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Abstract. We define and study new invariants called pre-image entropies which are
similar to the standard notions of topological and measure-theoretic entropies. These new
invariants are only non-zero for non-invertible maps, and they give a quantitative
measurement of how far a given map is from being invertible. We obtain analogs of many
known results for topological and measure-theoretic entropies. In particular, we obtain
product rules, power rules, analogs of the Shannon-Breiman—-McMillan theorem, and a
variational principle.

1. Introduction

The notions of entropy are fundamental to our current understanding of dynamical systems.
The two main notions are, of course, the topological entropy and the measure-theoretic
(or metric) entropy. The former measures the maximal exponential growth rate of orbits
for an arbitrary topological dynamical system, and the latter measures the maximal loss
of information of the iteration of finite partitions in a measure-preserving transformation.
It is well-known that these two invariants are related by the so-called variational principle
which states that the topological entropy is the supremum of the metric entropies for all
invariant probability measures of a given topological dynamical system. There are many
useful properties shared by these two invariants. Using the word ‘entropy’ to denote either
of these concepts, we have:

1. entropy is an invariant in the appropriate category: topologically conjugate systems
have the same topological entropy and measure-theoretically conjugate systems have
the same metric entropy;

the entropy of a direct product is the sum of the entropies of the factors;

the entropy of f” equals n times the entropy of f;

if g is a factor of f, then the entropy of g is no larger than the entropy of f;

entropy is preserved under the passage to natural extensions.

Nk e
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The last property above shows a weakness of both of these invariants. Namely, they provide
no information for non-invertible systems which cannot be gleaned from their associated
(invertible) natural extensions.

In several recent papers [3, 4, 6-8] some new topological invariants of dynamical
systems have been defined and studied which only give non-trivial information when
the associated systems are non-invertible. In a certain sense, these new invariants give
a quantitative estimate of how ‘non-invertible’ a system is. For simplicity, if we have
a numerical quantity h(f) defined for dynamical systems which is preserved under
topological conjugacy and which is zero on invertible systems, we call the quantity a
non-invertible invariant.

Let us be more precise and recall some non-invertible invariants defined by Hurley.

Let f : X — X be a continuous self-map of the compact metric space (X, d).
Letn > 0 be a positive integer. Define the d 7, metric on X by

dfn(x,y) = max d(f'x, f'y).
0<j<n

A set E is an (n, €)-separated set if, for any x # y in E, one has dy,(x, y) > €.

Given a subset K C X, we define the quantity r(n, €, K) to be the maximal cardinality
of (n, €)-separated subsets of K. Uniform continuity of f/ for 0 < j < n guarantees
that r(n, €, K) is finite for each n, ¢ > 0. Following Hurley [4], we define the quantities

hp(f), hm(f) by

1
hp(f) = sup lim limsup —logr(n, €, f™"x),

xex €20 n—oo

1
hm (f) = lim limsup — log sup r(n, €, f~"x).
€>0 pso0 N xeXx

Of course, the topological entropy, Ap( f) is given by

1
hiop(f) = eli_r}%)lim sup — logr(n, €, X).

n—oo N

It is evident that, in general, one has the inequalities

hp(f) < hm(f) < hiop(f).

In [8], it is proved that for « = p or « = m, and any positive integer kK we have

ha (f%) = kha (f), M
ho(f x g) < ha(f) + ha(g) (2)

and
the quantity hy (f) is preserved under topological conjugacy. 3)

Note that if f is invertible, then r(n, e, f~"x) = 1 for all x, n, € so that h,(f) =
hm(f) = 0. Thus, k), and h,, are non-invertible invariants.

It is not known if the inequality in (2) can be strict. In a recent paper of Fiebig et al [3],
it is proved that i, = h;, = hyop for forward expansive maps (in particular for subshifts
on finitely many symbols), and examples are constructed in which h,(f) < hu(f).
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It follows from work of Langevin and Przytycki [6] and Nitecki and Przytycki [8] that
hm = hiop for holomorphic endomorphisms of the Riemann sphere and for continuous
endomorphisms of a real interval. Using the sub-additivity of the product above (2), one
sees that if T = f x g with f an arbitrary endomorphism and g an automorphism with
positive topological entropy, then, i, (T) < hyop(T).

We started this research by considering whether there is a variational principle for 4, (f)
or hy, (f). This is still unknown. However, we discovered that one can define a new non-
invertible invariant hpee (f) which is between h,, (f) and hyp(f) for which a variational
principle does indeed hold. This required a new kind of metric entropy to be defined which
takes into account the past behavior of f. The appropriate quantity is simply the metric
entropy of f conditioned on the infinite past o-algebra (), f~"B where B is the Borel
o-algebra. We call this the metric pre-image entropy and denote it by hpre ., (f) where
u is a Borel invariant probability measure for f. If one maximizes this quantity over all
invariant measures, it is clear that one gets a topological invariant, but it was surprising to
us that this can be defined in terms of our quantity Ay (f). In addition to this variational
principle, we will show that the quantities Zpre(f) and Apre . (f) also satisfy power and
product rules analogous to the standard topological and metric entropy quantities, that
the map i — hpre ;, (f) is affine, and that there is an analog of the Shannon—Breiman—
McMillan theorem for the metric pre-image entropy.

2. Statement of results
Given f : X — X as above, ¢ > 0 and n € N, let us define

1
hpre(f) = lim limsup —log sup r(n, e, f_kx). 4
€-0 nsoo N xeX,k>n
It is clear that h,(f) < hpe(f) =< hwp(f), and that hpe(f) = 0if f is a
homeomorphism.
Our first results are the following.

THEOREM 2.1. Let f : X — X and g : Y — Y be continuous self-maps of the compact
metric spaces X, Y, respectively.
Then:

the pre-image entropy hpee () is independent of the choice of metric on X;

(power rule) for any positive integer T, we have hpre(ff) =T hpe(f);

(product rule) hpre (f X &) = hpre(f) + hpre(g);
(topological invariance) if f is topologically conjugate to g, then hpre(f) = hpre(g).

b=

Remark. We have already mentioned that, for forward expansive maps, Fiebig ef al showed
that i, (f) = hm(f) = hwp(f). Hence, also for these maps we have hpre(f) = hop(f)
and our pre-image entropy is nothing new. On the other hand, analogous to the case of 4,
above, our product rule implies that if 7 = f x g where f is any endomorphism and g is an
automorphism with Ap(g) > 0, then Apre (T) = hpre (f) + hpre(8) = hpre(f) =< heop(f)
since hpre(g) = 0. But, hiop(T) = hiop(f) + hiop(g) > hwop(f). Thus there are many
natural examples of endomorphisms 7" with Apre (T) < hyop(T).
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Next, we consider the analogous notion of metric pre-image entropy. Let (f, X, B, n)
denote a measure-preserving transformation of the probability space (X, BB, ). That is,
(X, B, ) is a measure space with u(X) = 1, and, X = X; U X3 is a disjoint union of
measurable sets in which X, is a possibly empty, at most countable, set of atoms and
(X1,B | X1, | X1) is isomorphic (mod 0) to a subinterval of the real closed unit
interval with Lebesgue measure and the o -algebra of Lebesgue measurable sets. The map
f X — X issuchthat f~1(E) € Bforeach E € B, and u(f~'(E)) = wu(E) for
each E € B. Following standard terminology, we call ( f, X, B, i) a measure-preserving
transformation. Set B~ = mnzo f7"B. We call B~ the infinite past o-algebra related
to B.

As usual (for example, see Petersen [9]), given a subset A € B, we set u(A | B™) =
E(xa | B™) where x4 denotes the characteristic function of A, and E (v | .A) denotes the
conditional expectation of the function ¥ given the sub-o-algebra A.

For finite partitions o, B, weseta VB ={ANB:Aecwa,B e f}. If0 < j <n,are
positive integers, we let a;? = \/ﬁ:’ fla,and o = agfl.

Define the information function /y |5~ of « given the infinite past o-algebra B~ to be

Iyp-=—)_ log (A | B7)xa.
Aex

Set
Hu(e| B7) = / lojs-dp ==Y log u(A | BI)p(A).

Ae

It is standard (see, for example, [9]) that the quantity H,,(« | B7) is increasing in the
first variable and decreasing in the second variable. That is, if g is a partition which refines
a and A is a sub o -algebra of 57, then,

Hy(e | B7) < Hu(B | A).
Also, H,(f la | f7'B7) = Hy(a | B7).
It follows that the numbers a, = H,(«" | B™) form a subadditive sequence. Indeed,
for positive integers n, m, using f "B~ = B, we have
angm = Hu (@™ | B7)

= Hu((@" v f"a™) | B7)

< Hy(@" | B7)+ Hu(f"a™ | B7)

= Hy(@" | B7)+ H,(f "™ | f7"B7)

=H,(«" | B7)+ Hu(@" | B7)

=a, +ay.

Consequently, there is a well-defined number /(o | B™) given by
1 1
hu(e | B7) = lim —H, (" | B7) = inf —H,(«" | B7).
n—oon n—-oon

We define the metric (or measure-theoretic) pre-image entropy of f with respect to
and B to be

hpre,un (f) = Sgphp.(a | B7).
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It is easy to see that Zipre ;, () is an invariant of measure-theoretic conjugacy. That is, if
(f, X, B, u) and (g, Y, B, v) are measure-preserving transformations, and 7 : X — Y is
a bimeasurable bijection (mod 0) such that gz = 7 f, then hpre , (f) = hpre,v(g). This is
the measure-theoretic analog of statement 4 in Theorem 2.1. Next, we have the measure-
theoretic analog of statements 2 and 3.

THEOREM 2.2. Let (f, X, B, uw) and (g, Y, B', v) be measure-preserving transformations.
Then:
1. (power rule) for any positive integer T, we have

hpre,u(fT) =T - hpre, u ()
2. (product rule)
hpre,uxv(f X &) = hpre, . (f) + hpre,v(g)-

Our next three results are analogs of well-known theorems concerning metric entropy
adapted to the setting of metric pre-image entropy.

THEOREM 2.3. (Affinity of metric pre-image entropy) Let (X, B) be a measurable space,
f + X — X be a measurable transformation, and let . and v be two f-invariant
probability measures so that both (X, B, u) and (X, B, v) are Lebesgue spaces together
with the possible exception of countable sets of atoms. Let q € [0, 1].

Then,

hpre,q,qu(lfq)v(a’ = thre,p.(a’ H+a- Q)hpre,v(a’ ), (5)
and

hpre,q,qu(lfq)v(f) = thre,p.(f) +d- Q)hpre,v(f)~ (6)

THEOREM 2.4. (Shannon-Breiman-McMillan theorem for metric pre-image entropy)
Let (f, X, B, i) be an ergodic measure-preserving transformation of the probability space
(X, B, ), and let o be a finite measurable partition.

Then,

.1 _
lim —Ian‘Bf = hM(Ol | B ), (7)

n—oon

where the convergence is ji-almost everywhere and in L' ().

Remark. The previous theorem actually works if B~ is replaced by any invariant
sub-o-algebra A, ie. f1 A= A

Next, we present the main result of this paper: that the topological and metric pre-image
entropies are related by a variational principle.

We consider measure-preserving transformations (f, X, B, u) in which X is a compact
metric space, f : X — X is continuous, and B is the o-algebra of Borel subsets of X.
As usual in this case we call i an f-invariant Borel probability measure.

THEOREM 2.5. (Variational principle for pre-image entropy) Let f : X — X be a
continuous self-map of the compact metric space X, and let M(f) denote the set of
f-invariant Borel probability measures. Then,

hpre(f) = sup  hpre,u(f)- (3
ueM(f)
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Remarks.
1. Another type of pre-image topological entropy could be defined as

h;re(f) = lim lim sup 1 log sup r(n, e, f*x).
€=0 nsoo N xex k=1
It is clear that hpre(f) < h;re( /), but it is not obvious whether one might have strict
inequality. It turns out that one can follow through the proofs of Theorem 2.5 with
this new quantity and show that it also equals sup,, Apre, . (f). Hence, it makes no
difference whether one uses k > n or k > 1 in the definition of Apre(f).

2. It is obvious from the variational principle that one can compute /Zpe(f) by
restricting to any set which contains the supports of the f-invariant probability
measures. We do not know if this is true for the quantities 4, (f), i (f) of Hurley.

3. It will be clear to experts that many of our methods of proof here are obtained by
making appropriate modifications of many known techniques in ergodic theory and
topological dynamics. However, the proof of the part of the variational principle
which asserts that the pre-image entropy is no larger than the supremum of the metric
pre-image entropies of invariant measures is considerably more delicate than the
standard result for topological entropy.

3. Proof of Theorem 2.1
Before proceeding to the proof, we recall some concepts from entropy theory.

Let f, (X, d), dy, be as above.

Lete > Oandn > 0. A subset F C X is an (n, €, f)-separated subset if whenever
x,y € Fandx # y,we have dy,(x,y) > €. Givena subset K C X, weletr(n,€, K, f)
denote the maximal cardinality of an (n, €, f)-separated subset of K. A subset E C K is
an (n, €, K, f)-spanning set if, forevery x € K, thereisay € E such thatdy,(x, y) <e.
Lets(n, €, K, f) be the minimal cardinality of any (n, €, K, f)-spanning set. It is standard
that for any subset K C X,

s, e, K, f) <r(n, e, K, f) <s (n %,K, f). 9)

Next, using techniques as in Bowen [1], we have the following.
If ny, ny, £ are positive integers such that £ > n, then

ron+mye fK ) <5 (mo 5 SR ) s (2, 5 KL )
<r (nl, % K, f)r(nz, %,f—”"lK, f). (10)

Also, observe thatif m > 0, n > 0, E is an (n, €, f)-separated subset of f’k+mx, and
F C f7™"x is such that f maps F bijectively onto E, then, F is an (m + n, €, f)-
separated subset of f*x. Hence,

r(n,e,f_k+mx,f) < r(m—i—n,e,f_kx,f). (11)

It will be convenient to use the notation

1
hpre(f, €) =limsup —log sup r(n, €, f~¥x, f)
n

n—00 k>n,xeX
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so that

hpre(f) = eli_{nohpre(fa €)= SuI())hpre(fa €).
€>

When the metric d needs to be explicitly mentioned, we write

hore (f, d), hpre (f, €, d), r(n, €, f*x, £, d),

and so on.

Let us prove that /iy (f) is independent of the metric on X.

Let dy,d> be two metrics on X. Then, by compactness of X, for every ¢ > 0
there is a § > O such that, for all x,y € X, if di(x,y) < 4, then do(x,y) < e.
It follows that r(n, €, f*x, f,dy) < r(n,8, f*x, f,dy) for all n, €, k, x. This gives
that hpre(f, €,d2) < hpre(f,8,d1). Letting § — 0 gives hpe(f, €,d2) < hpre(f, d1).
Now, letting € — 0 gives hpre(f, d2) < hpre(f, d1). Interchanging dq and d; then gives the
opposite inequality, proving that hpe (f, d1) = hpre (f, d2).

Now, let us proceed to prove the power rule. Write g = f°.

Assertion 1. For any € > 0 we have hpe(g, €) < T - hpre(f, €).

Letk >nandx € X.
It is clear that

r(n,e, g_kx, g) <r(tn,e, f_th, ).

Hence, we have

1
hpre(g, €) = limsup —log  sup r(n,e,gka,g)

n—oo N k>n,xeX

1
< limsup —log sup r(tn,e,f*”‘x,f)
n—oo N k>n,xeX

. T _
=limsup—1log sup r(tm,€, f Thy, D)
n—oo NT Tk>Tn,xeX

. T _
<limsup—1log sup r(zn,€, f kx,f)
n—oo NT k>Tn,xeX

) 1
=tlimsup—log sup r(tn,e, f_kx,f)
n—oo NT k>Tn,xeX

1
< tlimsup —log sup r(n,e,fﬁkx,f)
n—oo N k>n,xeX

=T- hpre(fa €),
proving Assertion 1.

Assertion 2. Given e > 0,let § > 0 be such that if d(x, y) < 8, thend(f/x, f/y) < €/4
for j € [0, 7). Then,
hpre(g,8) > T - hpre (f, €).

Proof. Letn > 0, k > n. From the definition of §, we have that if £, s are positive integers
such that £ > ts, then

r (ts, Z, =23 f) <r(s,8, %, g). (12)
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Write k = tnp+ 4o with0 < €y < tandn—4¥y = tny+ £ with0 < £; < 7. Let C(j)
denote a constant depending on the positive integer j. From (9), (10), (11) and (12), we
have

roe, [ ) s (0=t 5 S f ) s (6,5, 7 )
= Cs (n— 2.5, f 5. )
— C(to)s (tnl e, % 7k, f)
= Cs (tn 7o f o f)s (00 50 7T )
< C(2)C)r (rnl, Z, ok f)
— C(t2)C(l1)r (rnl, Z, Tty f)
— C(t)C(L))r (rnl, 2, FTOADAT—l f)
< CU)CUDr(ny, 8, f7TD(fT70x), ¢)
= C(2)C(Ly) r(n1, 8, 8~ "V (fT72x), g).

Notethatt(np +1) >k >n=1tn1 + €1 + €2 > tny,sothatny + 1 > nj.
As n — o0, so does n1. Hence, using that (1/n) log(C(£2)C(£1)) — 0 asn — oo, we
get

1
hpre(f, €) = limsup —log sup r(n,e, f~x, f)
n

n—o00 k>n,xeX

1
< limsup—log sup C(éz)C(El)r(nl,(S,gka,g)

n—oo N k>np,xeX

k

=limsup— log sup r(ni, 8,8 "x,8)

n—soo TNl +L1+ 4> k>ny,xeX
1 1
= —limsup —log sup r(ni, 8,8 %x, g)

T ny—oo 1] k>np,xeX
1
= ;hpre(gs 3).

Letting € — 0 in Assertion 1, we get hpre(g) < T - hpre(f). Also, letting § — 0 and
then taking € — 0 in Assertion 2, we get hipe(g) > T - hpre(f), completing the proof of
the power rule in Theorem 2.1.

Next, we go to the product rule.

Let (X, d)), (Y, d>) be compact metric spaces with continuous maps f : X — X,
g:Y — Y. Give X x Y the metric

d((x1, y1), (x2, y2)) = max(di(x1, x2), d2(y1, y2)).
We have two things to prove:

hpre(f x g) < hpre(f) + hpre(g)a (13)

https://doi.org/10.1017/50143385704000240 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385704000240

Pre-image entropy 1099

and
hpre(f x g) > hpre(f) + hpre(g)' (14)

Given (x,y) € X x Y, n > 0,k > n,let E C (f x g)¥(x,y) be a maximal
(n, e, f x g)-separated set. Let E| be a minimal (n, €/2, f) spanning set in f_kx, and
let E5 be a minimal (n, €/2, g)-spanning set in g~¥y. For each (u, v) € E, there is a pair
(x1(u), y1(v)) € E1 x E> such that

Ay (fu, fIx1(u)) 5% and  da(fv, flyi(v)) sg

for 0 < j < n. If (uy,v1), (uz, 12) are in E and are such that x;(u1;) = x1(uz) and
Y1) = yi1(v2), then di(f7uy, fiuz) < € and da(g/v1, g/v2) < € forall 0 < j < n.
It follows that (11, v1) and (u2, v2) remain € close for all interates ( f x g)/ with0 < j < n.
Since E was (n, €, f x g)-separated, we have (u1,vi) = (uz,v2). Thus, the map
(u, v) = (x1(u), y1(v)) is injective. This implies that

roe, (fF x 7 oy fxg) < v (n 5 fF @ r)r (n 50875001 g).

Let

an(€) = suplr(n, e, (f x @) F(x,y), f x ) : (x,y) € X x Y, k >n},
bu(e) = sup{r(n, e, f*x), f) :x € X, k > n},

and
cn(e) = suplr(n, e, g*(v),g) 1y € Y, k > n).

an(€) < by (g) e (g) (15)

Then, we have

so that

1
hpre(€, f x g) = limsup — log ay ()

n—oo N

. 1 € , 1 €
< limsup — log b, (—) + lim sup — log ¢, (E)

n—oo N 2 n—oo N

€ €
= hpre (5’ f) + hpre (§a g) .
Letting ¢ — 0 implies (13).

For the converse statement, it is tempting to try the following.

Letn > 0,k > n,e > 0. If E isamaximal (n, €, f)-separated set in f_kx, and Episa
maximal (n, €, g)-separated set in g_ky, then E| x E» is clearly an (n, €, f x g)-separated
setin (f x g)~k(x, y).

This gives

r(n,e, R, ) rin, e, 8750, 8) <r(n e, (f x 97 (x,y), f x g),

and

by (€) - cu(e) < an(e).
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If

1 1 1
lim —logay,(e), lim—logb,(e) and lim— logc,(€)
n n n

all existed, then this would give that hpe(€, f) + hpre(€, 8) < hpe(e, f X g), and (14)
would follow. In general, these limits do not exist, and this argument breaks down.

Instead, we bring the variational principle and the product rule for metric pre-image
entropy to the rescue. Let € > 0, and let , v be invariant measures so that

hpre,u(f) > hpre(f) —¢€ and hpre,v(g) > hpre(g) — €.

Then, we have

hpre (f X &) > hpre,uxv(f X &)
= hpre,u(f) + hpre,v(g)
> hpre(f) — € + hpre(g) — €.

Since € is arbitrary, (14) follows.

Finally, we prove the topological invariance statement.

Let¢ : X — Y be a topological conjugacy from f to g. That s, ¢ is a homeomorphism
and gp = f.

Let d; be the metric on X and d, be the metric on Y. It is obvious that the induced
metric ¢,d; on Y defined by

budi (1, y2) = di (@ y1, 07 )

gives the same pre-image entropy to g as hpe(f). Since, the pre-image entropy is
independent of the choice of metric on Y, we have Apre (f) = hpre(g) as required.
This completes the proof of Theorem 2.1.

4. Proofs of Theorems 2.2 and 2.3
Here and in the sequel we will assume without further mention that all sets considered are
appropriately measurable.

The power rule. Let g = f% with T > 0, and consider the two o-algebras B~ =
N, F7"B), Bl =, 8 "B=, f""(B).

It is obvious that B~ C Bj since the latter is an intersection of fewer sets. On the other
hand, if ¢ > k, then f=%(B) C f~*(B). So, foreach n > 0 we have B, C f~"%(B) C
f7"(B). Hence, B] C f~"(B) forall n > 0. This gives

B~ =By (16)
Let o be a finite partition, and let 8 = \/l-tz_ol f ~ia. Then,

ntT—1

n—1
Veie=\ .
i=0 i=0
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= Jim oty (Vg_'ﬁ | B‘)
1 ol
Z?nli‘%on’f(\/g a2ty

1 —
=_hu(B1B;.8)

So,

n—-oont

ntT—1
hu(a | B~, f) = lim —H<\/ f o

IA

1
;hpre,u. (8)-
Taking the supremum over all « then gives
1
hpre,,u (f) =< ;hpre,,u (&)

On the other hand, returning to hy(a | B, f) = (1/1)hu(B | B, g) and using
h,u(,B I B;: g) 2 hﬂ(a | B;v g)» we get
1 _
hu(a | B™, ) > ;hu(a | B, ).

This time taking the supremum over all « gives

1
hpre,u(f) = ;hpre,u(g)~

Product rule.  Given a collection y of sets, let B(y) denote the o -algebra generated by y .
Observe that if v, ¥,, ... is an increasing sequence of finite partitions of X such that
B( Uy i) = B (i.e. the sequence y; generates 3), then for any finite partition «, we have

Hy(a | B7) = lim lim Hy(a | f™y;).
j—o0i—00
Let By denote the o-algebra on X and By denote that on Y. For U = X, 7, let Ay
denote the collection of finite partitions of By. Let y; <y, <--- andd; <82 <--- be

increasing sequences of finite partitions such that y; € Ay, |J; y; generates By, §; € Ay,
and U,- 8; generates By. Then, for any partitions o € Ay, B € Ay we have

Hy(a | By) = lim lim Hy (x| f~/(y;),
J—> 00 1—>00

Hy(B | By) = lim lim Hy(x | g/ (5)),
J—001I—>00

and
Hyso(@ x B | By, y) = lim lim Hyxo(a x B | £ (r;) x g7 (8:)).
J—> 00 1—>00

Here, of course, we definea x B ={A x B: A €«a, B € 8}.
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Recall the standard formula

Hy (e | B) = Hyy(a vV B) — Hy, (B) A7)

for a measure 1 and finite partitions o, .
Let us use this formula with the notation that A, B, C, D run through «, 8, v, §,
respectively, to get

HyxyaxBly xé)=— Z w(ANC)yv(B N D)log(u(ANC)v(B N D))
A,B,C,D

+ Y u(C)u(D) log((C)v(D))
C,D

= —Z n(ANC)log(u(ANC)) — Z v(B N D)log(v(B N D))
A,C B,D

+ ) u(C)logu(C) + ) v(D)logv(D)
C D

= Hu(a | v)+ H,(B | 9).

Putting the above formulas together gives that for any finite partitions o of X, g of ¥,
we have
Hyxv(a x B | By, y) = Hu(a | By) + Hy(B | By).

This implies that, for any positive integer n, we have
n—1
H,m( \ (f x &)@ xp) ‘ BM)
k=0
n—1 n—1
= Huxv( \/ f_ka X \/g_le ‘ BX><Y>
k=0 k=0
n—1 n—1
= HM( \V B;) + H,,( \VE: ‘ B;).
k=0 k=0

Multiplying both sides by 1/n and taking the limit as n — oo gives

hpre,p.xv(a x B, fxg= hpre,,u(as b +hpre,v(,37 g)

forany « € Ax, B € By. Since hpre,uxv(f X g) can be computed as the supremum over
product partitions o x f, this proves the product rule in Theorem 2.2.

Proof of Theorem 2.3. 1Tt clearly suffices to prove formula (5).
Letm =qu+ (1 —qg)v.
Recall from [2, p. 61] that, for any finite partition «z, we have

0 < Hp(a) —qHy(a) — (1 —gq)Hy () < log2. (18)

Let y; < y, < --- be an increasing sequence of finite partitions such that | J; y;
generates the o -algebra 5.
Then, for any positive integer n and p = m, v, i, we have

Hy(@" | B7) = lim lim H,(@" | f~/y;).
J—>00i—00
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By (18), we get
0<Hy@"V fy)—qH, "V fy) =1 —@H," Vv fy;) <log2, (19)

and
0> —[Hu(f y) —qH(f y) — (1 =@ Hy(f Tyl > —log2.  (20)

The second term of (20) is non-positive, so adding it to the second term of (19) does not
increase the latter’s value, so

Hu@" | fy) —qH@" | fy) — (1= g)Hy(@" | f/y;) <log2.

Similarly, adding the second term of (19) to that of (20) does not decrease the latter’s value,
o)

—log2 < Hy(a" | f7y) = qHu(e" | fTy) = A=) H@" | 7y

Putting these two inequalities together gives

~log2 < Hu(@" | f7/y) —qHu@" | f7y) — (1= @) Hu(@" | f77y;) <log2.
Letting i — oo and then j — oo gives

—log2 < Hp(a" | B7) —qHu(a" | B) — (1 —q)H, (" | B7) <log2.
Now, dividing by n and letting n — oo gives that
hw(a | B7) = qh,(a B7)+ (1 = qhy(a| B7),

as required.
5. Proof of Theorem 2.4
The proof of Theorem 2.4 is a more or less straightforward adaptation of the proof of the
standard Shannon—-Breiman—-McMillan theorem in [9]. We sketch the ideas.

For a finite partition «, let B(«) denote the o -algebra generated by «.

For notational convenience, denote Iy |4 also by I(a | A) for a partition o and
sub-o-algebra A.

Let f, = I(a | B(a}) v B7) forn > 0,and fo = I(a | B7).
First, observe that

@} | By =1" |B7)+1(a|B@)UB)
= 1@ B o f+1(a|B@)UB)

=Y forf". 2n
k=0

Integrating both sides, and using f*-invariance of u gives

Hy(ag | B7) = fon_kfk = Z/fn_k = Z/fk.
k=0 k=0 k=0
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This gives the formula

Hy(afy | B7) = Hy(e | BT)+ Y Hy(a | Blah) UB). (22)
k=1

Since the sequence H, (« | B (oz]f )UB™) converges non-increasingly to some number Ay,
the associated Cesaro sequence

1 n
= Hu(e | B})UB™)
n k=1

also converges to hg as n — oo. However, multiplying both sides of (22) by 1/(n + 1) and
taking the limit, we then get

. 1 R _
ho_nlggomHﬂ(aMB ) =hy(a | B7).

Now, the proof of the Shannon-Breiman—McMillan theorem in [9] gives that the
sequence {/ (« | o/f) :k > 1} is an L!-bounded martingale. Since

/ I | Bl@h)UB )dp = Hy(a | Bak) U B™)
< Hy(a | B(a})

- [ 1@ B du,

we have that {7 (« | B(oz]f) UB™) : k > 1} is also an L'-bounded martingale.

Hence, the last sequence converges almost everywhere and in L! to some integrable
function 4. Its Cesaro sums must also converge in both senses to & as well. Note, also, that
[ hdp = h.

Again, following the method in [9], we have

I n B* n
fim L0150 > okt

n—oo pn+ 1 _n—>oon—|-lk=0

1 n 1 n
= — _x—h kg h k
nHk;(fnk o f +n+1g of

Since f, — h, the first term in the last equality approaches O and the ergodicity of the u
gives that the second term approaches [ hdu = ho.
Hence,

" B- 1@ | B
fim L@ B oy Mo 15

n—>00 n n—»oo n4+1

= hy,

completing the proof of Theorem 2.4.

6. Proof of Theorem 2.5
We adapt the well-known arguments of Misiurewicz (as in [9, pp. 269-271]) to pre-image
entropy.
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Step 1. hpre,u () < hpre(f) forall € M(f).
Let u € M(f). If Eq, E3, ..., E; is a finite disjoint collection of compact subsets
of X, we call the partition

S
o= {El,Ez,...,ES,X\UE,-}
i=1

a compact partition. It is easy to verify that hpe , (f) is the supremum of hpe (o, f)
where o varies over the compact partitions.
Thus, using a standard technique, it suffices to prove that, for any compact partition «,

hpre,u (o, f) < hpre(f) +1og2. (23)

Indeed, once this is done, it follows that

hore,u (f) < hpre(f) +1og2

for every f. Applying this to £V for large N, gives

thre,p.(f) = hpﬁ:,//.(fN) = hpre(fN) + log?2,

or
log2
hpre,p,(f) = hpre(f) + N

Letting N — oo then, gives hpe, ;i (f) < hpre(f).
For (23), it suffices to show that there is an € > 0 such that for any n > 0 and any
k > 0, we have

H, (" | f7*B) < n log2+log supr(n,e, f*x). (24)
xeX
Let € be such that any 4¢-ball meets at most two elements of «.
Let 8y < B, < --- be a non-decreasing sequence of finite partitions with diameters

tending to zero. Thus,
o
B=\/8;.
j=1

and
Hy(a" | f7*B) = lim Hy " | f7*B)).
J—>00

So, it suffices to show that, for sufficiently large j, we have

Hy(@" | f7*B;) <nlog2+logsupr(n,e, fFx). (25)
xeX
Let €1 = €1(n, €) > 0 be small enough so that if d(x, y) < €1, then d(fix, f[y) <€
forO <i <n.
The collection {f*x : x € f¥X} is an upper-semicontinuous decomposition of X.
Hence, for each x € fkX there is an e»(x,k,€;) > O such that if d(y,x) <
ex(x,k,e1),y € f¥X and y; € f~*y, then there is an x; € fKx such that
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d(y1,x1) < €1. Let U be the collection of open €>(x, k, €1) balls in ka as x varies in
ka, and let €3 be a Lebesgue number for /.

Since diam(B ;) — 0O as j — oo, we may choose jo large enough so that if j > jo and
B is an element of B, then diam(B) < €3.

Assume j > jo.

ForasetC € f B j» let i denote the conditional measure of u restricted to C. Let ag:
denotetheset {(ANC : A€o, ANC # ().

We have

Hy@" | f )= > Hyuelef)u(C)
Cef*B;

A
B
o
=
=
S
R
<

< max logcarday.
j

FixaB € ,Bj so that C = f’kB is non-empty. For each A € a’é, let x4 be an element
of A.
Since kaA € B and diam(B) < €3, thereisaup € ka such thatif y € BN ka,
thend(up, y) < €2(up, k, €1). In particular,
d(f¥xa,up) < ex(up., k, €1).
Hence, there is a point ¢ (A) € f’kug such that d(x4, ¢;(A)) < €1, so
d(f'xa, ['$1(A) <€

for0 <i < n.
Let E¢ be a maximal (n, €)-separated set in f “Kyg.
Since E¢ spans f’kug, there is a point ¢,(A) € Ec such that, for0 <i < n,

d(f'¢1(A), fl$y(A) <,

and, hence,
d(f'xa, f'$,(A)) < 2e.

We have defined a map ¢, from ay. into Ec. Hence,
card(ay,) < card Ec - ( max ¢2_l(y)>.
y€EC
To prove (25), we will show
card(¢; ' () < 2" (26)

foreachy € Ec.
Let A, A be such that ¢,(x4) = ¢,(A).
Then, for 0 <i < n, we have
d(f'xa, fx;) < 4de.
It follows that fix, is in the 4€ ball about fix - Since each 4e ball meets at most two
elements of «, it follows that there are at most 2" choices for A, A. This proves (25) and
finishes the proof of Step 1.
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Step 2. We have

hpre (f) < sup  hpre u(f)- (27)
neM(f)

Given € > 0, we wish to produce an f-invariant probability measure u such that
hpre,u = hpre(ﬁ €). (28)

Again we want to follow the idea of the Misiurewicz proof of the standard variational
principle (as in [9, pp. 269-271]), but we must make important modifications. Although it
is not strictly necessary, the reader will find it helpful in what follows to be familiar with
the proof in the aforementioned reference. We will motivate our construction by making
frequent reference to that proof. When it is convenient to refer to the arguments in [9],
we simply call them the SVP arguments.

Choose sequences n; — o0, ki > n;, x; € X, such that

. 1 s
hpre(f, €) = lim — logr(n;, €, f k’xi,f).
i—o00 N

Let E; denote a maximal (n;,€)-separated set in f_k"x,- such that card E; =
r(ni, e, f~%x;, ). Thus, we have

1
hpre(f, €) = lim — logcard E;. 29)

1—>00 N
Letting &, denote the point mass at point x € X, let

1
J— Sy,
Hi card E; Z *
xekE;

let
1 I’l,‘—l X
v = e Z 1 i
Jj=0
and let
v = lim v;,
1—> 00

where we have passed to subsequences assuring that the last limit of measures exists.

Let o be a finite v-continuity partition such that diam(«) < €. That is, for each A € «,
n(dA) = 0 and diam(A) < e.

Motivated by the SVP arguments in [9], we wish to show that, for every positive

integer m,
H,(a" | B™) = mhpe(f, €). (30)
Indeed, from this, we have
. JHy(@™ | B7)
hpre,v(f) = hpre,v(a, = lng = hpre(fa €),

as required.
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If we were in the SVP case and not conditioning on B~, the result that H,(«™) >
mh( f, €) follows from the following two facts:

Hy(@™) = lim H,, (™) (31)
1—> 00
and
1 I’l,‘—l 1 I’l,‘—l
Hy@") 2 — 3 Hye, (@) = — 3 Hy (f ™). (32)
L =0 L e=0

Statement (31) follows from the fact that the map © — w(A) is continuous at v, and
statement (32) follows from the concavity of the function t+ — —tlog¢ arising in the
entropy formula

Hy (@) = ) —vi(A)logv;(A). (33)
Aequm

We need to establish the analogs of (31) and (32) after conditioning on 5. To do this
we will make use of the Rokhlin theory of measurable partitions (see [S5] for definitions and
basic facts about this theory). This theory concerns itself with complete measure spaces,
so we will actually deal with a slightly larger o-algebra B, in which v is complete.

Let C denote the subcollection of B~ consisting of v-null sets. That is, E € C if and
only if E € B~ and v(E) = 0. Since the countable union of elements in C is again in C,
it follows that for any o-algebra A of subsets of X, there is an enlarged o -algebra A¢
defined by A € Ag if and only if there are sets B, M, N suchthat A = BUM, B € A,
N e Cand M C N. The o-algebra B is simply the standard v-completion of B~. We will
also consider the o-algebras BX = (f*B)c fork > 1.

Since f’1 (C) C C, we have that

B'2B*2---.
Letting B = (5, B, it is easy to check that
B~ c B; Cc B®,
and
f_eBk c B* foralle > 1.

Note that the o-algebras B, B> are not necessarily v-complete.

LEMMA 6.1. Under the above notation, we have

Hy,(@™ | B7) > limsup H,, (¢ | B*), (34)
i—00
and
1 I’l,‘—l
Hy, (@™ | B) > . g Hy, (@™ | BY). 35)

Remark. In the course of the proof of the lemma, we will see that while the proof of
estimate (34) is rather straightforward, that of (35) is considerably more complicated. It is

not true that
ni— 1

1
Hy(og ™ [ A) 2 — 3 Hp, ™' | A) (36)
L y¢=0

for all average measures v; and all invariant sub-o-algebras A. Indeed, statement (35)
holds because the measure v; is closely related to the measurable partition { f ~%ix : x € X}.
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Proof of (30) assuming Lemma 6.1. Since B~ C B, we have that
Hy(@" | B7) = Hy(@™ | B®). (37
Further, since B> is the decreasing limit of the subalgebras B¥, we clearly have
Hy(@" | B) = Hy(a™ | BY),

for all i.

Also, since y; is supported on f ¥ix;, the canonical system of conditional measures
induced by u; on the measurable partition { f % x : x € X} reduces to a single measure on
the set f % x; which we may identify with ;.

Now, each element A € B¥ can be expressed as the disjoint union A = B U C with

Be fNB={fk%x:xe X}

and C € C. Since p; is supported on elements of f~% B, we have u;(C) = 0. Hence, for
any finite partition y, we have

Hy(y | BY) = Hy (v | f7hx).
Since each element of o’ | f i x; has at most one point, we have
Hy, (o™ | fkix;) = logcard E;.

In the sequel, for non-negative integers a < b, let us denote by [a, b) the set of integers
jsuchthata < j < b.
For0 < j < m,let

C@,j)={n€[0,n;):n=jmod(m)},

and let
p(i) =max C(, j).

‘We use the standard notation
J=t
at_\/f—ja (XS_(XS_I
s ’ - %0 -
Jj=s

Since we can express [0, n;) as the disjoint union

0.n)= || €, (38)
0<j<m
and, for each fixed 0 < j < m, we can write
il =gl v < \/ f_tam) \/(XZZ:L(I.), (39)
teC(i,j)

we get
logcard E; = H,,, ("~ | f~%ix;)
< H;}.;(a'j | f_kixi)+H;Li< \/ f—tam ‘ f—kixi)
1eC(i,j)

i—1 —k;
+ Hyy (o~ 1 7).
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Thus,
( \/ e kixi) > logcard E; — 2m logcard«. (40)
teC(i,j)
Using (35) we have

Hy (" | B®) > Hv,- (" | BY)

m ki
By sy st @ | B)

1 ni—1 .
S Rl
i =0

ni—1

1
=— > Hy(f" | 7B
=0

n;
1 ni—1
= Z Hy, (f ‘™ | BY)
=2 Y Y (e 8

0<j<m LeC(i,j)

v
|

inf Hy, \/ fta™

n; 0<j<m (ZEC(I )

=2 inf Hul< \/ |y

ni 0=j<m teC (i, j)

B"f)
,xl>

> n [logcard E; — 2m logcard «].
n;
From these inequalities, we get that

limsup Hy, (¢ | B%°) > lim sup ﬁ[log card E; — 2m logcard «]

i—00 i—oo MNi

= lim — [log card E; — 2m logcard ]

i—00 N

= mhpre(f, €).
This and (34) proves (30).

Proof of Lemma 6.1. The triple (X, B, v) is a Lebesgue space together with a (possibly
empty), at most countable, set of atoms. Hence, we can find an increasing sequence

Bi < B < --- of finite partitions consisting of elements of B, such that

o

Be=\/8;

j=1

and each f; is a v-continuity partition.
Then,
Hy(o" | B) = inf Hu(@™ | B;). @1
J
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Also, since o™ and all of the 8 j ’s are v-continuity partitions, we have
H, (™ v B;) = lim H,, (@™ v B;)
1—> 00
and
Hv(,Bj) = hm Hvi (:8])
1—> 00
This and the standard formulas
Hy(@" | B;) = Hy(@" Vv B;) — Hy(B;)
and
Hu,(Olm | ,3]') = Hu,(anl \% ,3]') - H,, (,3]‘)
give
Hy (o™ | B;) =l_£r(1>1o Hy, (@™ | B;). 42)
Now, letting €; > 0 and using (41), we can pick j such that
Hy(o" | By) > Ho(@™ | B;) — €.
Then, using (42), we have
Hy(@™ | By) = Hy(@™ | B;) — €1
= lim H,, (@" | B;) — e
1—> 00
> limsup Hy, (™ | B;) — €1
11— 00
> limsup H,, (@™ | B®) — €.
11— 00
Since H,(a™ | B™) > Hy(a™ | B;) and €; was arbitrary, we get (34).
Next, we proceed to the proof of (35).
The measure v; is supported on the set

n;—1
X=U ruta.
=0

Case 1. For every pair of integers 0 <r < s < k;, f"x; # fx;.

In this case, let &£ = {f~%(ffx;) : 0 < £ < n;}. This is a finite partition of X,
and each of the measures fu; is supported on the element f —ki (f¢x;) of the partition £.
Moreover, ff wi coincides with the conditional measure v; ¢ of v; on the element C =
f7ki(ftx;) € &. Note that v;(C) = 1/n; for each C € &.

We have

Hy, (@™ | BY) = Hy, (@™ | §)
=Y Hy (@ | Oi(C)
Ceé

1 n;—1

=— > Hp, @" | f75(f x))
£=0

1 ni—1
—— 2 Hy, (@™ | Bk).
nl * 1
=0
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So, in case 1, we actually have equality in (35).

Case 2. There are integers 0 < s < t < n; such that f5x; = f'x;.
In this case, let T be the least positive integer such that there is a t+ > 71 such that
f'xi = f¥1x;, and let T be the least integer such that T > 7y and f¥lx; = fU1Tx;
Then, { f % (f%x;) : 0 < £ < n;} is the disjoint union
Ll ot
0<0<T|+T
This time, let £ be the partition

E={C=fr(fl):0<t <t +71)

and, again, let v; ¢ denote the conditional measure of v; on C.

Foreach 7| < ¢ < t1+71,let D(£) be the set of integers in 7, ;) which are congruent
to £ mod 7, and let d(£) = card D(¥).

Then, for 0 < £ < ty, f‘u; is supported on the single element fki(ftx;) of Bki
which gives

Hpep, (™ | R = Hpey (@] By, (43)
In addition, we have
Vi phi (il = S Mi (44)
and
ki n 1
vi (f (X)) = v (45)
1

On the other hand, fort; < ¢ < 1+ 7,and s € D({), fu; is supported on the single
element f % (f%x;) of BX which gives

Hspo (@™ | £75(f %) = Hypsy, (@™ | BR). (46)
In addition, we have
ek 47)
Nt Yo flw (
l 5 d(e) seD(0)
and
d)

vi(fR(f)) = (48)

From concavity of s — —slogs, we get, fort; <{ <711+,

m ki 1 m —k; (2%
Hu e, @ 1P x'))z%se;a[{ﬁ“"(a | FRG ). @9)

Applying the above statements gives
Hy, (@™ | BY) = Hy (@™ | §)
=Y Hyc@" | Ovi(C)

Ceé

= D Hy g @ LT (TR )
0<{<T

+ b e, @ 1T )i (PR )
T <l<T|+T h o
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1 ki
>— 3 Hp, @ | £ )
i o<zt
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completing the proofs of (35), Lemma 6.1 and Theorem 2.5.
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