex moduli measured by Nickerson et al. (2008) and Swindle et al. (2008)
and the corresponding values of µK and ηK are listed in table 1. In figure 4 of
Nickerson et al. (2008), measured values of G′ and G′′ are presented in an experiment
in which the vitreous humour undergoes periodic forced oscillations at different
frequencies. At each frequency, the oscillations continue for sufficiently long that
transients decay before the measurements are taken. If the two-parameter model were
faithful, then G′ = µK should be constant and G′′ = ωηK should increase linearly with
increasing rotation frequency. The comparison with figure 4 of Nickerson et al. (2008)
reveals this model to be far from perfect, but, in the absence of more extensive
experimental work, we consider the Kelvin element. We will discuss the data from
Nickerson et al.’s figure 4, and the qualitative behaviour of the model more extensively
in § 4.2.

Equations (3.2) and (3.9) lead to a quadratic equation with solutions

λ
(1)
ln =−

ηKa2
ln

2ρR2
0

+
√
η2

Ka4
ln

4ρ2R4
0

− µKa2
ln

ρR2
0

, (3.10a)

λ
(2)
ln =−

ηKa2
ln

2ρR2
0

−
√
η2

Ka4
ln

4ρ2R4
0

− µKa2
ln

ρR2
0

. (3.10b)

The real parts of λ(q)ln are negative, which confirms the system’s dissipative nature.
Figure 2 shows a sketch of the real and imaginary parts of λ(q)ln plotted against the
root aln. The flow can be written as a linear superposition of the eigenfunctions, each
multiplied by a time-dependent coefficient that decays with rate constant equal to
the real part of the corresponding eigenvalue. At long times, therefore, the flow will
be a superposition of those eigenfunctions whose eigenvalues have largest real part.
Inspecting figure 2, for each l and n, we can distinguish three cases corresponding to
each of the roots aln.

(i) Case 1, aln <
√

2µKρR0/ηK: the eigenvalues λ(q)ln are a complex conjugate pair
with a negative real part that is larger than the real parts of all but a finite number
of the other eigenvalues. Hence the amplitude of the corresponding eigenfunction
is oscillatory and decaying, but it has a slower decay than that of all but a finite
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number of the other eigenfunctions. If the smallest root, a11, falls in case 1 (true
for the final values of Nickerson et al. (2008) and both initial and final values
of Swindle et al. (2008), see table 1) then, assuming that at least one of the
eigenfunctions V (2q)

1m1 was excited at t = 0, the overall system is underdamped,
and the profile at long times will be a superposition of the eigenfunctions V (2q)

1m1 .
The presence of natural frequencies leads to the possibility of resonant excitation
during forced oscillations, and this will be discussed in the second part of this
paper.

(ii) Case 2,
√

2µKρR0/ηK < aln < 2
√
µKρR0/ηK: the eigenvalues λ

(q)
ln are also a

complex conjugate pair with negative real part, and so, as in case 1, the amplitude
of the corresponding eigenfunction is oscillatory and decaying. However, in this
case there are infinitely many other eigenvalues λ(q)l′n′ with larger real parts. These
are any eigenvalues for which al′n′ < aln, as well as those with sufficiently large
values of l′ or n′. In particular, if the smallest root a11 falls in case 2 (true
for the initial values of Nickerson et al. (2008), see table 1), and assuming that
at least one eigenfunction with aln sufficiently large was excited at t = 0, the
overall system is overdamped, and the long-time behaviour is a superposition
of eigenfunctions V (kq)

lmn with large l or n whose amplitude decays exponentially
in time. However, for typical initial conditions, the coefficients multiplying
the eigenfunctions corresponding to the largest values of aln are likely to be
very small, and hence very long times must be reached before the dominant
flow corresponds to these eigenfunctions. This case also does not exclude the
possibility of resonance excited by forced oscillations.

(iii) Case 3, aln > 2
√
µKρR0/ηK: the eigenvalues λ(q)ln are real, and so the corresponding

eigenfunction decays exponentially with time. As in case 2 there are infinitely
many eigenfunctions with a slower decay, which are those corresponding to larger
values of al′n′ . If a11 is as in case 3, then the overall system is overdamped. In this
case there are no natural frequencies present in the system, so we do not expect
resonance.

In figure 3 we show curves in the (µK, ηK) plane separating the three cases. Both
decreasing the viscosity ηK and increasing the elastic constant µK leads to an increase
in the number of modes with complex eigenvalues. The parameter values measured
by Nickerson et al. (2008) and Swindle et al. (2008) are also indicated in the figure,
which shows that, for all the measured parameters the model predicts the existence
of some roots in cases 1 and 2, implying that the corresponding eigenfunctions will
possess natural frequencies. Note, however, that the system is not far from critical
damping, and, specifically for the initial values measured by Nickerson et al. (2008),
only the modes V 2q

1m1, V 2q
1m2 and V 1q

1m2 for q = 1, 2 correspond to a complex eigenvalue
and thus admit the possibility of resonance.

3.3. Four-parameter model of the viscoelastic behaviour
The vitreous humour has also been described using a Burgers model, consisting of a
Kelvin element in series with a dashpot and a spring (Lee et al. 1992). The moduli of
elements add when connected in parallel and their compliances add when connected in
series. Using (2.6), the complex modulus can be written in terms of the moduli of the
components as

G̃(λ)=
(

1
µK + ληK

+ 1
µM
+ 1
ληM

)−1

. (3.11)
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Case 3

Case 1

Case 2
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0 2 4 6 8 10 12 14 16 18 200 2 4 6 8 10 12 14 16 18 20

FIGURE 3. The curves show the boundaries in the (µK, ηK) plane between cases 1, 2
and 3 (described in the text) for the eigenfunctions corresponding to the smallest four
values of aln, as follows: (a) l = 1, n = 1 (corresponding to V (2q)

1m1 , m = −1, 0, 1); (b) l = 1,
n = 2 (corresponding to V (kq)

1m2 , k = 1 and m = −1, 0, 1, or k = 2 and m = −2,−1, 0, 1, 2);
(c) l = 1, n = 3 (corresponding to V (kq)

1m3 , k = 1 and m = −2,−1, 0, 1, 2, or k = 2 and
m = −3,−2,−1, 0, 1, 2, 3); and (d) l = 2, n = 1 (corresponding to V (2q)

2m1 , m = −1, 0, 1).
The symbols show values measured experimentally, as follows: circle, Nickerson et al. (2008),
initial values; square, Nickerson et al. (2008), final values; cross, Swindle et al. (2008), initial
values; diamond, Swindle et al. (2008), final values.

Parameter Anterior Central Posterior

µK (Pa) 2.5 1.27 1.21
µM (Pa) 3.67 7.27 3.01
ηM (Pa s) 1.398 2.18 4.86
ηK (Pa s) 0.313 0.352 0.49

TABLE 2. Measured values of the moduli of the elements of the Burgers model in three
different locations in the eye. Taken from Lee et al. (1992).

Substituting this expression into (3.2) yields a third-order polynomial equation for λ. It
can be shown that the real parts of all the roots are always negative.

Experimentally measured values of the moduli of the elements are given in table 2.
There is a transition point a∗ such that eigenfunctions with aln 6 a∗ have all four
growth rates real, and thus their decay is overdamped. For aln > a∗ there are two real
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Oscillatory motion of a viscoelastic fluid within a spherical cavity 11

and two complex growth rates. For the measured parameter values in table 2, a∗ is
sufficiently small that all cases have two real and two complex roots. As l→∞ the
imaginary part of the complex conjugate pair tends to infinity, while the real part
tends to a constant. Adopting the values proposed by Lee et al. (1992) for the anterior
vitreous humour, the eigenvalue with the largest real part is complex, whereas, with
the values proposed for the central and posterior vitreous humour, the eigenvalue with
the largest real part is real.

4. Behaviour under periodic forcing
4.1. Calculation of the flow and kinetic energy

We now study how the vitreous humour responds to eye rotations. For simplicity
we consider small-amplitude sinusoidal torsional oscillations of angular displacement
β(t) = −ε cosω0t. Mathematically, this is now a forced problem in which, contrary
to the eigenvalue problem discussed in the previous part of the paper, the boundary
conditions are non-homogeneous and read

u= εω0R0 sin θ sinω0t φ̂, (4.1)

where φ̂ is the unit vector in the azimuthal direction. The assumption of small-
amplitude eye movements allows us to linearize the problem. Of course, real eye
rotations are not truly periodic; however, the experiments performed by Repetto et al.
(2005) with purely Newtonian fluids indicate that, starting from rest, the motion is
very close to periodic after only a few rotations of the domain. Thus when the eye
is performing a repetitive motion, even for only a small number of saccades, we
anticipate that the flow will be close to the solution of the idealized system with
periodic forcing.

We seek periodic solutions of the governing equations, corresponding to long
times. Since all the eigenfunctions decay, at long times the solution is approximately
periodic with frequency ω0. Expanding the velocity and pressure as a sum of spherical
harmonics and assuming periodicity, the velocity and pressure fields are given by (2.8)
and (2.9), where

pmn =−C(1)
mn iω0

n
rn, (4.2a)

umn = C(1)
mnrn−1 + C(2)

mn

jn (ar)

r
, (4.2b)

vmn = C(1)
mnsn

n
rn−1 + C(2)

mn

arjn−1(ar)− njn(ar)

snr
, (4.2c)

wmn = C(3)
mn jn(ar), (4.2d)

with

a= αce−iπ/4, αc =
√

ρω0R2
0

G̃(iω0)/(iω0)
, (4.3)

where αc is the complex Womersley number. Applying the boundary conditions, only
C(3)

01 can be non-zero; an example is illustrated in figure 1(b), and we obtain the
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12 J. Meskauskas, R. Repetto and J. H. Siggers

velocity and pressure fields

u=
√
π

3
εR0ω0j1(ar)

ij1(a)
eiωtC01 + c.c., p= 0, (4.4)

or, with ur, uθ and uφ respectively denoting the r, θ and φ components of the velocity,

uφ = εR0ω0j1(ar)

2ij1(a)
sin θ eiω0t + c.c.

=− iεR0ω0(sin ar − ar cos ar)

2r2(sin a− a cos a)
sin θ eiω0t + c.c. (4.5)

and ur = uθ = p= 0, after David et al. (1998).
For the following discussion it is useful to introduce the total kinetic energy of the

fluid, K , which, at leading order, is given by

K = 1
2

∫
sphere

ρ |u|2 dV = 4π
3
ρR5

0ω
2
0ε

2

∫ 1

0

(
j1(ar)

2ij1(a)
eiω0t + c.c.

)2

r2 dr. (4.6)

The time average of the kinetic energy over a cycle equals

K = 2π
3
ρR5

0ω
2
0ε

2

∫ 1

0

∣∣∣∣ j1(ar)

j1(a)

∣∣∣∣2r2 dr. (4.7)

The stress exerted by this flow on the surface of the sphere is in the azimuthal
direction and equals

ε

2

(
a2

1− a cot a
− 3
)

G̃(iω0) sin θ eiω0t + c.c. (4.8)

4.2. Results

We first consider a general function G̃, and in figure 4 we show the logarithm of
the normalized time-averaged kinetic energy of the system, K

∗
, which is the time-

averaged kinetic energy K of the fluid divided by the kinetic energy of a rigid sphere
with the same density as the fluid, which is (2/15)πρR5

0ω
2
0ε

2. High values of this
quantity indicate the possible occurrence of resonant excitation of the vitreous motion.
This is shown in the complex a plane. The locations of the wavenumbers aln ∈ R in
the plane are also shown by the white symbols. In a viscous fluid (imaginary axis
of figure 4), K

∗
6 1, and K

∗ → 1 as α→ 0, where α is the (real) Womersley
number, and K

∗→ 0 as α→∞. The other limiting case is that of an elastic non-
dissipative solid (real axis in the figure). In this case, the system displays an infinite
response (K

∗→∞) at particular forcing frequencies that correspond to some of its
eigenfrequencies. Note that only the eigenfunctions V (kq)

lmn with m = 0 and n = 1 can
be resonantly excited by torsional oscillations, which is a result of the fact that the
non-homogeneous boundary condition on the azimuthal component of the velocity is
proportional to the spherical harmonic with m= 0 and n= 1.

For a fixed choice of constants for the springs and dashpots, but for different
frequencies, the two- and four-parameter models can be represented as curves in the
complex a plane. These are shown in figure 4 with different line types representing
the different constants measured by Nickerson et al. (2008) and Swindle et al.
(2008) (two-parameter model) and by Lee et al. (1992) (four-parameter model).
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FIGURE 4. Contour plot of the logarithm of the normalized kinetic energy K
∗

in the
complex a plane. The black solid circles show values of a predicted in the experiments
of Nickerson et al. (2008). Five additional curves showing the values of a over a range
of frequencies are plotted. The solid and dashed curves correspond to the two-parameter
model, and these use the average values of the parameters µK and ηK that are estimated
by Nickerson et al. (2008) (solid) and Swindle et al. (2008) (dashed). The dotted curve
shows the values of a obtained using the four-parameter model with parameters estimated by
Lee et al. (1992).
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FIGURE 5. Plots of the normalized kinetic energy K
∗

against frequency. The curves
correspond to those described in figure 4.

For frequencies of oscillation corresponding to points at which the curve passes close
to one of the singularities of the function K

∗
, the response of the system is expected

to be intense.
In the case of the two-parameter model, with the exception of the initial data

proposed by Nickerson et al. (2008), the curves pass quite close to the first singularity,
which corresponds to the excitation of the mode with l = n = 1 and m = 0, which is
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FIGURE 6. Azimuthal velocity profile using the initial values of Swindle et al. (2008):
(a) ω = 10 rad s−1, (b) ω = 21.61 rad s−1, (c) ω = 28 rad s−1 and (d) ω = 45 rad s−1. The
individual curves show the instantaneous velocity profiles at different times, equally spaced
over the period of oscillation.

shown in figure 1(b). We plot the normalized kinetic energy in figure 5, which reveals
the forcing frequencies ω0 at which the corresponding peak of the kinetic energy, K

∗
,

is observed. The resonant frequencies vary from approximately 10 rad s−1 (Swindle
et al. 2008, final values) to approximately 30 rad s−1 (Nickerson et al. 2008, initial
values). This range of frequencies represents part of the typical range for saccadic
eye rotations (e.g. Dyson et al. 2004). In spite of the significant damping, the kinetic
energy at resonance can be up to approximately six times higher than that of a solid
sphere oscillating at the same frequency and amplitude. In figure 4 we also mark the
points measured by Nickerson et al. (2008) in figure 4 of their paper with solid black
circles. With the exception of the last point, the curve traced by the points in the
complex a plane has a shape similar to those for the two-parameter model.

As expected following the discussion reported in § 3.3, the situation is markedly
different if the four-parameter model is employed. In the complex a plane, the curve
for this model tends asymptotically towards the line Im(a) = R0

√
ρµM(η

−1
K + η−1

M )/2;
see figure 4. Thus an infinite number of modes are excited as the frequency increases,
which is also shown in figure 5 by the peaks in excitation.

The radial profiles of the azimuthal velocity are also significantly affected by the
frequency of oscillation and, in particular, by the proximity of the forcing frequency to
the eigenfrequencies Im(λ(q)l1 ) of the system. In figures 6(a–d) we show dimensionless
velocity profiles (scaled with the maximum velocity at the boundary) for forcing
frequencies (a) smaller, (b) equal and (c,d) larger than the natural frequency of the
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FIGURE 7. Maximum stress at the wall for different forcing frequencies, normalized with
ερR2

0ω
2
0), using data from the papers by Nickerson et al. (2008) and Swindle et al. (2008).

mode l = n = 1, m = 0. The curves are obtained using the two-parameter model
with the initial data from Swindle et al. (2008). These are based on the model
corresponding to the curve that passes closest to the singularity of the function K

∗

at a = a11 in figure 4. As expected, for small frequencies of oscillation, figure 6(a),
the velocity profiles are almost linear. At the resonant frequency, figure 6(b), excitation
is apparent, and the maximum dimensionless velocity, which occurs near r = 0.5,
is more than twice as large as the maximum velocity of the boundary. For larger
frequencies, figures 6(c,d), the maximum dimensionless velocity decreases and moves
towards the centre of the sphere, which is probably due to a weak excitation of other
eigenfunctions.

For the other parameter values measured by Nickerson et al. (2008) and Swindle
et al. (2008), the corresponding curve in the complex a plane is further from the
singularities of the function K

∗
. Thus the resonant excitation is not obvious in the

velocity profiles, and the profiles are more similar to those found by David et al.
(1998).

In figure 7 we show plots of the normalized maximum stress versus the forcing
frequency. All four plots show a marked maximum stress at the resonant frequency
(the imaginary part of λ(q)11 , see table 1). In addition, the initial data of Swindle et al.
(2008) show a second peak, corresponding to λ(q)12 .

5. Discussion and conclusions
Our motivation is to improve understanding of the motion of the vitreous humour

in the vitreous chamber induced by eye rotations. The stress induced by the calculated
flows may be related to the occurrence of retinal breaks and detachment. We used
measurements of the rheological properties of the vitreous humour available in the
literature by Lee et al. (1992), who described the vitreous humour using a four-
parameter Burgers model, and by Nickerson et al. (2008) and Swindle et al. (2008),
who performed oscillatory tests and provided values for the complex modulus of the
fluid. For the latter two we employed a two-parameter Kelvin model to describe the
rheological properties; the parameters are the viscosity ηK and the elastic parameter µK

of the fluid.
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In the first part of this paper we studied the eigenvalues and eigenmodes of a
viscoelastic fluid within a rigid sphere. The eigenfunctions can be grouped into sets
of eigenvectors sharing common properties. For each k ∈ {1, 2}, l ∈ N and n ∈ N, any
two eigenfunction elements of the set {V (kq)

lmn : m ∈ Z, |m| 6 n, q ∈ {1, 2, . . . ,Qln}} can
be related to one another by rotations. That is, the first eigenfunction can be written as
an integral of different rotations of the second.

In all cases corresponding to experimentally measured parameters, we find complex
eigenvalues of the system, meaning that there are natural frequencies of oscillation
that could be resonantly excited by eye rotations. The natural frequency of the mode
with the slowest damping is always approximately in the range 10–25 rad s−1, which
is typical of eye rotations.

The two- and four-parameter models lead to qualitatively different results. With
the former model we find that only finitely many eigenfunctions have a complex
eigenvalue and all the other eigenvalues are real and negative. On the other hand,
the latter model predicts an infinite number of modes with complex eigenvalues. The
significant differences in the behaviour of the system predicted are intrinsic to the
models and do not depend on the particular parameters used.

In the second part of the paper we studied the response of the system to torsional,
small-amplitude, sinusoidal oscillations of the sphere. The results show that, when
the system is close to resonant excitation, the velocity profiles also display resonance
and are qualitatively significantly different from those reported by previous authors
(David et al. 1998). In particular the maximum velocity can be as much as twice the
maximum wall velocity. The resonance generates larger wall shear stresses, and could
be relevant for the occurrence of retinal detachment.

Repetto, Siggers & Stocchino (2010) showed that, in the case of a Newtonian fluid,
a weak departure of the domain from the spherical shape significantly affects the
fluid motion. Their analysis can be extended to the eigenvalue problem considered
here, in order to find the effect of a geometrical perturbation on the eigenvalues and
eigenfunctions. A small departure from sphericity would induce correspondingly small
changes in the eigenvalues of the system from those found in the present model,
and therefore, for finite, but sufficiently small, shape perturbations, our predictions of
possible resonant excitations of the fluid would still apply.

Measurements of vitreous motion are limited, and we do not know of reports of
experimental observations of free oscillations of the vitreous humour in the literature.
Zimmerman (1980) described the vitreous humour as an overdamped system, very
close to critical damping, and our two-parameter model also predicts that the system
is quite close to critical damping. Walton et al. (2002) described the motion of
the vitreous humour following a single eye rotation, although they do not conclude
whether the system possesses natural frequencies. Since the different measurements
of the properties of the vitreous humour in the literature lead to a large amount
of discrepancy in the theoretical predictions of our model, and there are currently
very few in vivo observations of vitreous motion, further experimental work is
needed.

Another important application of this work is the identification of optimal
characteristics for vitreous humour replacement fluids. Soman & Banerjee (2003) and
Swindle & Ravi (2007) review all materials currently in use, discuss their advantages
and disadvantages, and list the characteristics of an ideal vitreous humour replacement.
A common suggestion is that vitreous humour replacements should be viscoelastic
fluids with a large enough elastic component to avoid excessive flow within the
vitreous chamber (see also Dalton et al. 1995). However, they do not account for
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the possibility of resonance induced by eye rotations. In fact, using the data for
cross-linked hydrogels found both by Swindle-Reilly et al. (2009) and by Leone
et al. (2010) in our two-parameter model, we predict possible resonant excitations.
Therefore, in order to avoid high stresses on the retina, our results suggest that it is
important to use a material that is well damped, which would prevent strong resonant
excitations.

The authors are grateful for the support of the ‘British–Italian Partnership
Programme’ by MIUR-CRUI/British Council, which enabled this work to be carried
out.

Appendix. The eigenfunctions of the system and relationships between them
In this section we describe the vector spherical harmonics and their behaviour under

rotations, which enables us to relate the eigenfunctions of the system to one another.

Definition of the spherical harmonics
The scalar spherical harmonics Ymn are defined (e.g. Arfken & Weber 2001) as

Ymn (θ, φ)= (−1)m
√

2n+ 1
4π

(n− m)!
(n+ m)!Pmn (cos θ) eimφ, (A 1)

where |m|6 n and

Pmn(x)=


1− x2m/2

(
d
dx

)m

Pn(x) for m > 0,

(−1)|m|
(n− |m|)!
(n+ |m|)!P|m|n(x) for m< 0,

(A 2)

and Pn is the Legendre polynomial of order n, which has the same parity (odd
or even) as n. The functions Ymn are pairwise orthogonal in the sense that
〈Ymn(θ, φ)Ym′n′(θ, φ)〉 = δmm′δnn′ where 〈·〉 denotes the integral over the surface of
the unit sphere and δij is the Kronecker delta function.

The vector spherical harmonics Pmn(θ, φ), Bmn(θ, φ) and Cmn(θ, φ) are defined as

Pmn = Ymnr̂, Bmn = r

sn
∇Ymn, Cmn = 1

sn
∇ × (Ymnr) , (A 3)

where r represents the position vector, r̂ the unit vector in the same direction and
sn =
√

n(n+ 1). The vector spherical harmonics are pairwise orthogonal in the sense
that integration over the surface of the unit sphere of the scalar product of any two of
these basis functions equals zero unless the functions are the same, in which case it
equals one.

A general rotation of the spherical coordinate system
In this section we find formulae relating two different spherical coordinate systems
sharing a common origin. We denote the systems as C with coordinates (r, θ, φ) and
C ′ with coordinates (r′, θ ′, φ′). Suppose that the axis of C ′, the line θ ′ = 0, lies in the
direction θ = θ0, φ = φ0 in C , and also that φ0 is the anticlockwise angle from the
great circle φ = φ0 to the great circle φ′ = 0 (these two circles cross at θ ′ = 0, which
is the axis of C ′). The three angles θ0, φ0 and φ′0 uniquely define the rotation from C
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to C ′. It can be shown that the coordinates of C and C ′ are related by

r′ = r, (A 4)

cos θ ′ = sin θ cos (φ − φ0) sin θ0 + cos θ cos θ0, (A 5)

tan(φ′ + φ′0)=
sin θ sin(φ − φ0)

sin θ cos(φ − φ0) cos θ0 − cos θ sin θ0
. (A 6)

Effect of rotations on the spherical harmonic functions
We note that

〈Ymn(θ, φ)Ym′n′(θ
′, φ′)〉 = − 1

s2
n

〈(∇2Ymn(θ, φ))Ym′n′(θ
′, φ′)〉

= − 1
s2

n

〈Ymn(θ, φ)∇2(Ym′n′(θ
′, φ′))〉

= s2
n′

s2
n

〈Ymn(θ, φ)Ym′n′(θ
′, φ′)〉, (A 7)

where 〈·〉 denotes the integral over the surface of the sphere r = 1, and the second
equality was achieved by integrating by parts twice (note that, since the surface of the
sphere is closed, there are no boundary terms arising from the integrations by parts).
Therefore 〈Ymn(θ, φ)Ym′n′(θ ′, φ′)〉 equals zero unless n= n′, and we define

γmm′n(φ0, θ0, φ
′
0)= 〈Ymn(θ, φ)Ym′n(θ

′, φ′)〉. (A 8)

Since r̂, and hence Pmn, are invariant under rotations of the coordinate system, we have
Pmn(θ

′, φ′)= Ymn(θ
′, φ′)r̂, from which it immediately follows that

〈Pmn(θ, φ) ·Pm′n′(θ
′, φ′)〉 = 〈Ymn(θ, φ)Ym′n′(θ

′, φ′)〉
= γmm′n(φ0, θ0, φ

′
0)δnn′, (A 9)

〈Pmn(θ, φ) ·Bm′n′(θ
′, φ′)〉 = 0, (A 10)

〈Pmn(θ, φ) ·Cm′n′(θ
′, φ′)〉 = 0. (A 11)

We can also calculate

〈Bmn(θ, φ) ·Bm′n′(θ
′, φ′)〉 =

〈
1

snsn′
∇Ymn(θ, φ) ·∇Ym′n′(θ

′, φ′)
〉

=−
〈

1
snsn′

Ymn(θ, φ)∇2Ym′n′(θ
′, φ′)

〉
= sn′

sn
〈Ymn(θ, φ)Ym′n′(θ

′, φ′)〉
= γmm′n(φ0, θ0, φ

′
0)δnn′, (A 12)

〈Bmn(θ, φ) ·Cm′n′(θ
′, φ′)〉 =

〈
1

snsn′
∇(Ymn(θ, φ)) ·∇ × (Ym′n′(θ

′, φ′)r)
〉

=−
〈

1
snsn′

Ymn(θ, φ)∇ ·∇ × (Ym′n′(θ
′, φ′)r)

〉
= 0 (A 13)

and

〈Cmn(θ, φ) ·Cm′n′(θ
′, φ′)〉
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=
〈

1
snsn′
∇ × (Ymn(θ, φ)r) ·∇ × (Ym′n′(θ

′, φ′)r)
〉

=
3∑

i5=1

3∑
i4=1

3∑
i3=1

3∑
i2=1

3∑
i1=1

〈
1

snsn′

(
εi1i2i3

∂

∂xi2

(Ymn(θ, φ)ri3)

× εi1i4i5

∂

∂xi4

(Ym′n′(θ
′, φ′)ri5)

)〉
=

3∑
i3=1

3∑
i2=1

〈
1

snsn′

(
∂

∂xi2

(Ymn(θ, φ)ri3)
∂

∂xi2

(Ym′n′(θ
′, φ′)ri3)

− ∂

∂xi2

(Ymn(θ, φ)ri3)
∂

∂xi3

(Ym′n′(θ
′, φ′)ri2)

)〉
=
〈

1
snsn′
[−Ymn(θ, φ)r ·∇2(Ym′n′(θ

′, φ′)r)

+Ymn(θ, φ)(r ·∇)(∇ · (Ym′n′(θ
′, φ′)r))]

〉
=
〈

1
snsn′
[−Ymn(θ, φ)r · (−s2

n′Ym′n′(θ
′, φ′)r+ 2∇Ym′n′(θ

′, φ′))

+Ymn(θ, φ)(r ·∇)(3Ym′n′(θ
′, φ′)+ r ·∇Ym′n′(θ

′, φ′))]
〉

=
〈

sn′

sn
Ymn(θ, φ)Ym′n′(θ

′, φ′)
〉
= γmm′n(φ0, θ0, φ

′
0)δnn′, (A 14)

where xi, i = 1, 2, 3, denote Cartesian coordinates, εi1i2i3 is the alternating tensor, and
its standard properties as well as the relationships r ·∇Ymn(θ, φ)= r ·∇Ym′n′(θ ′, φ′)= 0
were used to simplify the expressions.

The above equations show that, in a rotated coordinate system, each vector spherical
harmonic can be expressed as a linear combination of the vector spherical harmonics
of the same family (i.e. P, B or C) and with the same value of the index n.

Rotations of the eigenfunctions
Thus the eigenfunctions written with respect to the rotated coordinates C ′ can be
written with respect to C as

u(1q)
lmn (r

′, θ ′, φ′)=
∑
m′,n′
〈u(1q)

lmn (r
′, θ ′, φ′) ·Pm′n′−1(r, θ, φ)〉Pm′n′−1(r, θ, φ)

+
∑
m′,n′
〈u(1q)

lmn (r
′, θ ′, φ′) ·Bm′n′−1(r, θ, φ)〉Bm′n′−1(r, θ, φ)

+
∑
m′,n′
〈u(1q)

lmn (r
′, θ ′, φ′) ·Cm′n′−1(r, θ, φ)〉Cm′n′−1(r, θ, φ)

=
(

jn−1(alnr)

rjn−1(aln)
− rn−2

) n−1∑
m′=−(n−1)

γm′mn−1(φ0, θ0, φ
′
0)Pm′n−1(r, θ, φ)

+
(

alnrjn−2(alnr)− (n− 1)jn−1(alnr)

sn−1rjn−1(aln)
− n

sn−1
rn−2

)
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×
n−1∑

m′=−(n−1)

γm′mn−1(φ0, θ0, φ
′
0)Bm′n−1(r, θ, φ)

=
n−1∑

m′=−(n−1)

γm′mn−1(φ0, θ0, φ
′
0)u

(1q)
lm′n(r, θ, φ), (A 15)

p(1q)
lmn (r

′, θ ′, φ′)=
∑
m′,n′
〈p(1q)

lmn (r
′, θ ′, φ′)Ym′n′−1(r, θ, φ)〉Ym′n′−1(r, θ, φ)

=
n−1∑

m′=−(n−1)

γm′mn−1(φ0, θ0, φ
′
0)p

(1q)
lm′n(r, θ, φ), (A 16)

u(2q)
lmn (r

′, θ ′, φ′)=
n∑

m′=−n

γm′mn(φ0, θ0, φ
′
0)u

(2q)
lm′n(r, θ, φ), (A 17)

p(2q)
lmn (r

′, θ ′, φ′)= 0, (A 18)

which leads to

V (kq)
lmn (r

′, θ ′, φ′)=
ñ∑

m′=−ñ

γm′mñ(φ0, θ0, φ
′
0)V

(kq)
lm′n (r, θ, φ), (A 19)

where ñ= n+ k − 2, and for k = 1, 2.

Expressing all the eigenfunctions in terms of rotations of one eigenfunction

We investigate whether a given eigenfunction V (kq)
lmn (r, θ, φ) can be expressed in terms

of a linear superposition of rotations of V (kq)
lm0n , for some value m0. We search for

suitable weighting functions W (k)
mm0n(φ0, θ0, φ

′
0) that satisfy the equation

V (kq)
lmn (r, θ, φ)=

∫ 2π

0

∫ π
0

∫ 2π

0
W (k)

mm0n(φ0, θ0, φ
′
0)V

(kq)
lm0n(r

′, θ ′, φ′) dφ0 dθ0 dφ′0

=
ñ∑

m′=−ñ

(∫ 2π

0

∫ π
0

∫ 2π

0
W (k)

mm0n(φ0, θ0, φ
′
0)γm′m0ñ(φ0, θ0, φ

′
0) dφ0 dθ0 dφ′0

)
×V (kq)

lm′n (r, θ, φ), (A 20)

for W (k)
mm0n. Given m, m0 and n, this is equivalent to finding a function W (k)

mm0n such that∫ 2π

0

∫ π
0

∫ 2π

0
W (k)

mm0n(φ0, θ0, φ
′
0)γm′m0ñ(φ0, θ0, φ

′
0) dφ0 dθ0 dφ′0 = δmm′ (A 21)

for all values of m′. To simplify this expression, we recall the definition of
γm′m0ñ, (A 8), expand the spherical harmonics (A 1), and use the relationships between
the two sets of coordinates (A 4)–(A 6) to show that
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Oscillatory motion of a viscoelastic fluid within a spherical cavity 21

γm′m0ñ(φ0, θ0, φ
′
0)=

∫ 2π

0

∫ π
0

Ym′ñ(θ, φ)Ym0ñ(θ
′, φ′) sin θ dθ dφ

= cm′ñcm0ñ eim′φ0−im0φ
′
0

∫ 2π

0

∫ π
0
(sin θ)m

′
P(m

′)
ñ (cos θ)eim′φ̃

× (sin θ cos φ̃ cos θ0 − cos θ sin θ0 + i sin θ sin φ̃)m0

×P(m0)
ñ (sin θ cos φ̃ sin θ0 + cos θ cos θ0) sin θ dθ dφ̃, (A 22)

where cmñ = (−1)m
√
(2ñ+ 1)(ñ− m)!/(4π(ñ+ m)!), P(m)ñ denotes the mth derivative

of Pñ and φ̃ = φ − φ0.
The integral does not depend on φ0 or φ′0, and thus, for fixed θ0, γm′m0ñ is

proportional to eim′φ0−im0φ
′
0 . In order to satisfy (A 21) for all values of m′, we must

therefore have

W (k)
mm0n(φ0, θ0, φ

′
0)= e−imφ0+im0φ

′
0 f (k)mm0n(θ0), (A 23)

for some function fmm0n. With this choice∫ π
0

∫ 2π

0

∫ π
0

W (k)
mm0n(φ0, θ0, φ

′
0)γm′m0ñ(φ0, θ0, φ

′
0) dφ0 dθ0 dφ′0

= δmm′

(
4π2cmncm0ñ

∫ π
0

∫ 2π

0

∫ π
0

f (k)mm0n(θ0)(sin θ)mP(m)ñ (cos θ)eimφ̃

× (sin θ cos φ̃ cos θ0 − cos θ sin θ0 + i sin θ sin φ̃)m0

× P(m0)
ñ (sin θ cos φ̃ sin θ0 + cos θ cos θ0) sin θ dθ dφ̃ dθ0

)
. (A 24)

The quantity multiplying δmm′ on the right-hand side is a constant that depends on the
choice of f (k)mm0n. We have a considerable amount of freedom to do this. One way is
to set f (k)mm0n(θ0) = Ckδ(θ0 − θ00), where 0 6 θ00 6 π is a fixed polar angle, δ(·) is the
Dirac delta function and Ck is a normalization constant, chosen so that the quantity
multiplying δmm′ on the right-hand side of (A 24) equals 1. In the case θ00 = 0 and
θ00 = π, it is not possible to create all the eigenfunctions (which is to be expected), but
it should be possible in most other cases. This shows that, for given values of k, l and
m0, every eigenfunction V (kq)

lmn can be written as a superposition of those rotations of
the eigenfunction V (kq)

lm0n for which the axis lies on the line of latitude θ = θ00 (although
note that, for k = 1, the pressure needs rescaling to convert between different values of
q). For example, we can express the eigenfunctions V (kq)

lmn for all values of m and q as
a superposition of the eigenfunctions V (kq)

l0n with axis on θ = π/2.
This argument shows that the eigenfunctions V (kq)

lmn are rotations of one another for
different values of m and q. It is, however, interesting that the two sums

∑
mAmV (1q)

lmn

and
∑

m′A
′
m′V

(2q)
lm′n cannot be related by a rotation for any choice of the constants Am

and A′m′ (not all zero), even though they share the same eigenvalue.
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