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Abstract. We define and study new invariants called pre-image entropies which are
similar to the standard notions of topological and measure-theoretic entropies. These new
invariants are only non-zero for non-invertible maps, and they give a quantitative
measurement of how far a given map is from being invertible. We obtain analogs of many
known results for topological and measure-theoretic entropies. In particular, we obtain
product rules, power rules, analogs of the Shannon–Breiman–McMillan theorem, and a
variational principle.

1. Introduction
The notions of entropy are fundamental to our current understanding of dynamical systems.
The two main notions are, of course, the topological entropy and the measure-theoretic
(or metric) entropy. The former measures the maximal exponential growth rate of orbits
for an arbitrary topological dynamical system, and the latter measures the maximal loss
of information of the iteration of finite partitions in a measure-preserving transformation.
It is well-known that these two invariants are related by the so-called variational principle
which states that the topological entropy is the supremum of the metric entropies for all
invariant probability measures of a given topological dynamical system. There are many
useful properties shared by these two invariants. Using the word ‘entropy’ to denote either
of these concepts, we have:
1. entropy is an invariant in the appropriate category: topologically conjugate systems

have the same topological entropy and measure-theoretically conjugate systems have
the same metric entropy;

2. the entropy of a direct product is the sum of the entropies of the factors;
3. the entropy of f n equals n times the entropy of f ;
4. if g is a factor of f , then the entropy of g is no larger than the entropy of f ;
5. entropy is preserved under the passage to natural extensions.
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The last property above shows a weakness of both of these invariants. Namely, they provide
no information for non-invertible systems which cannot be gleaned from their associated
(invertible) natural extensions.

In several recent papers [3, 4, 6–8] some new topological invariants of dynamical
systems have been defined and studied which only give non-trivial information when
the associated systems are non-invertible. In a certain sense, these new invariants give
a quantitative estimate of how ‘non-invertible’ a system is. For simplicity, if we have
a numerical quantity h(f ) defined for dynamical systems which is preserved under
topological conjugacy and which is zero on invertible systems, we call the quantity a
non-invertible invariant.

Let us be more precise and recall some non-invertible invariants defined by Hurley.
Let f : X → X be a continuous self-map of the compact metric space (X, d).

Let n > 0 be a positive integer. Define the df,n metric on X by

df,n(x, y) = max
0≤j<n

d(f jx, f jy).

A set E is an (n, ε)-separated set if, for any x �= y in E, one has df,n(x, y) > ε.
Given a subset K ⊆ X, we define the quantity r(n, ε,K) to be the maximal cardinality

of (n, ε)-separated subsets of K . Uniform continuity of f j for 0 ≤ j < n guarantees
that r(n, ε,K) is finite for each n, ε > 0. Following Hurley [4], we define the quantities
hp(f ), hm(f ) by

hp(f ) = sup
x∈X

lim
ε→0

lim sup
n→∞

1

n
log r(n, ε, f−nx),

hm(f ) = lim
ε→0

lim sup
n→∞

1

n
log sup

x∈X
r(n, ε, f−nx).

Of course, the topological entropy, htop(f ) is given by

htop(f ) = lim
ε→0

lim sup
n→∞

1

n
log r(n, ε,X).

It is evident that, in general, one has the inequalities

hp(f ) ≤ hm(f ) ≤ htop(f ).

In [8], it is proved that for α = p or α = m, and any positive integer k we have

hα(f
k) = khα(f ), (1)

hα(f × g) ≤ hα(f )+ hα(g) (2)

and
the quantity hα(f ) is preserved under topological conjugacy. (3)

Note that if f is invertible, then r(n, ε, f−nx) = 1 for all x, n, ε so that hp(f ) =
hm(f ) = 0. Thus, hp and hm are non-invertible invariants.

It is not known if the inequality in (2) can be strict. In a recent paper of Fiebig et al [3],
it is proved that hp = hm = htop for forward expansive maps (in particular for subshifts
on finitely many symbols), and examples are constructed in which hp(f ) < hm(f ).
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It follows from work of Langevin and Przytycki [6] and Nitecki and Przytycki [8] that
hm = htop for holomorphic endomorphisms of the Riemann sphere and for continuous
endomorphisms of a real interval. Using the sub-additivity of the product above (2), one
sees that if T = f × g with f an arbitrary endomorphism and g an automorphism with
positive topological entropy, then, hm(T ) < htop(T ).

We started this research by considering whether there is a variational principle for hp(f )
or hm(f ). This is still unknown. However, we discovered that one can define a new non-
invertible invariant hpre(f ) which is between hm(f ) and htop(f ) for which a variational
principle does indeed hold. This required a new kind of metric entropy to be defined which
takes into account the past behavior of f . The appropriate quantity is simply the metric
entropy of f conditioned on the infinite past σ -algebra

⋂
n f

−nB where B is the Borel
σ -algebra. We call this the metric pre-image entropy and denote it by hpre,µ(f ) where
µ is a Borel invariant probability measure for f . If one maximizes this quantity over all
invariant measures, it is clear that one gets a topological invariant, but it was surprising to
us that this can be defined in terms of our quantity hpre(f ). In addition to this variational
principle, we will show that the quantities hpre(f ) and hpre,µ(f ) also satisfy power and
product rules analogous to the standard topological and metric entropy quantities, that
the map µ → hpre,µ(f ) is affine, and that there is an analog of the Shannon–Breiman–
McMillan theorem for the metric pre-image entropy.

2. Statement of results
Given f : X → X as above, ε > 0 and n ∈ N, let us define

hpre(f ) = lim
ε→0

lim sup
n→∞

1

n
log sup

x∈X,k≥n
r(n, ε, f−kx). (4)

It is clear that hm(f ) ≤ hpre(f ) ≤ htop(f ), and that hpre(f ) = 0 if f is a
homeomorphism.

Our first results are the following.

THEOREM 2.1. Let f : X → X and g : Y → Y be continuous self-maps of the compact
metric spaces X,Y , respectively.

Then:
1. the pre-image entropy hpre(f ) is independent of the choice of metric on X;
2. (power rule) for any positive integer τ , we have hpre(f

τ ) = τ · hpre(f );
3. (product rule) hpre(f × g) = hpre(f )+ hpre(g);
4. (topological invariance) if f is topologically conjugate to g, then hpre(f ) = hpre(g).

Remark. We have already mentioned that, for forward expansive maps, Fiebig et al showed
that hp(f ) = hm(f ) = htop(f ). Hence, also for these maps we have hpre(f ) = htop(f )

and our pre-image entropy is nothing new. On the other hand, analogous to the case of hm
above, our product rule implies that if T = f×g where f is any endomorphism and g is an
automorphism with htop(g) > 0, then hpre(T ) = hpre(f ) + hpre(g) = hpre(f ) ≤ htop(f )

since hpre(g) = 0. But, htop(T ) = htop(f ) + htop(g) > htop(f ). Thus there are many
natural examples of endomorphisms T with hpre(T ) < htop(T ).
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Next, we consider the analogous notion of metric pre-image entropy. Let (f,X,B, µ)
denote a measure-preserving transformation of the probability space (X,B, µ). That is,
(X,B, µ) is a measure space with µ(X) = 1, and, X = X1 	 X2 is a disjoint union of
measurable sets in which X2 is a possibly empty, at most countable, set of atoms and
(X1,B | X1, µ | X1) is isomorphic (mod 0) to a subinterval of the real closed unit
interval with Lebesgue measure and the σ -algebra of Lebesgue measurable sets. The map
f : X → X is such that f−1(E) ∈ B for each E ∈ B, and µ(f−1(E)) = µ(E) for
each E ∈ B. Following standard terminology, we call (f,X,B, µ) a measure-preserving
transformation. Set B− = ⋂

n≥0 f
−nB. We call B− the infinite past σ -algebra related

to B.
As usual (for example, see Petersen [9]), given a subset A ∈ B, we set µ(A | B−) =

E(χA | B−) where χA denotes the characteristic function of A, and E(ψ | A) denotes the
conditional expectation of the function ψ given the sub-σ -algebra A.

For finite partitions α, β, we set α ∨ β = {A ∩ B : A ∈ α,B ∈ β}. If 0 ≤ j ≤ n, are
positive integers, we let αnj = ∨i=n

i=j f−iα, and αn = αn−1
0 .

Define the information function Iα |B− of α given the infinite past σ -algebra B− to be

Iα |B− = −
∑
A∈α

logµ(A | B−)χA.

Set

Hµ(α | B−) =
∫
Iα |B− dµ = −

∑
A∈α

logµ(A | B−)µ(A).

It is standard (see, for example, [9]) that the quantity Hµ(α | B−) is increasing in the
first variable and decreasing in the second variable. That is, if β is a partition which refines
α and A is a sub σ -algebra of B−, then,

Hµ(α | B−) ≤ Hµ(β | A).
Also, Hµ(f−1α | f−1B−) = Hµ(α | B−).

It follows that the numbers an = Hµ(α
n | B−) form a subadditive sequence. Indeed,

for positive integers n,m, using f−nB− = B−, we have

an+m = Hµ(α
n+m | B−)

= Hµ((α
n ∨ f−nαm) | B−)

≤ Hµ(α
n | B−)+Hµ(f

−nαm | B−)
= Hµ(α

n | B−)+Hµ(f
−nαm | f−nB−)

= Hµ(α
n | B−)+Hµ(α

m | B−)
= an + am.

Consequently, there is a well-defined number hµ(α | B−) given by

hµ(α | B−) = lim
n→∞

1

n
Hµ(α

n | B−) = inf
n→∞

1

n
Hµ(α

n | B−).

We define the metric (or measure-theoretic) pre-image entropy of f with respect to µ
and B to be

hpre,µ(f ) = sup
α
hµ(α | B−).
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It is easy to see that hpre,µ(f ) is an invariant of measure-theoretic conjugacy. That is, if
(f,X,B, µ) and (g, Y,B′, ν) are measure-preserving transformations, and π : X → Y is
a bimeasurable bijection (mod 0) such that gπ = πf , then hpre,µ(f ) = hpre,ν(g). This is
the measure-theoretic analog of statement 4 in Theorem 2.1. Next, we have the measure-
theoretic analog of statements 2 and 3.

THEOREM 2.2. Let (f,X,B, µ) and (g, Y,B′, ν) be measure-preserving transformations.
Then:

1. (power rule) for any positive integer τ , we have

hpre,µ(f
τ ) = τ · hpre,µ(f );

2. (product rule)
hpre,µ×ν(f × g) = hpre,µ(f )+ hpre,ν(g).

Our next three results are analogs of well-known theorems concerning metric entropy
adapted to the setting of metric pre-image entropy.

THEOREM 2.3. (Affinity of metric pre-image entropy) Let (X,B) be a measurable space,
f : X → X be a measurable transformation, and let µ and ν be two f -invariant
probability measures so that both (X,B, µ) and (X,B, ν) are Lebesgue spaces together
with the possible exception of countable sets of atoms. Let q ∈ [0, 1].

Then,
hpre,qµ+(1−q)ν(α, f ) = qhpre,µ(α, f )+ (1 − q)hpre,ν(α, f ), (5)

and
hpre,qµ+(1−q)ν(f ) = qhpre,µ(f )+ (1 − q)hpre,ν(f ). (6)

THEOREM 2.4. (Shannon–Breiman–McMillan theorem for metric pre-image entropy)
Let (f,X,B, µ) be an ergodic measure-preserving transformation of the probability space
(X,B, µ), and let α be a finite measurable partition.

Then,

lim
n→∞

1

n
Iαn |B− = hµ(α | B−), (7)

where the convergence is µ-almost everywhere and in L1(µ).

Remark. The previous theorem actually works if B− is replaced by any invariant
sub-σ -algebra A, i.e. f−1A = A.

Next, we present the main result of this paper: that the topological and metric pre-image
entropies are related by a variational principle.

We consider measure-preserving transformations (f,X,B, µ) in which X is a compact
metric space, f : X → X is continuous, and B is the σ -algebra of Borel subsets of X.
As usual in this case we call µ an f -invariant Borel probability measure.

THEOREM 2.5. (Variational principle for pre-image entropy) Let f : X → X be a
continuous self-map of the compact metric space X, and let M(f ) denote the set of
f -invariant Borel probability measures. Then,

hpre(f ) = sup
µ∈M(f )

hpre,µ(f ). (8)
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Remarks.
1. Another type of pre-image topological entropy could be defined as

h′
pre(f ) = lim

ε→0
lim sup
n→∞

1

n
log sup

x∈X,k≥1
r(n, ε, f−kx).

It is clear that hpre(f ) ≤ h′
pre(f ), but it is not obvious whether one might have strict

inequality. It turns out that one can follow through the proofs of Theorem 2.5 with
this new quantity and show that it also equals supµ hpre,µ(f ). Hence, it makes no
difference whether one uses k ≥ n or k ≥ 1 in the definition of hpre(f ).

2. It is obvious from the variational principle that one can compute hpre(f ) by
restricting to any set which contains the supports of the f -invariant probability
measures. We do not know if this is true for the quantities hp(f ), hm(f ) of Hurley.

3. It will be clear to experts that many of our methods of proof here are obtained by
making appropriate modifications of many known techniques in ergodic theory and
topological dynamics. However, the proof of the part of the variational principle
which asserts that the pre-image entropy is no larger than the supremum of the metric
pre-image entropies of invariant measures is considerably more delicate than the
standard result for topological entropy.

3. Proof of Theorem 2.1
Before proceeding to the proof, we recall some concepts from entropy theory.

Let f, (X, d), df,n be as above.
Let ε > 0 and n > 0. A subset F ⊂ X is an (n, ε, f )-separated subset if whenever

x, y ∈ F and x �= y, we have df,n(x, y) > ε. Given a subset K ⊂ X, we let r(n, ε,K, f )
denote the maximal cardinality of an (n, ε, f )-separated subset of K . A subset E ⊂ K is
an (n, ε,K, f )-spanning set if, for every x ∈ K , there is a y ∈ E such that df,n(x, y) ≤ ε.
Let s(n, ε,K, f ) be the minimal cardinality of any (n, ε,K, f )-spanning set. It is standard
that for any subset K ⊂ X,

s(n, ε,K, f ) ≤ r(n, ε,K, f ) ≤ s
(
n,
ε

2
,K, f

)
. (9)

Next, using techniques as in Bowen [1], we have the following.
If n1, n2, 
 are positive integers such that 
 ≥ n1, then

r(n1 + n2, ε, f
−
K, f ) ≤ s

(
n1,

ε

2
, f−
K, f

)
s
(
n2,

ε

2
, f−
+n1K,f

)

≤ r
(
n1,

ε

2
, f−
K, f

)
r
(
n2,

ε

2
, f−
+n1K,f

)
. (10)

Also, observe that if m > 0, n > 0, E is an (n, ε, f )-separated subset of f−k+mx, and
F ⊂ f−m−nx is such that fm maps F bijectively onto E, then, F is an (m + n, ε, f )-
separated subset of f−kx. Hence,

r(n, ε, f−k+mx, f ) ≤ r(m+ n, ε, f−kx, f ). (11)

It will be convenient to use the notation

hpre(f, ε) = lim sup
n→∞

1

n
log sup

k≥n,x∈X
r(n, ε, f−kx, f )
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so that
hpre(f ) = lim

ε→0
hpre(f, ε) = sup

ε>0
hpre(f, ε).

When the metric d needs to be explicitly mentioned, we write

hpre(f, d), hpre(f, ε, d), r(n, ε, f
−kx, f, d),

and so on.
Let us prove that hpre(f ) is independent of the metric on X.
Let d1, d2 be two metrics on X. Then, by compactness of X, for every ε > 0

there is a δ > 0 such that, for all x, y ∈ X, if d1(x, y) < δ, then d2(x, y) < ε.
It follows that r(n, ε, f−kx, f, d2) ≤ r(n, δ, f−kx, f, d1) for all n, ε, k, x. This gives
that hpre(f, ε, d2) ≤ hpre(f, δ, d1). Letting δ → 0 gives hpre(f, ε, d2) ≤ hpre(f, d1).
Now, letting ε → 0 gives hpre(f, d2) ≤ hpre(f, d1). Interchanging d1 and d2 then gives the
opposite inequality, proving that hpre(f, d1) = hpre(f, d2).

Now, let us proceed to prove the power rule. Write g = f τ .

Assertion 1. For any ε > 0 we have hpre(g, ε) ≤ τ · hpre(f, ε).

Let k ≥ n and x ∈ X.
It is clear that

r(n, ε, g−kx, g) ≤ r(τn, ε, f−τ kx, f ).

Hence, we have

hpre(g, ε) = lim sup
n→∞

1

n
log sup

k≥n,x∈X
r(n, ε, g−kx, g)

≤ lim sup
n→∞

1

n
log sup

k≥n,x∈X
r(τn, ε, f−τ kx, f )

= lim sup
n→∞

τ

nτ
log sup

τ k≥τn,x∈X
r(τn, ε, f−τ kx, f )

≤ lim sup
n→∞

τ

nτ
log sup

k≥τn,x∈X
r(τn, ε, f−kx, f )

= τ lim sup
n→∞

1

nτ
log sup

k≥τn,x∈X
r(τn, ε, f−kx, f )

≤ τ lim sup
n→∞

1

n
log sup

k≥n,x∈X
r(n, ε, f−kx, f )

= τ · hpre(f, ε),

proving Assertion 1.

Assertion 2. Given ε > 0, let δ > 0 be such that if d(x, y) < δ, then d(f jx, f j y) < ε/4
for j ∈ [0, τ ). Then,

hpre(g, δ) ≥ τ · hpre(f, ε).

Proof. Let n > 0, k ≥ n. From the definition of δ, we have that if 
, s are positive integers
such that 
 ≥ τs, then

r
(
τs,

ε

4
, f−
x, f

)
≤ r(s, δ, f−
x, g). (12)
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Write k = τn2 +
2 with 0 ≤ 
2 < τ and n−
2 = τn1 +
1 with 0 ≤ 
1 < τ . Let C(j)
denote a constant depending on the positive integer j . From (9), (10), (11) and (12), we
have

r(n, ε, f−kx, f ) ≤ s
(
n− 
2,

ε

2
, f−kx, f

)
s
(

2,

ε

2
, f−k+n−
2x, f

)

≤ C(
2)s
(
n− 
2,

ε

2
, f−kx, f

)

= C(
2)s
(
τn1 + 
1,

ε

2
, f−kx, f

)

≤ C(
2)s
(
τn1,

ε

4
, f−kx, f

)
s
(

1,

ε

4
, f−k+τn1x, f

)

≤ C(
2)C(
1)r
(
τn1,

ε

4
, f−kx, f

)

= C(
2)C(
1)r
(
τn1,

ε

4
, f−τ n2−
2x, f

)

= C(
2)C(
1)r
(
τn1,

ε

4
, f−τ (n2+1)+τ−
2x, f

)

≤ C(
2)C(
1)r(n1, δ, f
−τ (n2+1)(f τ−
2x), g)

= C(
2)C(
1) r(n1, δ, g
−(n2+1)(f τ−
2x), g).

Note that τ (n2 + 1) > k ≥ n = τn1 + 
1 + 
2 ≥ τn1, so that n2 + 1 > n1.
As n → ∞, so does n1. Hence, using that (1/n) log(C(
2)C(
1)) → 0 as n → ∞, we

get

hpre(f, ε) = lim sup
n→∞

1

n
log sup

k≥n,x∈X
r(n, ε, f−kx, f )

≤ lim sup
n→∞

1

n
log sup

k≥n1,x∈X
C(
2)C(
1)r(n1, δ, g

−kx, g)

= lim sup
n→∞

1

τn1 + 
1 + 
2
log sup

k≥n1,x∈X
r(n1, δ, g

−kx, g)

= 1

τ
lim sup
n1→∞

1

n1
log sup

k≥n1,x∈X
r(n1, δ, g

−kx, g)

= 1

τ
hpre(g, δ).

Letting ε → 0 in Assertion 1, we get hpre(g) ≤ τ · hpre(f ). Also, letting δ → 0 and
then taking ε → 0 in Assertion 2, we get hpre(g) ≥ τ · hpre(f ), completing the proof of
the power rule in Theorem 2.1.

Next, we go to the product rule.
Let (X, d1), (Y, d2) be compact metric spaces with continuous maps f : X → X,

g : Y → Y . Give X × Y the metric

d((x1, y1), (x2, y2)) = max(d1(x1, x2), d2(y1, y2)).

We have two things to prove:

hpre(f × g) ≤ hpre(f )+ hpre(g), (13)
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and
hpre(f × g) ≥ hpre(f )+ hpre(g). (14)

Given (x, y) ∈ X × Y , n > 0, k ≥ n, let E ⊂ (f × g)−k(x, y) be a maximal
(n, ε, f × g)-separated set. Let E1 be a minimal (n, ε/2, f ) spanning set in f−kx, and
let E2 be a minimal (n, ε/2, g)-spanning set in g−ky. For each (u, v) ∈ E, there is a pair
(x1(u), y1(v)) ∈ E1 × E2 such that

d1(f
ju, f jx1(u)) ≤ ε

2
and d2(f

jv, f jy1(v)) ≤ ε

2

for 0 ≤ j < n. If (u1, v1), (u2, v2) are in E and are such that x1(u1) = x1(u2) and
y1(v1) = y1(v2), then d1(f

ju1, f
ju2) ≤ ε and d2(g

j v1, g
j v2) ≤ ε for all 0 ≤ j < n.

It follows that (u1, v1) and (u2, v2) remain ε close for all interates (f×g)j with 0 ≤ j < n.
Since E was (n, ε, f × g)-separated, we have (u1, v1) = (u2, v2). Thus, the map
(u, v) → (x1(u), y1(v)) is injective. This implies that

r(n, ε, (f × g)−k(x, y), f × g) ≤ r
(
n,
ε

2
, f−k(x), f

)
· r

(
n,
ε

2
, g−k(y), g

)
.

Let

an(ε) = sup{r(n, ε, (f × g)−k(x, y), f × g) : (x, y) ∈ X × Y, k ≥ n},
bn(ε) = sup{r(n, ε, f−k(x), f ) : x ∈ X, k ≥ n},

and
cn(ε) = sup{r(n, ε, g−k(y), g) : y ∈ Y, k ≥ n}.

Then, we have
an(ε) ≤ bn

(ε
2

)
· cn

(ε
2

)
(15)

so that

hpre(ε, f × g) = lim sup
n→∞

1

n
log an(ε)

≤ lim sup
n→∞

1

n
log bn

(ε
2

)
+ lim sup

n→∞
1

n
log cn

(ε
2

)

= hpre

(ε
2
, f

)
+ hpre

(ε
2
, g

)
.

Letting ε → 0 implies (13).
For the converse statement, it is tempting to try the following.
Let n > 0, k ≥ n, ε > 0. IfE1 is a maximal (n, ε, f )-separated set in f−kx, andE2 is a

maximal (n, ε, g)-separated set in g−ky, thenE1 ×E2 is clearly an (n, ε, f ×g)-separated
set in (f × g)−k(x, y).

This gives

r(n, ε, f−k(x), f ) · r(n, ε, g−k(y), g) ≤ r(n, ε, (f × g)−k(x, y), f × g),

and
bn(ε) · cn(ε) ≤ an(ε).
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If

lim
1

n
log an(ε), lim

1

n
log bn(ε) and lim

1

n
log cn(ε)

all existed, then this would give that hpre(ε, f ) + hpre(ε, g) ≤ hpre(ε, f × g), and (14)
would follow. In general, these limits do not exist, and this argument breaks down.

Instead, we bring the variational principle and the product rule for metric pre-image
entropy to the rescue. Let ε > 0, and let µ, ν be invariant measures so that

hpre,µ(f ) > hpre(f )− ε and hpre,ν(g) > hpre(g)− ε.

Then, we have

hpre(f × g) ≥ hpre,µ×ν(f × g)

= hpre,µ(f )+ hpre,ν(g)

≥ hpre(f )− ε + hpre(g)− ε.

Since ε is arbitrary, (14) follows.
Finally, we prove the topological invariance statement.
Let φ : X → Y be a topological conjugacy from f to g. That is, φ is a homeomorphism

and gφ = φf .
Let d1 be the metric on X and d2 be the metric on Y . It is obvious that the induced

metric φd1 on Y defined by

φd1(y1, y2) = d1(φ
−1y1, φ

−1y2)

gives the same pre-image entropy to g as hpre(f ). Since, the pre-image entropy is
independent of the choice of metric on Y , we have hpre(f ) = hpre(g) as required.

This completes the proof of Theorem 2.1.

4. Proofs of Theorems 2.2 and 2.3
Here and in the sequel we will assume without further mention that all sets considered are
appropriately measurable.

The power rule. Let g = f τ with τ > 0, and consider the two σ -algebras B− =⋂
n f

−n(B), B−
1 = ⋂

n g
−nB = ⋂

n f
−nτ (B).

It is obvious that B− ⊂ B−
1 since the latter is an intersection of fewer sets. On the other

hand, if 
 ≥ k, then f−
(B) ⊂ f−k(B). So, for each n > 0 we have B−
1 ⊂ f−nτ (B) ⊂

f−n(B). Hence, B−
1 ⊂ f−n(B) for all n > 0. This gives

B− = B−
1 . (16)

Let α be a finite partition, and let β = ∨τ−1
i=0 f

−iα. Then,

n−1∨
i=0

g−i (β) =
nτ−1∨
i=0

f−i (α).
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So,

hµ(α | B−, f ) = lim
n→∞

1

nτ
Hµ

( nτ−1∨
i=0

f−iα
∣∣∣∣ B−

)

= lim
n→∞

1

nτ
Hµ

( n−1∨
i=0

g−iβ
∣∣∣∣ B−

)

= 1

τ
lim
n→∞

1

n
Hµ

( n−1∨
i=0

g−iβ
∣∣∣∣ B−

1

)

= 1

τ
hµ(β | B−

1 , g)

≤ 1

τ
hpre,µ(g).

Taking the supremum over all α then gives

hpre,µ(f ) ≤ 1

τ
hpre,µ(g).

On the other hand, returning to hµ(α | B−, f ) = (1/τ)hµ(β | B−
1 , g) and using

hµ(β | B−
1 , g) ≥ hµ(α | B−

1 , g), we get

hµ(α | B−, f ) ≥ 1

τ
hµ(α | B−

1 , g).

This time taking the supremum over all α gives

hpre,µ(f ) ≥ 1

τ
hpre,µ(g).

Product rule. Given a collection γ of sets, let B(γ ) denote the σ -algebra generated by γ .
Observe that if γ 1, γ 2, . . . is an increasing sequence of finite partitions of X such that

B(⋃
γ i

) = B (i.e. the sequence γ i generates B), then for any finite partition α, we have

Hµ(α | B−) = lim
j→∞ lim

i→∞Hµ(α | f−j γ i).

Let BX denote the σ -algebra on X and BY denote that on Y . For U = X,Y, let AU

denote the collection of finite partitions of BU . Let γ 1 ≤ γ 2 ≤ · · · and δ1 ≤ δ2 ≤ · · · be
increasing sequences of finite partitions such that γ i ∈ AX,

⋃
i γ i generates BX, δi ∈ AY ,

and
⋃
i δi generates BY . Then, for any partitions α ∈ AX, β ∈ AY we have

Hµ(α | B−
X) = lim

j→∞ lim
i→∞Hµ(α | f−j (γ i)),

Hν(β | B−
Y ) = lim

j→∞ lim
i→∞Hν(α | g−j (δi)),

and
Hµ×ν(α × β | B−

X×Y ) = lim
j→∞ lim

i→∞Hµ×ν(α × β | f−j (γ i)× g−j (δi )).

Here, of course, we define α × β = {A× B : A ∈ α,B ∈ β}.
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Recall the standard formula

Hµ1(α | β) = Hµ1(α ∨ β)−Hµ1(β) (17)

for a measure µ1 and finite partitions α, β.
Let us use this formula with the notation that A,B,C,D run through α, β, γ , δ,

respectively, to get

Hµ×ν(α × β | γ × δ) = −
∑

A,B,C,D

µ(A ∩ C)ν(B ∩D) log(µ(A ∩ C)ν(B ∩D))

+
∑
C,D

µ(C)ν(D) log(µ(C)ν(D))

= −
∑
A,C

µ(A ∩ C) log(µ(A ∩ C))−
∑
B,D

ν(B ∩D) log(ν(B ∩D))

+
∑
C

µ(C) logµ(C)+
∑
D

ν(D) log ν(D)

= Hµ(α | γ )+Hν(β | δ).
Putting the above formulas together gives that for any finite partitions α of X, β of Y ,

we have
Hµ×ν(α × β | B−

X×Y ) = Hµ(α | B−
X)+Hν(β | B−

Y ).

This implies that, for any positive integer n, we have

Hµ×ν
( n−1∨
k=0

(f × g)−k(α × β)

∣∣∣∣ B−
X×Y

)

= Hµ×ν
( n−1∨
k=0

f−kα ×
n−1∨
k=0

g−kβ
∣∣∣∣ B−

X×Y
)

= Hµ

( n−1∨
k=0

f−kα
∣∣∣∣ B−

X

)
+Hν

( n−1∨
k=0

g−kβ
∣∣∣∣ B−

Y

)
.

Multiplying both sides by 1/n and taking the limit as n → ∞ gives

hpre,µ×ν(α × β, f × g) = hpre,µ(α, f )+ hpre,ν(β, g)

for any α ∈ AX, β ∈ BY . Since hpre,µ×ν(f × g) can be computed as the supremum over
product partitions α × β, this proves the product rule in Theorem 2.2.

Proof of Theorem 2.3. It clearly suffices to prove formula (5).
Let m = qµ+ (1 − q)ν.
Recall from [2, p. 61] that, for any finite partition α, we have

0 ≤ Hm(α)− qHµ(α)− (1 − q)Hν(α) ≤ log 2. (18)

Let γ 1 ≤ γ 2 ≤ · · · be an increasing sequence of finite partitions such that
⋃
i γ i

generates the σ -algebra B.
Then, for any positive integer n and ρ = m, ν,µ, we have

Hρ(α
n | B−) = lim

j→∞ lim
i→∞Hρ(α

n | f−j γ i).

https://doi.org/10.1017/S0143385704000240 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385704000240


Pre-image entropy 1103

By (18), we get

0 ≤ Hm(α
n ∨ f−j γ i)− qHµ(α

n ∨ f−j γ i)− (1 − q)Hν(α
n ∨ f−j γ i) ≤ log 2, (19)

and
0 ≥ −[Hm(f−j γ i)− qHµ(f

−j γ i)− (1 − q)Hν(f
−j γ i)] ≥ −log 2. (20)

The second term of (20) is non-positive, so adding it to the second term of (19) does not
increase the latter’s value, so

Hm(α
n | f−j γ i)− qHµ(α

n | f−j γ i)− (1 − q)Hν(α
n | f−j γ i) ≤ log 2.

Similarly, adding the second term of (19) to that of (20) does not decrease the latter’s value,
so

−log 2 ≤ Hm(α
n | f−j γ i)− qHµ(α

n | f−j γ i)− (1 − q)Hν(α
n | f−j γ i).

Putting these two inequalities together gives

−log 2 ≤ Hm(α
n | f−j γ i)− qHµ(α

n | f−j γ i)− (1 − q)Hν(α
n | f−j γ i) ≤ log 2.

Letting i → ∞ and then j → ∞ gives

−log 2 ≤ Hm(α
n | B−)− qHµ(α

n | B−)− (1 − q)Hν(α
n | B−) ≤ log 2.

Now, dividing by n and letting n → ∞ gives that

hm(α | B−) = qhµ(α | B−)+ (1 − q)hν(α | B−),

as required.

5. Proof of Theorem 2.4
The proof of Theorem 2.4 is a more or less straightforward adaptation of the proof of the
standard Shannon–Breiman–McMillan theorem in [9]. We sketch the ideas.

For a finite partition α, let B(α) denote the σ -algebra generated by α.
For notational convenience, denote Iα |A also by I (α | A) for a partition α and

sub-σ -algebra A.
Let fn = I (α | B(αn1) ∨ B−) for n > 0, and f0 = I (α | B−).
First, observe that

I (αn0 | B−) = I (αn1 | B−)+ I (α | B(αn1) ∪ B−)
= I (αn−1

0 | B−) ◦ f + I (α | B(αn1) ∪ B−)

=
n∑
k=0

fn−kf k. (21)

Integrating both sides, and using f k-invariance of µ gives

Hµ(α
n
0 | B−) =

n∑
k=0

∫
fn−kf k =

n∑
k=0

∫
fn−k =

n∑
k=0

∫
fk.
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This gives the formula

Hµ(α
n
0 | B−) = Hµ(α | B−)+

n∑
k=1

Hµ(α | B(αk1) ∪ B−). (22)

Since the sequenceHµ(α | B(αk1)∪B−) converges non-increasingly to some number h0,
the associated Cesaro sequence

1

n

n∑
k=1

Hµ(α | B(αk1) ∪ B−)

also converges to h0 as n → ∞. However, multiplying both sides of (22) by 1/(n+ 1) and
taking the limit, we then get

h0 = lim
n→∞

1

n+ 1
Hµ(α

n
0 | B−) = hµ(α | B−).

Now, the proof of the Shannon–Breiman–McMillan theorem in [9] gives that the
sequence {I (α | αk1) : k ≥ 1} is an L1-bounded martingale. Since

∫
I (α | B(αk1) ∪ B−) dµ = Hµ(α | B(αk1) ∪ B−)

≤ Hµ(α | B(αk1))
=

∫
I (α | B(αk1)) dµ,

we have that {I (α | B(αk1) ∪ B−) : k ≥ 1} is also an L1-bounded martingale.
Hence, the last sequence converges almost everywhere and in L1 to some integrable

function h. Its Cesaro sums must also converge in both senses to h as well. Note, also, that∫
h dµ = h0.
Again, following the method in [9], we have

lim
n→∞

I (αn0 | B−)
n+ 1

= lim
n→∞

1

n+ 1

n∑
k=0

fn−kf k

= 1

n+ 1

n∑
k=0

(fn−k − h) ◦ f k + 1

n+ 1

n∑
k=0

h ◦ f k.

Since fn → h, the first term in the last equality approaches 0 and the ergodicity of the µ
gives that the second term approaches

∫
h dµ = h0.

Hence,

lim
n→∞

I (αn | B−)
n

= lim
n→∞

I (αn0 | B−)
n+ 1

= h0,

completing the proof of Theorem 2.4.

6. Proof of Theorem 2.5
We adapt the well-known arguments of Misiurewicz (as in [9, pp. 269–271]) to pre-image
entropy.
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Step 1. hpre,µ(f ) ≤ hpre(f ) for all µ ∈ M(f ).
Let µ ∈ M(f ). If E1, E2, . . . , Es is a finite disjoint collection of compact subsets

of X, we call the partition

α =
{
E1, E2, . . . , Es,X

∖ s⋃
i=1

Ei

}

a compact partition. It is easy to verify that hpre,µ(f ) is the supremum of hpre,µ(α, f )

where α varies over the compact partitions.
Thus, using a standard technique, it suffices to prove that, for any compact partition α,

hpre,µ(α, f ) ≤ hpre(f )+ log 2. (23)

Indeed, once this is done, it follows that

hpre,µ(f ) ≤ hpre(f )+ log 2

for every f . Applying this to fN for large N , gives

Nhpre,µ(f ) = hpre,µ(f
N) ≤ hpre(f

N)+ log 2,

or

hpre,µ(f ) ≤ hpre(f )+ log 2

N
.

Letting N → ∞ then, gives hpre,µ(f ) ≤ hpre(f ).

For (23), it suffices to show that there is an ε > 0 such that for any n > 0 and any
k > 0, we have

Hµ(α
n | f−kB) ≤ n log 2 + log sup

x∈X
r(n, ε, f−kx). (24)

Let ε be such that any 4ε-ball meets at most two elements of α.
Let β1 ≤ β2 ≤ · · · be a non-decreasing sequence of finite partitions with diameters

tending to zero. Thus,

B =
∞∨
j=1

βj ,

and
Hµ(α

n | f−kB) = lim
j→∞Hµ(α

n | f−kβj ).

So, it suffices to show that, for sufficiently large j , we have

Hµ(α
n | f−kβj ) ≤ n log 2 + log sup

x∈X
r(n, ε, f−kx). (25)

Let ε1 = ε1(n, ε) > 0 be small enough so that if d(x, y) < ε1, then d(f ix, f iy) < ε

for 0 ≤ i < n.
The collection {f−kx : x ∈ f kX} is an upper-semicontinuous decomposition of X.

Hence, for each x ∈ f kX there is an ε2(x, k, ε1) > 0 such that if d(y, x) <

ε2(x, k, ε1), y ∈ f kX and y1 ∈ f−ky, then there is an x1 ∈ f−kx such that
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d(y1, x1) < ε1. Let U be the collection of open ε2(x, k, ε1) balls in f kX as x varies in
f kX, and let ε3 be a Lebesgue number for U .

Since diam(βj ) → 0 as j → ∞, we may choose j0 large enough so that if j ≥ j0 and
B is an element of βj , then diam(B) < ε3.

Assume j ≥ j0.
For a setC ∈ f−kβj , letµC denote the conditional measure ofµ restricted toC. Let anC

denote the set {A ∩ C : A ∈ αn,A ∩ C �= ∅}.
We have

Hµ(α
n | f−kβj ) =

∑
C∈f−kβj

HµC (α
n
C)µ(C)

≤ max
C∈f−kβj

HµC (α
n
C)

≤ max
C∈f−kβj

log cardαnC.

Fix a B ∈ βj so that C = f−kB is non-empty. For each A ∈ αnC , let xA be an element
of A.

Since f kxA ∈ B and diam(B) < ε3, there is a uB ∈ f kX such that if y ∈ B ∩ f kX,
then d(uB, y) < ε2(uB, k, ε1). In particular,

d(f kxA, uB) < ε2(uB, k, ε1).

Hence, there is a point φ1(A) ∈ f−kuB such that d(xA, φ1(A)) < ε1, so

d(f ixA, f
iφ1(A)) < ε

for 0 ≤ i < n.

Let EC be a maximal (n, ε)-separated set in f−kuB .
Since EC spans f−kuB , there is a point φ2(A) ∈ EC such that, for 0 ≤ i < n,

d(f iφ1(A), f
iφ2(A)) ≤ ε,

and, hence,
d(f ixA, f

iφ2(A)) ≤ 2ε.

We have defined a map φ2 from αnC into EC . Hence,

card(αnC) ≤ cardEC ·
(

max
y∈EC

φ−1
2 (y)

)
.

To prove (25), we will show

card(φ−1
2 (y)) ≤ 2n (26)

for each y ∈ EC .
Let A, Ã be such that φ2(xA) = φ2(Ã).
Then, for 0 ≤ i < n, we have

d(f ixA, f
ixÃ) ≤ 4ε.

It follows that f ixA is in the 4ε ball about f ixÃ. Since each 4ε ball meets at most two
elements of α, it follows that there are at most 2n choices for A, Ã. This proves (25) and
finishes the proof of Step 1.
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Step 2. We have

hpre(f ) ≤ sup
µ∈M(f )

hpre,µ(f ). (27)

Given ε > 0, we wish to produce an f -invariant probability measure µ such that

hpre,µ ≥ hpre(f, ε). (28)

Again we want to follow the idea of the Misiurewicz proof of the standard variational
principle (as in [9, pp. 269–271]), but we must make important modifications. Although it
is not strictly necessary, the reader will find it helpful in what follows to be familiar with
the proof in the aforementioned reference. We will motivate our construction by making
frequent reference to that proof. When it is convenient to refer to the arguments in [9],
we simply call them the SVP arguments.

Choose sequences ni → ∞, ki > ni, xi ∈ X, such that

hpre(f, ε) = lim
i→∞

1

ni
log r(ni, ε, f−ki xi, f ).

Let Ei denote a maximal (ni , ε)-separated set in f−ki xi such that cardEi =
r(ni, ε, f

−ki xi, f ). Thus, we have

hpre(f, ε) = lim
i→∞

1

ni
log cardEi. (29)

Letting δx denote the point mass at point x ∈ X, let

µi = 1

cardEi

∑
x∈Ei

δx,

let

νi = 1

ni

ni−1∑
j=0

f
j
 µi,

and let

ν = lim
i→∞ νi ,

where we have passed to subsequences assuring that the last limit of measures exists.
Let α be a finite ν-continuity partition such that diam(α) < ε. That is, for each A ∈ α,

µ(∂A) = 0 and diam(A) < ε.
Motivated by the SVP arguments in [9], we wish to show that, for every positive

integerm,

Hν(α
m | B−) ≥ mhpre(f, ε). (30)

Indeed, from this, we have

hpre,ν(f ) ≥ hpre,ν(α, f ) = inf
m

Hν(α
m | B−)
m

≥ hpre(f, ε),

as required.
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If we were in the SVP case and not conditioning on B−, the result that Hν(αm) ≥
mh(f, ε) follows from the following two facts:

Hν(α
m) = lim

i→∞Hνi (α
m) (31)

and

Hνi (α
m) ≥ 1

ni

ni−1∑

=0

Hf
 µi
(αm) = 1

ni

ni−1∑

=0

Hµi (f
−
αm). (32)

Statement (31) follows from the fact that the map µ → µ(A) is continuous at ν, and
statement (32) follows from the concavity of the function t → −t log t arising in the
entropy formula

Hνi (α
m) =

∑
A∈αm

−νi(A) log νi(A). (33)

We need to establish the analogs of (31) and (32) after conditioning on B−. To do this
we will make use of the Rokhlin theory of measurable partitions (see [5] for definitions and
basic facts about this theory). This theory concerns itself with complete measure spaces,
so we will actually deal with a slightly larger σ -algebra B−

C in which ν is complete.
Let C denote the subcollection of B− consisting of ν-null sets. That is, E ∈ C if and

only if E ∈ B− and ν(E) = 0. Since the countable union of elements in C is again in C,
it follows that for any σ -algebra A of subsets of X, there is an enlarged σ -algebra AC
defined by A ∈ AC if and only if there are sets B,M,N such that A = B ∪ M , B ∈ A,
N ∈ C andM ⊆ N . The σ -algebraB−

C is simply the standard ν-completion of B−. We will
also consider the σ -algebras Bk = (f−kB)C for k ≥ 1.

Since f−1(C) ⊆ C, we have that

B1 ⊇ B2 ⊇ · · · .
Letting B∞ = ⋂

k≥1 Bk, it is easy to check that

B− ⊂ B−
C ⊂ B∞,

and
f−
Bk ⊂ B
+k for all 
 ≥ 1.

Note that the σ -algebras Bk,B∞ are not necessarily ν-complete.

LEMMA 6.1. Under the above notation, we have

Hν(α
m | B−) ≥ lim sup

i→∞
Hνi (α

m | B∞), (34)

and

Hνi (α
m | Bki ) ≥ 1

ni

ni−1∑

=0

Hf
 µi
(αm | Bki ). (35)

Remark. In the course of the proof of the lemma, we will see that while the proof of
estimate (34) is rather straightforward, that of (35) is considerably more complicated. It is
not true that

Hνi (α
m−1
0 | A) ≥ 1

ni

ni−1∑

=0

Hf
 µi
(αm−1

0 | A) (36)

for all average measures νi and all invariant sub-σ -algebras A. Indeed, statement (35)
holds because the measure νi is closely related to the measurable partition {f−ki x : x ∈X}.
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Proof of (30) assuming Lemma 6.1. Since B− ⊆ B∞, we have that

Hν(α
m | B−) ≥ Hν(α

m | B∞). (37)

Further, since B∞ is the decreasing limit of the subalgebras Bk, we clearly have

Hν(α
m | B∞) ≥ Hν(α

m | Bki ),
for all i.

Also, since µi is supported on f−ki xi , the canonical system of conditional measures
induced by µi on the measurable partition {f−ki x : x ∈ X} reduces to a single measure on
the set f−ki xi which we may identify with µi .

Now, each element A ∈ Bki can be expressed as the disjoint union A = B ∪ C with

B ∈ f−kiB = {f−ki x : x ∈ X},
and C ∈ C. Since µi is supported on elements of f−kiB, we have µi(C) = 0. Hence, for
any finite partition γ , we have

Hµi (γ | Bki ) = Hµi (γ | f−ki xi).

Since each element of αm | f−ki xi has at most one point, we have

Hµi (α
m | f−ki xi) = log cardEi.

In the sequel, for non-negative integers a ≤ b, let us denote by [a, b) the set of integers
j such that a ≤ j < b.

For 0 ≤ j < m, let

C(i, j) = {n ∈ [0, ni) : n ≡ j mod (m)},
and let

ρ(i) = max C(i, j).

We use the standard notation

αts =
j=t∨
j=s

f−jα, αs = αs−1
0 .

Since we can express [0, ni) as the disjoint union

[0, ni) =
⊔

0≤j<m
C(i, j), (38)

and, for each fixed 0 ≤ j < m, we can write

αni−1 = αj ∨
( ∨
t∈C(i,j)

f−t αm
)

∨ αni−1
ni−ρ(i), (39)

we get

log cardEi = Hµi (α
ni−1 | f−ki xi)

≤ Hµi (α
j | f−ki xi)+Hµi

( ∨
t∈C(i,j)

f−t αm
∣∣∣∣ f−ki xi

)

+Hµi (α
ni−1
ni−ρ(i) | f−ki xi).
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Thus,

Hµi

( ∨
t∈C(i,j)

f−t αm
∣∣∣∣ f−ki xi

)
≥ log cardEi − 2m log cardα. (40)

Using (35) we have

Hνi (α
m | B∞) ≥ Hνi (α

m | Bki )
≥ H

(1/ni)
∑ni−1

=0 f 
 µi

(αm | Bki )

≥ 1

ni

ni−1∑

=0

Hf
 µi
(αm | Bki )

= 1

ni

ni−1∑

=0

Hµi (f
−
αm | f−
Bki )

≥ 1

ni

ni−1∑

=0

Hµi (f
−
αm | Bki )

≥ 1

ni

∑
0≤j<m

∑

∈C(i,j)

Hµi (f
−
αm | Bki )

≥ m

ni
inf

0≤j<mHµi
( ∨

∈C(i,j)

f−
αm
∣∣∣∣ Bki

)

= m

ni
inf

0≤j<mHµi
( ∨

∈C(i,j)

f−
αm
∣∣∣∣ f−ki xi

)

≥ m

ni
[log cardEi − 2m log cardα].

From these inequalities, we get that

lim sup
i→∞

Hνi (α
m | B∞) ≥ lim sup

i→∞
m

ni
[log cardEi − 2m log cardα]

= lim
i→∞

m

ni
[log cardEi − 2m log cardα]

= mhpre(f, ε).

This and (34) proves (30).

Proof of Lemma 6.1. The triple (X,B−
C , ν) is a Lebesgue space together with a (possibly

empty), at most countable, set of atoms. Hence, we can find an increasing sequence
β1 ≤ β2 ≤ · · · of finite partitions consisting of elements of B−

C such that

B−
C =

∞∨
j=1

βj

and each βj is a ν-continuity partition.
Then,

Hν(α
m | B−

C ) = inf
j
Hν(α

m | βj ). (41)
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Also, since αm and all of the βj ’s are ν-continuity partitions, we have

Hν(α
m ∨ βj ) = lim

i→∞Hνi (α
m ∨ βj )

and
Hν(βj ) = lim

i→∞Hνi (βj ).

This and the standard formulas

Hν(α
m | βj ) = Hν(α

m ∨ βj )−Hν(βj )

and
Hνi (α

m | βj ) = Hνi (α
m ∨ βj )−Hνi (βj )

give
Hν(α

m | βj ) = lim
i→∞Hνi (α

m | βj ). (42)

Now, letting ε1 > 0 and using (41), we can pick j such that

Hν(α
m | B−

C ) > Hν(α
m | βj )− ε1.

Then, using (42), we have

Hν(α
m | B−

C ) ≥ Hν(α
m | βj )− ε1

= lim
i→∞Hνi (α

m | βj )− ε1

≥ lim sup
i→∞

Hνi (α
m | B−

C )− ε1

≥ lim sup
i→∞

Hνi (α
m | B∞)− ε1.

Since Hν(αm | B−) ≥ Hν(α
m | B−

C ) and ε1 was arbitrary, we get (34).
Next, we proceed to the proof of (35).
The measure νi is supported on the set

X̄ =
ni−1⋃

=0

f−ki (f 
xi).

Case 1. For every pair of integers 0 ≤ r < s ≤ ki , f rxi �= f sxi .
In this case, let ξ = {f−ki (f 
xi) : 0 ≤ 
 < ni}. This is a finite partition of X̄,

and each of the measures f 
 µi is supported on the element f−ki (f 
xi) of the partition ξ .
Moreover, f 
 µi coincides with the conditional measure νi,C of νi on the element C =
f−ki (f 
xi) ∈ ξ . Note that νi(C) = 1/ni for each C ∈ ξ .

We have

Hνi (α
m | Bki ) = Hνi (α

m | ξ)
=

∑
C∈ξ

Hνi,C (α
m | C)νi(C)

= 1

ni

ni−1∑

=0

Hf
 µi
(αm | f−ki (f 
xi))

= 1

ni

ni−1∑

=0

Hf
 µi
(αm | Bki ).
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So, in case 1, we actually have equality in (35).

Case 2. There are integers 0 ≤ s < t < ni such that f sxi = f txi .
In this case, let τ 1 be the least positive integer such that there is a t > τ 1 such that

f txi = f τ 1xi , and let τ be the least integer such that τ > τ 1 and f τ 1xi = f τ 1+τ xi .
Then, {f−ki (f 
xi) : 0 ≤ 
 < ni} is the disjoint union⊔

0≤
<τ 1+τ
f−ki (f 
xi).

This time, let ξ be the partition

ξ = {C = f−ki (f 
xi) : 0 ≤ 
 < τ 1 + τ },
and, again, let νi,C denote the conditional measure of νi on C.

For each τ1 ≤ 
 < τ 1+τ , letD(
) be the set of integers in [τ1, ni)which are congruent
to 
 mod τ , and let d(
) = cardD(
).

Then, for 0 ≤ 
 < τ 1, f 
 µi is supported on the single element f−ki (f 
xi) of Bki
which gives

Hf
µi (α
m | f−ki (f 
xi)) = Hf
µi (α

m | Bki ). (43)

In addition, we have
νi,f −ki (f 
xi) = f 
 µi (44)

and

νi(f
−ki (f 
xi)) = 1

ni
. (45)

On the other hand, for τ 1 ≤ 
 < τ 1 + τ , and s ∈ D(
), f s µi is supported on the single
element f−ki (f 
xi) of Bki which gives

Hfs µi (α
m | f−ki (f 
xi)) = Hfs µi (α

m | Bki ). (46)

In addition, we have

νi,f−ki (f 
xi) = 1

d(
)

∑
s∈D(
)

f s µi (47)

and

νi(f
−ki (f 
xi)) = d(
)

ni
. (48)

From concavity of s → −s log s, we get, for τ 1 ≤ 
 < τ 1 + τ ,

Hν
i,f−ki (f 
xi )

(αm | f−ki (f 
xi)) ≥ 1

d(
)

∑
s∈D(
)

Hf s µi (α
m | f−ki (f 
xi)). (49)

Applying the above statements gives

Hνi (α
m | Bki ) = Hνi (α

m | ξ)
=

∑
C∈ξ

Hνi,C (α
m | C)νi(C)

=
∑

0≤
<τ 1

Hν
i,f−ki (f 
xi )

(αm | f−ki (f 
xi))νi(f−ki (f 
xi))

+
∑

τ 1≤
<τ 1+τ
Hν

i,f−ki (f 
xi )
(αm | f−ki (f 
xi))νi(f−ki (f 
xi))
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≥ 1

ni

∑
0≤
<τ 1

Hf
 µi
(αm | f−ki (f 
xi))

+ 1

ni

∑
τ 1≤
<τ 1+τ

∑
s∈D(
)

Hf s µi (α
m | f−ki (f 
xi))

= 1

ni

∑
0≤
<τ 1

Hf
 µi
(αm | Bki )

+ 1

ni

∑
τ 1≤
<τ 1+τ

∑
s∈D(
)

Hf s µi (α
m | Bki )

= 1

ni

ni−1∑

=0

Hf
 µi
(αm | Bki ),

completing the proofs of (35), Lemma 6.1 and Theorem 2.5.
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