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In this paper, we investigate existence and non-existence of a nontrivial solution to
the pseudo-relativistic nonlinear Schrödinger equation(√

−c2Δ + m2c4 − mc2
)

u + µu = |u|p−1u in R
n (n � 2)

involving an H1/2-critical/supercritical power-type nonlinearity, that is,
p � ((n + 1)/(n − 1)). We prove that in the non-relativistic regime, there exists a
nontrivial solution provided that the nonlinearity is H1/2-critical/supercritical but it
is H1-subcritical. On the other hand, we also show that there is no nontrivial
bounded solution either (i) if the nonlinearity is H1/2-critical/supercritical in the
ultra-relativistic regime or (ii) if the nonlinearity is H1-critical/supercritical in all
cases.
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1. Introduction

We consider the pseudo-relativistic nonlinear Schrödinger equation (NLS)

i∂tψ =
(√

−c2Δ +m2c4 −mc2
)
ψ − |ψ|p−1ψ, (1.1)

where ψ = ψ(t, x) : R × Rn → C denotes a wave function, c > 0 is the speed of light
and m > 0 is the particle mass. The non-local operator

√−c2Δ +m2c4 −mc2 is
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the pseudo-differential operator defined by the symbol
√
c2|ξ|2 +m2c4 −mc2 which

arises from Einstein’s energy-momentum relation E2 = |p|2c2 +m2c4. The equation
(1.1) formally converges to the non-relativistic NLS

i∂tψ = − 1
2m

Δψ − |ψ|p−1ψ

as c→ ∞, because
√
c2|ξ|2 +m2c4 −mc2 → ((1)/(2m))|ξ|2 as c→ ∞. On the

other hand, it converges to the nonlinear half-wave equation

i∂tψ = c
√−Δψ − |ψ|p−1ψ

as m→ 0. In this sense, the pseudo-relativistic NLS describes the intermediate
dynamics between the classical and the relativistic models. The equation (1.1) may
have completely different characters in the non-relativistic regime (c2|ξ|2 � m2c4),
where the relativity is taken into account only weakly, from the ultra-relativistic
regime (c2|ξ|2 � m2c4), where the relativity is dominant.

The goal of this paper is to find criteria for existence and non-existence of a
nontrivial standing wave of the form ψ(t, x) = eiμtu(x) to the pseudo-relativistic
NLS (1.1). To this end, we shall focus on the stationary pseudo-relativistic NLS

(
√

−c2Δ +m2c4 −mc2)u+ μu = |u|p−1u, (1.2)

where u = u(x) : Rn → C.
When the nonlinearity is H1/2-subcritical, that is, 1 < p < ((n+ 1)/(n− 1)),

by a standard variational argument, it is shown that the pseudo-relativistic NLS
(1.2) admits a nontrivial solution for all m, c, μ > 0 (see [2,4,5,7,8,15,18] for the
related variational results). However, to the best knowledge of the authors, noth-
ing is known in the H1/2-critical/supercritical case, that is, p � ((n+ 1)/(n− 1)),
because the standard variational approach does not work well in the supercritical
setting.

Nevertheless, there is still a hope to construct a nontrivial solution in the criti-
cal/supercritical case. To see this, we recall that as c→ ∞, the pseudo-relativistic
equation (1.2) approaches to the non-relativistic equation, that is, the stationary
non-relativistic NLS

− 1
2m

Δu+ μu = |u|p−1u. (1.3)

As for existence of a nontrivial solution to (1.3), there is a dichotomy divided at
the H1-criticality [1,17]. Precisely, a positive radially symmetric bounded solu-
tion exists in the H1-subcritical case, that is, 1 < p < ((n+ 2)/(n− 2)). Moreover,
such a solution is known to be unique [13]. However, by Pohozaev’s identities,
no nontrivial bounded solution exists in the H1-critical/supercritcal case p �
((n+ 2)/(n− 2)). On the other hand, as m→ 0, the equation (1.2) approaches to
the ultra-relativistic equation, namely the stationary nonlinear half-wave equation

c
√−Δu+ μu = |u|p−1u. (1.4)

Similarly but differently, for (1.4), the dichotomy arises at the H1/2-criticality.
Indeed, a positive radial solution exists in the H1/2-subcritical case, that is, 1 <
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Table 1. Existence and non-existence of a non-trivial solution to (1.3)/ (1.4)

1 < p < n+1
n−1

n+1
n−1 � p < n+2

n−2
n+2
n−2 � p <∞

non-relativistic
NLS (1.3)

existence non-existence

half wave equation
(1.4)

existence non-existence

p < ((n+ 1)/(n− 1)), and its uniqueness is proved by Frank-Lenzmann for n = 1
[9] and Frank-Lenzmann-Silvestre for n � 2 [10], provided that it is also a ground
state. However, by Pohozaev’s identities again, a bounded nontrivial solution does
not exist in the H1/2-critical/supercritical case p � ((n+ 1)/(n− 1)).

The above observation suggests a possibility that existence of a nontrivial solu-
tion to (1.2) can be determined by the criticality of the equation as well as by
the parameters m, c, μ > 0. More specifically, from the results in Table 1 and the
connections among the three equations via the formal limits, it is natural to guess
that when ((n+ 1)/(n− 1)) � p < ((n+ 2)/(n− 2)), a nontrivial solution exists in
the non-relativistic regime c� 1, but it does not in the ultra-relativistic regime
m� 1. No existence is expected when p � ((n+ 2)/(n− 2)).

The first theorem of this paper proves non-existence of a nontrivial solution to
(1.2), which fits into Table 1.

Theorem 1.1 Non-existence. Let n � 2. Suppose that

p � n+ 1
n− 1

and mc2 � μ

or that

p � n+ 2
n− 2

.

Then, there is no nontrivial solution to (1.2) in H1/2(Rn) ∩ L∞(Rn).

We show theorem 1.1 by exploiting the Pohozaev-type identities on the extension
problem of (1.2) to the upper half-plane. We note that if ((n+ 1)/(n− 1)) � p <
((n+ 2)/(n− 2)), this approach does not work when mc2 > μ.

The next theorem, which is the main contribution of this paper, provides an
affirmative answer for the existence part.

Theorem 1.2 Existence. Let n � 2. Suppose that

n+ 1
n− 1

� p <
n+ 2
n− 2

.

Then, there exists κ0 � 1 such that if

mc2 � κ0μ,
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then the pseudo-relativistic NLS (1.2) has a nontrivial solution uc ∈ H1
r (Rn) ∩

L∞(Rn).

Even though a lot of works have been devoted to the pseudo-relativistic NLS (1.2),
to the best knowledge of the authors, theorem 1.2 is the first result in the literature,
proving existence of its non-trivial solution in the supercritical setting. Another
important remark is that only the quantity ((mc2)/(μ)), not all three independent
parameters m, c, μ > 0, determines the regime of the equation concerning existence
and non-existence of a nontrivial solution.

Due to supercriticality of the problem, it is difficult to apply the standard vari-
ational method. Indeed, the action functional (see (5.1)) is indefinite in this case.
Cutting off the nonlinearity is also not suitable in this setting. Even in the H1/2-
critical case, due to the lack of L2-convergence of Palais-Smale sequences, it looks
impossible to apply a well-known method that characterizes energy sub-levels such
that the Palais-Smale condition holds and subsequently tests a family of extremal
functions of the Sobolev inequality.

To overcome the aforementioned difficulty, we employ the following non-
variational approach, combined with the uniform Lq-estimates for the pseudo-
differential operator

√−c2Δ +m2c4 −mc2. First, by some algebraic manipulation
for notational simplicity, we reduce to the case m = 1/2 and μ = 1, and consider

Pc(D)u = |u|p−1u, (1.5)

where

Pc(D) =

(√
−c2Δ +

c4

4
− c2

2

)
+ 1

(see § 3.1). Next, we choose a ground state u∞ to the non-relativistic limit equation

− Δu+ u = |u|p−1u. (1.6)

Considering the H1/2-supercritical pseudo-relativistic equation (1.5) as a perturba-
tion of the H1-subcritical non-relativistic equation (1.6), we formulate an equation
for the perturbation w from the ground state u∞ (see (3.3)). Then, we establish
existence of a solution w via the contraction mapping principle (see theorem 3.7).
The main advantage of this approach is that we may take the full advantage of extra
properties of the ground state u∞, including its smoothness and decay. In particu-
lar, the non-degeneracy of the linearized operator L∞ about the ground state u∞
(see (3.5)) plays a crucial role in this procedure. This kind of perturbation argument
has been employed previously in the literature for other problems. For example, we
refer to [6,12,16] for the nonlinear Dirac equation and to [14] for the nonlinear
Schrödinger equation with slightly supercritical nonlinearity.

Another new ingredient of our analysis is to use the Lq-estimates for the
pseudo-differential operator Pc(D) based on the symbolic analysis. Indeed, for our
contraction mapping argument, it is important to find a uniform (in c � 2) bound-
edness of the inverse operator Pc(D)−1 : Lq →W 1,q. In the special case q = 2, such
an estimate immediately follows from a simple pointwise bound on the symbol
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[3, lemma 4.3]. In this paper, we obtain the following extended inequalities covering
all exponents 1 < q <∞.

Theorem 1.3 Norm comparability. For 1 < q <∞, there exists a constant
Cq,n > 0 such that for c � 2,

C−1
q,n‖f‖W 1,q � ‖Pc(D)f‖Lq � Cq,n‖f‖W 2,q

Remark 1.4. Since Pc(D) is a first-order elliptic operator, it is obvious that

C−1
q,n,c‖f‖W 1,q � ‖Pc(D)f‖Lq � Cq,n,c‖f‖W 1,q ,

with Cq,n,c > 0 depending on c � 2. Contrary to these trivial inequalities, theorem
1.3 provides upper and lower bounds uniformly in c � 2. Note that the upper bound
in theorem 1.3 is optimal, because ‖Pc(D)f‖Lq → ‖(−Δ + 1)f‖Lq as c→ ∞ for
f ∈ C∞

c .
We prove theorem 1.3 by the Hörmander-Mikhlin theorem. For this aim, we care-

fully estimate the derivatives of the associated symbols. We also prove here that for
sufficiently large c � 1, the inverse of the pseudo-relativistic operator is close to that
of the non-relativistic operator as operators acting on Lq (see theorem 2.1). Theo-
rems 1.3 and 2.1 are employed to obtain existence in the full H1-subcritical range.
Indeed, without these extended inequalities, only a narrow range of nonlinearities,
1 < p < ((n)/(n− 2)), is covered (see remark 3.6).

The rest of this paper is organized as follows. In § 2, we establish several mapping
properties for the pseudo-differential operator Pc(D). Given those properties, in § 3,
we prove the existence result (theorem 1.2). § 4 is devoted to establish non-existence
(theorem 1.1). Finally, in § 5, we discuss some properties of the solution constructed
previously and propose an open question related to these properties.

2. Symbol calculus for the pseudo-relativistic Schrödinger operator

Given a symbol m : Rd → R, the associated Fourier multiplier operator m(D) is
defined by

m̂(D)f(ξ) = m(ξ)f̂(ξ).

We introduce the pseudo-differential operator Pc(D) (or P∞(D), respectively) as
the Fourier multiplier with the symbol

Pc(ξ) :=

(√
c2|ξ|2 +

c4

4
− c2

2

)
+ 1

(
P∞(ξ) := |ξ|2 + 1, respectively

)
. (2.1)

The purpose of this section is to provide the connection between these two operators.
Precisely, we show that as inverse operators, Pc(D) converges to P∞(D) as c→ ∞
(theorem 2.1 below). Here, we also prove the norm comparability (theorem 1.3).

https://doi.org/10.1017/prm.2018.114 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.114


1246 Woocheol Choi Younghun Hong, and Jinmyoung Seok

Theorem 2.1 Difference between the inverses of two operators.

(1) For 1 < q <∞, there exists a constant Cq,n > 0 such that

∥∥∥∥
(

1
P∞(D)

− 1
Pc(D)

)
f

∥∥∥∥
Lq

� Cq,n

c2
‖f‖Lq ∀ c ∈ [2,∞). (2.2)

(2) For 1 < q <∞, there exists a constant Cq,n > 0 such that

∥∥∥∥
(

1
P∞(D)

− 1
Pc(D)

)
f

∥∥∥∥
Lq

� Cq,n

c

∥∥∥∥ 1
P∞(D)1/2

f

∥∥∥∥
Lq

∀ c ∈ [2,∞). (2.3)

For the proof, we recall the Hörmander-Mikhlin multiplier theorem (see [11] for
instance).

Theorem 2.2 Hörmander-Mikhlin. Suppose that m : Rn → R satisfies

|∇αm(ξ)| � Bα

|ξ||α| ∀ξ ∈ Rn \ {0}

for all multi-indices α ∈ (Z�0)n such that 0 � |α| � n/2 + 1, where Z�0 =
{0, 1, 2, 3 . . .}. Then for any 1 < q <∞, there exists a constant Cq,n > 0 such that

‖m(D)f‖Lq � Cq,n

(
sup

0�|α|� n
2 +1

Bα

)
‖f‖Lq .

By the Hörmander-Mikhlin multiplier theorem, the proofs of theorems 2.1 and
1.3 are reduced to those of the following bounds on the derivatives of the symbols.

Proposition 2.3.

(1) For any multi-index α = (α1, . . . , αn) ∈ (Z�0)n, there is a constant Cα > 0
such that for all c ∈ [2,∞),

∣∣∣∣∇α
ξ

(
1

P∞(ξ)
− 1
Pc(ξ)

)∣∣∣∣ � Cα

|ξ||α| min
{

1
c2
,

1
c(|ξ|2 + 1)1/2

}
. (2.4)

(2) For any multi-index α = (α1, . . . , αn) ∈ (Z�0)n, there is a constant Cα > 0
such that for all c ∈ [2,∞),

∣∣∣∣∇α
ξ

(
Pc(ξ)
P∞(ξ)

)∣∣∣∣ � Cα

|ξ||α| . (2.5)

https://doi.org/10.1017/prm.2018.114 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.114


Supercritical pseudo-relativistic nonlinear Schrödinger equations 1247

Proof of theorem 2.1 assuming proposition 2.3. For any multi-index α ∈ (Z�0)n, it
follows from estimate (2.4) that∣∣∣∣∇α

ξ

(
1

P∞(ξ)
− 1
Pc(ξ)

)∣∣∣∣ � Cα

c2|ξ||α|

and ∣∣∣∣∇α
ξ

((
1

P∞(ξ)
− 1
Pc(ξ)

)
P∞(ξ)1/2

)∣∣∣∣ � ∑
α1+α2=α

∣∣∣∣∇α1
ξ

(
1

P∞(ξ)
− 1
Pc(ξ)

)∣∣∣∣
∣∣∣∇α2

ξ

(
P∞(ξ)1/2

)∣∣∣
�

∑
α1+α2=α

Cα1

c|ξ||α1|+1

Cα2

|ξ||α2|−1

=
∑

α1+α2=α

Cα1Cα2

c|ξ||α|

� Cα

c|ξ||α| .

Thus, theorem 2.1 follows from theorem 2.2. �

Proof of theorem 1.3 assuming proposition 2.3. By the triangle inequality and
(2.3), we prove that∥∥∥∥ 1

Pc(D)
f

∥∥∥∥
Lq

�
∥∥∥∥ 1
P∞(D)

f

∥∥∥∥
Lq

+
∥∥∥∥
(

1
P∞(D)

− 1
Pc(D)

)
f

∥∥∥∥
Lq

�
∥∥∥∥ 1
P∞(D)

f

∥∥∥∥
Lq

+
Cq

c

∥∥∥∥ 1
P∞(D)1/2

f

∥∥∥∥
Lq

� Cq ‖f‖W−1,q .

By inserting f → Pc(D)
√
P∞(D)f , we prove the first inequality. The second

inequality follows from (2.5) and theorem 2.2. �

In the rest of this section, we prove proposition 2.3. For this aim, we first observe
that the pseudo-relativistic symbol Pc(ξ) is comparable with the non-relativistic
symbol P∞(ξ) inside a large ball, while it is like the half-wave symbol c|ξ| + 1
outside.

Lemma 2.4 Pointwise comparability on the pseudo-relativistic symbol.⎧⎨
⎩

|ξ|2+1
2 � Pc(ξ) � |ξ|2 + 1 if |ξ| �

√
3c
2 ,

c|ξ|+1
2 � Pc(ξ) � c|ξ| + 1 if |ξ| �

√
3c
2 .

Proof. Suppose that |ξ| � ((
√

3c)/(2)). Then, Pc(ξ) = ((c2)/(2))f(((4|ξ|2)/(c2)))+ 1,
where f(t) =

√
1 + t− 1. Since f(0) = 0 and 1/4 � f ′(t) = ((1)/(2

√
1 + t)) � 1/2
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on [0, 3], by Taylor’s theorem, we have

|ξ|2
2

=
c2

2
· 1
4
· 4|ξ|2
c2

� Pc(ξ) − 1 � c2

2
· 1
2
· 4|ξ|2
c2

= |ξ|2.

On the other hand, if |ξ| � ((
√

3c)/(2)), then

Pc(ξ) − 1 = c|ξ|
(√

1 +
c2

4|ξ|2 − c

2|ξ|

)
=

c|ξ|√
1 + (c2/(4|ξ|2)) + (c/(2|ξ|))

obeys the desired upper and lower bound, because ((c|ξ|)/(√3)) � Pc(ξ) − 1 � c|ξ|.
�

Remark 2.5. Indeed, the inequality Pc(ξ) � |ξ|2 + 1 holds for all ξ, since in the
proof of Lemma 2.4, we can use |f ′(t)| � 1/2 for all t � 0.

Next, we show that the pseudo-relativistic symbol Pc(ξ) approximates the non-
relativistic symbol P∞(ξ) near the origin.

Lemma 2.6 Pointwise estimate on the difference between the two symbols.

|Pc(ξ) − P∞(ξ)| � |ξ|4
c2

.

Proof. Let f(t) be the function given in the proof of Lemma 2.6. Then, by Taylor’s
theorem together with f ′′(t) = −1/4(1 + t)−3/2, we have

|Pc(ξ) − P∞(ξ)| =
∣∣∣∣c22

(
f(0) + f ′(0)4|ξ|2

c2 +
1
2
f ′′(t∗)(

4|ξ|2
c2 )2

)
− |ξ|2

∣∣∣∣ � |ξ|4
c2

for some t∗ ∈ (0, ((4|ξ|2)/(c2))). �

Now we are ready to prove proposition 2.3.

Proof of proposition 2.3. We now prove (2.4) and (2.5) separately. �

Proof of (2.4). We denote

a(ξ) :=
1

P∞(ξ)
− 1
Pc(ξ)

=
Pc(ξ) − P∞(ξ)
Pc(ξ)P∞(ξ)

.

First, we find a structure of the derivatives of the symbol a. Precisely, we claim
that ∇α

ξ a(ξ) is the sum of products of the following factors,

a(ξ),
1

Pc(ξ)�1
,

1
P∞(ξ)�2

,
1

(c2|ξ|2 + (c4/4))((�3)/(2))
,

a polynomial of c, ξ1, . . . , ξn, (2.6)

where �1, �2, �3 ∈ Z�0. The claim is obviously true when α = 0. Suppose that the
claim holds for some multi-index α, and consider its derivative. By the induction
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hypothesis, (∇ξj
∇α

ξ a)(ξ) is the sum of the derivatives of the products. By the
Leibniz rule, the derivative of each product term is the sum of the derivative of one
factor in (2.6) times the product of others in (2.6). Thus, it suffices to show that
the derivative of any of (2.6) is again a product of terms in (2.6). Of course, the
derivative of a polynomial of c, ξ1, . . . , ξn is also a polynomial of the same variables.
By direct calculations, we observe that

∇ξj
(Pc(ξ) − P∞(ξ)) = − 2ξjPc(ξ)

(c2|ξ|2 + ((c4)/(4)))1/2

+
2ξj

(c2|ξ|2 + ((c4)/(4)))1/2
,

∇ξj

(
1

Pc(ξ)�1

)
= − �1c

2ξj
(c2|ξ|2 + ((c4)/(4)))1/2Pc(ξ)

(
1

Pc(ξ)�1

)
,

∇ξj

(
1

P∞(ξ)�2

)
= − 2�2ξj

P∞(ξ)

(
1

P∞(ξ)�2

)
,

∇ξj

(
1

(c2|ξ|2 + ((c4)/(4)))((�3)/(2))

)
= − �3ξj

|ξ|2 + ((c2)/(4))

×
(

1
(c2|ξ|2 + ((c4)/(4)))((�3)/(2))

)
.

(2.7)
Hence, by the Leibniz rule,

(∇ξj
a)(ξ) = ∇ξj

(
Pc(ξ) − P∞(ξ)
Pc(ξ)P∞(ξ)

)

= − 2ξj
P∞(ξ)(c2|ξ|2 + ((c4)/(4)))1/2

− �1c
2ξj

(c2|ξ|2 + ((c4)/(4)))1/2Pc(ξ)
a(ξ)

− 2�2ξj
P∞(ξ)

a(ξ).

(2.8)
From this, we conclude that when a derivative hits a factor in (2.6), it does not
make a new type of factors other than (2.6). Thus, the claim is proved.

We also note from (2.7) that when ((1)/(Pc(ξ)�1)), ((1)/(P∞(ξ)�2)),
((1)/((c2|ξ|2 + ((c4)/(4)))((�3)/(2)))) are differentiated, extra factors are produced.
Moreover, these extra factors are all bounded by ((C)/(|ξ|)). Indeed, by lemma 2.4,

∣∣∣∣ �1c
2ξj

(c2|ξ|2 + ((c4)/(4)))1/2Pc(ξ)

∣∣∣∣ �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�1c
2|ξ|

((c2)/(2))((|ξ|2)/(2))
=

4�1
|ξ| if |ξ| �

√
3c
2 ,

�1c
2|ξ|

c|ξ|((c|ξ|)/(2))
=

2�1
|ξ| if |ξ| �

√
3c
2 ,

∣∣∣∣ 2�2ξj
P∞(ξ)

∣∣∣∣ � 2�2|ξ|
|ξ|2 + 1

� 2�2
|ξ| ,
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|ξ|2 + ((c2)/(4))

∣∣∣∣ � �3|ξ|
|ξ|2 + 1

� �3
|ξ| . (2.9)

We now prove the proposition by induction. For the zeroth induction step, that
is, α = 0, using lemma 2.4, we show that if |ξ| � ((

√
3c)/(2)), then

|a(ξ)| � ((|ξ|4)/(c2))
((|ξ|2 + 1)/(2))(|ξ|2 + 1)

� min
{

2
c2
,

2|ξ|
c2(|ξ|2 + 1)1/2

}

� 2min
{

1
c2
,

1
c(|ξ|2 + 1)1/2

}
.

On the other hand, if |ξ| � ((
√

3c)/(2)), then by lemma 2.4 again,

|a(ξ)| � 1
P∞(ξ)

+
1

Pc(ξ)
� 1

|ξ|2 + 1
+

2
c|ξ| + 1

� min

{
4

3c2
+

4√
3c2

,
2√

3c(|ξ|2 + 1)1/2
+

2
√

2
c(|ξ|2 + 1)1/2

}

� 4min
{

1
c2
,

1
c(|ξ|2 + 1)1/2

}
.

For the first induction step, that is, |α| = 1, we consider the sum (2.8). By a trivial
inequality, the first term in (2.8) is bounded by

4
|ξ| min

{
1
c2
,

1
c(|ξ|2 + 1)1/2

}
.

Moreover, it follows from (2.9) and the zeroth induction step that the second and
the last terms in (2.8) also obeys the same bound. Collecting all, we complete the
proof of the first induction step.

For induction, we assume that each product in the sum for (∇α
ξ a)(ξ) is bounded

by

Cα

|ξ||α| min
{

1
c2
,

1
c(|ξ|2 + 1)1/2

}
.

Then, it suffices to show that each term in the sum for (∇ξj
∇α

ξ a)(ξ) satisfies the
desired bound. Indeed, all these terms are obtained by differentiating the product
terms in the previous step. However, as mentioned previously, when a product is
differentiated, the derivative lands on either a polynomial factor or other types
of factors in (2.6). When a polynomial is differentiated, its degree is reduced by
one. Otherwise, an extra factor is generated (see (2.7)) and such an extra factor
is bounded by ((C)/(|ξ|)) (see (2.9)). Thus, summing up all bounds, we prove the
proposition. �

Proof of (2.5). The proof is very similar to that of estimate (2.4), so we only give a
sketch of it. First, by remark 2.5, |((Pc(ξ))/(P∞(ξ)))| � 1. Next, we prove the first
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derivative

∇ξj

(
Pc(ξ)
P∞(ξ)

)
=

1
P∞(ξ)

· c2ξj
(c2|ξ|2 + ((c4)/(4)))1/2

− 2ξj
P∞(ξ)

Pc(ξ)
P∞(ξ)

is bounded by

2|ξ|
P∞(ξ)

+
2|ξ|
P∞(ξ)

· 1 � 4
|ξ| .

By the induction argument in the proof of estimate (2.4), one can show
that ∇α

ξ (((Pc(ξ))/(P∞(ξ)))) is the sum of products of ((Pc(ξ))/(P∞(ξ))),
((1)/(P∞(ξ)�1)), ((1)/((c2|ξ|2 + ((c4)/(4)))((�2)/(2)))) and a polynomial of c, ξ1, . . . ,
ξn. For induction, we assume that each product in the sum for the expansion
of ∇α

ξ (((Pc(ξ))/(P∞(ξ)))) is bounded by ((Cα)/(|ξ||α|)). If we differentiate each
product, then differentiation produces an extra factor keeping the same struc-
ture. Moreover, all possible extra factors are bounded by ((C)/(|ξ|)) (see (2.7) and
(2.9)). Therefore, the derivative of each product is bounded by ((C ′

α)/(|ξ||α|+1)).
Then, summing all the bounds, we obtain the desired bound for the derivative of
∇α

ξ (((Pc(ξ))/(P∞(ξ)))). �

3. Existence result

This section is devoted to our main existence theorem whose proof will be divided
into several steps. First, in § 3.1, by algebraic manipulation, we simplify to the case
m = 1/2 and μ = 1. In § 3.2, we reformulate the pseudo-relativistic Schrödinger
equation (1.2) as an equation for the perturbation from the non-relativistic ground
state (see (3.3)). The goal is then to construct a solution to the equation by a stan-
dard contraction mapping argument. To that end, we prove several key estimates
for contraction in §§ 3.3–3.5. After being prepared, in § 3.6, we establish existence
and uniqueness of a solution to the reformulated equation. Finally, in § 3.7, we
complete the proof of theorem 1.2.

3.1. Reduction to the simple case

To begin with, we observe that if vc is a non-trivial solution to the pseudo-
relativistic NLS with m = 1/2 and μ = 1, that is,

Pc(D)u = |u|p−1u, (3.1)

where

Pc(D) :=

(√
−c2Δ +

c4

4
− c2

2

)
+ 1,

then uc(x) = μ((1)/(p−1))vc(
√

2mμx) solves(√
−c̃2Δ +m2c̃4 −mc̃2

)
u+ μu = |u|p−1u,

where c̃ = c
√

((μ)/(2m)). Thus, we may restrict ourselves to the case m = 1/2 and
μ = 1.
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3.2. Setup for contraction

We aim to find a nontrivial solution to (3.1) by employing a perturbation argu-
ment. Throughout this section, we assume that 1 < p <∞ if n = 1, 2, and that
1 < p < ((n+ 2)/(n− 2)) if n � 3.

Let u∞ ∈ H1
r be a ground state to the non-relativistic Schrödinger equation

P∞(D)u = |u|p−1u,

which is known to be positive and unique. Hoping to find a radially symmetric
real-valued solution uc to the pseudo-relativistic equation (3.1) close to the non-
relativistic ground state u∞, we write the equation for the difference

w := uc − u∞ : Rn → R,

that is,

Pc(D)w = Pc(D)uc − Pc(D)u∞

= (P∞(D) − Pc(D))u∞ + Pc(D)uc − P∞(D)u∞

= (P∞(D) − Pc(D))u∞ +
{
|u∞ + w|p−1(u∞ + w) − up

∞
}
.

Then, subtracting the linear component pup−1
∞ w from both sides, we get

Lc;∞w = (P∞(D) − Pc(D))u∞ + Q(w),

where

Lc;∞ := Pc(D) − pup−1
∞

and

Q(w) := |u∞ + w|p−1(u∞ + w) − up
∞ − pup−1

∞ w. (3.2)

Finally, using that the operator Lc;∞ is invertible (see proposition 3.1 below), which
is the key ingredient in our analysis, we derive the equation

w = Rc + (Lc;∞)−1Q(w), (3.3)

where

Rc := (Lc;∞)−1(P∞(D) − Pc(D))u∞.

We now wish to construct a radially symmetric real-valued solution w for the
equation (3.3) via the standard contraction mapping argument, assuming that c � 1
is large enough. Precisely, we aim to show that the nonlinear map

Φc(w) := Rc + (Lc;∞)−1Q(w) (3.4)

is contractive on a small ball in the Sobolev space H1
r ∩W 1,q of radially symmetric

functions so that there is a unique solution uc to (3.1) in a small neighbourhood
of u∞. It should be noted that the reformulated equation (3.3) is well-suited for
our purpose. Indeed, the first term Rc is small for large c, because the ground
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state u∞ is a regular function and the symbol |ξ|2 + 1 − Pc(ξ) is asymptotically
O(((|ξ|4)/(c2))) as c→ ∞. Moreover, if w is small, then the super-linear nonlinear
term (Lc;∞)−1Q(w) is even smaller. Therefore, it is natural to expect that Φc maps
a small ball to itself, and it is contractive on the set. These will be justified rigorously
in the next subsections.

3.3. Invertibility of Lc;∞

The following proposition asserts that the differential operator Lc;∞ is invertible,
and moreover, its inverse gains one derivative.

Proposition 3.1 Invertibility and smoothing property of Lc;∞. Let 2 � q <∞.
Then, there exists c0 > 0 such that if c � c0, then Lc;∞ : H1

r ∩W 1,q → L2
r ∩ Lq is

invertible. Moreover, its inverse is uniformly bounded, that is,

sup
c�c0

‖(Lc;∞)−1‖L(L2
r∩Lq ;H1

r∩W 1,q) <∞,

where ‖ · ‖L(X;Y ) is the operator norm from the Banach space X to the Banach
space Y .

The proof of the proposition heavily relies on the non-degeneracy of the linearized
operator

L∞ := −Δ + 1 − pup−1
∞ = P∞(D) − pup−1

∞ : H2 → L2

about the non-relativistic ground state u∞ for radially symmetric functions, that
is,

Ker(L∞) ∩H2
r = {0}. (3.5)

In the first step, by the non-degeneracy, we show invertibility of the operator

A := Id − pup−1
∞ P∞(D)−1.

Lemma 3.2. For each 2 � q <∞, the operator A : L2
r ∩ Lq → L2

r ∩ Lq is invertible.

Proof. We claim that pup−1
∞ P∞(D)−1 is a compact operator on L2

r ∩ Lq. Indeed,
compactness follows from the well-known localization property of the ground state
u∞ and the compact embedding H2(Ω) ↪→ L2(Ω) for any bounded set Ω.

If v ∈ KerA, then P∞(D)−1v ∈ Ker(L∞). Hence, it follows from the non-
degeneracy (3.5) that P∞(D)−1v = 0 and thus v = 0. Therefore, by the Fredholm
alternative, we conclude that A is invertible. �

By the invertibility of A, we may write

Lc;∞ =
{

Id − pup−1
∞ Pc(D)−1

}
Pc(D)

=
{
A + pup−1

∞
(
P∞(D)−1 − Pc(D)−1

)}
Pc(D)

=
{

Id + pup−1
∞
(
P∞(D)−1 − Pc(D)−1

)A−1
}
APc(D).

(3.6)

Thus, the following lemma implies invertibility of Lc;∞.

https://doi.org/10.1017/prm.2018.114 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.114


1254 Woocheol Choi Younghun Hong, and Jinmyoung Seok

Lemma 3.3. Let 2 � q <∞. Suppose that 1 < p <∞ if n = 1, 2, and that 1 < p <
((n+ 2)/(n− 2)) if n � 3. Then, there exists c0 > 0 such that for c � c0,

‖pup−1
∞ (P∞(D)−1 − Pc(D)−1)A−1‖L(L2

r∩Lq) � 1
2
,

where L(X) = L(X;X).

Proof. By a trivial inequality, we write

‖pup−1
∞ (P∞(D)−1 − Pc(D)−1)A−1‖L(L2

r∩Lq)

� p‖up−1
∞ ‖L(L2

r∩Lq)‖P∞(D)−1 − Pc(D)−1‖L(L2
r∩Lq)‖A−1‖L(L2

r∩Lq).
(3.7)

By Hölder inequality, we have

‖up−1
∞ ‖L(L2

r∩Lq) = ‖up−1
∞ ‖L∞ = ‖u∞‖p−1

L∞ .

By (2.2), ‖P∞(D)−1 − Pc(D)−1‖L(L2
r∩Lq) � ((C)/(c2)). Moreover, by lemma 3.2,

‖A−1‖L(L2
r∩Lq) <∞. By inserting these estimates into (3.7), we prove the lemma

for c � c0 with a suitable choice c0 > 0. �

Proof of proposition 3.1. By the expression (3.6) and the above lemmas, we can
invert Lc;∞ for c � c0,

L−1
c;∞ = Pc(D)−1A−1

{
Id + pup−1

∞ (P∞(D)−1 − Pc(D)−1)A−1
}−1

.

Moreover, by the lower bound in theorem 1.3 and lemmas 3.2 and 3.3, we have the
bound,

‖L−1
c;∞‖L(L2

r∩Lq ;H1
r∩W 1,q) � ‖Pc(D)−1‖L(L2

r∩Lq ;H1
r∩W 1,q)‖A−1‖L(L2

r∩Lq)

·
∥∥∥{Id + pup−1

∞ (P∞(D)−1 − Pc(D)−1)A−1
}−1∥∥∥

L(L2
r∩Lq)

� C,

where the implicit constant C is independent of the choice of c � c0. �

3.4. First term bound in (3.4)

We now prove that we can make the term Rc = (Lc;∞)−1(P∞(D) − Pc(D))u∞
arbitrarily small choosing large c � 1.

Lemma 3.4 First term bound. Let 2 � q <∞. Then, we have

‖Rc‖H1
r∩W 1,q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
O

(
1
c

)
if 1 < p � 2,

O

(
1
c2

)
if p > 2.
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Proof. We recall that the non-relativistic ground state u∞ is contained in H2+�p�
r ∩

W
2+�p�,q
r for all q, where �p is the largest integer less than or equal to p. Thus, if

p > 2, then by proposition 3.1, (2.2) and the upper bound in theorem 1.3, we get

‖Rc‖H1
r∩W 1,q � ‖(Lc;∞)−1‖L(L2

r∩Lq ;H1
r∩W 1,q)

∥∥∥∥P∞(D) − Pc(D)
P∞(D)Pc(D)

∥∥∥∥
L(L2

r∩Lq)

‖P∞(D)Pc(D)u∞‖L2
r∩Lq

� C

c2
‖P∞(D)u∞‖H2

r∩W 2,q
r

� C

c2
‖u∞‖H4

r∩W 4,q
r
.

Similarly, if 1 < p < 2, then by proposition 3.1, (2.3) and the upper bound in
theorem 1.3, we obtain

‖Rc‖H1
r∩W 1,q � ‖(Lc;∞)−1‖L(L2

r∩Lq ;H1
r∩W 1,q)

∥∥∥∥P∞(D) − Pc(D)
P∞(D)1/2Pc(D)

∥∥∥∥
L(L2

r∩Lq)

‖P∞(D)1/2Pc(D)u∞‖L2
r∩Lq

� C

c
‖P∞(D)1/2u∞‖H2

r∩W 2,q
r

� C

c
‖u∞‖H3

r∩W 3,q
r
.

�

3.5. Nonlinear term bounds in (3.4)

Next, we establish the estimates for the nonlinear term L−1
c;∞Q(w) for small w.

Proposition 3.5 Nonlinear estimates. Fix any q > n and suppose that 0 < δ �
‖u∞‖H1 . Then for c � c0, where c0 � 1 is a large number from proposition 3.1, we
have

‖L−1
c;∞Q(w)‖H1

r∩W 1,q � Cδmin{p,2}, (3.8)

‖L−1
c;∞Q(w) − L−1

c;∞Q(w̃)‖H1
r∩W 1,q � Cδmin{p−1,1}‖w − w̃‖H1

r∩W 1,q (3.9)

for any w, w̃ ∈ H1
r ∩W 1,q with ‖w‖H1

r∩W 1,q , ‖w̃‖H1
r∩W 1,q � δ.

Proof. It suffices to show the second inequality (3.9) in the proposition since the
former inequality follows from the latter with w̃ = 0.

By the definition (3.2) and the fundamental theorem of calculus, we write

Q(w) −Q(w̃) =
{
|u∞ + w|p−1(u∞ + w) − |u∞ + w̃|p−1(u∞ + w̃)

}
− pup−1

∞ (w − w̃)

=
∫ 1

0

d
dt

[
|u∞ + (1 − t)w̃ + tw|p−1(u∞ + (1 − t)w̃ + tw)

]
dt

− pup−1
∞ (w − w̃)

= p

∫ 1

0

(|u∞ + (1 − t)w̃ + tw|p−1 − up−1
∞
)
(w − w̃)dt.
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Suppose that 1 < p � 2. Then, by the elementary inequality

||a|� − |b|�| �
∣∣|a| − |b|∣∣� � |a− b|� if 0 < � < 1,

we have

|Q(w) −Q(w̃)| � C(|w| + |w̃|)p−1|w − w̃|.
Thus, by proposition 3.1 and the Hölder inequality and the Sobolev inequality
H1

r ∩W 1,q ↪→ L2
r ∩ L∞

r , we prove that

‖L−1
c;∞Q(w) − L−1

c;∞Q(w̃)‖H1
r∩W 1,q � C‖Q(w) −Q(w̃)‖L2

r∩Lq
r

� C
(‖w‖H1

r∩W 1,q + ‖w̃‖H1
r∩W 1,q

)p−1

‖w − w̃‖H1
r∩W 1,q .

(3.10)

If p > 2, using the fundamental theorem of calculus again, we find

|Q(w) −Q(w̃)| � C(u∞ + |w| + |w̃|)p−2(|w| + |w̃|)|w − w̃|.
From this and estimating as above, we prove that

‖L−1
c;∞Q(w) − L−1

c;∞Q(w̃)‖H1
r∩W 1,q � C‖Q(w) −Q(w̃)‖L2

r∩Lq
r

� C‖(u∞ + |w| + |w̃|)p−2(|w| + |w̃|)|w − w̃|‖L2
r∩Lq

r

� C
(‖u∞‖H1

r∩W 1,q + ‖w‖H1
r∩W 1,q + ‖w̃‖H1

r∩W 1,q

)p−2

· (‖w‖H1
r∩W 1,q + ‖w̃‖H1

r∩W 1,q

)‖w − w̃‖H1
r∩W 1,q .

(3.11)

Thus, the proposition is proved. �

Remark 3.6. As mention in the introduction, if we only use the L2-boundedness
in theorem 2.1 and 1.3 based on the point-wise bounds on the symbols, then we can
close the estimates (3.10) and (3.11) with q = 2 only when 1 < p � ((n)/(n− 2)).
The symbolic analysis in § 2 allows us to employ the full range of the W 1,q

r -Sobolev
norms in (3.10) and (3.11), thus we can cover the full range of p, that is, 1 < p <
((n+ 2)/(n− 2)), such that the ground state u∞ exists.

3.6. Construction of a solution to (3.3)

Now we are ready to construct a solution to the equation (3.3) near the ground
state u∞.

Proposition 3.7 Existence of a fixed point for Φc. Fix any q > n. Then, given a
sufficiently small δ > 0, there exists c0 > 0 such that if c � c0, then Φc has a unique
fixed point in

B1
δ :=

{
w ∈ H1

r ∩W 1,q : ‖w‖H1
r∩W 1,q � δ

}
.

Proof. First, by lemma 3.4, we choose large c0 � 1 such that ‖Rc‖H1
r∩W 1,q �

δ/2 for all c � c0. Hence, it follows from proposition 3.5 that if w, w̃ ∈
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B1
δ , then ‖Φc(w)‖H1

r∩W 1,q � δ/2 + Cδmin{p,2} � δ and ‖Φc(w) − Φc(w̃)‖H1
r∩W 1,q �

Cδmin{p−1,1}‖w − w̃‖H1
r∩W 1,q � 1/2‖w − w̃‖H1

r∩W 1,q , provided that Cmin{p−1,1}δ �
1/2. Thus, we conclude that Φc has a unique fixed point in B1

δ . �

3.7. Construction of a solution uc to (3.1)

We prove that uc = u∞ + w, where w is given in proposition 3.7, is indeed a
solution to the pseudo-relativistic Schrödinger equation (3.1).

Lemma 3.8 Construction of a solution to (3.1). w is a solution to the equation
(3.3), that is, w = Φc(w) in H1

r ∩W 1,q for some q > n if and only if uc = u∞ + w
solves (3.1).

Proof. It is proved in proposition 3.7 that w = Rc + (Lc;∞)−1Q(w) in H1
r ∩W 1,q,

and so

0 = Lc;∞w − Lc;∞Rc −Q(w)

= (Pc(D) − pup−1
∞ )w − (P∞(D) − Pc(D))u∞ − (|uc|p−1uc − up

∞ − pup−1
∞ w

)
= Pc(D)w − pup−1

∞ w − P∞(D)u∞ + Pc(D)u∞ − |uc|p−1uc + up
∞ + pup−1

∞ w

= Pc(D)uc − |uc|p−1uc.

Thus uc is a solution to (3.1). �

4. Non-existence result

We prove our non-existence theorem (theorem 1.1). By scaling (see § 3.1),
we may take m = 1/2 and μ = 1. It suffices to show non-existence assuming
that 1 � ((c2)/(2)) and p � ((n+ 1)/(n− 1)), or that 1 < ((c2)/(2)) and p �
((n+ 2)/(n− 2)). We employ the standard approach to prove non-existence, involv-
ing Pohozaev identities, but we perform it on the extended upper half-plane as in
[2,8]. The extension method is a very convenient tool to detour technical difficulties
from the non-locality and the lack of scaling of the pseudo-relativistic operator. A
direct proof of non-existence would be an interesting mathematical question, but
we are not aware of it at this moment.

Let uc ∈ H1/2(Rn) ∩ L∞(Rn) a solution to the pseudo-relativistic NLS (1.2),
which will be shown to be zero in the end. Then, it has a unique extension U(x, t) ∈
H1(Rn+1

+ ) to the upper half-plane Rn+1
+ = {(x, t) : x ∈ Rn and t > 0} such that

{(
−c2Δ(x,t) + c4

4

)
U(x, t) = 0 inRn+1

+ ,

U(x, 0) = uc(x) inRn
(4.1)

and

−c ∂
∂t
U(x, 0) =

√
−c2Δx +

c4

4
uc(x)
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in distribution sense, which immediately implies that

−c ∂
∂t
U(x, 0) =

(
c2

2
− 1
)
U(x, 0) + |U |p−1U(x, 0)

because uc(x) = U(x, 0) solves (1.2) (see [2,8]). Since uc ∈ L∞(Rn), by the maxi-
mum principle, we have U ∈ L∞(Rn+1

+ ). Then, it follows from the standard elliptic
regularity estimates that U ∈ Cα(Rn+1

+ ) for some α > 0. In particular, U is con-
tinuous up to the boundary ∂Rn+1

+ = Rn. Moreover, the extension U satisfies the
Pohozaev-type identities.

Lemma 4.1. Let U ∈ H1/2(Rn+1
+ ) be a solution to (4.1). Then we have the following

identities.

∫
R

n+1
+

c2|∇U(x, t)|2dxdt+
∫

R
n+1
+

c4

4
|U(x, t)|2 dxdt

=
(
c2

2
− 1
)∫

Rn

c|U(x, 0)|2 dx+
∫

Rn

c|U(x, 0)|p+1 dx,

(4.2)

n− 1
2

∫
R

n+1
+

c2|∇U(x, t)|2dxdt+
n+ 1

2

∫
R

n+1
+

c4

4
|U(x, t)|2 dxdt

=
(
c2

2
− 1
)
n

2

∫
Rn

c|U(x, 0)|2 dx+
n

p+ 1

∫
Rn

c|U(x, 0)|p+1 dx,

(4.3)

and

n− 2
2

∫
R

n+1
+

c2|∇xU(x, t)|2dxdt+
n

2

∫
R

n+1
+

c2|∂tU(x, t)|2dxdt

+
n

2

∫
R

n+1
+

c4

4
|U(x, t)|2 dxdt

=
(
c2

2
− 1
)
n

2

∫
Rn

c|U(x, 0)|2 dx+
n

p+ 1

∫
Rn

c|U(x, 0)|p+1 dx.

(4.4)

Proof. We multiply (4.1) by the three test functions U(x, t), (x, t) · ∇U(x, t) and
x · ∇xU(x, t), and integrate on the (n+ 1)-dimensional upper half ball Bn+1

+ (0, R)
of radius R > 0 and centred at 0. Then, by integration by parts, we get the above
three integral identities, after taking the limit under a suitable choice of the sequence
Rj → ∞. We omit the details of this procedure, because it is quite standard in
the literature. Here, we note that continuity of U is required to guarantee that
the boundary integral terms, which appear whenever we do integration by parts,
are well defined. �

We also recall the following trace inequality.
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Lemma 4.2. For every U ∈ H1(Rn+1
+ ), we have∫

Rn

|U(x, 0)|2 dx � 2‖U‖L2(Rn+1
+ )‖∂tU‖L2(Rn+1

+ ).

Proof. From the density argument, we may assume that U ∈ C∞
c (Rn+1

+ ). Observe

|U(x, 0)|2 = −
∫ ∞

0

∂t

(|U(x, t)|2) dt � 2
∫ ∞

0

|U(x, t)||∂tU(x, t)|dt.

Then one has from the Hölder inequality∫
Rn

|U(x, 0)|2 dx � 2
∫

Rn

∫ ∞

0

|U(x, t)||∂tU(x, t)|dtdx � 2‖U‖L2(Rn+1
+ )‖∂tU‖L2(Rn+1

+ ).

�

Using the Pohozaev-type identities and the trace inequality, we prove non-
existence.

Proof of theorem 1.1. Suppose that 1 � ((c2)/(2)) and p � ((n+ 1)/(n− 1)).
Then, combining (4.2) and (4.3) to cancel out the last term, we obtain that(

n− 1
2

− n

p+ 1

)∫
R

n+1
+

c2|∇U(x, t)|2dxdt

+
(
n+ 1

2
− n

p+ 1

)∫
R

n+1
+

c4

4
|U(x, t)|2 dxdt

=
(
c2

2
− 1
)(

n

2
− n

p+ 1

)∫
Rn

c|U(x, 0)|2 dx.

(4.5)

Thus, it follows that ∫
R

n+1
+

|U(x, t)|2 dxdt = 0,

because ((n− 1)/(2)) − ((n)/(p+ 1)) � 0, ((n+ 1)/(2)) − ((n)/(p+ 1)) > 0 and
(((c2)/(2)) − 1)(((n)/(2)) − ((n)/(p+ 1))) � 0. Consequently, uc(x) = U(x, 0) is
identically zero by the continuity of U .

Now we assume that 1 < ((c2)/(2)) and p � ((n+ 2)/(n− 2)). Then, combining
(4.2) and (4.4), we obtain that(

n− 2
2

− n

p+ 1

)∫
R

n+1
+

c2|∇xU(x, t)|2 dxdt

+
(
n

2
− n

p+ 1

)∫
R

n+1
+

c2|∂tU(x, t)|2 dxdt

+
(
n

2
− n

p+ 1

)∫
R

n+1
+

c4

4
|U(x, t)|2 dxdt

=
(
c2

2
− 1
)(

n

2
− n

p+ 1

)∫
Rn

c|U(x, 0)|2 dx.

(4.6)
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We see from lemma 4.2 and Young’s inequality that(
c2

2
− 1
)∫

Rn

c|U(x, 0)|2 dx � 2
(
c2

2
− 1
)
‖U‖L2(Rn+1

+ )c‖∂tU‖L2(Rn+1
+ )

�
(
c2

2
− 1
)2 ∫

R
n+1
+

|U(x, t)|2 dxdt+
∫

R
n+1
+

c2|∂tU(x, t)|2 dxdt.

Inserting this to (4.6),(
n− 2

2
− n

p+ 1

)∫
R

n+1
+

c2|∇xU(x, t)|2 dxdt

+
(
n

2
− n

p+ 1

)∫
R

n+1
+

c4

4
|U(x, t)|2 dxdt

�
(
n

2
− n

p+ 1

)(
c2

2
− 1
)2 ∫

R
n+1
+

|U(x, t)|2 dxdt.

From this, by the assumption, we finally deduce

(c2 − 1)
∫

R
n+1
+

|U(x, t)|2 dxdt = 0.

This again implies that uc(x) is identically zero. �

5. Concluding remarks

In this section, we present some properties of the solution uc to the pseudo-
relativistic NLS (1.2), constructed in § 3. Throughout this section, we assume
that {

1 < p <∞ if n = 1, 2,

1 < p < n+2
n−2 if n � 3,

and that mc2 � κ0μ, where κ0 = c20 and c0 � 1 is a large constant given in in § 3.
First, we prove uniqueness of a solution to (1.2) among radially symmetric

functions near the ground state u∞ to the non-relativistic NLS (1.3).

Proposition 5.1. There exists some δ > 0 such that a solution to (1.2) is unique
in

Bδ(u∞) := {u ∈ H1
r ∩ L∞ : ‖u− u∞‖H1∩L∞ < δ}.

Proof. Let uc ∈ H1
r ∩ L∞ be a solution to (1.2). Then by the argument in lemma

3.8, w := uc − u∞ is a fixed point of the map Φc. Then w is a unique fixed point in a
small ball Bδ(0) because Φc is a contraction map. Note that two norms ‖ · ‖H1∩L∞

and ‖ · ‖H1∩W 1,q are equivalent since we assume q > n. This shows the uniqueness
of uc in a small ball Bδ(u∞). �
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We also obtain the rate of convergence for the non-relativistic limit uc → u∞.

Proposition 5.2 Rate of convergence. Let uc be the solution to (1.2) constructed
in § 3. Then, for any q > n, we have

‖uc − u∞‖H1∩W 1,q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
O

(
1
c

)
if 1 < p � 2,

O

(
1
c2

)
if p > 2.

Proof. By lemma 3.4, we may choose δ = ((A)/(ca)) such that ‖Rc‖H1
r∩W 1,q � δ,

where A > 0 is some large number and a = 1 or 2 depending on the rate in lemma
3.4. Then, repeating the proof of proposition 3.7, one can show that Φc is con-
tractive on the ((A)/(ca))-ball for sufficiently large c. Let w̃ be the fixed point
in the ((A)/(ca))-ball. Then, by uniqueness, the solution w̃ equals to the solu-
tion w = uc − u∞ in proposition 3.7. Therefore, we conclude that the difference
uc − u∞ = w̃ is in the ball of radius ((A)/(ca)). �

Combining the above two propositions, we conclude that the solution uc, in § 3,
is the only radially symmetric real-valued solution to the pseudo-relativistic NLS
(1.2) converging to the non-relativistic ground state u∞.

Corollary 5.3. Let {uc} be a sequence of solutions to (1.2) in H1
r ∩ L∞ such that

it converges to u∞ in H1
r ∩ L∞ as c→ ∞. Then for sufficiently large c � 1, uc is

unique, and it converges with the rate given in proposition 5.2.

In [2,3], the authors prove that in the H1/2-subcritical range 1 < p <
((n+ 1)/(n− 1)), a positive radial ground state to (1.2) belongs to H1 ∩ L∞ and
converges to u∞ so, by the uniqueness, our solution uc, in this case, is the same
as the ground state to (1.2) for large c. By a ground state, we mean a solution to
(1.2) which attains the minimum value of an associated functional Ic among all
nontrivial solutions, where

Ic(u) =
1
2

∫
Rn

(√
−c2Δ +m2c4 −mc2

)
uu+ μ|u|2 dx− 1

p+ 1

∫
Rn

|u|p+1 dx (5.1)

Obviously, u solves (1.2) if and only if it is a critical point of the functional Ic,
because (1.2) is its Euler-Lagrange equation. Thus, a ground state uc can be
rephrased as a critical point of the functional Ic that minimizes the value of Ic
among all nontrivial critical points, that is,

Ic(uc) = min
v∈H1/2

{
Ic(v) | v �= 0, I ′c(v) = 0

}
. (5.2)

Thus, Corollary 5.3 gives an alternative proof of uniqueness of a radially symmetric
non-negative ground state to the H1/2-subcritical pseudo-relativistic NLS (1.2).

Corollary 5.4. If 1 < p < ((n+ 1)/(n− 1)), then a positive radial ground state
to (1.2) is unique for sufficiently large c.
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We finally remark that a ground state, in the sense of (5.2), is well-defined
only when the nonlinearity is H1/2-subcritical or critical, that is, 1 < p �
((n+ 1)/(n− 1)), since by the Sobolev embedding H1/2 ↪→ Lp+1, the functional
Ic is well-defined and continuously differentiable on H1/2 in this case. However, if
we define a ground state (in a weak sense) as a minimizer of the action functional Ic
among all nontrivial solutions v ∈ H1 ∩ L∞ to (1.2), then the meaning of a ground
state may make sense even in the H1/2-supercritical case ((n+ 1)/(n− 1)) <
p < ((n+ 2)/(n− 2)). We strongly speculate that our solution uc, constructed in
theorem 1.2, would be a ground state in this sense. This seems to be an interesting
open question worth to be answered in future work.
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