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Abstract

Recent constraint logic programming (CLP) languages, such as HAL and Mercury, require

type, mode and determinism declarations for predicates. This information allows the genera-

tion of efficient target code and the detection of many errors at compile-time. Unfortunately,

mode checking in such languages is difficult. One of the main reasons is that, for each predicate

mode declaration, the compiler is required to appropriately re-order literals in the predicate’s

definition. The task is further complicated by the need to handle complex instantiations (which

interact with type declarations and higher-order predicates) and automatic initialization of

solver variables. Here we define mode checking for strongly typed CLP languages which

require reordering of clause body literals. In addition, we show how to handle a simple case

of polymorphic modes by using the corresponding polymorphic types.

KEYWORDS: strong modes, mode checking, regular grammars

1 Introduction

While traditional logic and constraint logic programming (CLP) languages are

untyped and unmoded, recent languages such as Mercury (Somogyi et al. 1996) and

HAL (Demoen et al. 1999b; Garcı́a de la Banda et al. 2002) require type, mode

and determinism declarations for (exported) predicates. This information allows the

generation of efficient target code (e.g. mode information can provide an order of

magnitude speed improvement (Demoen et al. 1999a)), improves robustness and

facilitates efficient integration with foreign language procedures. Here we describe

our experience with mode checking in the HAL compiler.

� A preliminary version of this paper appeared under the title “Mode Checking in HAL,” in the
Conference on Computational Logic (CL’2000), London, June 2000.
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HAL is a CLP language designed to facilitate “plug-and-play” experimentation

with different solvers. To achieve this it provides support for user-defined constraint

solvers, global variables and dynamic scheduling. Mode checking in HAL is one of

the most complex stages in the compilation. Since predicates can be given multiple

mode declarations, mode checking is performed for each of these modes and the

compiler creates a specialized procedure for each mode (i.e. it performs multi-variant

specialization). Mode checking involves traversing each predicate mode declaration

to check that if the predicate is called with the input instantiation specified by the

mode declaration then the following two properties are satisfied. First, the predicate

mode declaration is input-output correct, that is, it is guaranteed that if the input

instantiation satisfies this declaration then the result is an output instantiation that

satisfies the declaration. And second, the predicate is call correct, that is, if the input

instantiation satisfies this declaration then each literal occurring in the definition

of the predicate is called with an input instantiation satisfying one of its declared

modes.

Call correctness may require the compiler to re-order literals in the body of

each rule, so that literals are indeed called with an appropriate input instantiation.

Such reordering is essential in logic programming languages which wish to support

multi-moded predicates while, at the same time, retaining a Prolog programming

style in which a single predicate definition is provided for all modes of usage. And

an important function of this reordering is to appropriately order the equalities

inserted by the compiler during program normalisation for matching/constructing

non-variable predicate arguments. The need to reorder rule bodies is one reason

why mode checking is a rather complex task. However, it is not the only reason.

Three other issues exacerbate the difficulty of mode checking. First, instantiations

(which describe the possible states of program variables) may be very complex and

interact with the type declarations. Second, accurate mode checking of higher-order

predicates is difficult. Third, the compiler needs to handle automatic initialization

of solver variables.

Although mode inference and checking of logic programs has been a fertile

research field for many years, almost all research has focused on mode check-

ing/inference in traditional (and thus untyped) logic programming languages where

the analysis assumes the given literal ordering is fixed and cannot assume that a

program is type correct. Thus, a main contribution of this paper is a complete

definition of mode checking in the context of CLP languages which are strongly

typed and which may require reordering of rule body literals during mode checking.

A second contribution of the paper is to describe the algorithms for mode checking

currently employed in the HAL compiler. Since HAL and the logic programming

language Mercury share similar type and mode systems,1 much of our description

and formalization also applies to mode checking in Mercury (which has not been

previously described2)). However, there are significant differences between mode

checking in the two languages. In HAL there is the need to handle automatic

1 In part, because HAL is compiled to Mercury.
2 Recently a thesis has been completed on Mercury mode checking (Overton 2003).
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initialization of solver variables, and, in general, complex modes (other than in

and out) are used more frequently since constraint solver variables are usually not

ground. Furthermore, determining the best reordering in HAL is more complex

than in Mercury because the order in which constraints are solved can have a more

significant impact on efficiency (Marriott and Stuckey 1992). Also, HAL handles

a limited form of polymorphic mode checking. On the other hand, Mercury’s

mode system allows the specification of additional information about data structure

liveness and usage.

The rest of the paper is organized as follows. In the following section we review

related work. Section 3 provides an informal view of the role of types, modes, and

instantiations in the HAL language. Its aim is to give insight into the more rigorous

formalization provided in section 4 which introduces type-instantiation grammars

for combining type and instantiation information as the basis for mode checking

in HAL. Section 5 describes the basic steps performed for mode checking HAL

programs. Section 6 focuses on the automatic initialization needed by the modes

of usage of some predicates. Section 7 discusses mode checking of higher order

predicates and objects, while section 8 shows how to handle simple polymorphic

modes. Finally, section 9 provides our conclusions and discusses some future work.

2 Related Work

Starting with Mellish (1987) and Debray (1989), there has been considerable research

into mode checking and inference in traditional logic programming languages.

However, as indicated above, there are two fundamental differences between that

work and ours.

First, almost all research assumes that mode analysis is not required to reorder

clause bodies. Second, while almost all research has focused on untyped logic

programming languages, mode checking of HAL relies on predicates and program

variables having a single (parametric polymorphic) Hindley–Milner type and the

type correctness of the program with respect to this type. Access to type information

allows us to handle more complex instantiations than are usually considered in

mode analysis and also to handle mode checking of higher-order predicates in a

more rigorous fashion: in most previous work higher-order predicates are largely

ignored.

Another important difference is that we are dealing with constraint logic pro-

gramming languages in which program variables need to be appropriately initialized

before being sent to some constraint solver as part of a constraint. Requiring explicit

initialization of solver variables puts additional burden on the programmer and

makes it impossible to write multi-moded predicate definitions for which different

modes require different variable initialisations. We have consequently chosen for the

HAL compiler to automatically initialize solver variables, i.e. the compiler generates

initialization code whenever necessary. To perform such automatic initialization

mode checking in HAL must track which program variables are currently uninitial-

ized (in our terminology are new). Tracking of uninitialized variables also supports
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powerful optimizations which can greatly improve performance. For this reason the

Mercury mode checker also tracks uninitialized variables.

This need to track uninitialized program variables is a significant difference

between mode checking in the Mercury and HAL languages, and most logic

programming work on modes. It is not the same as tracking so-called “free”

variables in traditional logic programming: first free variables may be aliased to

other variables, something that is not possible with uninitialized variables, second,

uninitialized variables have to be tracked exactly: the compiler must not fail to

initialize a variable, neither should it initialize a variable more than once. We will

now review selected related work in detail.

The original work on mode checking in strongly typed logic languages with

reorderable clause bodies is that of Somogyi (1987), which gives an informal

presentation of a mode system based on types. This is perhaps the closest work

in spirit since it was the basis of mode checking in Mercury. However, its mode

system is much simpler than ours and it does not consider higher-order predicates

or the problems of automatic initialization. The remaining work does not consider

compile-time reordering.

Perhaps the most closely related work in traditional logic programming language

analysis is the early work of Janssens and Bruynooghe (1993), which uses regular

trees to define types and instantiations, and uses these trees to perform mode

inference. The main differences are that Janssens and Bruynooghe (1993) do

not consider reordering or tracking uninitialized variables. Other more technical

differences are that, although we use deterministic tree grammars to formalize types,

our type analysis (Demoen et al. 1999) is based on a Hindley–Milner approach. A key

difference with this and other work such as that of Boye and Ma�luszyński (1997) is

that we describe instantiations for polymorphic types, including higher-order objects.

Also, in Janssens and Bruynooghe (1993), depth restrictions are imposed to make

the generated regular trees finite. This is not needed in our approach. Finally, they

use definite and possible sharing analysis to improve instantiation information. This

is not done yet in HAL for complexity reasons (sharing analysis is quite expensive

and thus a danger for practical compilation), however a simple sharing and aliasing

analysis should indeed prove to be useful.

After the early work of Janssens and Bruynooghe (1993), there has been a

significant amount of research aimed at improving the precision of the analysis

by providing additional information about the structure of the terms. Initially, this

was achieved by performing some simple pattern analysis and then providing this

information to other analyses (see for example, Charlier and Hentenryck (1994)

and Mulkers et al. (1995)). Later, with the gradual success of typed languages,

pattern information was substituted by type information with which more accurate

results could be obtained, i.e. type information was annotated with different kinds

of information some of which were mode information (see, for example, Ridoux

et al. (1999) and Smaus et al. (2000)). But most of this work was designed to

either provide a general framework for combining type information with other

kinds of information, or to infer some particular kind of information (such as

mode information) from a program without reordering the literals in the body of
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predicates. Furthermore, they were not interested in tracking uninitialized variables

nor keeping enough instantiation information (i.e. which particular tree constructors

can occur) for optimizations such as switch detection (Henderson et al. 1996).

Again, further differences arise since we consider higher-order mode inference and

polymorphic modes.

Recent work on directional types (e.g see Boye and Ma�luszyński (1997)) is much

more analogous to HAL mode checking. There, they are interested in determining

mode-correctness of a program given (user supplied) mode descriptions (called

directional types). Apart from previously mentioned differences, the framework

of Boye and Ma�luszyński (1997) uses directional types that are much simpler

than the instantiations that we deal with here. Interestingly, the work of Boye

and Ma�luszyński (1997) uses directional type correctness to show that a run-time

reordering of a well-typed program will not deadlock, somewhat analogous to our

compile-time reordering.

Type dependency analysis (Codish and Lagoon 2000) is also related to mode

checking. Their analysis determines type dependencies from which we can read all

the correct modes or directional types of a program. The framework is however

restricted to use types (and modes) defined by unary function symbols and an ACI

operator.

Other related work has been on mode checking for concurrent logic programming

languages (Codognet et al. 1990): There the emphasis has been on detecting

communication patterns and possible deadlocks.

The only other logic programming system we are aware of which does signi-

ficant mode checking is Ciao (Bueno et al. 2002). The Ciao logic programming

system (Bueno et al. 2002) does mode checking using its general assertion checking

framework CiaoPP based on abstract interpretation (Hermenegildo et al. 2003).

Modes are considered as simply one form of assertion, and indeed the notion of

what is a mode is completely redefinable. The default modes are analyzed by the

CiaoPP preprocessor using a combination of regular type inference and groundness,

freeness and sharing analyses. Ciao modes are more akin to directional types,

than the strong modes of HAL and Mercury, and the compiler will check them if

possible, and optionally add run-time tests for modes that could not be checked at

compile time. As with other earlier work the fundamental differences with the HAL

mode system are in treatment of uninitialized variables, reordering, higher-order and

polymorphic modes.

3 HAL by example

This section provides an informal view of the role of types, modes, and instantiations

in the HAL language. The aim is to provide insight into the more rigorous

formalization that will be provided in the following sections. We do this by explaining

the example HAL program shown in Figure 1, which implements a polymorphic

stack using lists. Note that HAL follows the basic CLP syntax, with variables, rules

and predicates defined as usual (see, for example, Marriott and Stuckey (1998) for

an introduction to CLP).

https://doi.org/10.1017/S1471068404002327 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002327
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:- typedef list(T) -> ([] ; [T|list(T)]).

:- instdef elist -> [].

:- instdef list(I) -> ([]; [I|list(I)]).

:- instdef nelist(I) -> [I|list(I)].

:- modedef out(I) -> (new -> I).

:- modedef in(I) -> (I -> I).

:- pred push(list(T),T,list(T)).

:- mode push(in,in,out(nelist(ground))) is det.

push(S0,E,S1) :- S1 = [E|S0].

:- pred pop(list(T),T,list(T)).

:- mode pop(in,out,out) is semidet.

:- mode pop(in(nelist(ground)),out,out) is det.

pop(S0,E,S1) :- S0 = [E|S1].

:- pred empty(list(T)).

:- mode empty(in) is semidet.

:- mode empty(out(elist)) is det.

empty(S) :- S = [].

Fig. 1. Example HAL program implementing a polymorphic stack.

3.1 Types

Informally, a ground type describes a set of ground terms and is used as a reasonable

approximation of the ground values a particular program variable can take. It is

therefore an invariant over the life time of the variable. Types in HAL are prescriptive

rather than descriptive, they restrict the possible values of a variable. Unlike much

of the work performed on types for logic programming languages, our types only

include the ground (also called fixed) values that a variable can take. Later we will

describe how instantiations are used to express when a variable takes a value which

is not completely fixed.

Types are specified using type definition statements. For instance, in the example

shown in Figure 1, the line

:- typedef list(T) -> ([] ; [T|list(T)]).

defines the polymorphic type constructor list/1 where list(T) is the type of lists

with elements of parametric type3 T. These lists are made up using the []/0 and

./2 (represented by [·|·]) tree constructors.

HAL includes the usual set of built-in basic types: float (floating point numbers),

int (integers), char (characters) and string (strings). Like most typed languages,

HAL provides the means to define type equivalences. For example, the statement

3 In order to clearly distinguish between program variables and any other kinds of variables (type
variables, instantiation variables, etc) we will refer to all other kinds of variables as parameters (i.e.,
type parameters, instantiation parameters, etc.).
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:- typedef vector = list(int).

defines the type vector to be a list of integers. Equivalence types are simply

macros for type expressions, and the compiler replaces equivalence types by their

definition (circular type equivalences are not allowed). From now on we assume that

equivalence types have been eliminated from the type expressions we consider. This

can be achieved straightforwardly by applying substitution.

Finally, HAL allows a type to be declared as hidden so that its definition is not

visible outside the module in which it is defined. We note that the treatment of

hidden types is almost identical to that of type parameters and so omit them for

simplicity.

It is important to note that a program variable’s type is used by a compiler to

determine the representation format for that variable, i.e. the particular way in which

program variables are stored during execution. As a result, two program variables

may have different types even though the representation of their values can be

identical. For example, in a language providing both the ASCII character set and an

extended international character set, variables representing each kind of character

would need to have different types since their internal representation is different.

3.2 Solvers

In HAL a constraint solver is defined using a new type. Assume for example, that

a programmer wishes to implement a constraint solver over floating point numbers.

From the point of view of the user, the variables will take floating point values

and thus one might expect them to have the built-in type float. But their internal

representation cannot be a float as they need to keep track of internal information

for the solver. As a result, the type of the variables cannot be the built-in type float

but must be some other type defined by the solver, and whose implementation is

hidden from the outside world. This is were we use abstract types, to hide this view

from the outside world.

Example 1

For example a floating point solver type cfloat might be defined as

:- typedef cfloat -> var(int) ; val(float).

where the integer in the var tree constructor refers to a column number in a (global)

simplex tableaux, and the val constructor is used to represent simple fixed value

floating point numbers. �

Types defined by solvers are called solver types and variables with a solver

type are called solver variables. Solvers must also provide an initialization procedure

(init/1) and at least the equality (=/2) constraint for the type, although many other

constraints will be usually provided. Note that solver variables must be initialized

before they can be involved in any constraint. This is required so that the solver can

keep track of its variables and initialize the appropriate internal data-structures for

them.
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The case of Herbrand solver types (i.e. types for which there is a full unification

solver) is somewhat special. Any user-defined type can be declared to be a Herbrand

solver type by annotating its type definition with the words “deriving solver”. For

example:

:- typedef hlist(T) -> ([] ; [T|hlist(T)]) deriving solver.

defines the hlist Herbrand type. The compiler will then automatically create an

initialization predicate for the type (which is actually identical for all Herbrand types)

and an equality predicate for the type which handles not only simple construction,

deconstruction and assignment of non-variable terms (which is the only equality

support provided for non-solver types), but full unification. As a result, while

variables with non-solver type list are always required to be bound at run-time

to a list of fixed length (so that the limited support provided by construction,

deconstruction and assignment is enough),4 variables with type hlist may be

bound to open ended lists, where the tail of the list is an unbound (list) variable.

3.3 Instantiations

Instantiations define the set of values, within a type, that a program variable may

have at a particular program point in the execution, as well as the possibility that the

variable (as yet) takes no value. Instantiation information is vital to the compiler to

determine whether equations on terms are being used to construct terms, deconstruct

terms or check the equality of two terms. Furthermore, instantiation information is

needed to infer the determinism of predicates (i.e. how many answers a predicate

has) and to perform many other low-level optimizations.

Although instantiations may seem very similar to types, they should not be

confused: a type is invariant over the life of the variable, while instantiations

change. Additionally, instantiations reflect the possibility of a variable having no

value yet, or being “constrained” to some unknown set of values.

HAL provides three base instantiations for a variable: ground, old and new.

A variable is ground if it is known to have a unique value; the compiler might

not know exactly which value within the type (it might depend on the particular

execution), but it knows it is fixed (for a solver variable this happens whenever the

variable cannot be constrained further).

A variable is new if it has not been initialized and it has never appeared in a

constraint (thus the name new). Thus, it is known to take no value yet. As we

have indicated, the instantiation new leads to a crucial difference between mode

checking in Mercury and HAL, and that investigated in most other research into

mode checking of logic programs. Mercury and HAL demand that at each point

in execution the compiler knows whether a variable has a value or not. This allows

many compiler optimizations, and is a key to the difference in execution speed of

Mercury and HAL to most other logic programming systems. The requirement to

always have accurate instantiation information about which variables are new drives

4 Note that the elements inside the list need not be ground!
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many of the decisions made in the mode checking system. In particular, it means

that a new variable is not allowed to appear inside a data structure, and can only

be given a value by assignment or, if it is a solver variable, after initialization.

Finally, the instantiation old is used to describe a solver variable that has been

initialized but for which nothing is known about its possible values. Note that the

variable might be unconstrained, it might be ground, or anything in between (e.g. be

greater than 5); the compiler simply does not know. In the case in which old is

associated with a non-solver variable, it is deemed to be equivalent to ground.

Note that in Mercury, where there are no solver types, each variable always has an

instantiation which is either new or (a subset of) ground.

It is important to note that new is not analogous to free in the usual logic

programming sense. A free variable in the HAL context is an old variable (thus,

it has been initialized by the appropriate solver) which has never been bound to a

non-variable term. Thus, free variables might have been aliased, while new variables

cannot. This is exploited by the compiler by not giving a run-time representation

to new variables. As a consequence, a new variable cannot occur syntactically more

than once.

For data structures such as trees or lists of solver variables, more complex

instantiation states may be used. These instantiations are specified using instantiation

definition statements which look very much like type definitions, the only difference

being that the arguments themselves are instantiations rather than types. For

instance, in the example shown in Figure 1, the lines

:- instdef elist -> [].

:- instdef list(I) -> ([] ; [I|list(I)]).

:- instdef nelist(I) -> [I|list(I)].

define the instantiation constructors elist/0, list/1 and nelist/1, which in

the example are associated with variables of type list/1. In that context, the

instantiation elist describes empty lists. The polymorphic instantiation list(I)

describes lists with elements of parametric instantiation I (note the deliberate reuse

of the type name). Finally, the instantiation nelist(I) describes non-empty lists

with elements of parametric instantiation I.

When associated with a variable, an instantiation requires the variable to be bound

to one of the outer-most functors in the right-hand-side of its definition, and the

arguments of the functor to satisfy the instantiation of the corresponding arguments

in the instantiation definition. In the case of elist, it would mean the variable is

ground. In the remaining two cases, it would depend on the parametric instantiation

I, but at the very least the variable would be known to be a nil-terminated list, i.e.

its length is fixed.

Note that the separation of instantiation information from type information means

we can associate the same instantiation for different types. For example, a program

variable with solver type hlist(int) and instantiation list(ground) indicates that

the program variable has a fixed length list as its value. A program variable with

non-solver type list(int) and instantiation list(ground) indicates the same, but

since the type is not a solver type, this would always be the case. The separation
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of instantiation information from type information also makes the handling of

polymorphic application much more straightforward, since we will simply associate

a different type with the same instantiation.

As mentioned before, the instantiation new is not allowed to appear as an argument

of any other instantiation. As a result, a variable can only be inserted in a data

structure if it is either ground or initialized (and thus must be old). The main reason

for this is the requirement for accurate mode information about new variables. It

quickly becomes very difficult to always have correct instantiation information about

which variables (and parts of data structures) are new. While sharing and aliasing

analyses might allow us to keep track which variables are new in more situations,

inevitably they lead to situations where we cannot determine whether the value of a

variable is new or not, which is not acceptable to the compiler. We do however plan

to use sharing and aliasing analysis to keep track of initialized (old) variables that

have yet to be constrained (analogous to free variables in Prolog).

3.4 Modes

A mode is of the form Inst1 → Inst2 where Inst1 describes the call (or input)

instantiation and Inst2 describes the success (or output) instantiation. The base

modes are mappings from one base instantiation to another: we use two letter

codes (oo, no, og, gg, ng) based on the first letter of the instantiation, e.g. ng is

new→ground. The usual modes in and out are also provided (as renamings of gg

and ng, respectively).

Modes are specified using mode definition statements. For instance, in the example

shown in Figure 1, the lines

:- modedef out(I) -> (new -> I).

:- modedef in(I) -> (I -> I).

are mode definitions, defining macros for modes. The out(I) mode requires a new

object on call and returns an object with instantiation I. The in(I) mode requires

instantiation I on call and has the same instantiation on success.

HAL allows the programmer to define mode equivalences and instantiation equi-

valences. As for type equivalences, from now on we assume that these equivalences

have been eliminated from the program. For example

:- modedef in = in(ground).

:- modedef out = out(ground).

define in as equivalent to ground -> ground, and out as new -> ground.

3.5 Equality

The equality constraint is a special predicate in HAL. Equality will be normalized

in HAL programs to take one of two forms x1 = x2, and x = f(x1, . . . , xn) where

x, x1, . . . , xn are variables. Each form of equality supports a number of modes.

The equality x1 = x2 can be used in two modes. In the first mode, copy (:=),

either x1 or x2 must be new and the other variable must not be new. Assuming x1
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is new the value of x2 is copied into x1. In the second mode unify (==) both x1 and

x2 must not be new. This requires a full unification.

The equality x = f(x1, . . . , xn) can also be used in two modes. In the first mode,

construct (:=), x must be new and each of x1, . . . , xn not new. A new f structure is

built on the heap, and the values of x1, . . . , xn are copied into this structure. In the

second mode, deconstruct (=:), each of x1, . . . , xn must be new and x must not be

new. If x is of the form f(a1, . . . , an) then the value of ai is copied into xi, otherwise

the deconstruct fails.5 As we shall see later, mode checking shall extend the use of

these modes for other implicit modes.

3.6 Predicate declarations

HAL allows the programmer to declare the type and modes of usage of predicates.

In our example of Figure 1, the lines

:- pred pop(list(T),T,list(T)).

:- mode pop(in,out,out) is semidet.

:- mode pop(in(nelist(ground)),out,out) is det.

give such declarations for predicate pop/3. The first line is a polymorphic type

declaration (with parametric type T). It specifies the types of each of the three

arguments of pop/3. The second and third lines are mode declarations specifying

the two different modes in which the predicate can be executed. For example, in the

first mode the first argument is ground on call and success, while the second and

third arguments are new on call and ground on success.

Each mode declaration for a predicate defines a procedure, a different way of

executing the predicate. The role of mode checking is not just to show these modes

are correct, but also to reorder conjunctions occurring in the predicate definition in

order to create these procedures.

The second and third lines also contain a determinism declaration. These describe

how many answers a predicate may have for a particular mode of usage: nondet

means any number of solutions; multi at least one solution; semidet at most one

solution; det exactly one solution; failure no solutions; and erroneous a run-time

error. Thus, in the second line, since pop/3 for this mode of usage is guaranteed to

have at most one solution but might fail (when the first argument is an empty list),

the determinism is semidet. For the second mode, the first argument is not only

known to be ground but also to be a non-empty list. As a result, the predicate can be

ensured to have exactly one solution and so its determinism is det. Notice how by

providing more complex instantiations we can improve the determinism information

of the predicate. They also lead to more efficient code, since unnecessary checks

(e.g. that the first argument of pop/3 is bound to ./2) are eliminated.

Currently, HAL requires predicate mode declarations for each predicate and

checks they are correct. Predicate type declarations, on the other hand, can be

omitted and, if so, will be inferred by the compiler (Demoen et al. 1999).

5 This is a simplistic high level view, actually the system uses PARMA bindings and things are more
complicated. See Demoen et al. (1999a) for details.
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4 Type, instantiation and type-instantiation grammars

In this section we formalize type and instantiation definitions in terms of (extended)

regular tree grammars. Then we introduce type-instantiation (ti-) grammars which

combine type and instantiation information and are the basis for mode checking

in HAL. Throughout the section we will use teletype font when referring to

(fixed) type and instantiation expressions, and sans serif font when referring to

non-terminals of tree grammars.

4.1 HAL programs

We begin by defining basic terminology and HAL programs.

A signature Σ is a set of pairs f/n where f is a function symbol and n � 0 is

the integer arity of f. A function symbol with 0 arity is called a constant. Given a

signature Σ the set of all trees (the Herbrand Universe), denoted τ(Σ), is defined as

the least set satisfying:

τ(Σ) =
⋃

f/n∈Σ

{f(t1, . . . , tn) | {t1, . . . , tn} ⊆ τ(Σ)}.

We assume (for simplicity) that Σ contains at least one constant symbol (i.e. a

symbol with arity 0).

Let V be a set of symbols called variables. The set of all terms over Σ and V ,

denoted τ(Σ, V ), is similarly defined as the least set satisfying:

τ(Σ, V ) = V ∪
⋃

f/n∈Σ

{f(t1, . . . , tn) | {t1, . . . , tn} ⊆ τ(Σ, V )}

A substitution over signature Σ and variable set V is a mapping from variables

to terms in τ(Σ, V ), written {x1/t1, . . . , xn/tn}. We extend substitutions to map terms

in the usual way. A unifier for two terms t and t′ is a substitution θ such that θ(t)

and θ(t′) are syntactically identical. A most general unifier of two terms t and t′,

denoted mgu(t, t′) is a unifier θ such for every other unifier θ′ of t and t′ there exists

a substitution θ′′ such that θ′ is the composition of θ with θ′′. Note that the only

substitutions we shall deal with are over type and instantiation parameters.

As we will be dealing with programs, types and instantiations there will be a

number of signatures of interest. Let Vprog be the set of program variable symbols,

and Σtree be the tree constructors appearing in the program, and Σpred be the predicate

symbols appearing in the program. Let Vtype and Σtype be the type variables and

type constructors, and similarly let Vinst and Σinst be the instantiation variables and

instantiation constructors. Note that these alphabets may overlap.

An atom is of the form p(s1, . . . , sn) where {s1, . . . , sn} ⊆ τ(Σtree, Vprog) and p/n ∈
Σpred. A literal is either an atom, a variable-variable equation x1 = x2 where

{x1, x2} ⊆ Vprog , or a variable-functor equation x = f(x1, . . . , xn) where f/n ∈ Σtree

and x, x1, . . . , xn are distinct elements of Vprog . A goal G is a literal, a conjunction

of goals G1, . . . , Gn, a disjunction of goals G1; · · · ;Gn or an if-then-else Gi -> Gt;Ge

(where Gi, Ge, Gt are goals). A predicate definition is of the form A :- G where A is

an atom and G is a goal.
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Note that we are assuming the programs have been normalized, so that each

literal has distinct variables as arguments, each equality is either of the form x1 = x2

or x = f(x1, . . . , xn), where x, x1, . . . , xn are distinct variables, and multiple bodies for

a single predicate have been replaced by one disjunctive body.

A predicate type declaration is of the form

:- pred p(t1, . . . , tn)

where {t1, . . . , tn} ⊆ τ(Σtype, Vtype) are type expressions. A predicate mode declaration

is of the form

:- mode p(c1 → s1, . . . , cn → sn)

where {c1, . . . , cn, s1, . . . , sn} ⊆ τ(Σinst) are ground instantiation expressions. A complete

predicate definition for predicate symbol p/n ∈ Σpred consists of a predicate definition,

a predicate type declaration, and a non-empty set of predicate mode declarations for

p/n. A program is a collection of complete predicate definitions for distinct predicate

symbols.

4.2 Tree grammars

Tree grammars are a well understood formalism (see, for example, Gecseg and

Steinby (1984) and Comon et al. (1997)) for defining regular tree languages. We

first review the standard definitions for tree grammars since we shall have to extend

these to handle the complexities of mode checking.

A tree grammar r over signature Σ and non-terminal set NT is a finite set of

production rules of the form x → t where x ∈ NT and t is of the form f(x1, . . . , xn)

where f/n ∈ Σ and {x1, . . . , xn} ⊆ NT . For each x ∈ NT and f/n ∈ Σ we require

that there is at most one rule of the form x → f(x1, . . . , xn); hence the grammars are

deterministic.

We have chosen to restrict ourselves to deterministic tree grammars: these

grammars are expressive enough for Hindley–Milner types and they give rise to

simpler, more efficient algorithms – an important consideration for a compiler

designed for large real-world programs.

We assume that from a grammar r we can determine its root non-terminal, denoted

root(r). In reality this is an additional piece of information attached to each grammar.

We shall write grammars so that the root non-terminal appears on the left hand

side of the first production rule in r.

It will often be useful to extract a sub-grammar r′ from a grammar r defining

some non-terminal x appearing in r. If x is a non-terminal occurring in grammar

r, then subg(x, r) is the set of rules in r for x and all other non-terminals reachable

from x. Or more precisely, subg(x, r) is the smallest set of rules satisfying

subg(x, r) ⊇ {x → t ∈ r}
subg(x, r) ⊇ {x′ → t ∈ r | x′ ∈ NT, ∃x′′ → g(x′′

1 , . . . , x
′, . . . , x′′

m) ∈ subg(x, r)}

The root of the grammar subg(x, r) is x, i.e. root(subg(x, r)) = x.
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Example 2

Consider the signature {[]/0, ‘.’/2, a/0, b/0, c/0, d/0} and the non-terminal set {abc,

list(abc), bcd, evenlist(bcd), oddlist(bcd)}, then two example regular tree grammars

over this signature and non-terminal set are r1:

list(abc) → []

list(abc) → [abc|list(abc)]

abc → a

abc → b

abc → c

and r2:

evenlist(bcd) → []

evenlist(bcd) → [bcd|oddlist(bcd)]

oddlist(bcd) → [bcd|evenlist(bcd)]

bcd → b

bcd → c

bcd → d

The root non-terminal of r1 is list(abc), while the root non-terminal of r2 is

evenlist(bcd). The grammar subg(abc, r1) consists of the last three rules of r1 while

the grammar subg(oddlist(bcd), r2) includes all of the rules of r2 but we would write

the third rule in the first position, to indicate the root non-terminal was oddlist(bcd).

�

A production of form x → s in some grammar r can be used to rewrite a term

t ∈ τ(Σ, NT ) containing an occurrence of x to the term t′ ∈ τ(Σ, NT ) where t′ is

obtained by replacing the occurrence of x in t by s. This is called a derivation step

and is denoted by t ⇒ t′. We let ⇒∗ be the transitive, reflexive closure of ⇒. The

language generated by r, denoted by [[r]], is the set

{t ∈ τ(Σ) | root(r) ⇒∗ t}

Example 3

For example, consider the grammars of Example 2. The set [[r1]] is all lists of a’s, b’s

and c’s, while [[r2]] is all even length lists of b’s, c’s and d’s. �

For brevity we shall often write tree grammars in a more compressed form. We

use

x → t1; t2; · · · ; tn

as shorthand for the set of production rules: x → t1, x → t2, . . . , x → tn.

The [[ · ]] function induces a pre-order on tree grammars: r1 � r2 iff [[r1]] ⊆ [[r2]]. If

we regard grammars with the same language as equivalent, � gives rise to a natural

partial order over these equivalence classes of tree grammars. In fact they form a

lattice. However, we shall largely ignore these equivalence classes since all of our

operations work on concrete grammars.

We shall also make use of two special grammars. The first is the least tree grammar,

which we denote by ⊥. We define that [[⊥]] = ∅, and so, as its name suggests we

have that ⊥ � r for all grammars r. During mode checking the ⊥ grammar indicates

where execution is known to fail. The second special grammar is the error grammar,

https://doi.org/10.1017/S1471068404002327 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002327


Checking modes of HAL programs 637

denoted by �. It is used to indicate that a mode error has occurred and we define

that r � � for all tree grammars r.

We use � to denote the meet (i.e. greatest lower bound) operator on grammars,

and � to denote the join (i.e. least upper bound) operator. We assume that the

non-terminals appearing in the two grammars to be operated on are renamed apart.

We have that [[r1 � r2]] = [[r1]]∩ [[r2]]. Because we restrict ourselves to deterministic

tree grammars the join is inexact: That is to say, [[r1 � r2]] ⊇ [[r1]] ∪ [[r2]], and for

some r1 and r2, [[r1 � r2]] �= [[r1]] ∪ [[r2]]. Of course, since it is the join, it is as

precise as possible: for any grammar r such that [[r]] ⊇ [[r1]] ∪ [[r2]], we have that

[[r]] ⊇ [[r1 � r2]].

Algorithms for determining if r1 � r2, and constructing r1 � r2 and r1 � r2 are

straightforward and omitted.6

Example 4

Consider the grammars r1 and r2 of Example 2. Their meet r1 � r2 is:

meet(list(abc),evenlist(bcd)) → [] ; [meet(abc,bcd) | meet(list(abc),oddlist(bcd))]

meet(abc,bcd) → b ; c

meet(list(abc),oddlist(bcd)) → [meet(abc,bcd) | meet(list(abc),evenlist(bcd))]

while their join r1 � r2 is:

join(list(abc),evenlist(bcd)) → [] ; [join(abc,bcd) | join(list(abc),oddlist(bcd))]

join(abc,bcd) → a ; b ; c ; d

join(list(abc),oddlist(bcd)) → [] ; [join(abc,bcd) | join(list(abc),evenlist(bcd))]

Note that the language generated by the grammar r1 � r2 could be represented with

fewer rules. In the compiler there is no effort to build minimal representations of

grammars since non-minimal grammars do not seem to occur that often in practice.

�

4.3 Types

Types in HAL are polymorphic Hindley-Milner types. Type expressions (or types)

are terms in the language τ(Σtype, Vtype) where Σtype are type constructors and variables

Vtype are type parameters. Each type constructor f/n ∈ Σtype must have a definition.

Definition 5

A type definition for f/n ∈ Σtype is of the form

:- typedef f(v1, . . . , vn) -> (f1(t11, . . . , t
1
m1

); · · · ; fk(t
k
1, . . . , t

k
mk

)).

where v1, . . . , vn are distinct type parameters, {f1/m1, . . . , fk/mk} ⊆ Σtree are distinct

tree constructor/arity pairs, and t11, . . . , t
k
mk

are type expressions involving at most

parameters v1, . . . , vn. The type definition for f/n may optionally have deriving

solver appended. If so then types of the form f(t1, . . . , tn) are solver types, otherwise

they are non-solver types. �

6 The final operations of interest are given in the appendix.
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Clearly, the type definition for f can be viewed as simply a set of production rules

over signature Σtree and non-terminal set τ(Σtype, Vtype).

We can associate with each (non-parameter) type expression the production rules

that define the topmost symbol of the type. Let t be a type expression of the form

f(t1, . . . , tn) and let f/n have type definition

:- typedef f(v1, . . . , vn) -> (f1(t11, . . . , t
1
m1

); · · · ; fk(t
k
1, . . . , t

k
mk

)).

We define rules(t) to be the production rules:

θ(f(v1, . . . , vn)) → (f1(θ(t11), . . . , θ(t1m1
)); · · · ; fk(θ(tk1), . . . , θ(tkmk

)))

where θ = {v1/t1, . . . , vn/tn}. If t ∈ Vtype we define rules(t) to be the empty set.

We can extend this notation to associate a tree grammar with a type expression.

Let grammar(t) be the least set of production rules such that:

grammar(t) ⊇ rules(t)

grammar(t) ⊇
⋃

{rules(t′) | ∃x′ → g(t′1, . . . , t
′, . . . , t′m) ∈ grammar(t))}

We assume that root(grammar(t)) = t. Note at this point we make no distinction

between solver types and non-solver types; this will only occur once we consider

instantiations.

To avoid type expressions that depend on an infinite number of types we restrict

the type definitions to be regular (Mycroft 1984). A type t is regular if grammar(t)

is finite.7

Consider for example the non-regular type definition:

:- typedef erk(T) -> node(erk(list(T)), T).

The meaning of the type erk(int) depends on the meaning of the type erk

(list(int)), which depends on the meaning of the type erk(list(list(int))),

etc. By restricting to regular types we are guaranteed that each type expression only

involves a finite number of types.

A ground type expression t is an element of τ(Σtype). The grammar corresponding

to ground type expression t defines the meaning of the type expression as a set of

trees ([[grammar(t)]]). Note that during run-time every variable (for each invocation

of a predicate) has a unique ground type in τ(Σtype).

Example 6

Given the type definitions:

:- typedef abc -> a ; b ; c.

:- typedef list(T) -> [] ; [T | list(T)].

then the grammar r1 shown in Example 2 is grammar(list(abc)). The set [[r1]] is

the set of lists of a’s, b’s and c’s. The grammar grammar(list(T)) is

list(T ) → [] ; [T |list(T )]

7 Note that non-regular types are rarely used (although see Okasaki (1998)). The compiler could be
extended to support mode checking for non-regular types as long as we keep the restriction to regular
instantiations.
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The set [[grammar(list(T))]] = {[]}. �

Note that the grammars corresponding to non-ground type expressions are not

very interesting, as illustrated in the above example. We can think of a non-ground

type expression as a mapping from grounding substitutions to (ground) types whose

meaning is then given by their corresponding grammar.

The built-in types float, int, char and string are conceptually expressible as

(possibly infinite) tree grammars. For example, int can be thought of as having the

(infinite) definition:

:- typedef int -> 0 ; 1 ; -1 ; 2 ; -2 ; 3 ; ...

Though the infinite number of children will render some of the algorithms on tree

grammars ineffective this is easily avoided in the compiler by treating the type

expressions specially (we omit details in our algorithms since it is straightforward).

Note that in HAL, type inference and checking is performed using a constraint-

based Hindley–Milner approach on the type expressions (Demoen et al. 1999). In

this paper we assume that type analysis has been performed previously, and there

are no type errors. For the purposes of mode checking the type correctness of a

program has four main consequences. First, each program variable is known to

have a unique polymorphic type. Second, all values taken by a variable during the

execution are known to be members of this type. Third, calls to a polymorphic

predicate are guaranteed to have an equal or more specific type than that of the

predicate. Fourth, all type parameters appearing in the type of a variable in the

body of a predicate are known to also appear in the type of some variable in

the head of the predicate. Together, these guarantee that whenever we compare

grammars during mode checking, they correspond to exactly the same type.8 This is

used to substantially simplify the algorithms for mode checking (see, for example,

the re-definition of function � in section 4.6, and the assumption on the existence

of type environment θ at the beginning of section 7.1).

4.4 Values

Types only express sets of fixed values (subsets of τ(Σtree)). However, during execution

variables do not always have a fixed value and it is the role of mode checking to

track these changes in variable instantiation. Thus, to perform mode checking we

need to introduce special constants, #fresh# and #var#, to represent the two kinds

of non-fixed values that a program variable can have during execution.

The #fresh# constant is used to represent that a program variable takes no

value (i.e. it has not been initialized), and corresponds to the new instantiation. Note

that in HAL there is no run-time representation for #fresh# variables. As a result,

the compiler needs to know at all times whether a variable is new or not. Thus, any

tree language including #fresh# and some other term is not a valid description of

the values of a program variable.

8 Even mode checking a call to a polymorphic predicate will use the calling type, which may be more
specific than the predicate’s declared type.
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The #var# constant is used to represent a program variable (or part of a value)

that has been initialized but not further constrained. It corresponds to a “free”

variable in the usual logic programming sense. The #var# constructor will arise in

descriptions of old instantiations, where we can define values which are not fixed.

Of course it will only make sense for variables of solver types to take on this value.

The values that a variable can take are thus represented by trees in τ(Σtree ∪
{#var#}) ∪ {#fresh#}.

4.5 Instantiations

A type expression by itself represents a set of fixed values. An instantiation by itself

has little meaning, it is just a term in the language of expressions. Its meaning is

only defined when it is considered in the context of a type expression. For instance,

the meaning of ground depends upon the type of the variable it is referring to.

In the following section we define a function rt(t, i) which takes a type expression

t and an instantiation i and returns a tree-grammar defining the set of (possibly

non-fixed) values that a program variable with the given type and instantiation can

take. In this section we define the function base(t, i) which is the function rt(t, i) for

the particular case in which i is a base instantiation. In order to avoid name clashes,

the function creates a unique non-terminal grammar symbol ti(t, base) for the type t

and base instantiation base with which it is called and returns this together with the

grammar for t and base. The symbol ti(t, i) represents the root of the tree-grammar

which defines the possible values of a variable of type t and instantiation i.

When a program variable is new it can only have one possible value, #fresh#.

Hence the grammar returned by base(t, new) for any type t is simply

ti(t, new) → #fresh#

In a slight abuse of notation we will use new to refer to this grammar.

When a program variable is ground it can take any fixed value. If the type t of

the variable is ground, then base(t, ground) is identical to the grammar defining its

type (grammar(t)). Type parameters complicate this somewhat. Since we are going

to reason about the values of variables with non-ground types we need a way of

representing the possible ground values of a type parameter. We introduce new

constants of the form $ground(v)$ where v ∈ Vtype to represent these languages. So

for t ∈ Vtype the grammar base(t, ground) is defined as

ti(t, ground) → $ground(t)$

For arbitrary types t, base(t, ground) is defined as the union of the rules

ti(t′, ground) → f(ti(t1, ground), . . . , ti(tn, ground))

for each t′ → f(t1, . . . , tn) occurring in grammar(t), with

ti(t′, ground) → $ground(t′)$

for each t′ ∈ Vtype occurring in grammar(t).

Conceptually, the new constant $ground(v)$ is a place holder for the grammar

base(t′, ground) obtained if v were replaced by the ground type t′.
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When a program variable is old it can take any initialized value. This will have

a different effect on the parts of the type which are solver types themselves and

on those which are not. Non-solver types do not allow the possibility of taking an

initialized but unbound value (represented by the value #var#). Thus, for solver

types t we shall add a production rule t → #var# to the usual rules defining the

type, while non-solver types remain unchanged. In order to handle type parameters

we introduce another set of constants $old(v)$ where v ∈ Vtype. Each constant is

simply a place holder for base(t′, old) obtained if v were replaced by the ground

type t′. Thus, base(t, old) for t ∈ Vtype is defined as

ti(t, old) → $ground(t)$ ; $old(t)$

and otherwise base(t, old) is defined as the rules

ti(t′, old) → f(ti(t1, old), . . . , ti(tn, old))

for each rule t′ → f(t1, . . . , tn) in grammar(t), together with

ti(t′, old) → #var#

for each solver type t′ occurring in grammar(t), and

ti(t′, old) → $ground(t′)$ ; $old(t′)$

for each type variable t′ ∈ Vtype occurring in grammar(t).

The reason we represent an old variable of type t using both the $ground(t′)$

and $old(t′)$, is that then a ground variable of type t defines a sublanguage. This

will simplify many algorithms.

Example 7

Given the type definitions:

:- typedef abc -> a ; b ; c.

:- typedef hlist(T) -> [] ; [T | hlist(T)] deriving solver.

Then olabc1 = base(hlist(abc), old) is the grammar:

ti(hlist(abc), old) → [] ; [ti(abc, old) | ti(hlist(abc), old)] ; #var#

ti(abc, old) → a ; b ; c

The set [[olabc1]] includes the values [], [a|#var#], [b], [b, a, c, a|#var#]. The sym-

bol #var# represents an uninstantiated variable, and so the second and fourth

values are open-ended lists.

As another example, imagine we swap which type is a solver type. That is, suppose

we have definitions

:- typedef habc -> a ; b ; c deriving solver.

:- typedef list(T) -> [] ; [T | list(T)].

Then olabc2 = base(list(habc), old) is the grammar:

ti(list(habc), old) → [] ; [ti(habc, old) | ti(list(habc), old)]

ti(habc, old) → a ; b ; c ; #var#
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The set [[olabc2]] includes the values [], [a], [#var#, b,#var#] which are all fixed-

length lists whose elements may be variables. Note that the two occurrences of the

symbol #var# in the last tree do not necessarily represent the same solver variable.

Finally base(hlist(T), old) is (using the first definition)

ti(hlist(T ), old) → [] ; [ti(T , old) | ti(hlist(T ), old)] ; #var#

ti(T , old) → $ground(T )$ ; $old(T )$

�

Let us now consider instantiations in general, rather than only base instantiations.

Instantiation expressions (or instantiations) are terms in the language τ(Σinst, Vinst)

where Σinst are instantiation constructors and variables Vinst are instantiation para-

meters. Each instantiation constructor g/n ∈ Σinst must have a definition. Often, we

will overload functors as both type and instantiation constructors (so Σtype and Σinst

are not disjoint). The base instantiations (ground, old and new) are simply special

0-ary elements of Σinst.

Definition 8

An instantiation definition for g is of the form:

:- instdef g(w1, . . . , wn) -> (g1(i11, . . . , i
1
m1

); · · · ; gk(i
k
1, . . . , i

k
mk

)).

where w1, . . . , wn are distinct instantiation parameters, {g1/m1, . . . , gk/mk} ⊆ Σtree are

distinct tree constructors, and i11, . . . , i
k
mk

are instantiation expressions other than new9

involving at most the parameters w1, . . . , wn. Just as for type definitions, we demand

that instantiation definitions are regular.10 �

We can associate a set of production rules rules(i) with an instantiation expression

i just as we do for type expressions. For the base instantiations we define rules(new) =

rules(old) = rules(ground) = ∅.

A ground instantiation is an element of τ(Σinst). The existence of instantiation

parameters during mode analysis would significantly complicate the task of the

analyzer. This is mainly because functions to compare type-instantiations or to

compute their join and meet would need to return a set of constraints involving

instantiation parameters. Furthermore, predicate mode declarations containing in-

stantiation parameters might need to express some constraints involving those

instantiations. Therefore, for simplicity, HAL (like Mercury11) requires instantiations

appearing in a predicate mode declaration to be ground. As a result, mode checking

only deals with ground instantiations and, from now on, we will assume all

instantiations are ground.

The reason this problem does not arise with type parameters is that, as mentioned

before, type correctness guarantees that whenever we compare type-instantiations,

the two types being compared are syntactically identical. Thus, if two type parameters

are being compared, they are guaranteed to be the same type parameter.

9 As mentioned before, disallowing nesting of the new instantiation simplifies mode analysis. It also
ensures that all subparts of a data structure have a proper representation at run-time.

10 It is hard to see how to lift this restriction.
11 Recently Mercury has added a (as yet unreleased) feature allowing limited non-ground instantiations

in predicate modes.
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rt(t,i)

(r, ) := rt(t,i,∅)

return r

rt(t,i,P )

if (ti(t, i) ∈ P ) return (∅, ti(t, i)))
if (i is a base instantiation) return (base(t,i), ti(t, i))

if (t ∈ Vtype) return (�, )

r := ∅
foreach rule xi → f(xi1, . . . , xin) in rules(i)

if exists rule xt → f(xt1, . . . , xtn) in rules(t)

for j = 1..n

(rj , xj) := rt(xtj ,xij , P ∪ {ti(t, i)})

if (rj = �) return (�, )

endfor

r := {ti(t, i) → f(x1, . . . , xn)} ∪ r ∪ r1 ∪ · · · ∪ rn
endif

endfor

return (r, ti(t, i))

Fig. 2. Algorithm for computing the type instantiation grammar rt(t, i).

4.6 Type-instantiation grammars

In this section we define the function rt(t, i) which takes a type expression t and a

ground instantiation expression i and returns a type-instantiation tree grammar (or

ti-grammar). Mode checking will manipulate ti-grammars, built from the types and

instantiations occurring in the program.

The function rt defines the meaning of combining a type with an instantiation by

extending base to non-base instantiations. A non-base instantiation combines with

a type in a manner analogous to the � operation over the rules defining each other.

Intuitively the function rt intersects the grammars of t and i. This is not really the

case because of special treatment of type parameters and base instantiations.

Figure 2 gives the algorithm for computing rt(t, i). The function rt(t, i, P ) does

all of the work. It creates a unique grammar symbol ti(t, i) for the type t and

instantiation i with which it is called and returns this with the type instantiation

grammar for t and i. Its last argument P is the set of grammar symbols constructed

in the parent calls: this is used to check that the symbol ti(t, i) has not already been

encountered and so avoids infinite recursion. The root of the grammar r returned is

the symbol ti(t, i).

Note that it is a mode error to associate a non-base instantiation with a parameter

type t ∈ Vtype, since we cannot know what function symbols make up the type t. In

this case the algorithm returns the special � grammar indicating a mode error.

Example 9

Consider the types list/1 and habc of Example 7 and instantiation nelist/1 from

the program in Figure 1. Then ti-grammar rt(list(habc), nelist(old)) is

ti(list(habc), nelist(old)) → [ti(habc, old) | ti(list(habc), list(old))]

ti(list(habc), list(old)) → [] ; [ti(habc, old) | ti(list(habc), list(old))]

ti(habc, old) → a ; b ; c ; #var#
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644 M. Garćıa de la Banda et al.

while rt(list(T), nelist(ground)) is

ti(list(T ), nelist(ground)) → [ti(T , ground)|ti(list(T ), list(ground))]

ti(list(T ), list(ground)) → [] ; [ti(T ,ground) | ti(list(T ), list(ground))]

ti(T , ground) → $ground(T )$

�

A ti-grammar is thus a regular tree grammar defined over the signature

Σtree ∪ {$old(v)$, $ground(v)$ | v ∈ Vtype} ∪ {#var#,#fresh#}

and non-terminal set

τ(Σtype ∪ Σinst ∪ {ti/2}, Vtype) ∪ {new}

Note that by construction the partial ordering and meet and join on tree

grammars extend to ti-grammars including type parameters. As mentioned before,

type correctness guarantees that during mode checking we will only compare ti-

grammars for the same type parameter v ∈ Vtype. For this reason, we only need

note that rt(v, ground) � rt(v, old) for a parameter v ∈ Vtype, which follows

from the construction, as [[rt(v, ground)]] = {$ground(v)$} and [[rt(v, old)]] =

{$ground(v)$, $old(v)$} and the meet and join operations follow in the natural way.

The operations that we perform on ti-grammars during mode checking will be �,

abstract conjunction and abstract disjunction. Abstract conjunction differs slightly

from � since we will be changing variables with a new ti-grammar to ti-grammars for

bound values (whenever the variable becomes instantiated). The abstract conjunction

operation ∧ is defined as:

r1 ∧ r2 =




r1, where r2 = new

r2, where r1 = new

r1 � r2, otherwise

Abstract disjunction is again slightly different from the � operation. Since the

compiler needs to know whether the value of a variable is new or not, we need to

ensure the abstract disjunction operation does not create ti-grammars (other than

�) in which this information is lost, i.e. grammars that include #fresh# as well as

other terms. The abstract disjunction operation ∨ is defined as:

r1 ∨ r2 =




r1 � r2, where r1 �= new and r2 �= new

new, where r1 = new and r2 = new

�, otherwise

Finally, we introduce the concept of a type-instantiation state (or ti-state) {x1 �→
r1, . . . , xn �→ rn}, which maps program variables to ti-grammars. Ti-grammars are

used during mode checking to store the possible values of the program variables

at each program point. We can extend operations on ti-grammars to ti-states

over the same set of variables in the obvious pointwise manner. Given ti-states

TI = {x1 �→ r1, . . . , xn �→ rn} and TI ′ = {x1 �→ r′
1, . . . , xn �→ r′

n} then:

• TI � TI ′ iff rl � r′
l for all 1 � l � n,

• TI ∧ TI ′ = {xl �→ rl ∧ r′
l | 1 � l � n} and

• TI ∨ TI ′ = {xl �→ rl ∨ r′
l | 1 � l � n}.
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5 Basic mode checking

Mode checking is a complex process which aims to reorder body literals to satisfy the

mode constraints provided by each mode declaration. The aim of this is to be able

to generate specialized code for each mode declaration. The code corresponding to

each mode declaration is referred to as a procedure, and calls to the original predicate

are replaced by calls to the appropriate procedure. Recall that before mode checking

is applied the HAL compiler performs type checking (and inference) so that each

program variable has a type, and the program is guaranteed to be type correct.

5.1 Well-moded programs

We now define what it means for a HAL program to be well-moded.

The execution of a HAL program is performed on procedures which are predicates

re-ordered for a particular mode. At run-time each type parameter has an associated

ground type. For our purposes we assume a given type environment θ (a ground type

substitution) describes the run-time types associated with each type parameter.

A call to a procedure p/n in mode p(c1 → s1, . . . , cn → sn) is a type environment θ

and a value di for each argument 1 � i � n. It follows from type correctness of the

program that di ∈ [[rt(θ(ti), old)]] ∪ {#fresh#} for each argument 1 � i � n.

A program is input-output mode-correct if any call to a predicate which is correct

with respect to the input instantiation for some mode declared for that predicate will

only have answers that are correct with respect to the output instantiation of that

mode. More formally, a program is input-output mode-correct if for each procedure

p/n with declared type p(t1, . . . , tn) in mode p(c1 → s1, . . . , cn → sn), and for any call of

the form p(d1, . . . , dn) with type environment θ such that di ∈ [[rt(θ(ti), ci)]], 1 � i � n,

it is the case that the resulting values d′
1, . . . , d

′
n on success of the procedure are such

that d′
i ∈ [[rt(θ(ti), si)]], 1 � i � n. In other words, the declared mode is satisfied by

the code generated for the procedure.

Example 10

For example the first mode for predicate pop/3, defined in Example 1,

:- mode pop(in,out,out) is semidet.

will be shown to be input-output mode-correct by showing that if the first argument

to pop/3 is ground at call time, and the last two arguments new, then all three

arguments will be ground on success of the predicate. �

A program is call mode-correct if any call to a predicate which is correct with

respect to the input instantiation for some mode declared for that predicate will

only lead to calls to literals within the definition of the predicate which are mode-

correct. More formally, a program is call mode-correct if for each procedure p/n

with declared type p(t1, . . . , tn) in mode p(c1 → s1, . . . , cn → sn), and for any call of

the form p(d1, . . . , dn) with type environment θ such that di ∈ [[rt(θ(ti), ci)]], 1 � i � n,

it is the case that each call to a procedure p′/n′ with type (given by the occurrence

in the definition of p/n) p′(t′1, . . . , t
′
n′ ) in mode p(c′

1 → s′
1, . . . , c

′
n′ → s′

n′ ) of the form

p′(d′
1, . . . , d

′
n) is such that d′

i ∈ [[rt(θ(t′i), c
′
i)]], 1 � i � n′, and any call to an equality

https://doi.org/10.1017/S1471068404002327 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002327
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of the form x1 = x2 is either a copy or unify, and any call to an equality of the

form x = f(x1, . . . , xn) is either a construct or deconstruct. In other words each

mode-correct call leads to only mode-correct calls.

Example 11

Consider the following code which duplicates the top element of the stack:

:- pred dupl(list(T), list(T)). % duplicate top of stack

:- mode dupl(in(nelist(ground)), out(nelist(ground))) is det.

dupl(S0, S) :- S0 = [], S = [].

dupl(S0, S) :- push(S0, A, S), pop(S0, A, S1).

Showing call mode-correctness for the procedure for dupl/2 involves showing that

any correct call to dupl/2 (that is with the first argument a non-empty ground

list, and its second argument new) will call push/3 and pop/3 with correct input

instantiations for one of their given modes, and each equation must be either a

construct or deconstruct. �

A program is well-moded if it is input-output mode-correct and call mode-correct.

We shall now explain mode checking by showing how to check whether each

program construct is schedulable for a given ti-state TI and, if so, what the

resulting ti-state TI ′ is. The scheduling also returns a goal illustrating the order of

execution of conjunctions, and the mode for each equation or predicate call. If the

program construct is not schedulable for the given ti-state it may be reconsidered

after other constructs have been scheduled. We assume that before checking each

construct for an initial ti-state TI , we extend TI so that any variable of type t local

to the construct is assigned the ti-grammar new.

5.2 Equality

Consider the equality x1 = x2 where x1 and x2 are variables of type t and the

current ti-state is TI = {x1 �→ r1, x2 �→ r2} ∪ RTI (where RTI is the ti-state for the

remaining variables). The two standard modes of usage for such an equality are

copy (:=) and unify (==). If exactly one of r1 and r2 is new (say r1), the copy x1 := x2

can be performed and the resulting ti-state is TI ′ = {x1 �→ r2, x2 �→ r2} ∪ RTI. If

both are not new then unify x1 == x2 is performed and the resulting instantiation

is TI ′ = {x1 �→ r1 ∧ r2, x2 �→ r1 ∧ r2} ∪ RTI. If neither of the two modes of usage

apply (i.e. both variables are new), the literal is not schedulable (although it might

become schedulable after automatic initialization, see Section 6).

Consider the equality x = f(x1, . . . , xn) where x, x1, . . . , xn are variables with types

{x �→ t, x1 �→ t1, . . . , xn �→ tn} and current ti-state TI = {x �→ r, x1 �→ r1, . . . , xn �→
rn} ∪ RTI. The two standard modes of usage of such an equality are construct (:=)

and deconstruct (=:). The construct mode applies if r is new and none of the rj
are new. The resulting ti-state is TI ′ = {x �→ r′, x1 �→ r1, . . . , xn �→ rn} ∪ RTI where

r′ is the ti-grammar defined by {a → f(root(r1), . . . , root(rn))} ∪ r1 ∪ · · · ∪ rn, where

a is a new non-terminal, (i.e. the grammar defining the terms constructible from

an f with arguments from r1, ..., rn respectively). The deconstruct mode applies if

each rj is new and r is not new and has no production rule root(r) → #var#
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(which means it is definitely bound to some functor). The resulting ti-state is

TI ′ = {x �→ r, x1 �→ r′
1, . . . , xn �→ r′

n}∪RTI where r′
1, . . . , r

′
n are defined below. If r has a

production rule of the form root(r) → f(y1, . . . , yn), then the r′
j = subg(yj , r), 1 � i � n.

If r has no rule of this form, then the resulting ti-state is the same but with

r′
j = ⊥, 1 � j � n, indicating that the deconstruct must fail. If some of the variables

xj are new and some are not (say xk1
, . . . , xkm ) the mode checking process decomposes

the equality constraint into a deconstruct followed by new equalities by introducing

fresh variables, e.g. x = f(x1, . . . , freshkj , . . .), . . . , xkj = freshkj , . . .. These new equalities

are handled as above.

Note that if r = new and some ri = new then the literal is not schedulable

(although it might become schedulable after automatic initialization, again see

section 6).

Example 12

Assume X and Y are ground lists, while A is new. Scheduling the goal Y = [A|X]

results in the code Y =: [A|F], X == F. �

The above uses of deconstruct are guaranteed to be safe at run-time and

correspond to the modes of usage allowed by Mercury. HAL, in addition to the

above, allows the use of the deconstruct mode when x is old (i.e. r contains a

production rule root(r) → #var#). In this case we check whether r has a production

rule of the form root(r) → f(y1, . . . , yn) and we proceed as in the previous paragraph.

Note that this is (the only place) where the HAL mode system is not completely

strong (i.e. run-time mode errors can occur). The following example illustrates the

need for this behavior.

Example 13

Consider the types abc/0 and hlist/1 from Example 7, the following use of

append/3 may not detect a mode error until run-time:

:- pred append(hlist(abc), hlist(abc), hlist(abc)).

:- mode append(oo, oo, no) is nondet.

append(X, Y, Z) :- X = [], Y = Z.

append(X, Y, Z) :- X = [A|X1], append(X1, Y, Z1), Z = [A|Z1].

The equation X = [A|X1] is schedulable as a deconstruct since X is old. However, if

at run-time X is not bound when append/3 is called, the deconstruct will generate a

run-time error since A is not a solver variable and, thus, it cannot be initialized. Note

that if we did not allow deconstruction on old variables then the above predicate

would not pass mode checking thus preventing mode-correct goals like

?- X = [a,b,c], init(Y), append(X,Y,Z).

from being compiled. �

If we never allow Herbrand solver types to contain non-solver types (as in

the example above), the problem cannot occur. This gap in mode checking seems

unavoidable if we are to allow Herbrand solver types to contain non-solver types.

However, it seems that in practice this gap is not problematic: in most programs, the

possibility of a run-time mode error does not exist. Whenever it does, the compiler

emits a warning message. In fact, we have never detected a run-time mode error.
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5.3 Predicates

In this subsection we describe the scheduling of predicate calls so that the resulting

program after scheduling is call mode-correct.

Consider the predicate call p(x1, . . . , xn) where each xi is a variable with type ti.

Assume p has the mode declaration p(c1 → s1, . . . , cn → sn) where cj , sj are the call

and success instantiations, respectively, for argument j, and the current ti-state is

TI = {x1 �→ r1, . . . , xn �→ rn} ∪ RTI.

Note that the handling of polymorphic application is hidden here, since the type

ti of the variable xi is type in the calling literal p(x1, . . . , xn), which may be more

specific than the declared/inferred type of argument i of p. Because instantiations

are separate from types this is straightforwardly expressed by constructing the

ti-grammar for the mode specific calling type ti and the appropriate instantiations.

The predicate call can be scheduled if for each 1 � j � n the current ti-state

restricts the j-th argument more than (defines a subset of) the calling ti-state

required for p, i.e. rj � rt(tj , cj). If the predicate call is schedulable for this mode the

new ti-state is TI ′ = {x1 �→ r1 ∧rt(t1, s1), . . . , xn �→ rn∧rt(tn, sn)}∪RTI. The predicate

call can also be scheduled if for each j such that rj �� rt(tj , cj) then rt(tj , cj) = new.

For each j, the argument xj in predicate call p(x1, . . . , xj−1, xj , xj+1, . . . , xn) is replaced

by freshj , where freshj is a fresh new program variable, and the equation freshj = xj
is added after the predicate call. Such “extra” modes are usually referred to as

implied modes.

Example 14

Consider the goal empty(S0) for the program of Figure 1 where the type of S0 is

given by {S0 �→ list(abc)} (which is more specific than the declared type list(T))

and the current ti-state is TI = {S0 �→ new}. The two modes for empty (in expanded

form) are

:- mode empty(ground -> ground) is semidet.

:- mode empty(new -> ground) is det.

The first mode of empty cannot be scheduled since new �� rt(list(abc), ground),

but the second mode can be scheduled, since new � rt(list(abc), new) = new. �

If more than one mode of the same predicate is schedulable, in theory the compiler

should try each possibility. Unfortunately, this search may be too expensive. For this

reason, HAL (like Mercury) chooses one schedulable mode and commits to it. This

behavior might lead to the compiler failing to check a mode-correct procedure (see

Example 27). To minimize this risk, we choose a schedulable mode whose success

ti-state TI defined as {x1 �→ rt(t1, s1), . . . , xn �→ rt(tn, sn)} is minimal; that is, for

each other schedulable mode with success ti-state TI ′ it is the case that TI ′ �� TI .

Note that there may be more than one mode with a minimal success ti-state. In the

case that we have more than one mode with the same minimal success state then

we use a mode with a minimal call ti-state.

Example 15

Consider the scheduling of the goal pop(A,B,C) where current ti-state is TI =

{A �→ r1, B �→ new, C �→ r3} where r1 and r3 are defined by the grammars
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r1 → [r2 | r3]

r2 → b

r3 → []

That is A = [b] and C = []. Neither of the declared modes for pop, shown below,

are immediately applicable.

:- mode pop(in,out,out) is semidet.

:- mode pop(in(nelist(ground)),out,out) is det.

But both modes fit the conditions for an implied mode. Since the second mode has

a more specific success ti-state (the first argument is known to be non-empty) it

is chosen. The resulting code is pop mode2(A,B,Fresh), Fresh = C, where mode

checking will then schedule the new equation appropriately. �

The idea is to maintain as much instantiation information as possible, thus

restricting as little as possible the number of schedulable modes for the remaining

literals. In our experience with compiling real programs this policy seems adequate to

avoid any problems. It is straightforward, but in practice too expensive, to implement

a complete search for all possible schedules.

5.4 Conjunctions, disjunctions and if-then-elses

To determine if a conjunction G1, . . . , Gn is schedulable for initial ti-state TI we

choose the left-most goal Gj which is schedulable for TI and compute the new

ti-state TIj . This default behavior schedules goals as close to the programmer given

left-to-right order as possible. If the state TIj assigns ⊥ to any variable, then the

subgoal Gj must fail and hence the whole conjunction is schedulable. The resulting

ti-state TI ′ maps all variables to ⊥, and the final conjunction contains all previously

scheduled goals followed by fail. If TIj does not assign ⊥ to any variable we

continue by scheduling the remaining conjunction G1, . . . , Gj−1, Gj+1, . . . , Gn with

initial ti-state TIj . If all subgoals are eventually schedulable we have determined

both an order of evaluation for the conjunction and a final ti-state.

Example 16

Consider scheduling the goal

Y = [U1|U2], U2 = [], X = [U1|U3].

where X is initially rt(list(T), ground), and the remaining variables are new.

The first literal is not schedulable and will remain so until both U1 and U2

are no longer new. We consider then the second literal, which is schedulable as

a construct, thus changing the type-instantiation of U2 to rt(list(T), elist).

Since the first literal remains unschedulable, we consider the third literal which

is schedulable as a deconstruct, thus changing the type-instantiation of X, U1 and

U3 to rt(list(T), nelist(ground)), rt(T, ground), and to rt(list(T), ground),

respectively. Since both U1 and U2 are no longer new, the first literal is now

schedulable as a construct. The resulting code is

U2 := [], X =: [U1|U3], Y := [U1|U2].
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In the final ti-state the instantiation of Y is given by the tree-grammar

Y → [ti(T , ground)|ti(list(T ), elist)]

ti(list(T ), elist) → []

ti(T , ground) → $ground(T )$

in other words it is a list of length exactly one. �

To determine if a disjunction G1; · · · ;Gn is schedulable for initial ti-state TI we

check whether each subgoal Gj is schedulable for TI and, if so, compute each

resulting ti-state TIj , obtaining the final ti-state TI ′ =
∨

j∈{1..n} TIj . If this ti-state

assigns � to any variable or one of the disjuncts Gj is not schedulable then the

whole disjunction is not schedulable.

To determine whether an if-then-else Gi → Gt;Ge is schedulable for initial ti-state

TI , we determine first whether Gi is schedulable for TI with resulting ti-state TIi.

If not, the whole if-then-else is not schedulable. Otherwise, we try to schedule Gt in

state TIi (resulting in state TIt say) and Ge in state TI (resulting in state TIe say).

The resulting ti-state is TI ′ = TIt ∨ TIe. If one of Gt or Ge is not schedulable or

TI ′ includes � the whole if-then-else is not schedulable. Note that the analysis of

Gi → Gt;Ge is identical to that of (Gi, Gt);Ge except that all goals of Gi must be

scheduled before those of Gt.

5.5 Mode declarations

In this subsection we discuss how mode-correctness is checked for each mode

declaration.

To check that a predicate with head p(x1, . . . , xn) and declared (or inferred) type

{x1 �→ t1, . . . , xn �→ tn} satisfies the mode declaration p(c1 → s1, . . . , cn → sn), we

build the initial ti-state TI = {x1 �→ rt(t1, c1), . . . , xn �→ rt(tn, cn)}. The body of

the predicate is then analyzed starting from the state TI . The mode declaration is

correct if (a) everything is schedulable and (b) if the final ti-state is TI ′ = {x1 �→
r′

1, . . . , xn �→ r′
n}, then for each argument variable 1 � i � n, r′

i � rt(ti, si). If the body

is not schedulable or the resulting instantiations are not strong enough, a mode

error results. Note that (a) ensures that the predicate is call mode-correct for that

mode while (b) ensures that it is input-output mode-correct.

Example 17

Consider mode checking of the following code from Example 11 which makes use

of the code in Figure 1:

:- pred dupl(list(T), list(T)). % duplicate top of stack

:- mode dupl(in(nelist(ground)), out(nelist(ground))) is det.

dupl(S0, S) :- S0 = [], S = [].

dupl(S0, S) :- push(S0, A, S), pop(S0, A, S1).

We start by constructing the initial ti-state TI = {S0 �→ gnelT , S �→ new} where

gnelT = rt(list(T), nelist(ground)) is the ti-grammar shown in Example 9.

Checking the first disjunct (rule) we have S0 = [] schedulable as a deconstruct.

The resulting ti-state assigns ⊥ to S0, and thus the whole conjunction is schedulable
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with TI1 = {S0 �→ ⊥, S �→ ⊥}. Checking the second disjunct, we first extend TI

to map A and S1 to new. Examining the first literal push(S0, A, S) we find

that it is not schedulable since A has instantiation new and is required to be

ground. Examining the second literal pop(S0, A, S1) we find that both modes

declared for pop/3 are schedulable. Since the second mode has more specific success

instantiations, it is chosen and the ti-grammars for A and S1 become rt(T, ground)

and rt(list(T), ground), respectively. Now the first literal is schedulable obtaining

for S the ti-grammar gnelT . Restricting to the original variables the final ti-state is

TI2 = {S0 �→ gnelT , S �→ gnelT }. Taking the join TI ′ = TI1 ∨TI2 = TI2. Checking

this against the declared success instantiations we find the declared mode is correct.

The code generated for the procedure is:

dupl mode1(S0, S) :- fail.

dupl mode1(S0, S) :- pop mode2(S0, A, S1), push mode1(S0, A, S).

where pop mode2/3 and push mode1/3 are the procedures associated with the second

and first modes of the predicates, respectively.

Note that the HAL compiler’s current mode analysis does not track variable

dependencies and thus it may obtain a final type-instantiation state weaker than

expected.

Example 18

Consider the solver type habc/0 of Example 7. The following program does not

pass mode checking:

:- pred p(list(habc), habc).

:- mode p(list(old) -> ground, in) is semidet.

p(L, E) :- L = [].

p(L, E) :- L = [E1|L1], E = E1, p(L1, E).

The first literal of the second rule is a deconstruct. After that deconstruct variable L

is never touched and hence its instantiation is never updated; in particular it is not

updated when the instantiation of E1 and L1 change. The inferred type-instantiation

for L at the end of the second rule is thus rt(list(habc), nelist(old)) rather than

rt(list(habc), nelist(ground)). Hence, mode checking fails. �

This could be overcome by adding a definite sharing analysis and/or a dependency

based groundness analysis to the mode checking phase. Whenever a variable which

definitely shares with another (through an equation e) is touched, we modify the

resulting ti-state as if the equation e has been rescheduled to update sharing variables.

This is (partially) implemented, for example, in the alias branch of the Mercury

compiler.

6 Automatic initialization

As mentioned before, constraint solvers must provide an initialization procedure

(init/1) for their solver type. This procedure takes a solver variable with in-

stantiation new and returns it with instantiation old, after initializing whatever

data-structures (if any) the solver needs.
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Many of the predicates exported by constraint solvers (including most constraints)

require the solver variables appearing as arguments to be already initialized. Thus,

explicit initializations for local variables may need to be introduced. Not only is this

a tedious exercise for the programmer, it may even be impossible for multi-moded

predicate definitions since each mode may require different initialization instructions.

Therefore, the HAL mode checker automatically inserts variable initializations. In

particular, whenever a literal cannot be scheduled because there is a requirement for

an argument of type t to be rt(t, old) when it is new and t is a solver type, then

the init/1 predicate for type t can be inserted to make the literal schedulable.

Example 19

Assume we have an integer solver with solver type cint/0.

:- pred length(list(cint), int).

:- mode length(out(list(old)), in) is nondet.

:- mode length(in(list(old)), out) is det.

length(L, N) :- L = [], N = 0.

length(L, N) :- L = [X|L1], +(N1,1,N), N > 0, length(L1, N1).

where the predicate +(X,Y,Z) models X+Y = Z and requires at least two arguments

to be ground on call and all arguments are ground on return.

For the first mode L = [X|L1] cannot be scheduled as a construct until X has a

ti-grammar different from new. Hence, X needs to be initialized. In the second mode

L = [X|L1] can be scheduled as a deconstruct and thus no initialization is needed.

The two resulting procedures are:

length mode1(L, N) :- (L := [], N == 0

; +outinin(N1, 1, N), N > 0, length mode1(L1, N1), init(X), L := [X|L1]).

length mode2(L, N) :- (L == [], N := 0

; L =: [X|L1], length mode2(L1, N1), +ininout(N1, 1, N), N > 0).

where we have rewritten the call to +/3 to show the mode more clearly (+outinin
indicates that the first argument is out and the rest are in, +ininout indicates that the

third argument is out and the other arguments are in). �

Unfortunately, unnecessary initialization may slow down execution and introduce

unnecessary variables (when it interacts with implied modes). Hence, we would like

to only add those initializations required so that mode checking will succeed. The

HAL mode checker implements this by first trying to mode the procedure without

allowing initialization. If this fails it will start from the previous partial schedule

looking for the leftmost unscheduled literal l which can be scheduled by initializing

variables which (a) have either a solver type or a parameter type (e.g. v ∈ Vtype)

and (b) do not appear in an unscheduled literal to the left which equates them to a

term (if so, chances are the equation will become a construct and no initialization is

needed). If such an l is found the appropriate initialization calls are inserted before

l, and then scheduling continues once more trying to schedule without initialization.

If no l is found the whole conjunct is not schedulable. This two phase approach is

applied at each conjunct level individually.

https://doi.org/10.1017/S1471068404002327 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002327


Checking modes of HAL programs 653

Example 20

Consider the following program where cint/0 is a solver type:

:- instdef evenlist(T) -> ([] ; [T|oddlist(T)]).

:- instdef oddlist(T) -> [T|evenlist(T)].

:- pred pairlist(list(cint),int).

:- mode pairlist(out(evenlist(old)),in) is nondet.

pairlist(L,N) :- N = 0, L = [].

pairlist(L,N) :- N > 0, +(N1,1,N), L = [V|L1], L1 = [V|L2], pairlist(L2,N1).

In the first phase all literals in the second rule are schedulable except L = [V|L1]

and L1 = [V|L2] which can be neither a construct (V, L1 and L2 are new) nor

a deconstruct (both L and L1 are new). In the second phase we examine the two

remaining unscheduled literals: the second literal can be scheduled by initializing V.

Once this is done the first literal can be scheduled obtaining:

pairlist(L,N) :- N == 0, L := [].

pairlist(L,N) :- N > 0, +outinin(N1,1,N), pairlist(L2,N1),

init(V), L1 := [V|L2], L := [V|L1].

�

Many other different initialization heuristics could be applied. We are currently

investigating more informed policies which give the right tradeoff between adding

constraints as early as possible, and delaying constraints until they can become tests

or assignments.

7 Higher-order objects

Higher-order programming is particularly important in HAL because it is the mech-

anism used to implement dynamic scheduling, which is vital in CLP languages for

extending and combining constraint solvers. Higher-order programming introduces

two new kinds of literals: construction of higher-order objects and higher-order

calls.

A higher-order object is constructed using an equation of the form h = p(x1, . . . , xk)

where h, x1, . . . , xk are variables and p is an n-ary predicate with n � k. The variable

h is referred to as a higher-order object. Higher-order calls are literals of the form

call(h, xk+1, . . . , xn) where h, xk+1, . . . , xn are variables. Essentially, the call literal

supplies the n − k arguments missing from the higher-order object h.

In order to represent types and instantiations for higher-order objects we need

to extend the languages of type and instantiation expressions. The higher-order

type of a higher-order object h constructed in the previous paragraph is of the

form pred(tk+1, . . . , tn) where pred/(n − k) is a new special type constructor and

tk+1, . . . , tn are types. It provides the types of the n − k arguments missing from h.

The higher-order instantiation of h is of the form pred(ck+1 → sk+1, . . . , cn → sn)
12

where pred/(n − k) is a new special instantiation construct and cj → sj give the

12 In reality, the determinism information also appears in the higher-order instantiation; for simplicity
we ignore it here.
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654 M. Garćıa de la Banda et al.

call and success instantiations of argument j respectively. It provides the modes

of the n − k arguments missing from h. Note that for the first time we allow new

instantiations appearing inside instantiation expressions (since they will often be

call instantiations). But their appearance is restricted to the outermost arguments of

higher-order instantiations.

Now we must extend the rt(t, i) operation to handle higher-order types and

instantiations. Let us first consider the case in which i is the higher-order instantiation

pred(ck+1 → sk+1, . . . , cn → sn). If t is the higher-order type pred(tk+1, . . . , tn) then

rt(t, i) returns the grammar

ti(t, i) → $ipred$(root(tck+1), root(tsk+1), . . . , root(tcn), root(tsn))

together with the grammars tck+1, . . . , tcn, tsk+1, . . . , tsn where tcj = rt(tj , cj) and

tsj = rt(tj , sj). If t is not a higher-order type or has the wrong arity then rt(t, i) = �,

indicating an error. The new constant $ipred$ simply collects the call and success

ti-grammars for the higher-order object’s missing arguments.

The extension of rt(t, i) for the case of base instantiations i is similar to the

treatment of type parameters. A higher-order object can be new or ground, but

if it is old this is identical to ground since higher-order objects never have an

attached solver. rt(pred(t1, . . . , tn), new) is treated as before (i.e. it creates a new

ti-grammar). Similarly rt(pred(t1, . . . , tn), ground) generates a production rule using

a new constant $gpred$ of the form

ti(pred(t1, . . . , tn), ground) → $gpred$

rt(pred(t1, . . . , tn), old) generates the same grammar (since it is equivalent). Since we

will only compare the higher-order ti-grammar against other ti-grammars for the

same type we can safely omit the information about the argument types (t1, . . . , tn).

The new constant $gpred$ acts like $ground(v)$ but it can also be compared with

more complicated ti-grammars (with production rules for function symbol $ipred$)

of the same type. The full code for rt(t, i) is given in the appendix.

Example 21

Consider the following code:

:- pred map(pred(T1,T2), list(T1), list(T2)).

:- mode map(in(pred(in,out) is det), in, out) is det.

map(H, [], []).

map(H, [A|As], [B|Bs]) :- call(H,A,B), map(H,As,Bs).

:- typedef sign -> (neg ; zero ; pos).

:- pred mult(sign, sign, sign).

:- mode mult(in, in, out) is det.

?- H1 = mult(pos), map(H1, [neg,zero,pos], L1).

The map/3 predicate takes a higher-order predicate with two missing arguments of

parametric types T1 and T2 and modes in and out, respectively. The ti-grammar

describing the input instantiation of the first argument of map/3 is the grammar

with root a1 = ti(pred(T1,T2), pred(in,out)), defined by
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a1 → $ipred$(ti(T1, ground), ti(T1, ground), new, ti(T2, ground))

ti(T1, ground) → $ground(T1)$

ti(T2, ground) → $ground(T2)$

new → #fresh#

This predicate is applied to a list of T1s, returning a list of T2s. The literal

H1 = mult(pos) constructs a higher-order object which multiplies the sign of its

first argument by pos, returning the result in its second argument. The type-

instantiation of H1, rt(pred(sign,sign), pred(in,out)), is the grammar with root

a2 = ti(pred(sign,sign), pred(in,out)) and rules:

a2 → $ipred$(ti(sign, ground), ti(sign, ground), new, ti(sign, ground))

ti(sign, ground) → neg ; zero ; pos

new → #fresh#

�

We need to extend the ordering � to higher-order type-instantiations as well as

the operations ∧ and ∨. Two higher-order ti-grammars r and r′ defined with rules

root(r) → $ipred$(xc1, xs1, . . . , xcn, xsn)

and

root(r′) → $ipred$(xc′
1, xs

′
1, . . . , xc

′
n, xs

′
n)

satisfy r � r′ iff for i = 1, . . . , n, subg(xc′
i, r

′) � subg(xci, r) and subg(xsi, r) �
subg(xs′

i, r
′). Intuitively, if r � r′, then any higher-order call(r′, . . .) should be

replaceable by call(r, . . .). For this to work, two conditions must be fulfilled. First,

r must be able to deal with any values that r′ can deal with (and perhaps more).

Thus, subg(xc′
i, r

′) � subg(xci, r). And second, r must return the same values as r′ or

less. Thus, subg(xsi, r) � subg(xs′
i, r

′). For more details see the example below.

We define r � rt(pred(t1, . . . , tn), ground) for any ti-grammar r of the appropriate

type except new. The full definition of � is given in the appendix. The ∧ and ∨
operations follow naturally from the ordering, and are given in the appendix.

Example 22

Consider the following code and goal:

:- typedef abc -> a ; b ; c.

:- instdef ab -> a ; b.

:- pred ho1(abc,abc).

:- mode ho1(in(ab),out(ab)) is det.

ho1(A,B) :- A = B.

:- pred ho2(abc,abc).

:- mode ho2(in,out) is det.

ho2(A,B) :- A = a, B = b.

ho2(A,B) :- A = b, B = c.

ho2(A,B) :- A = c, B = a.

?- HO1 = ho1, HO2 = ho2, (HO = HO1 ; HO = HO2).

During scheduling of the disjunction, the ti-grammar for HO1 is rt(pred(abc,abc),

pred(in(ab),out(ab))), i.e.:
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ho1 → $ipred$(gndab, gndab, new, gndab)

gndab → a ; b

new → #fresh#

and the ti-grammar for HO2 is

ho2 → $ipred$(gndabc, gndabc, new, gndabc)

gndab → a ; b ; c

new → #fresh#

The abstract disjunction of these two grammars to build the ti-grammar for HO gives

ho → $ipred$(gndab,gndabc, new, gndabc)

Notice the call ti-grammars have been abstractly conjoined. This illustrates the

contravariant nature of calling instantiations of higher-order predicates. The higher-

order object in HO can only be safely applied to an input a or b since it may be

predicate ho1. It can only be guaranteed to give output a,b or c since it may be

predicate ho2. �

7.1 Scheduling higher-order

Intuitively, a higher-order equation h = p(x1, . . . , xk) is schedulable if h is new and

x1, . . . , xk are at least as instantiated as the call instantiations of one of the modes

declared for p/n. If this is true for more than one mode, we again choose one

schedulable mode (using the same criteria used for calls to first order predicates)

and commit to it. If it is not true for any mode, the equation is delayed until the

arguments become more instantiated. Formally, let the current ti-state be TI =

{h �→ r, x1 �→ r1, . . . , xk �→ rk} ∪ RTI and the types {x1 �→ t1, . . . , xk �→ tk}. Let the

(declared or inferred) predicate type of p/n be p(dt1, . . . , dtn), then (because of type

correctness) we have that there exists θ such that θ(dtj) = tj .

Consider the declared mode p(c1 → s1, . . . , cn → sn). The higher-order equation is

schedulable if r = new and for each 1 � j � k, rj � rt(tj , cj) ∧ rj �= new. The

resulting ti-state is

{h �→ r′, x1 �→ r1, . . . , xk �→ rk} ∪ RTI.

where tcj = rt(θ(dtj), cj) and tsj = rt(θ(dtj), sj) for k + 1 � j � n and r′ =

{a → $ipred$(root(tck+1), root(tsk+1), . . . , root(tcn), root(tsn))}, where a is a new non-

terminal, together with the grammars for tck+1, tsk+1, . . . , tcn, tsn.

Note that the instantiation of each xj is unchanged and, in fact, will not be

updated even when h is called. This is because in general we cannot ensure when

or if the call has actually been made. As a result, mode checking with higher-order

objects can be imprecise. In particular, if one of the rj is new we may not know if it

becomes initialised or not since we do not know if the call to h which will initialise

it has been made. Since we must be able to precisely track when a variable has

become initialised, we do not allow a call to be scheduled if this is the case (hence

the rj �= new condition above).

A higher-order call call(h, xk+1, . . . , xn) is schedulable if xk+1, . . . , xn are at least

as instantiated as the call instantiations of the arguments of the higher-order
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type-instantiation previously assigned to h. If this is not true, the call is delayed

until the arguments become more instantiated. Formally, let the current ti-state be

TI = {h �→ r, xk+1 �→ rk+1, . . . , xn �→ rn} ∪ RTI. The call is schedulable if r has a

production rule of the form

root(r) → $ipred$(xck+1, xsk+1, . . . , xcn, xsn)

and for each j ∈ k + 1, ..., n, rj � subg(xcj , r). The resulting instantiation is TI ′ =

{h �→ r, xk+1 �→ rk+1 ∧ subg(xsk+1, r), . . . , xn �→ rn ∧ subg(xsn, r)} ∪ RTI. Just as for

normal predicate calls, implied modes are also possible where if, for example, xcl
is new, we can replace xl with a fresh variable freshl and a following equation

freshl = xl . And, if necessary, the mode checker will add calls to initialise solver

variables.

Example 23

Consider the following code and assume all goals are schedulable in the order

written:

:- instdef only a -> a.

:- modedef abc2a -> (ground -> only a).

:- pred p(abc, abc, abc)

:- mode p(abc2a, in, out(only a)) is semidet.

?- G1, p(A,B,C), G2.

?- G1, H = p(A), call(H,B,C), G2.

The two queries would appear to have identical effects. However, mode checking for

the second goal will not determine that the instantiation for A becomes only a by

the time it reaches goal G2. Assuming A was ground before H = p(A), then the type-

instantiation of H is the grammar with root x = ti(pred(abc, abc), pred(in, out(only a)))

and rules:

x → $ipred$(ti(abc, ground), ti(abc, ground), new, ti(abc, only a))

ti(abc, ground) → a ; b ; c

ti(abc, only a) → a

new → #fresh#

Of course in this case it is obvious that the predicate is being called before G2, and so

it could be inferred that the instantiation of A was only a at that point. However, in

the usual case such analysis is harder, since the construction of a higher-order term

and its eventual execution are usually performed in different predicates. Indeed, in

general it is impossible to know at compile time whether at a given program point

the higher-order predicate has been executed or not. �

8 Polymorphism and modes

Polymorphic predicates are very useful because they can be used for different types.

Unfortunately, mode information can be lost since only the base instantiations

ground, new, and old can be associated with type parameters.
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Example 24

Consider the interface to the stack data type defined in Figure 1 and the following

program:

:- pred q(abc).

:- mode q(in) is semidet.

:- mode q(in(only a)) is det.

?- empty(S0), I0 = a, push(S0, I0, S1), pop(S1, I, S2), q(I).

Although list S1 is indeed a list only containing items a this information is lost after

executing push since the output instantiation declared for this predicate is simply

ground. Because of this, the first mode of predicate q/1 will be selected for literal

q(I), thus losing the information that q(I) could not fail. �

This loss of instantiation information for arguments to polymorphic predicates

may have severe consequences for higher-order objects because the base instantiation

ground applied to polymorphic code does not contain enough information for the

higher-order object to be used (called).

Example 25

Consider the following goal using code from Figure 1 and Example 21:

?- empty(S0), I0 = mult(pos), push(S0,I0,S1), pop(S1,I,S2), map(I,[neg],S).

When item I is extracted from the list its ti-grammar is rt(t, ground) where t is type

pred(sign, sign). As a result, it cannot be used in map since its mode and determinism

information has been lost, i.e. the check rt(t, ground) � rt(t, pred(in,out)) fails. �

We could overcome the above problem by having a special version of each stack

predicate to handle the higher-order predicate case. But this requires modifying the

stack module, defeating the idea of an abstract data type. Also, this modification

is required for each mode of the higher-order object that the programmer wishes to

make use of. Clearly, this is not an attractive proposition.

Our approach is to use polymorphic type information to recover the lost mode

information. This is an example of “Theorems for Free” (Wadler 1989)): since the

polymorphic code can only equate terms with polymorphic type, it cannot create

instantiations and, thus, the output instantiations of polymorphic arguments must

result from the calling instantiations of non-output arguments. Hence, they have to

be at least as instantiated as the join of the input instantiations.

8.1 Polymorphic mode checking

To recover instantiation information we extend mode checking for procedures with

polymorphic types to take into account the extra mode information that is implied

by the polymorphic type. Consider the predicate call p(x1, . . . , xn) where x1, . . . , xn
are variables with type {x1 �→ t1, . . . , xn �→ tn} and current ti-state TI = {x1 �→
r1, . . . , xn �→ rn} ∪ RTI. Suppose the predicate type declared (or inferred) for p is

p(dt1, . . . , dtn). Note that because of type correctness there exists the type substitution

θ where θ(dtj) = tj .
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collect set(r1,r2,P )

x1 := root(r1); x2 := root(r2)

if ((x1, x2) ∈ P ) return ∅
if (x1 = new) return ∅
if (x1 → $old(v)$ ∈ r1) return {(old, v, r2)}
if (x1 → $ground(v)$ ∈ r1) return {(ground, v, r2)}
M := ∅
foreach rule x1 → f(x11, . . . , x1n) in r1

if exists rule x2 → f(x21, . . . , x2n) in r2

for i := 1..n

M := M ∪ collect set(subg(x1i, r1), subg(x2i, r2), P ∪ {(x1, x2)})

return M

Fig. 3. Algorithm for collecting the type-instantiations that match type parameters.

Assume the literal is schedulable for mode declaration p(c1 → s1, . . . , cn → sn). We

proceed by matching the ti-trees rt(dtj , cj) against the current instantiations rj in

a process analogous to the matching that occurs in the meet function. Note that

rt(dtj , cj) is the ti-grammar which contains information on the positions of type

parameters in the declared type of p.

Consider the function collect set(r1, r2, ∅), defined in Figure 3, which returns the

set of triples (old, v, r′) and (ground, v, r′) obtained by collecting each ti-grammar,

r′, in r2 matching occurrences of $old(v)$ and $ground(v)$ in r1. Let M = ∪n
j=1

collect set(rt(dtj , cj), rj , ∅). We will use this information to compute the success

instantiations as follows: since the only success type-instantiation information for

elements of parametric type v must come from its call type-instantiations, we can

safely assume that any success type-instantiation is at least as instantiated as the

join (upper bounds) of the calls.

Note that when determining ground success information, we need only consider

ground calling instantiations, since ground success instantiations cannot result from

old call instantiations. On the other hand, for old success information, we need to

consider both old and ground calling instantiations, since old success instantiations

can result from either. Hence the following definitions for ground(v,M) and old(v,M),

which compute upper bounds on success instantiations for v based on the call

instantiation information collected in M:

ground(v,M) =
∨

{r | (ground, v, r) ∈ M}

old(v,M) =
∨

{r | (ground, v, r) ∈ M or (old, v, r) ∈ M}

Because the literal is schedulable for the given mode we know that no ri contains

new for any t. Thus, the abstract disjunctions in ground(v,M) and old(v,M) never

lead to �.

Let psj be the result of replacing in rt(dtj , sj) each non-terminal x with productions

of the form

x → $ground(v)$ ; $old(v)$
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by root(old(v,M)) and removing the rules for x, and replacing each non-terminal x

with productions of the form

x → $ground(v)$

by root(ground(v,M)) and removing the rules for x, and finally adding the rules

in old(v,M) and ground(v,M). The new ti-state resulting after scheduling the

polymorphic literal is TI ′ = {x1 �→ r1 ∧ ps1, . . . , xn �→ rn ∧ psn} ∪ RTI.

Example 26

Assume we are scheduling the push/3 literal in the goal using code from Figure 1

and Example 21:

?- empty(S0), I0 = mult(pos), push(S0,I0,S1), pop(S1,I,S2), map(I,[neg],S).

for current ti-state {S0 �→ r3, I0 �→ r4}, the remaining variables being new, where r3

is the grammar

ti(list(sign), elist) → []

and r4 is the grammar with root a = ti(pred(sign, sign), pred(in, out)) defined by

a → $ipred$(ti(sign, ground), ti(sign, ground), new, ti(sign, ground))

ti(sign, ground) → neg ; zero ; pos

The ti-grammars defined by the declared type and mode declarations for the first

two arguments of push/3 are: r5 = rt(list(T), ground) or the grammar

ti(list(T), ground) → [] ; [ti(T, ground) | ti(list(T), ground)]

ti(T, ground) → $ground(T )$

and, r6 = rt(T, ground), the grammar

ti(T, ground) → $ground(T )$

The literal is schedulable and the matching process determines that collect set

(r5, r3) = ∅, collect set(r6, r4) = {(ground,T, r4)} and M = {(ground,T, r4)}. The

improved analysis determines that extra success instantiation (ps3) for the third

argument (S1) by improving rt(list(T), nelist(ground)) which is

ti(list(T),nelist(ground) → [ti(T, ground) | ti(list(T), list(ground)]

ti(list(T), list(ground) → [] ; [ti(T, ground) | ti(list(T), list(ground)]

ti(T, ground) → $ground(T )$

replacing the last rule by r4 and occurrences of ti(list(T), list(ground) by root(r4) = a

obtaining

ti(list(T), nelist(ground) → [a | ti(list(T), list(ground)]

ti(list(T), list(ground) → [] ; [a | ti(list(T), list(ground)]

a → $ipred$(ti(sign, ground), ti(sign, ground), new, ti(sign, ground))

ti(sign, ground) → neg ; zero ; pos

Note that the mode information of the higher-order term has been preserved. The

mode checking for the call to pop/3 will similarly preserve the higher-order mode

information, and the original goal will be schedulable. �
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The interaction between polymorphic mode analysis and higher-order constructs

and calls is in fact slightly more complicated than discussed previously. This

is because higher-order objects allow us to give arguments to a predicate in a

piecewise manner. This affects the execution of collect set which was collecting

the set M over all predicate arguments simultaneously. In order to handle these

accurately we need to store the information from M found during the higher-order

object construction, to be used in the higher-order call. That is, we need to store

ground(v,M) and old(v,M) for each type parameter v appearing in the remaining

arguments as part of the ti-grammar for the higher-order object.

An alternative approach used by the HAL compiler is to update the success

instantiations stored in the ti-grammar of the higher-order object based on the extra

information from polymorphism. When the call to the higher-order polymorphic

predicate is analyzed, the matching process also matches the success instantiations

of the higher-order object to recover the previous matching information.

9 Conclusions and future work

The ultimate aim of mode checking is to ensure that the compiler has correct

instantiation information at every program point to allow program optimization.

It is reasonably straightforward (but laborious) to show that the mode checking

defined in this paper ensures that the resulting program has input-output and call

correctness. Some subtle points that arise are as follows. First, it is an invariant

that any ti-grammar (or sub-grammar) r occurring in the mode checking process

that contains rule root(r) → #var# must be equivalent to rt(t, old) for some t,

which means that when variables are bound indirectly (through shared variables)

the correctness of the ti-state is maintained. Second, if a procedure is input-output

correct for its declared type, then it is also input-output correct for any instance

of the type. This follows from the limited possibilities for manipulating objects of

variable type (essentially copying and testing equality).

This means that compiler optimizations can safely be applied. The only mode

error that may be detected at run-time arises from situations explained in section 5.2

and Example 13.13 The compiler emits warnings when such a possibility exists.

We have described for the first time mode checking for CLP languages, such as

HAL, which have strong typing and re-orderable clause bodies, and described the

algorithms currently used in the HAL compiler. The actual implementation of these

algorithms in the HAL compiler is considerably more sophisticated than the simple

presentation here. Partial schedules are computed and stored and accessed only when

enough new instantiation information has been created to reassess them. Operations

such as � are tabled and hence many operations are simply a lookup in a table.

We have found mode checking is efficient enough for a practical compiler. For the

compiler compiling itself (29,000 lines of HAL code in 27 highly interdependent

modules compiled in 15 mins 20 secs) mode checking requires 16.4% of overall

13 Note this does not invalidate the input-output or call correctness for the remainder of the program.
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compile time. While compiling the libraries (4600 lines of HAL code in 12 almost

independent modules compiled in 47 secs) it takes 13.1% of overall compile time.

And compiling a suite of small to medium size benchmarks (6200 lines of HAL

code in 67 modules compiled in 183 secs) it takes 13.0% of overall compile time,

There is considerable scope for future work. One aim is to strengthen mode

checking. We plan to add tracking of aliasing and groundness dependencies. Another

problem is that currently HAL (like Mercury) never undoes a feasible choice of

ordering the literals. This can lead to correctly moded programs not being checkable

as in Example 27. In practice this behavior is rare, but we would like to explore

more complete strategies.

Example 27

Consider the following declarations and goal:

:- pred p(list(int),list(int)).

:- mode p(out,out) is det.

:- mode p(in(evenlist(ground)),out(evenlist(ground))) is det.

:- pred q(list(int)).

:- mode q(out(evenlist(ground))) is det.

:- pred r(list(int)).

:- mode r(in(evenlist(ground))) is det.

?- p(L0, L1), q(L0), r(L1).

The first two literals of the goal are schedulable in the order given, as p mode1(L0,

L1), q mode1(L2), L2 = L0 but then r(L1) is not schedulable (the list L1 may

not be of even length). There is a feasible schedule: q mode1(L0), p mode2(L0,

L1), r mode1(L1) which is missed by both HAL and Mercury, since they don’t

undo the feasible schedule for the first two literals. In order to avoid this problem

HAL allows the user to name modes of a predicate and hence specify exactly which

mode is required. �

A second aim is to improve the efficiency of the reordered code, by, for instance,

reducing the number of initializations. The final aim is to provide mode inference as

well as mode checking – the ability to reorder body literals makes this a potentially

very expensive process.
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Appendix A Algorithms

In this appendix we give full versions of the tree operations mentioned in the paper. The basic

tree operations are relatively straightforward, but new kinds of nodes for solver variables,
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polymorphic types and higher-order terms complicate this somewhat. Recall that we assume

we are dealing with type correct programs, hence the operations make use of this to avoid

many redundant comparisons. For example when comparing the order of two ti-grammars,

then if one is a predicate type, the other must be an identical predicate type.

The ordering relation r1 � r2 on two ti-grammars is defined as the result of lt(r1, r2, ∅).

lt(p1, p2, P )

if (p2 = �) return true

if (p1 = �) return false

if ((root(p1), root(p2)) ∈ P ) return true

if (p2 = new and p1 �= new) return false

case:

p1 = new: return (p2 = new)

root(p1) → $old(v)$ ∈ p1: %% p1 = base(v, old)

return root(p2) → $old(v)$ ∈ p2

root(p1) → $ground(v)$ ∈ p1: %% p1 = base(v, ground)

return root(p2) → $ground(v)$ ∈ p2

root(p1) → $gpred$ ∈ p1: %% p1 = base(pred(t1, . . . , tn), ground)

return root(p2) → $gpred$ ∈ p2

root(p1) → $ipred$(tc1, ts1, . . . , tcn, tsn) ∈ p1: %% non-base higher-order ti

if (root(p2) → $gpred$ ∈ p2) return true

let root(p2) → $ipred$(tc′
1, ts

′
1, . . . , tc

′
n, ts

′
n) ∈ p2

for i := 1..n

if (¬lt(subg(tc′
i, p2), subg(tci, p1), P ∪ {(root(p1), root(p2))})) return false

if (¬lt(subg(tsi, p1), subg(ts′
i, p2), P ∪ {(root(p1), root(p2))})) return false

endfor

return true

default:

foreach root(p1) → f(x1, . . . , xn) ∈ p1

if (∃root(p2) → f(x′
1, . . . , x

′
n) ∈ p2)

for i := 1..n

if (¬lt(subg(xi, p1), subg(x′
i, p2), P ∪ {(root(p1), root(p2))})) return false

endfor

else return false

endfor

return true

The abstract conjunction operation r1 ∧r2 on two ti-grammars is defined as the first element

of the pair returned by conj(r1, r2, ∅).

conj(p1,p2,P )

if (p1 = �) return (�, )

if (p2 = �) return (�, )

if (p2 = new) return (p1, root(p1))

if (meet(root(p1), root(p2)) ∈ P ) return (∅, meet(root(p1), root(p2)))

case:

p1 = new: return (p2, root(p2))

root(p1) → $old(v)$ ∈ p1: %% p1 = base(v, old)

return (p2,root(p2))

root(p1) → $ground(v)$ ∈ p1: %% p1 = base(v, ground)

return (p1,root(p1))

root(p1) → $gpred$ ∈ p1: %% p1 = base(pred(t1, . . . , tn), ground)

return (p2,root(p2))

root(p1) → $ipred$(tc1, ts1, . . . , tcn, tsn) ∈ p1: %% non-base higher-order ti
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if (root(p2) → $gpred$ ∈ p2) return (p1,root(p1))

let root(p2) → $ipred$(xc′
1, xs

′
1, . . . , xc

′
n, xs

′
n) ∈ p2

for i := 1..n

(tci, xc
′′
i ) := disj(subg(xci, p1), subg(xc′

i, p2), P )

(tsi, xs
′′
i ) := conj(subg(xsi, p1), subg(xs′

i, p2), P )

if (tci = � or tsi = �) return (�, )

endfor

p := {meet(root(p1), root(p2)) → $ipred$(xc′′
1 , xs

′′
1 , . . . , xc

′′
n , xs

′′
n)}∪

tc1 ∪ · · · ∪ tcn ∪ ts1 ∪ · · · ∪ tsn
return (p, meet(root(p1), root(p2)))

default:

p := ∅
foreach root(p1) → f(x1, . . . , xn) ∈ p1

if (∃root(p2) → f(x′
1, . . . , x

′
n) ∈ p2)

for i := 1..n

(p′′
i , x

′′
i ) := conj(subg(xi, p1), subg(x′

i, p2), P ∪ {meet(root(p1), root(p2))}))

if (p′′
i = �) return (�, )

endfor

p := meet(root(p1), root(p2)) → f(x′′
1 , . . . , x

′′
n) ∪ p ∪ p′′

1 ∪ · · · ∪ p′′
n

endfor

return (p, meet(root(p1), root(p2)))

The abstract disjunction operation r1 ∨r2 on two ti-grammars, is defined as the first element

of the pair returned by disj(r1, r2, ∅).

disj(p1,p2,P )

if (p1 = �) return (�, )

if (p2 = �) return (�, )

if (p1 = new and p2 = new) return ({new → #fresh#},new)

if (p2 = new) return (�, )

if (∃join(root(p1), root(p2)) ∈ P ) return (∅, join(root(p1), root(p2)))

case:

p1 = new: return (�, )

root(p1) → $old(v)$ ∈ p1: %% p1 = base(v, old)

return (p1,root(p1))

root(p1) → $ground(v)$ ∈ p1: %% p1 = base(v, ground)

return (p2,root(p2))

root(p1) → $gpred$ ∈ p1: %% p1 = base(pred(t1, . . . , tn), ground)

return (p1,root(p1))

root(p1) → $ipred$(xc1, xs1, . . . , xcn, xsn) ∈ p1: %% non-base higher-order ti

if (root(p2) → $gpred$ ∈ p2) return (p2,root(p2))

let root(p2) → $ipred$(xc′
1, xs

′
1, . . . , xc

′
n, xs

′
n) ∈ p2

for i := 1..n

(tci, xc
′′
i ) := conj(subg(xci, p1), subg(xc′

i, p2), P )

(tsi, xs
′′
i ) := disj(subg(xsi, p1), subg(xs′

i, p2), P )

if (tci = � or tsi = �) return (�, )

endfor

p := {join(root(p1), root(p2)) → $ipred$(xc′′
1 , xs

′′
1 , . . . , xc

′′
n , xs

′′
n)}∪

tc1 ∪ · · · ∪ tcn ∪ ts1 ∪ · · · ∪ tsn
return (p, join(root(p1), root(p2)))

default:

p := ∅
foreach root(p1) → f(x1, . . . , xn) ∈ p1

if (∃root(p2) → f(x′
1, . . . , x

′
n) ∈ p2)
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for i := 1..n

(p′′
i , x

′′
i ) := disj(subg(xi, p1), subg(x′

i, p2), P ∪ {join(root(p1), root(p2))}))

if (p′′
i = �) return (�, )

endfor

p := {join(root(p1), root(p2)) → f(x′′
1 , . . . , x

′′
n)} ∪ p ∪ p′′

1 ∪ · · · ∪ p′′
n

else

p := {join(root(p1), root(p2) → f(x1, . . . , xn)} ∪ p∪
subg(x1, p1) ∪ · · · ∪ subg(xn, p1)

endif

endfor

foreach root(p2) → f(x′
1, . . . , x

′
n) ∈ p2

if (¬∃root(p1) → f(x1, . . . , xn) ∈ p1)

p := {join(root(p1), root(p2) → f(x′
1, . . . , x

′
n)} ∪ p∪

subg(x′
1, p2) ∪ · · · ∪ subg(x′

n, p2)

endfor

return (p, join(root(p1), root(p2)))

The rt operation constructs a ti-grammar from a type t and instantiation i and is defined

as the first element in the pair resulting from rt(t, i, ∅).

rt(t,i,P )

if (∃ti(t, i) ∈ P ) return (∅, ti(t, i)))
case:

i is a base instantiation: return base(t,i,P )

i = pred(c1 → s1, . . . , cn → sn):

if (t �= pred(t1, . . . , tn)) return (�, )

let t be of the form pred(t1, . . . , tn)

for j = 1..n

(tcj , xcj) := rt(tj , cj , P )

(tsj , xsj) := rt(tj , sj , P )

if (tcj = � or tsj = �) return (�, )

endfor

r := {ti(t, i) → $ipred$(xc1, xs1, . . . , xcn, xsn)}∪
tc1 ∪ · · · ∪ tcn ∪ ts1 ∪ · · · ∪ tsn

return (r, ti(t, i))

default:

if (t ∈ Vtype) return (�, )

r := ∅
foreach x → f(xi1, . . . , xin) ∈ rules(i)

if (∃x′ → f(xt1, . . . , xtn) ∈ rules(t))

for j = 1..n

(rj , xj) := rt(xtj , xij , P ∪ {ti(xtj , xij)})

if (rj = �) return (�, )

endfor

r := {ti(t, i) → f(x1, . . . , xn)} ∪ r ∪ r1 ∪ · · · ∪ rn
endif

endfor

return (r, ti(t, i))

base(t,base,P )

if (base = new) return ({new → #fresh#}, new)

if (ti(t, base) ∈ P ) return (∅,ti(t, base))

if (t ∈ Vtype):

if (base = ground) return ({ti(t,ground) → $ground(t)$}, ti(t,ground))
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else return ({ti(v,old) → $ground(v)$ ; $old(v)$}, ti(v,old))

else if (t is of the form pred(t1, . . . , tn))

return ({ti(pred(t1, . . . , tn), ground) → $gpred$}, ti(pred(t1, . . . , tn), ground) )

else

r := ∅
foreach x → f(t1, . . . , tn) in rules(t)

for j ∈ 1..n

(rj , xj) := base(tj ,base,P ∪ {ti(t, base)})

endfor

r := {ti(t, base) → f(x1, . . . , xn)} ∪ r ∪ r1 ∪ · · · ∪ rn
endfor

if (base = old and t is a solver type) then r := {ti(t, base) → #var#} ∪ r

return (r, ti(t, base))
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