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Abstract The existence of heteroclinic and homoclinic solutions which shadow
corresponding chains of such solutions is established for a class of reversible Hamiltonian
systems. The proof involves elementary minimization arguments.

1. Introduction
The goal of this paper is to find heteroclinic and homoclinic solutions for a class of

reversible Hamiltonian systems. The systems have the form

whereW and f satisfy:
W e C2(R x R",R) and is 1-periodic in
. (W1)
and in the components, ..., g, of g;
f € C(R,R") and is 1-periodic in; (f1)
1
[f]E/0 f)dt =0. (f2)

SetV(t,q) = W(t,q) — f(t) - ¢ and assume
V(_t’ CI) = V(tv q)v (Vl)

i.e. (HS) is areversible system. Such systems arise as models fop#edulum and were
treated, in particular, ing). See also Boloting, 2] and [8].
To describe the problem studied here, it is necessary to recall what was shd@yn in [
Let
_ 1.2
L(g) =319 =V, q),
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the Lagrangian associated with (HS). More generally, the kinetic energy term could be
replaced by

K(g) =) aij(t, 9)did),
i,j=1
where(a;; (¢, q)) is a positive definite matrix with;; satisfying (¥1) and even in. Then
(HS) would be replaced by the Lagrangian systemkfor V.
Set

1
h(g) = /0 Lig)dr
for g € Wi-?, where
Wi? = {g € W?[0, 1] | ¢ is 1-periodig.

As usual W20, 1] denotes the Hilbert space of functions having square integrable
derivatives ori0, 1] under

1
190212003 = /0 1412 + g1 dr.

Define
c1= inf Ii(g).
qull'2
In [9] it was shown that
M={geW?| Ii(g) = c1)

is non-empty. Note thag € M impliesqg + k € M for all k € Z" via (W1) and(f2).
Assume

M consists of isolated points. M)

The main result ofg] was the following.

THEOREM1.1. If (W1), (f1), (f2), (V1) and (M) hold, then for eachv € M, there is a
w € M\{v} and a solution,Q, of (HS) such thatQ(t) — v(rf) — Oasr — —oo and
o) —w(t) — 0ast — oo.

For notational simplicity, henceforth we wri@(—oo) = v and Q (co) = w to indicate
the asymptotic behavior of Theorem 1.1. The proof of Theorem 1.1 was by a minimization
argument employing a renormalized functional. A renormalization was required since the
natural functional associated with (HS) is infinite on the class of curves asymptatic to
and M\{v}.

Subsequent ta®], Maxwell [6] extended Theorem 1.1 by proving that for any w €
M, there exists a heteroclinic chain of solutions of (HS) asymptoticciodw, i.e. there is
an¢ > 0 and distinct heteroclinic solution®;, . .., Q. of (HS) with Q1(—00) = v = v,
Qit1(—00) = Qi(00) =v; € M, 1<i < £,andQ¢(c0) = w = ve. Furthermore, the
chain is minimal. By a minimal heteroclinic chain it is meant that; ifv;11 € M,

T(vi, vi+1) = (g € Ws2 (R, R") | g(—00) = v; andg(o0) = vi11),
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and

cvi,viv1) = _inf  J(q), (1.2)

g€l (vi,vi41)
whereJ is the renormalized functional (whose definition will be recalled in §2), then
¢

c(vo, ve) = Y c(vi-1,v;). (1.3)
i=1
Moreover, there is no heteroclinic chah, ..., P, joining v; to v;41, 0 < i <m — 1,
with
m
D (P = c(vi, vig1)
1
unlessn = 1.

Our main result is that given any pair # w € M and a minimal heteroclinic
chain joiningv and w, if certain mild non-degeneracy conditions are satisfied, there
exist infinitely many actual solutions of (HS) which are heteroclinic fromo w. These
solutions are distinguished by the amount of time they spend near the intermediate periodic
solutionsvy, ..., ve—1. These solutions do not necessarily shadow the cfain. ., Q.
However, if the time intervals spent near the periodic states are large enough, then the
heteroclinic does shadow some minimal heteroclinic chain joiniagdw.

To describe the non-degeneracy condition, set

Si=SWwi—1,v) ={q0) | g € T'(vi—1, v;) andJ (g) = c(vi—1, vi)}.

Let Cy, ,(vi—1, v;) denote the component &F; to which v;_1(0) belongs. Similarly,
Cy, (vi—1, v;) is the component ofS; to which v;(0) belongs. The non-degeneracy
assumption is

Co(vi—1,v) = {vi—1(0)}, 1<i<U{. (%)

As will be seen in 82, if£) fails, (HS) has a continuum of heteroclinics fram 1 to v; for
somei,1<i <U/.

To describe our next result, observe that by the reversibility of (HS), whenr@ueiis
a solution of (HS), heteroclinic to andw, thenQ(—t) is a solution heteroclinic ta and
v. Given a minimal heteroclinic chaid = (Q1, ..., Q¢), such as Maxwell found, one
can form a larger chain by gluing further admissible heteroclinics ffon), Q;(—1) |
1<i,j < ¢ toQ. For example, the possible+ 1 chains ardQ1(—1), Q1, ..., Q¢}
and{Q1, ..., Q¢, Q¢(—1)}. Similarly, £ + 2 chains can be constructed by gluing a pair of
admissible heteroclinics to the ends@br a pairQ; (—t), Q; or Qi+1, Qi+1(—t) between
Q;andQ; 1. R

A new heteroclinic chainQ obtained by such a gluing process will be called an
augmented chain. It will be shown that i)(is satisfied, then corresponding to any
augmented chai® = (ug, ..., up) of Q, there are infinitely many actual solutions of
(HS) heteroclinic tau1(—o0) andu,(co) and distinguished by the amount of time they
spend neat; (o0), 1 < i < p— 1. The simplest example of this result is to take the setting
of Theorem 1.1, gluing the trivial chai@ to Q(—r) to get a homoclinic chain joining to
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v. Then the augmented chain theorem shows that there are infinitely many actual solutions
of (HS) homoclinic tov and distinguished by the amount of time they spend near

The results on augmented chains will be obtained from a theorem combining two or
more (generally a finite number) minimal heteroclinic chains. The final set of applications
are to situations where one has an infinite heteroclinic chain. Here the subtleties of dealing
with a limiting situation must be dealt with.

A few results have been obtained that are related to ours. In particular, in an unpublished
manuscript 7], Maxwell gave a version of our main result. His non-degeneracy condition
is stronger thanx); it implies that the functiong); are isolated minimizers of in
I'(v;—1, v;). Maxwell's heteroclinics shadow appropriate translate@of. . ., Q.

There is also earlier related work of Strobel, who in his thes$ $tudied (HS) for
f=0,V# 0 =0> V(t,x), x € R"\Z". Thus Strobel is dealing with heteroclinics to
equilibria and no reversibility is required faéf. Under his assumptions, Strobel first found
a minimal heteroclinic chain joining any pair of equilibda# g € Z" for (HS). With
a further strong non-degeneracy condition on the basic heteroclinics, Strobel found actual
heteroclinics that shadow the heteroclinic chain joinirands.

Both Strobel and Maxwell use delicate and somewhat technical variational deformation
arguments in the spirit of those others have used to find multibump homoclinic solutions
of Hamiltonian systems; see, for examplerS[11] or [4] for such results. In contrast,
the existence theorems here are based on elementary minimization arguments. Indeed, our
work was partially motivated by a recent paper of Calanchi and S&raliey studied the
setting of Theorem 1.1 when= 1. Using a nice minimization argument, they obtained the
family of homoclinics corresponding to the simple augmented homoclinic chain described
above (forn = 1). A comparison argument they use plays an important role in our work.
See also the papes][of Mather which at least in spirit is connected to the current work.

The definition of the renormalized functional will be recalled in 82 and a study of
the non-degeneracy conditior)( which is of independent interest, will be made. The
main result, extending Maxwell’s work, will be carried out in 83. Finally, 84 deals with
augmented chains, gluing minimal chains, and infinite chains.

2. Some preliminaries
To begin, the technical framework used 8} Will be recalled. The reversibility condition
(V1) implies (see9])

c1 = inf  I1(g). (2.1)
qeWwl2[0,1]

Hence, for eaclp € Z andg € W2[p — 1, p],
P
ap(q) = / 1L(q)dt —c1>0.
Letv € M and
I'={qc€ Wé’CZ(R, R™) | g(—o0) = v andg (00) = w for somew € M\{v}}

Set
J@)=)_apy(q)

pEL
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and

c= ;Q}i J(q).
In [9], Theorem 1.1 was proved by showing that there i@ & T" such that/(Q) = ¢
and Q satisfies (HS). Likewise, the result of Maxwed] [was proved by minimizing/
overI' (v, w) and showing that a minimizing sequence converges to a heteroclinic chain of
solutions.

Once one has a basic heteroclinic solution of (HS) or a chain of such solutions, to
construct more complicated solutions some sort of non-degeneracy condition is required.
Classically, to get a symbolic dynamics of solutions, it is assumed that there is a
transversal intersection of stable and unstable manifolds for an appropriate Ponagaat
a heteroclinic point. For variational constructions, milder conditions are generally required.

To formulate such a condition for the current setting, suppose firsvtkatV (¢). Then
M consists of points at whick achieves its maximum dR". Thusv = v(0) forv e M
andQ of Theorem 1.1 is heteroclinic to a pair of equilibrium points of (HS). Let

S={q0) | geTandJ(q) = c}. (2.2)
WhenV is autonomous, i € I', so is

T9q (1) = q(t —0)
forall @ € R. HenceS > ¢(R) and in particulan, w € S. Simple examples when= 1
show no more complicated connecting orbits can be expected for this time independent
case.
More generally, whev depends om andsS is defined by (2.2)g € ' impliestyg € T
for k € Z. Hencev(0) andw(0) belong toS. The behavior ofS will be studied more
closely.

LEMMA 2.3. S is bounded and therefore compact.

Proof. It can be assumed th&t(z, g) < 0 forq € R" andr € R. Letr be small compared
to
max ||z — wlr=o,1)-
zAweM

By Proposition 2.18 ofg], there is anx(r) > 0 such that ifp € W20, 1] and
||g0 — Z||Loo[0’1] >rforallz e M,i.e. ||(p — M”[‘oo[(),l] > r, then
I1i(p) = c1+ a(r). (2.4)

Letg € I' with J(¢) = ¢ and{ be the number of intervaly, p — 1] (with p € Z) on
which ||q — M”L”o[p—l,p] >r. Then by (24),

La(r) <c. (2.5)
This provides an upper bound énFor anyg € I" ands > o,

s N 1/2
g(s) — q(0)] < f lg' ()] dt < (s — 0)1/2</ |q’(t)|2dr> : (2.6)
Hence,ifs,o € [p — 1, plandJ(q) = c,
lg(s) — q(0)] < (ap(g) + c)Y? < (c + c) V2 2.7)
Now (2.5) and (2.7) yield al.**(R, R") bound forg and the lemma follows. |
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Let
K =1{(q0).4'(0)) | g €T andJ(gq) = c}.

Let P denote the projector df to S, i.e. P(¢(0), ¢’(0)) = ¢(0).
LEMMA 2.8. P is a homeomorphism ¢f to S (andK to S).

Proof. It suffices to proveP is one-to-one. Suppose to the contrary that there existg
with p(0) = ¢(0). Note that bottp andg are asymptotic tw ast — —oo but may have
different asymptotes as— oo. SinceJ (p) = J(q) = ¢,

D ailp) =) ai(g) (2.9)

i<0 i<0

since otherwise, say,

> ai(p) < ) _ai(q). (2.10)

i<0 i<0

Then

Y ai(p) >y ailg) (2.11)

i>0 i>0

and gluingp|900 to ¢|g° produces a new function € I with J(z) < ¢, contrary to
the definition ofc. Therefore there is equality in (2.9) and in (2.11). Hence, witis
just defined,J(z) = c¢. The arguments of9] then imply thatz is a solution of (HS).
But z coincides withp and withg on open intervals. Thus = p = ¢ andP is a
homeomorphismoK to S.

To complete the proof, it suffices to show tHat X consists of(v(0), v'(0)) together
with (w(0), w’(0)) for all w € M\ {v} for which there is &0 e I" havingQ(c0) = w and
J(Q) = c. Indeed, if(a, b) € K\K and is not in this latter set,

@.b) = lm (gn(0).q;,0)

with g, in T and J (g,,) = ¢. The form of I implies (¢,,) is bounded inWlﬁ’Cz(R, R™).
By Lemma 2.3,(g,,) is bounded inL*° (R, R") and (HS) then impliegq,,) is bounded
in C2(R, R™). Hence, along a subsequengg,) converges weakly irWl(l)’c2 and strongly
inLg.tog € Wécz with ¢ a solution of (HS) and/(¢) < ¢. Standard arguments show
thatg is part of a heteroclinig-chain of solutions of (HS) joining andw. But then the

definition ofc impliesj = 1,¢q € T andJ(g) = c. Hence(a, b) = (¢(0),¢'(0)) e K. O

Let w(0) € S for somew e M\{v} and letC denote the component & containing
w(0). The next ‘all or nothing’ lemma describes the possibilitiesfor

LEMMA 2.12. Either:

@i wv@ecCor

(i) C = {w()}.

Proof. OtherwiseC is a subcontinuum of containingw(0) and not meeting(0). For
eachg € S andk € N, set fy(¢(0)) = g(—k). By Lemma 2.8,f;: S — S is continuous
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and by Lemma 2.37 is compact. Hencg; (C) is compact, connected, and0) € f;(C).
Consequently, by the definition 6f

k(@) CC (2.13)
for all k € N. But for eachy (0) € S, g(—k) — v(0) ask — oo, contrary to (2.13). O

Remark 2.14 (a) Of course alternative (i) occurs in the autonomous case.

(b) The combined ‘curve shortening’ argument of Lemma 2.8 and dynamical system
argument of Lemma 2.12 can be applied in other variational settings where minimization
is used such adlf)]. Whether Lemma 2.12 is true for other variational non-minimization
settings is an interesting open question.

Remark 2.15Supposes # w € M and there is & € I'(v, w) which is a solution of
(HS) heteroclinic tay andw satisfyingJ (Q) = ¢(v, w). Thus

S, w)={g0) eR" | g e "'(w,w) andJ(g) = c(v, w)} # .

Let C, andC,, denote the components 8{v, w) containingv(0) andw(0) respectively.
Then the arguments of Lemmas 2.8 and 2.12 show that either there is a subcontinuum of
S(v, w) containingC, andC,, or C, = {v(0)} andC,, = {w(0)}.

Remark 2.16If v, w1, wo are distinct elements o¥1, the argument of Lemma 2.8 shows
S, w1) NS, wr) = <.

3. The generalization of Maxwell’s result

Letv # w € M andletQ1, ..., O, be a minimal heteroclinic chain of solutions of (HS)
joining v andw as obtained by Maxwell and described in the introduction. Again, set
vo=v,v = Qij(c0),1<i <¢-—1,andv, = w.

THEOREM3.1. Let (W1), (f1), (f2), (V1) and (M) be satisfied and le¢«x) hold. Let
v # w € M. Then(HS) has infinitely many heteroclinic solutions fromto w
characterized by the amount of time they spend ngat <i < ¢ — 1.

Remark 3.2.Note that if ) does not hold, (HS) has a continuum of solutions joining
tov; for somei, 1 < i < ¢. This does not provide more information than is already known
for the autonomous case, but it is significant wiedepends explicitly on.

Theorem 3.1 follows from a more precise result that will be formulated next. Let
0 < p < r < 1 withr small compared to 1 angdsmall compared te, andp, r otherwise
free for now. LetO;1, Oi2 C R" be neighborhoods o#;_1(0), v;(0) respectively,
1 <i < ¢, with the diameter 00; 1, O; 2 < p and such thatfor ¥ i < ¢andj =1, 2,

00; ;NS = o, (3.3)

whereS; = S(vi_1, v;) as in 82. The existence @?; 1 and O; » follows from (x). Let
me 7% withm i1 >mj, 1< j <2¢— 1. Define

X = (g € We2(R,R") | g(—00) = vo, g(max—1) € Ok 1,
q(ma) € O 2,1 <k < £, andg(c0) = vy}.
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ThusX,, consists of curves of the type sought as heteroclinic solutions of (HS). Adapting
an idea from 8], a constrained minimization problem will be used to find these solutions.
Set

by = Inf J(q). (3.4)
qe€Xm

Remark 3.5.Forj € Z andj* = (j, ..., j) € Z%,
b = b—j=, (3.6)
i.e. itis only the difference in the;’s that is significant.
Theorem 3.1 now follows from the following.
THEOREM3.7. For m; 1 — m; sufficiently largel < i < 2¢ — 1, there is aQ,, € X,

such that/(Q,,) = b,,. Moreover,Q,, is a solution of HS) heteroclinic fromw to w and

|Qm(t)_v(t)| §r7 te(_ooaml]a
Q@) — v <7, t €lmzj,mpj1], 1< j<L—1, (3.8)
1Qm (@) —w@®)| <r, € [myy,00).

The proof of Theorem 3.7 requires several preliminaries.

LEMMA 3.9. Let Q; be a neighborhood of; (0) of diameter< r, 0 < i < ¢. Then for
eachs e Q;, there is a functiory; (¢, 1) continuous for € [0, 1] and a positive constant
a independent of, &, andi such thaiyp; (¢, 0) = &, ¢; (£, 1) = v;(1), and

1
/ L(g;)dt —c1 < ar. (3.10)
0

Proof. Take
pi6, ) =vi(t) + (E —vi(0)A—1).

Theng; satisfies the boundary conditions and (3.10) follows from

1 1
/0 L(gi)dt —c1 =& — v; (0 —/0 V(t, @i) =V, vi))dr. o

Remark 3.11Similarly, for eaché e ;, there is a continuoug; (£, r) and a positive
constant which can also be taken (independentlytof,i) such thaty,;(£,0) =
v; (0), ¥; (€, 1) = &, and (3.10) holds witlp; replaced byy;.

To continue, assumeis small compared t®, where

D= inf , 3.12
A c(u, z) (3.12)

andp satisfies
2ap < a(r) (3.13)

with ¢ as in (2.4) and as in (3.10) and Remark 3.11.
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Remark 3.14(i) If (¢¢) is a minimizing sequence for (3.4), it can be assumed that

mq

> ailqr) < ap. (3.15)

Indeed if (3.15) holds fog, setgx = gx; if not, replacegx|™, by the curvegy € X,,
obtained by gluingvoﬂ%xjl to Yolgx(ma), t)|(1) to q’f|3f1 and (3.15) holds for this new
function. MoreoverJ (g;) < J(gx) so the sequena@y) is also minimizing for (3.4).

(i) It can also be assumed that

llgx — UO”LOO[foo,ml] =r. (316)

Otherwise, if
lgx — MllL=pi—1,iq > r

holds for some € Z,i < m1, asin (2.4),
ai(qx) = a(r). (3.17)
But (3.15) and (3.17) are contrary to (3.13). Hence

lgx = Mllpepi—1,iy <r (3.18)
forall i € Z. By the choice of andp, (3.16) follows.
(iii) Similarly,
lgx — vellLoopmag,00) < 7 (3.19)
and
o
Z ai(qr) < ap. (3.20)
mag+1
(iv) As in (i) of this remark,
maj+1
> ailqr) < 2ap (3.21)
maj+1
and as in (ii), this implies
lgx — Vj ||LO°[m2j,mzj+1] =r. (3.22)

(v) The estimates (3.16), (3.19) and (3.22) are valid independently of the choice of
provided thatn; 11 > m; + 1,i =1, 2.

ProOPOSITION3.23. There exists:Q,, € X,, such that/(Q,,) = b,,. Moreover, (3.8)
holds forQ,,.

Proof. Let (gx) be a minimizing sequence for (3.4). The formjoimplies(gx) is bounded

in Wkl;CZ(R, R™) and thereforey; converges along a subsequence both weakwlhf and

strongly inL{¥. 10 Q,, € Wé’cz. Asin [9)],
J(Qm) < b (3.24)
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By (3.15) and (3.16),

my
> ai(Qm) < ap (3.25)
—o0
and
19Qm — voll(—co,mq) <7 (3.26)

As in [9], (3.25) and (3.26) imphD,, (—c0) = vg.
Similarly, @, (c0) = v1 via (3.19) and (3.20). These facts and fij§. convergence of
(qx) imply Q@ € X,n. Hence by (3.24)] (Qm) = by O

Remark 3.27As in [9], Q,, satisfies (HS) except possibly at the components:of
Furthermore, (HS) is satisfied at; unlessQ,,(m2i_1) € 30;1 or Q,,(m2) € 30;2,

1 < i < ¢£. Thus it remains to show th&,, at the constraint points is interior to the
appropriate set); ;. This is where the fact that; .1 — m; is large is required.

PROPOSITION3.28. Lete > 0. Then formy; — mo; 1 sufficiently largel <i < ¢,

14
by < ZC(UFL vi) + € = c(vo, vo) + €. (3.29)
i=1

Proof. It suffices to produce a* € X,, such that
J(g™) < c(vo, ve) + €. (3.30)

The functiong* will be obtained by appropriately modifying the chai@s, ..., Q¢}.
Recall thatQ; € T'(v;_1,v;) is a solution of (HS) heteroclinic froms;_1 to v; with
J(Q;)) = c(vi—1,v;), 1 < i < £. The minimizerQ; is not unique inl"(v;_1, v;). In
particular, for eaclt € Z, 1, Q; € I'(vi—1, v;) andJ (1 Q;) = J(Q;). Forx € R", let
B, (x) denote the open ball abaubf radiuso. Leto > 0 be such thaB,, (vo(0)) C O1.1,
B, (v¢(0)) C Op2, B5(vi(0) C 0;2NOi111,1<i <¢—1,and

20+ 2)0 < e. (3.31)

Givenmy, from{t; Q1 | k € Z}, choosék; so thatr, Q1(7) € B, (vo(t)) forall t < mq
andt, Q1(t) € By (vo(t)) for somer € (mq, m1 + 1]. Sincety, Q1(c0) = v, for large
t, Tk, Q1(t) € By (v1(t)). Chooseny so thatry, Q1(f) € By (va(t)) fort > mq — 1. Let
m3 > mp + 2. As above, choosk, € Z so thatr, Q2(f) € By (v1(1)) fort < m3
and 7y, 02(t) ¢ By (v1(2)) for somet € (m3, m3 + 1]. Since t, Q2(c0) = vp, for
large t, T, 02(t) € By (v2(t)). Choosems so large thatr, Q2(1) € Bo(v2(t)) for
t > mgq — 1. Then chooseis > m4 + 2. Continuing in this fashion determinks . .., k¢
andmy, ..., mp. Now define the functiog* as follows. Glue

-1 -
7, 01" " 10 @1(t, Q1(ma — 1)), )5 to vy[p3t

o Y1(t,Q2(m3). )5 0 1,02t to ...,
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whereQ21 = B, (v1(0)), etc. in Lemma 3.9. Then by Lemma 3.9, Remark 3.11, and (3.31),

4
J(g") < Z c(Vi—1, Vi) + 2lac < c(vg, v¢) + € (3.32)
1

as claimed. O

PROPOSITION3.33. SupposeQ,, (mzi—1) € 901 or Q,(mp) € 90; 2 for somei,
1 <i < . Then formp,11 — ma, sufficiently largel < p < ¢ —1, thereisad > 0
(independently of larger,+1 — m2p) such that

J(Qm) = c(vo, ve) +d. (3.34)
Assume Proposition 3.33 for the moment.
Completion of the proof of Theorem 3.Ih Proposition 3.28, choose
€ <d/2 (3.35)
Then by (3.29), (3.34) and (3.35),
c(vo, v¢) +d < by, < c(vo, vg) +d/2, (3.36)

a contradiction. Henc&,,(mgi—1) € 0O;1 and Q,,(mp) € O;2, 1 < i < ¢ and
Theorem 3.1 is proved. |

Proof of Proposition 3.33An auxiliary variational problem will be introduced. For
1<i <¢,define

Ai1, vi) = (g € Wg2(R,R") | g(—00) = vi_1,
q(00) = v; andg(0) € 3(0;,1 U O;2)}.

Define

(-, v) = inf J(g).
qEN(Vi-1,vi)

It is straightforward, via arguments frorf][ to show that there is & € A(v;_1, v;) such
thatJ(P;) = ¢*(v;_1, v;). Moreover,

c*(vi—1, vi) > c(vi—1, vy). (3.37)

Indeed, if there were equality in (3.37), as if],[ P, would be a solution of (HS)
heteroclinic tov;_1 andv; and

P;i(0) € 3(0;,1 U O; 2). (3.38)

But by the choices of the set¥ ;, (3.38) is incompatiable witl®; being a solution of (HS)
heteroclinic tov;_1 andv;. Therefore

2d = infec*(v,',l, v;) —c(vi_1, v;) > 0. (3.39)

1<i<

By hypothesisQ,, (m2i_1) € 00; 1 0r Q,,(m2;) € 30; 2 for some. The arguments are
slightly different depending on whethee= 1 or¢ (the simpler cases) or i, £. Choosing
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the more difficult case, suppose thatl < ¢ — 1 and, for exampleQ,, (m2i_1) € 90; 1.
By Remark 3.5, it can be assumed that_1 = 0. By (3.21),

moji_1 moi+1
Z ai (Qm), Z a;i(Qm) < 261;0. (340)
Ing;_g-‘,-l m2i+1

Let y be small compared tp. Then for the differencesiz;1 — mo; sufficiently
large, 1< j < ¢ — 1, there is at least ong_1 € [mg;—2 + 1, mp—1 — 1] N Z and
si € [moi + 1, mpi+1 — 1] N Z such that

as(Qm) + as+l(Qm) =V (3-41)

with s = s;_1 ands;. By the proof of Proposition 2.18 o8], this implies

1Qm — Vgl Loos,s+2) < n(y) (3.42)

with s = s;_1, s;, andn(y) — 0asy — 0.
Define a functior@ as follows:

Q) =vi-1(t), t=<si-1
=0 —-5-1)QmGi-1+D+ Gica+1-0v;-1(0), si1<t<s-1+1
=), si-a+1l=<t=<s
=@ —s)vi(0) + (i +1—=0)Qu(si), si<t=<s+1
=v; (), t>s+1 (3.43)

ThenQ € A(v;_1, v;) SO

si+1
JQ = ) aj(Q = cvi-1,v)+2d. (3.44)

S,'_j_-‘rl

Now define a functiorP as follows:

P(t) = Qu(), t=<si1

=@ —s5i_ DV 10+ i1 +1—1)Qm(sic1), si1<t<si_1+1

=t —si-1— D1 Qi(si—1+2) + (si-1+2—1)v;-1(0),
Sici+1<t<si1+2

=1, Qi(t), si-1+2=<1t=<s;

=@ —s)vi(Q+ (i +1-01,Qi(si +1), s <t=<s+1

=(t—s5i—DOnGsi+2+ i +2—0v;(0), si+1<t<s5+2

=On(®), t=s+2 (3.45)

ThenP € X,, and

si+2
J@Qm) = J(P)= ) (a;(Qu) —a;(P)). (3.46)

S,'_j_-‘rl
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By (3.43), (3.44) and Lemma 3.9,
si+2 N

Do ai@w) = D aj(Qn) = J(Q) — a5 4+1(D) — a5 41(Q)
si—1+1 si—1+2
> c(vi—1, Vi) +2d — 2an(y), (3.47)
while by (3.41) and the argument of Lemma 3.9,
s5i+2 i
Y aj(P) Sag 1 11(P) +ag 112(P)+ Y aj(t,Q) + a5 +1(P) + a5, 12(P)
si—1+1 si—1+3
< c(vi-1,v;) + 2an(y) + 2a0. (3.48)
Combining (3.46)—(3.48) yields
J(Qm) — J(P) = 2d — dan(y) — 2ao0. (3.49)
By (3.31) and (3.35), this becomes
J(Qm) — J(P) = 3d — 4an(y). (3.50)
Choosingy so small that
8an(y) <d (3.51)
then shows
J(Qm) —J(P) =d, (3.52)
contrary to the minimality ofQ,, in X,,. Thus Proposition 3.33 and Theorem 3.1 are
proved. |

Remark 3.53Now that the proof of Theorem 3.1 has been completed, a more precise
statement about the lower bounds need for the differences- m;_; can be made.
Namely,mpi+1 — mp;, 1 < i < £ — 1, depends od via (3.51) andd depends orf in

its definition. The remaining differences; —my;_1, 1 <i < £, depend or (see (3.31))
ande depends ow via (3.35).

Remark 3.54.The proof of Proposition 3.33 shows thawip; 11 —mp — 00,1 <i < £—

1, Q,, approaches a chai@1, ..., O} with Q; € T'(vi_1, vi), andJ (Q;) = c(vi_1, v})
SO Qi is a solution of (HS) heteroclinic to;,_1 andv;. The functionQ,- may not equal
7,Q; for somep e Z unless there is a unique minimizer #fin I'(v;_1, v;) (Mmodulo
7,). In any event, for alln; 1 — m; sufficiently large,Q,, shadows a heteroclinic chain of
solutions of (HS).

Remark 3.55.9,, is a minimal solution of (HS) in the following sense. Forany ¢ € R,
consider the set of in X,, such thatg(s) = Q,(s) andg(t) = Q, (). ThenQ,,
minimizes

t
/ L(g)dt (3.56)

over this class. Indeed, otherwi@wﬂ could be replaced by the minimizer of (3.56)
producing@ € X,, such thatl(@) < by, contrary to the definition af,,.
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4. Some generalizations

In this section, some generalizations will be given of Theorem 3.1. In particular, the
analogues of Theorem 3.1 when minimal heteroclinic chains are glued together will be
proved. An important special case is that of an augmented chain. Finally, infinite chains
will be studied. In all cases, the ideas that go into the proof of Theorem 3.1 play a major

role.
To begin, suppose # v andv # w belong toM. By Maxwell’s result, there exist
minimal heteroclinic chains of solutiof®s, ..., P} and{Q1, ..., Q.} of (HS) with the

P chain joiningu andv and theQ chain joiningv andw. Under the further assumption that
(x) is satisfied by the:, v andv, w problems, Theorem 3.1 provides actual heteroclinics
from u to v and fromv to w. What about heteroclinics from to w? Then there are
infinitely many such solutions of (HS). Indeed, IRt = (P1,..., Pr, Q1,...,Qp) =
(R1, ..., Rrye), the chain obtained by concatenating theand Q chains, and letg =
Ri(—00), zi = Ri(00), 1 <i < k + ¢. LetO; ; be the neighborhoods af_1(0), z;(0)

as in 82 andn € Z2k+0 ., DefineX,, as earlier and likewisé,,. Then under the above
hypotheses on the andQ chains, we have the following.

THEOREMA4.1. If m;11 —m; is sufficiently largel < i < 2(¢ + k) — 1, there is a solution
R, of (HS) heteroclinic fromu to w with J(R,,) = b, and

R (t) —zo(t)| <r, te(—o0,m]
[Rn() —zi(®)| <r, telmy,mpy], 1<i<2(+k -1 (4.2)

[Rin(t) — zkye @] <1, t € [mapqte), 00).

Proof. The chainR may not be a minimal heteroclinic chain. However, the only role
minimality played in the proof of Theorem 3.1 was via Lemma 2.12 and the construction
of the setg); ;. Here these sets are provided by the minimality of#h&nd Q chains. An
examination of the proof of Theorem 3.1 now shows that if (3.31), (3.35), (3.39) and (3.51)
hold with ¢ replaced by + k, the proof carries over unchanged for the current settiig.

What was just done for two paits v andv, w of course extends to any finite number
of such pairs. Observe that{i®1, ..., Q,} is a minimal heteroclinic chain in the sense of
81, so is any subchaifQ;, Qi+1, ..., Q;} of it. Since an augmented chain as defined in
81 is just obtained by gluing together a finite number of such minimal chains formed from
{01, ..., O¢} and{Q1(—1), ..., Q¢(—1)}, an immediate consequence of Theorem 4.1 is
the following.

COROLLARY 4.3. Under the hypotheses of Theorem 4.1, for any augmented chain
{ug,...,u;} constructed from{Qs,..., Q¢} and {Q1(?),..., Qe(—1)}, there exist
infinitely many solutions of (HS) heteroclinicii@(—oo) andu ; (co) and characterized by

the amount of time they spend near the intermediate periodic statss), . .., u;_1(00).

Our final topic is the question of infinite chains. Observe that if several minimal
heteroclinic chains are glued together and&/ifs the total number of heteroclinics in the
chains, the restrictions anandy needed to apply the argument of Theorem 3.1 become

(2N 4+ 2)aoc <€ <d/2, (4.4
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where

2d = lLT}LnN(C*(uifl(OO), u;i (00)) — c(ui—1(00), u;(00))) (4.5)

(with ug(o0) = u1(—00)) and
8an(y) <d. (4.6)

Thus asN — o0, 0 — 0, andmy; — mp;_1 — oo. Moreover,asN — oo,d — 0Ois
a possibility and if soy — 0 andmy;+1 — mp; — 0. Consequently some care must be
taken in dealing with infinite chains.

The case of an infinite augmented chain is simpler to study so it will be treated first. As
earlier, letQ™ = {Q1, ..., O¢} be a minimal heteroclinic chain of solutions of (HS) with
01(—00) = vgandQ;(c0) = v;, 1 < i < £. Assume £) holds for this setting so we have
neighborhoods); ;, as in §3 with dian®; ; < p. By Theorem 3.1 there is an, > 0,
my = my(p) such that ifm € Z2¢ with m; 41 — m; > m,, (HS) has a solutio®,, in X,,
with J(Q,,) = b,. Now letU = {u; | j € Z} be an augmented chain constructed from
the QT chain and its time reversal chai,~. Associated with each; are its periodic
asymptotic states; (o0) € {vo, ..., ve} and corresponding®; 1 € {Or1 | i < k < £},
Qi2e{Ok2| 1<k =<t}.LetM = (M;j)jcz € Z*° with M; 1 — M; > m,. Define

Xy = {q € WglRR") | ¢(Mai—1) € i1, 4 (M2i) € Qi2.i € Z).
Then we have the following.

THEOREMA4.7. Under the above hypotheses, there is a solutiofH8), Qy € Xy with

19Oy — ui (00l Lopmg,mppr] 7> I € Z. (4.8)

Proof. Letm(j) = (M_3¢j—1),..., M2j) € Z%. By Corollary 4.3, there is a solution of
(HS),Qm(j) € Xm(jy suchthat/ (Q,,(;)) = bu(j) provided thai; 1 —M; is large enough,
—(2j—1) <i < 2j—1. Thusit must be verified that, is an appropriate lower bound for

the differenced/;,1 — M;, independently of. Observe that in (4.5), althougt may be
large, only¢ different terms occur on the right-hand side for an augmented chain. Hence
hered andy in (4.6) can be chosen independentlyjadind My; 1 — M2; > m, suffices.

To show that this is also the case fdp; — M2;_1, an improvement of Proposition 3.28 is
needed for an augmented chain. Namely, it will be shown thatfor m. (¢) sufficiently

large and an augmented cha&n= {R1, ..., Ry} constructed fronp* andQ~,

N
bm < ) ¢(Ri—1(00), Ri(00)). (4.9)
1

To display the idea behind (4.9) in its simplest setting, which comes f8ynsiippose
that we are dealing with the chaiB1(z), Q1(—t) from vg to vg via v1. Then a suitable
choice ofg™* in Proposition 3.28 i@ﬂ’ioo gluedtoits reversal, i.e21(—1)|*,, wherek is
sufficiently large. Then

J(q*) < 2c(vo, v1) (4.10)
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yielding (4.9) for this simple case. For further reference, note that the left-hand side of
(4.10) is less thandvo, v1) by

2y ai(Qu). (4.12)
k

More generally, a finite augmented heteroclinic chis obtained by gluing a subchain
H; of Q% to a subchainH, of QF, etc. SayR = {Ha,..., Hy}. For definiteness
supposeH; is a QT subchain with its last heteroclinic piece beigg. Then the first
piece of Hz is Q;(—t). Similar pairs of time reversed orbits form the junctures between
all H,, H,41 subchains. Thus to constructgad approximatingR, as in (4.10), the
approximation ofQ; (), Q; (—t) will be a piece ofQ; : Q;|* glued toQ; (—1)[X. Suppose
Hy = {Qi—g,..., Qi}. Choosingg* exactly as in Proposition 3.28 to approximate
Qi-g,...,Qi—1, and usingQ; |¥ for Q;, (3.32) and (4.11) shows that the contribution
of ¢* corresponding td; does not exceed

i 00
D Q51,00 +2B0 — Y ag(Q)). (4.12)
s=i—p+1 k
Sincep < ¢, if o is small enough (and thereforey; — mo;_1 large enough), the number
in (4.12)is< 0.

The same analysis applied to the other subchairsthien yields (4.9). Consequently
for m,. sufficiently large, for each choice gf there is a solutior®,,;, of (HS) in X,,,;).
Observe that (4.2) providds™[Mp;, M2; 1] bounds forQ,,(;), and arguing as in the proof
of Lemma 2.3 gives bounds f@,, ;) in L°[Mo;_1, M2;]. SinceQ,,(;) is a solution of
(HS), the equations then yield bounds @) in C2. Standard arguments then imply
Qum(j) converges along a subsequence}n which is a solution of (HS) inX,; which
satisfies (4.8). |

Remark 4.13.The solution,Q,,, of (HS) is minimal in the sense of Remark 3.55 by the
same argument.

For the final application of this section, consider a sequéngg.z with z; € M and
zi+1 # zi- As earlier, each successive pairz;+1 can be joined by a minimal heteroclinic
chainH; = {h; 1, ..., hi¢}. As earlier, in trying to find a solution of (HS) which spends
at least a prescribed amount of time near egctas well as the intermediate periodics
hi j(00)), one encounters the potential difficulties that were mentioned following (4.4)—
(4.6). In particular, for the approximation argument of the proof of Theoremi4=d ()
may tend to 0 ag — oo and even if this is not the case,= o (j) may goto 0 ag — oo.
The first difficulty disappears ifs; ; | i € Z,1 < j < ¢;} merely consists of a finite
set of basic heteroclinics together with their translates ki.e> h + k, k € Z"). Then
d(j) = do > 0, independently of but the second difficulty remains.

It is possible to bypass the problemafj) — 0 asj — oo, but only at a price. To be
more explicit, first note that a direct consequence of Maxwell’'s reslis[that there are
a finite number of basic heteroclinics that together with their translates and time reversals
can be used to generate a heteroclinic chain between any paiw € M. Of course
this chain may not be a minimal one. LBtdenote this set of basic heteroclinics, their

https://doi.org/10.1017/50143385700000985 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700000985

Connecting orbits for a reversible Hamiltonian system 1783

translates and time reversals. Assume as usualthio{ds for this family. Now given
(zi)iez, C M with z; 41 # z;, leth; denote a heteroclinic chain frogp_1 to z; consisting

of numbers of3 and letH be the infinite chairih;);c7. H can also be written a@i) 7,
whereu; € B. Approximating this chain as in the proof of Theorem 4.7, by the remarks
of the previous paragrapHl(;j) > do > 0 independently of. Now the constructions of
Theorems 4.7 and 3.1 will be modified so thatifs> oo, m;+1—m; — oco. In particular,
letm(j) be as in the proof of Theorem 4.7. Suppose at gtdpe construction of *(j) in
Proposition 3.28 result in the estimate

j
2al0(j) < <22P)e. (4.14)
1

This is certainly true forj = 1. To apply Theorem 3.1 at step+ 1, suppose that
M_@jt1) < M_2; < M_2j_1yandMp;_1 < Ma; < M>;1. Replace the ball8, (v; (0))
by balls B,,,, (vi(0)), i = —(j + 1), j + 1. Modifying ¢*(j) by gluing on pieces of
Tk_(jpqU—j+1 @ndrg,  uj11 to construcy*(j + 1), gives an additional contribution to the
right-hand side of (4.14) of the formu2 ;1. Thus fore; 1 sufficiently small (which can
be achieved by takingf; 11 — M; sufficiently large; = —(2j + 1), —2j, 2j — 1, 2j), the
analogue of (4.14) foj + 1 holds.

With this modification, the sequencg,,;, of heteroclinics of Theorem 4.7 can be
constructed and as earlier this leads to a solution of (HS) satisfying (4.8). Stating what has
been shown somewhat informally, we have the following.

THEOREM4.15. Let (z;);ez, € M with z;41 # z;. If (x) holds, there is a sequence
(¥1)ien With y; — o0 asi — oo such that wheneveM e Z*° with M1 — M; > y;,
there is a solution@ »4, of (HS) satisfying

[OQm() —zi(®)] <r, te€[My, Moy, i €Z. (4.16)
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