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An improved method to correct observed shift and asymmetric deformation of diffraction peak profile
caused by the axial-divergence aberration in Bragg–Brentano geometry is proposed. The method is
based on deconvolution–convolution treatment applying scale transform of abscissa, Fourier trans-
form, and cumulant analysis of an analytical model for the axial-divergence aberration. The method
has been applied to the powder diffraction data of a standard LaB6 powder (NIST SRM660a) sample,
collected with a one-dimensional Si strip detector. The locations, widths and shape of the peaks in the
deconvolved–convolved powder diffraction data have been analyzed. The finally obtained whole
powder diffraction pattern ranging from 10° to 145° in diffraction angle has been simulated by
the Pawley method applying a symmetric Pearson VII peak profile model to each peak with ten back-
ground, two peak-shift, three line-width, and two peak-shape parameters, and the Rp value of the best
fit has been estimated at 4.4%. © 2018 International Centre for Diffraction Data.
[doi:10.1017/S0885715618000349]
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I. INTRODUCTION

We have previously proposed a whole-pattern deconvolu-
tion method for laboratory powder X-ray diffraction data (Ida
and Toraya, 2002). It may appear to be equivalent to a curve-
fitting method with a peak profile model synthesized by mul-
tiple convolutions with instrumental functions, often referred
as “fundamental-parameters approach” (FPA) (Cheary and
Coelho, 1992).

In theoretical and practical points of view, there are both
favorable and unfavorable features in the deconvolution
method. Since all the deconvolution treatment can be com-
pleted by application of the fast Fourier transform (FFT) algo-
rithm, the computation time needed for deconvolution–
convolution treatment is quite short. There is practically no
restriction about the complexity about the spectroscopic pro-
file model for the source X-ray to be assumed, as demonstrated
in another article (Ida et al., 2018). Deconvolution method can
remove the deformation of peak profile caused by instrumental
aberrations, and it will be helpful to find possible intrinsic
asymmetry of diffraction peak profile, which may be caused
by inhomogeneous strain, stacking fault, chemical inhomoge-
neity, etc. without any structure model or identification of
phases.

The effects of spectroscopic profile and instrumental aber-
rations on the observed diffraction profile are not exactly
expressed by the convolution with instrumental functions on
the scale of diffraction angle 2θ, while the effect of the

spectroscopic profile of source X-ray is exactly expressed
by convolution on the scale of ln sinθ, for example.
Application of appropriate scale transform can easily be
implemented in the whole-pattern deconvolution–convolution
method, while it is quite difficult to treat the 2θ-dependence of
the instrumental function properly in the FPA method. The
FPA method usually applies the instrumental function deter-
mined at the peak position to whole the diffraction peak
profile, even if the tails of lower- and higher-angle sides of
the peak should be affected by different instrumental functions
when the observed peak is broad.

On the other hand, there is theoretical difficulty about the
estimation of error propagation in the whole-pattern deconvo-
lution–convolution method. Even if the statistical errors in the
observed diffraction intensity data can be assumed to be stat-
istically independent, the deconvolved–convolved data will
lose the independence.

There was another problem in the method described in our
previous report (Ida and Toraya, 2002), where the effects of
axial-divergence aberration were modeled by the convolution
of two component functions defined on the transformed scale
of abscissa, x′− = − ln cos u and x′+ = ln sin u for the diffrac-
tion angle 2θ.

The model could simulate primary dependence of the
axial-divergence aberration upon the diffraction angle,
where the broadenings of the lower- and higher-angle compo-
nents are proportional to cot u and tanθ, respectively.
However, detailed cumulant analysis on the theoretical for-
mula of axial-divergence aberration function suggests that
there is a small discrepancy between the precise formula for
the axial-divergence aberration and the convolution model
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applied in the previous whole-pattern deconvolution
treatment. In this study, the mathematical formula for the
convolution model for axial-divergence aberration has been
modified to meet the requirements that the lower-order cumu-
lants of the approximate formula should have the same values
as the precise formula.

II. THEORETICAL

A. Characteristics of the axial-divergence aberration

function

The axial-divergence aberration function ωA(Δ2θ) for a
powder diffractometer with Bragg–Brentano geometry is well
approximated by the following integral formula (Ida, 1998):

vA D2u( ) = 1

C2
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whereΨ is the axial-divergence angle defined by the ratio of the
interval to the length of the Soller slits, 2θ is the diffraction
angle, and δ(x) is the Dirac delta function. The characteristics
of the axial-divergence aberration function ωA(Δ2θ) can be
derived without solving Eq. (1) (see Appendix A).

The average position 2θA of the function ωA(2θ) is given by

2uA ;
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and the variance D2u( )2A, which can be connected with the peak
width, is given by
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The third-order central moment D2u( )3A, which can be
connected with the asymmetry in peak shape, is given by
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The average, variance, and third-order central moment are
identical to the first, second, and third-order cumulants of
the function ωA(Δ2θ), respectively. Note that the formula pre-
viously proposed (Ida and Toraya, 2002) could only model the
third-order central moment proportional to tan3 u− cot3 u

( )
.

Since the cumulant of the convolution is generally equal
to the sum of cumulants of component functions, it should
not be very difficult to construct an approximate convolution
formula that can reproduce exact values of both the first and
third-order cumulants of the function ωA(2θ).

It is assumed that there is no need to change the effects of
the even-order cumulants of the instrumental function on the
deconvolution–convolution treatment.

B. Scale transform of convolution model for

axial-divergence aberration

We have noticed that slight modification of the formula
for the scale transform allows us to achieve coincidence of
both the first and third-order cumulants of the axial-divergence
aberration function with the convolution of two asymmetric
functions defined on two different scales of abscissa.

The formulas of two abscissa scales, χ+ and χ−, which
should be used on the deconvolution–convolution treatment
instead of the diffraction angle 2θ, are given by the following
equation:

x+ = +
ln 1+ b+ 1− b

( )
cos 2u

[ ]
1− b

, (5)

where β is a constant given by

b = 71− 14
���
22

√

27
= 0.197562. (6)

The derivation of the above formulas and the constant
value of β in Eq. (6) is described in Appendix B.

C. Model component functions

A model for the component functions examined in this
study is an extension of that used in our previous study (Ida
and Toraya, 2002), modified to reproduce the shift (first-order
cumulant) and asymmetric shape (third-order cumulant) of the
axial-divergence aberration function. The formula for the
component functions w±(χ±) defined on the scales of χ± is
given by
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where δ and γ are given by

d = C2

12 1− b
( )− ag, (9)

g = 169

120960a 1− b3
( )

[ ]1/3

C2 . (10)

The function Γ(α) in Eq. (8) is the gamma function
defined by

G a( ) ;
∫1
0

ta−1e−tdt. (11)

The details about the derivation of the above formulas are
described in Appendix C.

The analytical formula of the Fourier transform of the
function w(χ) is given by
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The first- and third-order cumulants of the convolution of
the component functions on 2θ-scale are then both coincided
with those of the axial-divergence aberration function
described in Section II.A. The second-order cumulant of the
convolution model given by

D2u( )2= ag2 1+ b2
( )

tan2 u+ 54
71

+ cot2 u

( )
(13)

is different from that given in Eq. (3), but the difference does
not matter in the treatment applied in the method proposed in
this paper, as will be shown in Section II.D.

D. Deconvolution–convolution treatment of

axial-divergence aberration

Deconvolution–convolution treatment of axial-divergence
aberration is divided into two steps, treatments on two abscissa
scales, χ+ and χ−, given in Eq. (5).

When the observed powder diffraction intensity data are
given as a set of diffraction angles and intensities (2θ, I ),
the abscissa and ordinate values are changed to (χ±, η±),
where the transformation of the intensity values are given by

h+ = IC 2u( ) tan u+ bcot u
( )

, (14)

h− = IC 2u( ) cot u+ btan u
( )

. (15)

The function C(2θ) in Eqs. (14) and (15) is the geometric
correction factor given by

C 2u( ) = 2 sin u sin 2u
1+ cos2 2u

(16)

for a Bragg–Brentano powder diffractometer without a diffrac-
tive optical element.

The deconvolution–convolution process about intensities,
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whereΔχ± is the sampling interval on theχ± scale.Multiplication
by |W±(ξk)| on division by W±(ξk) in Eq. (17) confirms that the
effects of even-order cumulants of the instrumental function
are unchanged by the treatment (see Appendix D), even if the
usedmodel function does not precisely reproduce the even-order
cumulants of the instrumental function. This treatment is equiv-
alent to the convolution of a symmetrized instrumental function
on deconvolution with an asymmetric instrumental function.

We have already suggested that this treatment can effec-
tively smoothen the deconvolved intensity profile (Ida and
Hibino, 2006), but it is rather essential to the current method,
because the second-order cumulants of the convolution of the
model functions are clearly different from that of the exact instru-
mental function, as shown inEqs. (3) and (13).Note that the line-
broadening effect of the axial divergence aberration still remains
in the deconvolved–convolved data, and the effect should be
modeled by the formula given in Eq. (3), if necessary.

E. Error propagation in deconvolution–convolution

process

Even if the statistical errors in the observed intensity data
can be assumed to be mutually independent, the errors in the
deconvolved datawill lose the independence on the deconvolu-
tion process. In otherwords, the error (covariance)matrix of the
deconvolved data should have non-zero off-diagonal elements.
In our previous report (Ida and Toraya, 2002), we have sug-
gested two types of simplification to evaluate the errors in
deconvolved data: (i) neglect of the off-diagonals elements of
the covariance matrix and (ii) neglect of the off-diagonal ele-
ments of the weight matrix, which is identical to the inverse
matrix of the covariance matrix.

The analytical results based on the former simplification
assuming counting statistical errors have shown an overesti-
mation of errors in low-intensity reflections, and those based
on the latter simplification have shown an underestimation
of errors in high-intensity reflections (Ida and Toraya,
2002). As it is currently well known that powder diffraction
data are also affected by other types of statistical errors (Ida
et al., 2009), we can apply the latter simplification as the
more appropriate treatment of the errors in the deconvolved
data almost in no doubt.

The statistical variance in the deconvolved data are then
evaluated as the reciprocal of the correlation of the reciprocal
of the source variance with the squared instrumental function
(Ida and Toraya, 2002). The treatment may appear to refuse
zero-count data, but a Bayesian interpretation (see Appendix
E) or use of calculated intensity instead of the observed
count (Antoniadis et al., 1990) will solve the problem.

III. ANALYSIS OF EXPERIMENTAL DATA

A. Experimental

Powder diffraction data of standard LaB6 powder (NIST
SRM660a) were collected with a powder diffraction measure-
ment system (PANalytical, X’Pert PRO MTD) of θ–θ-type
goniometer equipped with a micoro-focus Cu-target sealed
tube with the effective focal width of WS = 0.04 mm operated
at 45 kV and 40 mA, and a one-dimensional Si strip detector
(PANalytical X’Celerator) at the distance of R = 240 mm from
the rotation axis of the goniometer. The interval of the detector
strips was WD = 0.075 mm. The 2Θ-margins of the X-ray
source Δ2ΘS and the detector Δ2ΘD are estimated at

D2QS = 180◦

p

0.04
240

= 0.0095◦, (20)

D2QD = 180◦

p

0.075
240

= 0.0179◦, (21)
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and the standard statistical error in the diffraction angle, Δ2θ,
is then estimated at

D2u =
�����������������������
D2QS( )2 + D2QD( )2

12

√
= 0.0059◦, (22)

on the assumption of uniform probability distribution about
the detection of X-ray photons.

Fixed-angle divergence slit of 0.5° and a couple of Soller
slits with the open angle of 0.04 rad were used. Ni foil of 0.02
mm in thickness was used as a Kβ filter. The one-dimensional
powder diffraction intensity data were created by an automatic
measurement/data-processing program (PANalytical, Data
Collector) from the integration of five iterations of continuous
scans for the diffraction angles ranging from 10° to 145° with
the nominal step interval of 0.0167° and nominal measure-
ment time of 10.16 s step−1. Further details about the experi-
mental conditions are described elsewhere (Ida et al.,
submitted).

B. Optimization of the component functions

The optimum values of the shape parameter α in the model
component functions were searched by fitting the Pearson VII
peak profile function with the linear background to the decon-
volved intensities around observed LaB6 100-reflection. The
Pearson VII function with the integral breadth of B is given by

fP7 k;B,m
( ) = 1

B
1+ p

G m− 1/2
( )

k

G m
( )

B

[ ]2
⎧⎨
⎩

⎫⎬
⎭

−m

, (23)

where μ is a shape parameter. The Pearson VII function
becomes identical to the Gaussian function for the limit
μ→∞, modified Lorentizan, intermediate Lorentzian, and
Lorentzian for μ = 2, 1.5, and 1, respectively, and the profile
will become “super-Lorentzian” for 0.5 < μ < 1 (Ida, 2008).
The values of χ2 of the fitting, defined by

x2 =
∑n−1

j=0

1
s2
j

yj − f xj
( )[ ]2

, (24)

have been evaluated for α = 0.02, 0.04, . . ., 0.98, where {yj} is
the deconvolved data, f(xj) is the value of the Pearson VII func-
tion, and {σj} is the estimated error in the deconvolved data,

initially assumed to be the propagation of the counting statisti-
cal error and the 2θ-error propagation to intensity in the source
data (Ida, 2016). The reason why the 2θ-error propagation is
taken into account in the current analysis is explained in
Appendix F.

The effects of the spectroscopic intensity distribution of
the source X-ray have been removed by the deconvolution–
convolution method described in another article (Ida et al.,
2018). The asymmetric deformation and peak-shift caused
by the flat-specimen and sample-transparency aberrations
have also been removed by the method previously proposed
(Ida and Toraya, 2002).

Figure 1 shows the dependence of minimum χ2 on the
variation of α, where the axial-divergence angle is assumed
to be Ψ = 2.29° (0.04 rad). The value of χ2 has a minimum
about 141 at α = 0.80. The number of analyzed data points
was N = 63 for the 100-reflection, and the number of adjusted
parameters were P = 6. The larger value of χ2 than (N–P) may
be caused by the difference of the intrinsic peak profile from
Pearson VII function or underestimation of statistical errors.

The results of Pearson VII curve fitting to the decon-
volved–convolved LaB6 100-peak profile are shown in
Figure 2(c) and (d). The shape parameter of the Pearson VII
function is optimized to be μ = 1.00(14), which indicates
that the profile of the deconvolved–convolved data are close
to the Lorentizan profile.

The residuals of the Pearson VII fitting for the decon-
volved–convolved 100-reflection shows six-node profile (six
crossing points to the zero line) as can be seen in Figure 2
(d), which confirms that the intensity, peak location, width,
asymmetry, and sharpness of the peak profile are reproduced
by the optimized Pearson VII function. Since the apparently
larger deviation from the assumed error is almost systematic,
it does not mean the underestimation of errors, but rather indi-
cates the mismatch of the Pearson VII fitting. If the systematic
part of the deviation can be removed, the residuals (statistical
errors) might be close to or even smaller than the assumed
errors. It is concluded that there is no evidence that indicates
overestimation or underestimation of errors, even though the
error estimation applied here might be quite different from a
traditional way.

It is also likely that the deviation is partly affected by the
particle statistics (Ida and Izumi, 2011, 2013). The estimation
of unknown errors should be based on a maximum-likelihood
approach, but we here apply a simplified method just to avoid
possible underestimation of errors in optimized profile

Figure 1. (Colour online) The values of χ2 evaluated for
Pearson VII fitting to the deconvolved 100-peak profile on
variation of the parameter α.
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parameters. The method is based on least-squares minimiza-

tion to the squared residuals r2j

{ }
by the sum of statistical

variance assuming the following formula:

r2j ≈ s2
j + f yobs

( )2
j
, (25)

where f is an adjustable parameter, σj is the initially estimated
error, and (yobs)j is the observed intensity. The second term on
the right-hand side of Eq. (25) can approximately be corre-
sponded to the effects of particle statistics. The error values
adjusted by Eq. (25) are also shown in Figure 2(d). The results
of the final Pearson VII fitting shown in Figures 2(c) and 2(d)
are based on the errors adjusted by the above method, but no
significant difference from the results based on the initially
assumed errors has been detected. The assumed errors might
be overestimated, but the effect of particle statistics should
be less significant on the scan with one-dimensional detector,
because the integration of the intensities from the different
detector strips should enhance the probability that a randomly
oriented crystallite satisfies the diffraction condition, and
increase the number of diffracting crystallites that contributes
to the observed diffraction intensities.

C. Comparison with convolved (FPA) profile fitting to

observed data

The observed diffraction data are analyzed by individual
profile fitting with an FPA model, which is a diffraction
peak profile model synthesized by combination of the

pseudo-Voigt function (Thompson et al., 1987), CuKα emis-
sion profile (Deutsch et al., 2004), and approximate instru-
mental aberration functions (Ida and Kimura, 1999a; b). All
instrumental parameters including 11 independent parameters
to determine four Lorentzian components of the normalized
CuKα emission profile, axial divergence angle Ψ, equatorial
divergence angle Φ, penetration depth μ−1, and goniometer
radius R were treated as fixed constants. The formula used
for the fitting is given by the following equations:

f 2u( ) = b0 + b1 2u− 2u1( ) + IfS∗A∗F∗T 2u− 2u1( ) , (26)

fS∗A∗F∗T D2u( ) = fS D2u( ) ∗ vA D2u( ) ∗ vF D2u( )
∗ vT D2u( ) , (27)

fS D2u( ) = fTCH D2u; WG,WL( ) ∗ fa D2u( ) , (28)

where b0 and b1 are background parameters, 2θ1 is the nomi-
nal Kα1 peak position, I is the integrated intensity, and the
function fS*A*F*T(2θ) is the multiple convolution of the func-
tion fS(Δ2θ) with the approximate instrumental aberration
functions for axial-divergence ωA(Δ2θ) (Ida, 1998), flat-
specimen ωF(Δ2θ) (Ida and Kimura, 1999a), and sample trans-
parency ωT(Δ2θ) (Ida and Kimura, 1999b). The function
fS(Δ2θ) is the convolution of the pseudo-Voight function
fTCH(Δ2θ; WG, WL) determined by the full-width at half-
maximum (FWHM) of the Gaussian and Lorentzian compo-
nents, WG and WL (Thompson et al., 1987), with the CuKα
emission profile fα(Δ2θ) (Deutsch et al., 2004). Two back-
ground parameters, intensity, peak position, and Gaussian

(a)

(b)

(c)

(d)

Figure 2. (Colour online) (a) Observed LaB6

100-reflection data and an FPA fitting curve calculated by
a combination of pseudo-Voigt functions (Thompson
et al., 1987) with a fixed Lorentzian components
(Deutsch et al., 2004), and multiply convolved with the
instrumental aberration functions (Ida and Kimura,
1999a; b), (b) estimated errors and fitting residuals in (a),
(c) deconvolved–convolved data and the optimized
symmetric Pearson VII function, and (d) estimated errors
and fitting residuals in (c). Vertical arrows in (a) and (c)
indicate the peak locations estimated by the FPA analysis
and deconvolution–convolution treatment.
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and Lorentzian width, {b0, b1, I, 2θ1, WG, WL}, are treated as
adjustable parameters.

The results of the FPA fitting to LaB6 100-reflection are
shown in Figures 2(a) and 2(b). The amount of errors esti-
mated for the observed data and the errors caused by counting
statistics are also shown in Figure 2(b). Most part of the errors
estimated for the 100-peak is assigned to the propagation of
2θ-errors, and the results of fitting suggest overestimation of
errors. It is not surprising, because the sensitivity of the strip
detector should not be uniform, and the effective width of a
strip detector is likely to be more restricted than the interval
of the strips.

The optimized values of Kα1-peak location, marked by
vertical arrows in Figures 2(a) and 2(c), are 2θ100 = 21.3672
(11)° and 21.36561(12)° for the observed and deconvolved–
convolved data, respectively. There is slight discrepancy
between the above values of 2θ100 beyond the estimated
errors, but the apparent peak profile of the source data and
the estimated peak positions in Figures 2(a) and 2(c) support
that the deconvolution–convolution treatment automatically
corrects the apparent peak shift caused by instrumental aberra-
tions, similarly to the FPA-fitting method.

The optimized value of the FWHM of the Gaussian com-
ponent of the FPA fit to the 100-reflection, WG = 0.003(12)°,
may appear to be consistent with that the deconvolved–con-
volved 100-reflection data also show Lorentzian-like profile
with the optimized Pearson VII shape parameter of μ =
1.000(14), but the relation is not straightforward, because
the deconvolved–convolved data are not intrinsic diffraction

peak profile, but the convolution with the symmetrized instru-
mental functions.

Figures 2(b) and 2(d) show a remarkable reduction of the
estimated statistical errors through the deconvolution–convo-
lution process. A tendency to underestimation of errors may
be introduced by the neglect of the off-diagonal elements of
the weight matrix on the deconvolution–convolution process,
but the difference plot shown in Figure 2(d) still supports that
the calculated errors are not heavily underestimated.

Figures 3 and 4 show the analytical results for 321 and
510-reflections. The FPA fitting for 510-refection shows sig-
nificant deviation from the observed data, but it should not
be caused by possible faults of the assumed spectroscopic or
instrumental parameters because the deconvolved–convolved
data based on the same parameters do not show such signifi-
cant deviation. The discrepancy in the results of FPA analysis
is likely to be caused by the insufficient implementation of the
model applied here.

D. Peak positions

The effects of automatic peak-shift correction expected to
be achieved by both the FPA and deconvolution–convolution
methods have been examined by evaluating the nominal lat-
tice parameter ahkl calculated from each peak position 2θhkl,
by the following equation:

ahkl = la1
��������������
h2 + k2 + l2

√

2 sin uhkl
, (29)

(a)

(b)

(c)

(d)

Figure 3. (Colour online) Observed data, fitting results
to the observed data, deconvolved–convolved data, and
fitting results to the deconvolved–convolved data about
LaB6 321-reflection. See the caption of Figure 2 for the
definitions.
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where λα1 = 1.5405929 Å is the assumed CuKα1 peak wave-
length. The values of ahkl calculated for 23 peak locations
are plotted in Figure 5.

Firstly, a naive model for the peak shift (McCusker et al.,
1999) was applied, the formula of which to simulate the calcu-
lated lattice constant ahkl is given by

ahkl = atrue sin u′hkl
sin uhkl

, (30)

2u′hkl = 2uhkl − D2Q0 + 2DS cos uhkl
R

, (31)

where atrue is the true lattice constant of LaB6, Δ2Θ0 the cons-
tant error about the diffraction angle (zero offset), ΔS the dis-
placement of the sample face from the rotation axis of the
goniometer, and R is the goniometer radius. The errors in
the calculated lattice constants, Δahkl, were estimated by the
difference of the values calculated for 2θhkl and 2θhkl +
Δ2θhkl, where Δ2θhkl is the error in 2θhkl evaluated by the pro-
file fitting as the propagation of the assumed errors in the
intensity data.

The results for the values estimated by the FPA analysis
are well reproduced by the naive model, and systematic devi-
ation is not clear, as shown in Figures 5(a) and 5(b). It should
be noted that no significant trend to suggest overestimation of
errors in the estimated peak positions has been detected in
Figure 5(b).

In contrast, the values estimated by the Pearson VII fitting
to the deconvolved–convolved data are clearly deviated from
the optimized naive model, as can be seen in Figure 5(c).

It is suggested that additional peak shift has artificially
been introduced on the deconvolution–convolution treatment
applying the approximate formula for the axial-divergence
aberration. The naive model given by Eq. (31) is then replaced
by a modified formula given by

2u′hkl = 2uhkl − D2Q0 + 2DS cos uhkl
R

− D2Q1 tan uhkl − cot uhkl( ), (32)

where Δ2Θ1 is an additional adjustable parameter.
The modified model given by Eq. (32) certainly improves

the fitting to the dependence of ahkl on 2θ, as can be seen in
Figure 5(c), and the additional parameter Δ2Θ1 has been opti-
mized to be 0.00122(5)°. No systematic behavior of the resid-
uals of the modified fitting is detected in the difference plot in
Figure 5(d), and the values of residuals appear to be consistent
with the estimated statistical errors.

Since the addition of the term in Eq. (32) is just a slight
modification of the shift parameter used in the deconvolu-
tion–convolution calculation about the axial-divergence aber-
ration, δ in Eq. (8), the adjustment of the shift can be easily
implemented. The deconvolution–convolution treatment is
then retried, just after replacing the shift parameter δ defined

(a)

(b)

(c)

(d)

Figure 4. (Colour online) Observed data, fitting results to
the observed data, deconvolved–convolved data, and
fitting results to the deconvolved–convolved data about
LaB6 510-reflection. See the caption of Figure 2 for the
definitions.
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in Eq. (9) by δ′, given by

d′ = d− D2Q1

1− b
. (33)

The nominal lattice constants calculated from the data
treated by the deconvolution–convolution method incorporating

the shift adjustment are shown in Figure 6. The apparent
dependence on the diffraction angle is now reproduced by
the naive model given by Eq. (31), as expected. The value
of zero-offset error Δ2Θ0 estimated at 0.0006(4)°, and the
sample displacement error ΔS estimated at −0.0017(8) mm
are both acceptable values. The value of lattice constant atrue
is estimated at 4.156911(5) Å, while the certified value of

(a)

(b)

(c)

(d)

Figure 5. (Colour online) (a) Nominal lattice constants
calculated from the 2θ peak positions evaluated by FPA
analysis, and fitting curves calculated by a naive model,
and (b) estimated errors and fitting residuals in (a), (c)
Nominal lattice constants from deconvolution–convoution
treatments, fitting curves calculated by naive and
modified models, and (d) estimated errors and residuals
of the modified fitting model.

(a)

(b)

Figure 6. (Colour online) (a) Nominal lattice constants
calculated after the shift adjustment on deconvolution–
convolution process and fitting curve based on a naive
model, and (b) estimated errors and fitting residuals.
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NIST SRM660a is 4.156916(10) Å at 22.5 °C. The true lattice
constant atrue should be corresponded to the extrapolated value
of ahkl to the limit of 2θhkl→ 180° in the naive model for the
peak shift, as can be seen in Figures 5 and 6, and it is generally
difficult to certify the validity of extrapolation. Precise temper-
ature control and repeated experiments with refilled powder
sample should be required for more detailed discussions of
accuracy or precision about the estimation of lattice constants.
However, the results of FPA analysis shown in Figure 5(a)
suggest that insufficient implementation of the FPA model
might cause systematic deviation of the estimated peak posi-
tions and hence the systematic error on the evaluation of the
lattice dimensions.

E. Peak shape

The optimized values of peak shape parameter μ of the
Pearson VII peak profile function defined by Eq. (23) are plot-
ted in Figure 7. The dependence of the shape parameter μ on
2θ shows maximum (minimum sharpness) at about 2θ≈ 70°,
and the sharpness of the peak shape increases on both sides of
lower and higher diffraction angles. It should naturally be
caused by increasing contribution of the effects of sharp axial-
divergence aberration function for 2θ→ 0° and 2θ→ 180°.
Furthermore, the dependence also suggests that μ approaches
1/2 at both the limits 2θ→ 0° and 2θ→ 180°, where both the
Pearson VII function and the axial-divergence aberration func-
tion would become singular. The asymmetry of the depen-
dence on 2θ is also reasonable because the contribution of
the spectral width of the source X-ray, modeled by a
Lorentzian function similarly increases on the higher-angle
side and the relative contribution of the axial-divergence func-
tion should be reduced as compared with that on the lower-
angle side.

The dependence of μ on 2θ is then modeled by a cubic
curve given by

m = 1
2
+ 2u− 2u0( ) 2u1 − 2u( ) m0 + m12u

( )
, (34)

for the fixed values (2θ0, 2θ1) = (0°, 180°). The adjustable

parameters (μ0, μ1) are optimized at [1.64(2) × 10−4, 5.2
(2) × 10−7 (°)−1].

F. Integral breadth

The optimized values of the integral breadth B of the
Pearson VII peak profile function defined by Eq. (23) are
plotted in Figure 8. As the deconvolved–convolved peak
profile is close to the Lorentzian profile, the integral breadth
is modeled by

B = B0 tan u+ B1 + B2 cot u, (35)

where B0, B1, and B2 are adjustable parameters. The optimized
values are B0 = 0.0543(5)°, B1 = 0.02331(7)°, and B2 =
0.011113(2)°.

Since the CuKα1 FWHM is assumed to be 2.29 eV against
the peak position 8047.83 eV (Ida et al., 2018), the contribu-
tion of the spectral width to the coefficient B0 is estimated at
0.051° as the integral breadth. As the interval of the Si detector
strips and the effective width of the line-focus X-ray source are
nominally 0.075 and 0.04 mm, the angular resolution for the
goniometer radius of 240 mm is estimated at 0.0059° as the
standard deviation, which can be related to the value estimated
for the constant term B1 in Eq. (35). The coefficients of tanθ
and cot u-terms of the broadening caused by axial-divergence
aberration for Ψ = 2.29° should be corresponded to����������
17/1440

√
C2 = 0.010◦ as the standard deviation, and the

constant term in the axial-divergence aberration should be
C2/

����
240

√ = 0.006◦ as the standard deviation, as given in
Eq. (3). The broadening caused by flat-specimen aberration
should also be proportional to cot u, but the effect is consid-
ered to be negligible in this case, because the coefficient is cor-
responded toF2/

���
45

√ = 0.0007◦ as the standard deviation for
the equatorial open angle of Φ = 0.5°.

G. Whole-pattern fitting

A whole-pattern fitting method known as the Pawley
method (Pawley 1981) has been applied to the overall decon-
volved–convolved data. Ninth-order polynomial of 2θ has

Figure 7. (Colour online) Pearson VII shape parameter μ
optimized by individual profile fitting to the deconvolved–
convolved data (circles), and a cubic fitting curve (broken
line).
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been used for background intensity and the symmetric Pearson
VII function is used as the peak profile function, the intensities
of which are calculated in the range of ten times of integral
breadth around the peak position. The overall intensities are
modeled by the following equation:

yj =
∑9
n=0

bn 2uj
( )n+∑22

p=0

IpfP7 2uj − 2up;B 2up
( )

,m 2up
( )( )

,

(36)

where the background parameters {bn}, peak intensities {Ip},
lattice constant, zero-offset, and sample displacement, {atrue,

Δ2Θ0, ΔS} to determine the peak positions 2θp, and the
width parameters {B0, B1, B2} defined in Eq. (35), and shape
parameters {μ0, μ1} in Eq. (34) are treated as adjustable param-
eters. The least-squares fitting assuming the propagation of the
counting errors and 2θ-error propagation have been applied.

The values of optimized parameters are listed in Tables I
and II. Figure 9 shows the result of whole pattern fitting. The R
values are estimated at Rp = 4.43% and Rwp = 5.32%, and the
goodness-of-fit parameter at S = 1.34.

IV. CONCLUSION

An improved formula to simulate the effects of axial-
divergence aberration in Bragg–Brentano geometry has been
developed. Deformation of observed powder diffraction
peak profile caused by axial-divergence aberration can effec-
tively be removed by a deconvolution–convolution method
based on the mathematical model. The powder diffraction
peak profile of LaB6 treated by the method has well been
reproduced by a symmetric Pearson VII function. The peak
positions of the deconvolved–convolved data can be simulated
by a naive model about the possible zero-offset error and the
displacement of the sample face. The overall peak profile in
the deconvolved–convolved data have been modeled by
three parameters to determine the integral breadth (width)
and two parameters to determine the shape (sharpness), and

TABLE I. Integrated intensities of CuKα1 components evaluated by
individual FPA profile fitting to source data (IPF-FPA/S), Pearson VII fitting
to deconvolved–convolved data (IPF-P7/DC), and whole-pattern fitting to
deconvolved–convolved data (WPF-P7/DC).

hkl IPF-FPA/S IPF-P7/DC WPF-P7/DC

100 4600 (600) 5100 (40) 5009 (19)
110 8100 (500) 7890 (30) 7995 (19)
111 3240 (60) 3440 (20) 3396 (13)
200 1600 (40) 1782 (18) 1762 (10)
210 3600 (400) 4085 (18) 4125 (11)
211 2390 (80) 2249 (15) 2253 (9)
220 835 (16) 798 (10) 822 (8)
221/300 2180 (40) 2283 (14) 2355 (9)
310 1760 (20) 1615 (13) 1654 (9)
311 1077 (13) 1033 (10) 1077 (8)
222 185 (7) 174 (6) 179 (4)
320 720 (13) 671 (9) 692 (7)
321 1481 (18) 1429 (14) 1465 (12)
400 260 (7) 255 (8) 260 (5)
322/410 1360 (80) 1299 (13) 1317 (9)
330/411 1141 (19) 1093 (13) 1109 (9)
331 502 (10) 479 (10) 480 (7)
420 741 (10) 708 (11) 704 (8)
421 1590 (30) 1543 (15) 1539 (11)
332 860 (10) 834 (14) 800 (8)
422 607 (8) 584 (11) 596 (7)
500 757 (10) 734 (12) 737 (8)
431/510 3424 (18) 3270 (20) 3270 (16)

TABLE II. Lattice constant, peak shift, and profile parameters evaluated by
individual FPA fitting to source data (IPF-FPA/S), individual Pearson VII
fitting to deconvolved–convolved data (IPF-P7/DC), and whole-pattern fitting
to deconvolved–convolved data (WPF-P7/DC).

Parameter IPF-FPA/S IPF-P7/DC WPF-P7/DC

a (Å) 4.157272 (12) 4.156911 (5) 4.15687 (2)
Δ2Θ0 (°) 0.0380 (12) 0.0006 (4) 0.0030 (10)
ΔS (mm) 0.058 (2) −0.0017 (8) 0.018 (10)
B0 (°) 0.0543 (5) 0.0519 (5)
B1 (°) 0.02331 (7) 0.0288 (6)
B2 (°) 0.011113 (2) 0.00977 (16)
μ0 1.64(2) × 10−4 1.59(2) × 10−4

μ1 5.2(2) × 10−7 − 4.8(2) × 10−7

Figure 8. (Colour online) Integral breadth B optimized
by individual profile fitting to the deconvolved–
convolved data and a fitting curve.
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the optimized values of the width-parameters are reasonably
corresponded to the instrumental constants.
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Appendix A Calculation of cumulants of

axial-divergence aberration function

The nth-order cumulant κn of a function w(x) is generally
defined by the following equation:

kn = lim
u�0

∂n

∂un
ln

∫1
−1

euxw x( )dx
⎡
⎣

⎤
⎦ . (A1)

When w(x) is a normalized function, the first-order cumulant:

k1 =
∫1
−1

xw x( )dx (A2)

is identical to the average x, the second-order cumulant:

k2 = kx2l− kxl2 (A3)

is identical to the variance 〈(x− 〈x〉)2〉, and the third-order
cumulant:

k3 = kx3l− 3kx2lkxl+ 2kxl3 (A4)

is identical to the third-order central moment 〈(x− 〈x〉)3〉.
Higher-order cumulants are also expressed by the combination
of the average of nth power of x, 〈xn〉.

When the instrumental function is expressed by the
following formula:

w x( ) =
∫amax

amin

d x− g a( )( )
f a( )da , (A5)

the average of nth power of x is calculated by

kxnl =
∫1
−1

xnw x( )dx =
∫amax

amin

g a( )[ ]nf a( )da . (A6)

Appendix B Derivation of scale transforms for

axial-divergence aberration function

The basic idea of constructing the scale-transform formu-
las for a convolution model is not far from the one previously
proposed (Ida and Toraya, 2002), where the scale transforms
of x′+ = ln sin u for the upper component and
x′− = − ln cos u for the lower component were applied. Since
D2u/Dx′+ / tan u and D2u/Dx′− / cotu, the first and third-
order cumulants of the convolution w x′+

( ) ∗ w −x′−
( )

should
be proportional to tan u− cot u( ) and tan3 u− cot3 u

( )
,

respectively.
The formula in Eq. (5) is derived as a solution of the fol-

lowing relations:

D2u
Dx+

/ tan u+ bcot u, (B1)

D2u
Dx−

/ cot u+ btan u. (B2)

Then the dependence of the third-order cumulant of the
convolution model [w(χ+ )*w(− χ− )] on the diffraction
angle 2θ should be given by

tan u+ bcot u
( )3− cot u+ btan u

( )3
. The dependence on 2θ

becomes proportional to the third-order cumulant of the axial-
divergence aberration function given in Eq. (4), when the fol-
lowing equation is satisfied:

3b

1+ b+ b2 =
81
169

. (B3)

The value of β given in Eq. (6) is the solution of Eq. (B3).
Even if the numerical value of the coefficient β estimated at
0.197562 is not large, it is expected that addition of this
term improves the approximation than the previous formula
(Ida and Toraya, 2002), as is supported by the coincidence
of the third-order cumulant with the precise formula. The
coincidence of the first-order cumulant (average) can be
achieved by the constant shift of the component function,
described in Appendix C.

Appendix C Adjustment of the formula of component

functions

It is assumed that the component functions of a convolu-
tion model are given by

w+ x+
( ) = 1

g
g

+x+ − d

g

( )
, (C1)

where g(x) is a normalized function. When the first, second
and third-order cumulants of the function g(x) is given by
〈x〉, 〈(Δx)2〉 and 〈(Δx)3〉, respectively, the cumulants of the
function w±(χ±) are given by

kx+l = +g kxl+ d
( )

, (C2)

k Dx+
( )2l = g2k Dx( )2l , (C3)

k Dx+
( )3l = +g3k Dx( )3l , (C4)
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and the cumulants of the convolution of the component
functions on the 2θ–scale should be given by

k2ul = g kxl+ d
( )

1− b
( )

tan u− cot u( ), (C5)

k D2u( )2l = g2k Dx( )2l 1+ b2
( )

× tan2 u+ 4b

1+ b2 + cot2 u

( )
, (C6)

k D2u( )3l = g3k Dx( )3l 1− b3( )
× tan3 u+ 3b tan u

1+ b+ b2

(
− 3b cot u

1+ b+ b2 − cot3 u

)
.

(C7)

The parameter γ is adjusted by the relation in Eq. (C7) for
the given values of k D2u( )3Al, 〈(Δx)3〉 and β, and the parameter
δ is then adjusted by the relation in Eq. (C5) for the given val-
ues of 2θA, x, β, and γ.

The first and third-order cumulants of the model function
w(χ) applied here are given by 〈χ〉 = αγ + δ and 〈(Δχ)3〉 = 2αγ3,
and the value of γ given in Eq. (21) is the solution of the equa-
tion:

169C6

60480
= 2ag3 1− b3( )

, (C8)

and the value of δ in Eq. (20) has been determined by the equa-
tion:

C2

12
= ag+ d

( )
1− b
( )

, (C9)

Appendix D Invariance of even-order cumulants on the

deconvolution–convolution process

Absolute values of cumulants of functions f (x) and f (−x)
are equal, and the signal is unchanged for even-order and
inverted for odd-order cumulants. The autocorrelation of the
function f (x), we here express by | f |2(x), is identical to the con-
volution of f (x) and f (−x). Since cumulants are additive on
convolution, even-order cumulants of | f |2(x) become double
of those of the function f (x), and odd number cumulants of
| f |2(x) are zero. When we define a function | f |(x) by

f
∣∣ ∣∣ x( ) ;

∫1
−1

F k( )| | e−2pikxdk, (D1)

F k( ) ;
∫1
−1

f x( ) e2pikxdx, (D2)

it is clear that the convolution of | f |(x) with itself is identical to
the autocorrelation | f |2(x). Then even-order cumulants of | f |
(x) are equal to those of f (x), and odd-order cumulants of | f |
(x) are zero. We can confirm that the deconvolution with f
(x) and convolution with | f |(x) only changes the odd-order

cumulants, but keeps even-order cumulants, including inte-
grated intensity (zeroth-order cumulant), variance (second-
order cumulant), kurtosis (excess or sharpness; fourth-order
cumulant) unchanged.

Appendix E Bayesian interpretation of zero-count data

When we assume uniform prior probability distribution
for the intensity y,

P y
( ) = 1/1 0 , y , 1[ ]

0 elsewhere[ ]
{

, (E1)

for an arbitrary large value of ε, and the likelihood function P
(n|y) of Poisson distribution for the observed count n,

P n|y( ) = yne−y

n!
, (E2)

the probability for n counts P(n) is given by

P n( ) =
∫1
−1

P n|y( )
P y
( )

dy

= 1
1
lim
1�1

∫1
0

yne−y

n!
dy = 1

1
. (E3)

Bayesian inference derives the posterior probability distri-
bution from the observed count n given by

P y|n( ) = P n|y( )
P y
( )

P n( ) = yne−y

n!
. (E4)

The posterior probability for zero count is given by P(y|0)
= e−y, and the expected values of average and variance are
then both unity.

Appendix F Propagation of error in 2θ

It seems that most of the analyses about powder X-ray dif-
fraction data are based on the assumption that the observed
diffraction intensity I can be connected with a certain value
of the theoretical diffraction angle 2θ. However, the size of
the detector element is finite, no matter which type of a detec-
tor, a zero-dimensional, one-dimensional, or two-dimensional
detector is used.

Figure 10 illustrates why it is considered to be necessary
to take into account the errors in the goniometer angle 2Θ or
the diffraction angle 2θ, the latter of which may be provided
from a data acquisition system to users, to achieve statistical
analysis of the observed diffraction intensity data.

If the center of a detector element of Δ2θ in width is
located at the position of 2θ, it will detect the X-ray photons
diffracted at the angles ranging from 2θ− Δ2θ/2 to 2θ +
Δ2θ/2. It is expected that the detected intensities range from
I− ΔI/2 to I + ΔI/2.
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