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Nonlinear refraction–diffraction of water waves:
the complementary mild-slope equations
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A second-order nonlinear frequency-domain model extending the linear
complementary mild-slope equation (CMSE) is presented. The nonlinear model uses
the same streamfunction formulation as the CMSE. This allows the vertical profile
assumption to accurately satisfy the kinematic bottom boundary condition in the case
of nonlinear triad interactions as well as for the linear refraction–diffraction part. The
result is a model with higher accuracy of wave–bottom interactions including wave–
wave interaction. The model’s validity is confirmed by comparison with accurate
numerical models, laboratory experiments over submerged obstacles and analytical
perturbation solutions for class III Bragg resonance.

Key words: Bragg resonance, coastal and offshore engineering, mild-slope equation,
nonlinear waves, streamfunction formulation

1. Introduction
The irrotational flow of an incompressible homogeneous inviscid fluid is generally

a three-dimensional problem. However, for practical water-wave problems, this three-
dimensional formulation is usually reduced to a two-dimensional one. Among the
most common types of approximated equations that allow for this reduction are the
equations of the mild-slope (MS) type, which are posed in the frequency domain
and are essentially linear. In these equations, a vertical structure, which relates to the
horizontal bottom case, is assumed, and the problem is averaged over the depth to
enable the elimination of the vertical coordinate.

One of these MS-type equations is the complementary mild-slope equation (CMSE),
which was presented by Kim & Bai (2004). Its main difference is that it is derived in
terms of a streamfunction vector rather than in terms of a velocity potential or the
surface elevation. This enables the vertical structure to satisfy exactly the kinematic
boundary condition on the uneven bottom, whereas in the case of the potential
vertical structure assumption, which is used by other MS-type equations, the bottom
boundary condition is only satisfied on a horizontal bottom.

For two-dimensional problems, the CMSE was shown to be in better agreement
with the exact linear theory compared with other MS-type equations (Kim & Bai
2004). In the three-dimensional case, using the CMSE is essentially different, as it
becomes a vector equation. For this problem to be well defined, the equation needs
to be reformulated and supplemented with additional boundary conditions. These
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difficulties were accounted for, and the superior accuracy of the CMSE model was
reassured in the three-dimensional case as well (Toledo 2008).

For solving nonlinear problems, Kaihatu & Kirby (1995) extended the work of
Agnon et al. (1993) and constructed a model consisting of a set of MS equations
coupled with quadratic nonlinear terms, which account for resonant triad interactions.
Still, the potential formulation, which does not satisfy exactly the bottom boundary
condition, was used in these nonlinear models. These equations were later used to
study stochastic triad interaction (Agnon & Sheremet 1997; Eldeberky & Madsen
1999; Stiassnie & Drimer 2006).

Using Cosserat surfaces, Green & Naghdi (1976) developed an alternative approach
for modelling incompressible fluid dynamic problems. Among other flow problems,
it was as well applied to water waves (see, for example, Ertekin & Becker 1998).
Constricting this approach for sheet-like flows, Kim et al. (2001) have derived the
irrotational Green–Naghdi (IGN) equations. Further more, a Lagrangian description
of the IGN equations specifically for water waves was written using the streamfunction
formulation (Kim et al. 2003; Kim, Ertekin & Bai 2007).

The main objective of this work is to construct a nonlinear model using a
streamfunction formulation. The nonlinear model is to consist of a set of CMSEs
coupled with quadratic nonlinear terms. This model is expected to have an improved
accuracy in both the linear and the nonlinear parts because of the exact satisfaction
of the kinematic boundary condition on the uneven bottom.

The paper is organized as follows: in § 2 the IGN Lagrangian is presented; a
superposition of solutions with a vertical profile approximation is applied in § 3;
and the nonlinear CMSE model is constructed under the assumption of time-
harmonic waves in § 4; finally, in § 5 the model’s numerical results are compared with
accurate numerical simulations, laboratory experiments and analytical perturbation
solutions.

2. The irrotational Green–Naghdi Lagrangian
Define Ψ as a streamfunction vector,

Ψ (x, z, t) ≡
∫ z

−h

u(x, ζ ) dζ, u = (u, v), x = (x, y), (2.1)

where u is the horizontal velocity vector and x is the horizontal position vector. From
(2.1) the velocity field is defined as

u =
∂Ψ

∂z
, w = −∇ · Ψ. (2.2)

The equations governing the irrotational flow of an incompressible inviscid fluid with
a free surface over a horizontal bottom can be constructed using the IGN equations
derived from Hamilton’s principle (see Kim et al. 2001, 2003). The Lagrangian is
given by

L =
∫ ∫

L dx dy,

1

ρ
L = φ (ηt + ∇ · Ψ + Ψz · ∇η)z=η +

1

2

∫ η

−h

(|Ψz|2 + |∇ · Ψ |2) dz − 1

2
gη2.

⎫⎪⎬
⎪⎭ (2.3)
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Here ∇ =(∂/∂x, ∂/∂y); h = h(x) is the water depth; η = η(x, t) is the surface elevation;
and φ = φ(x, t) is a Lagrange multiplier function. The origin is on the undisturbed
water level and z is positive upward.

Taking the first variation of the Lagrangian with respect to φ, η and Ψ gives three
Euler–Lagrange equations:

δL

δΨ
: ∇(∇ · Ψ ) + Ψzz = 0, −h < z < η, (2.4)

δL

δη
: φt + 1

2
(Ψz)

2 + 1
2
(∇ · Ψ )2 + gη = 0, z = η, (2.5)

δL

δφ
: ηt + ∇ · Ψ + Ψz · ∇η = 0, z = η. (2.6)

By using this formulation, Kim & Bai (2004) showed that the impermeable bottom
boundary condition on z = −h(x, y) is satisfied exactly, and the definition of Ψ can
be used to construct a Dirichlet boundary condition,

Ψ = 0 z = −h. (2.7)

This together with lateral boundary conditions form a complete set of equations and
boundary conditions that govern the irrotational flow of an incompressible inviscid
fluid with a free surface. Equation (2.5) implies that φ, the Lagrange multiplier for the
kinematic boundary condition on the free surface, is actually the velocity potential
on the free surface, as shown by Kim et al. (2001).

3. The approximated Euler–Lagrange equations
Expanding (2.3) around z = 0 by use of the Taylor series up to O((ka)2) gives

1

ρ
L = φ (ηt + ∇ · Ψ + Ψz · ∇η + ∇ · Ψzη)z=0

+
1

2

∫ 0

−h

(
|Ψz|2 +

(
∇ · Ψ

)2)
dz +

1

2
η
(
|Ψz|2 +

(
∇ · Ψ

)2)
z=0

− 1

2
gη2. (3.1)

In order to eliminate the z-coordinate and construct an MS-type equation the vertical
profile can be assumed to consist of a superposition of solutions:

Ψ (x, z, t) =

N∑
l=1

fl(kl, h, z)Ψl(x, t). (3.2)

Following Kim & Bai (2004), the vertical profiles are chosen as in the linear solution
of the horizontal bottom problem,

fl(kl, h, z) =
sinh(kl(h)(z + h))

sinh(kl(h)h)
, ω2

l = gkl tanh(klh). (3.3)

Substituting (3.2), Lagrangian (3.1) becomes

1

ρ
L = φ

(
ηt +

N∑
l=1

∇ · Ψl +

N∑
l=1

f̄lΨl · ∇η +

N∑
l=1

(
∇f̄l · Ψl + f̄l∇ · Ψl

)
η

)

+ IntLinPart +
1

2

N∑
l=1

N∑
m=1

(
f̄l f̄mΨl · Ψm + (∇ · Ψl) (∇ · Ψm)

)
η − 1

2
gη2, (3.4)
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where

f̄ l ≡ ∂fl(kl, h, z)

∂z

∣∣∣∣
z=0

, (3.5)

IntLinPart ≡
N∑

l=1

N∑
m=1

(
1

2
d̄Ψl · Ψm + b (∇h · Ψl) ∇ · Ψm

+
1

2
c (∇h · Ψl) (∇h · Ψm) +

1

2
ā (∇ · Ψl) (∇ · Ψm)

)
. (3.6)

Where IntLinPart denotes the vertically integrated linear part.
Taking the first variation of Lagrangian (3.4) with respect to φ, η and Ψn for

n=1, 2, . . . , N yields 2N + 2 Euler–Lagrange equations:

δL

δΨn

: −∇φ − ∇φf̄nη + LinPartn +

(
N∑

l=1

f̄lΨl

)
f̄nη

−
N∑

l=1

(∇ (∇ · Ψl) η + (∇ · Ψl) ∇η) = 0, (3.7)

δL

δη
: φt + ∇φ

N∑
l=1

f̄lΨl + gη

− 1

2

N∑
l=1

N∑
m=1

(
f̄l f̄mΨl · Ψm + (∇ · Ψl) (∇ · Ψm)

)
= 0, (3.8)

δL

δφ
: ηt +

N∑
l=1

∇ · Ψl +

N∑
l=1

∇ ·
(
f̄lΨ

)
η +

N∑
l=1

∇η ·
(
f̄lΨ

)
= 0, (3.9)

where

LinPartn = d̄Ψn − ∇ (ā (∇ · Ψn) + b (∇h · Ψn))

+ b (∇ · Ψn) ∇h + c (∇h · Ψn) ∇h,

and the definitions of ā, b, c and d̄ are

ā(h) =

∫ 0

−h

f 2 dz, b(h) =

∫ 0

−h

f
∂f

∂h
dz,

c(h) =

∫ 0

−h

(
∂f

∂h

)2

dz, d̄(h) =

∫ 0

−h

(
∂f

∂z

)2

dz.

⎫⎪⎪⎬
⎪⎪⎭ (3.10)

As was shown in § 2, φ represents the velocity potential on the free surface, and
therefore

∇φ = Ψz|z=η=

N∑
l=1

f̄lΨl + O((ka)2). (3.11)

Substituting (3.11) in (3.7)–(3.9) yields

δL

δΨn

: −∇φ + LinPartn −
N∑

l=1

(∇ (∇ · Ψl) η + (∇ · Ψl) ∇η) = 0, (3.12)

δL

δη
: φt + gη +

1

2

N∑
l=1

N∑
m=1

(
f̄l f̄mΨl · Ψm − (∇ · Ψl) (∇ · Ψm)

)
= 0, (3.13)
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Nonlinear refraction–diffraction of water waves 513

δL

δφ
: ηt +

N∑
l=1

∇ · Ψl +

N∑
l=1

∇ ·
(
f̄lΨ

)
η +

N∑
l=1

∇η ·
(
f̄lΨl

)
= 0. (3.14)

4. Time-harmonic wave propagation
The first step towards a formulation solely in terms of Ψ is to eliminate η from the

nonlinear parts. In order to achieve that, linear relations can be applied, and η will
be defined in terms of Ψ using a linearization of the kinematic boundary condition
(2.6). In contrast, ∇η will be constructed by taking the gradient of the linear dynamic
free-surface boundary condition (2.5) together with (3.11). This allows for a low order
of spatial derivatives of Ψ :

η = −
N∑

l=1

∫
∇ · Ψl dt + O((ka)2), (4.1)

∇η = −1

g

N∑
l=1

f̄l

∂Ψl

∂t
+ O((ka)2). (4.2)

Using the linear relations (4.1) and (4.2) and (3.12)–(3.14), the dependence on the
surface elevation η can be factored out to yield 2N + 1 coupled evolution equations
of Ψn and φ:

−∇φ + LinPartn +

N∑
l=1

N∑
m=1

(
∇ (∇ · Ψl)

∫
∇ · Ψmdt +

1

g
(∇ · Ψl) f̄m

∂Ψm

∂t

)
= 0, (4.3)

φtt = g

N∑
l=1

∇ · Ψl −
N∑

l=1

N∑
m=1

(
g∇ ·

(
f̄lΨl

) ∫
∇ · Ψmdt + f̄l f̄mΨl

∂Ψm

∂t

)

− 1

2

N∑
l=1

N∑
m=1

∂

∂t

(
f̄l f̄mΨlΨm − (∇ · Ψl) (∇ · Ψm)

)
. (4.4)

The free-surface elevation can be calculated afterwards using the relation

ηt +

N∑
l=1

∇ · Ψl −
N∑

l=1

N∑
m=1

(
∇ ·

(
f̄lΨ

) ∫
∇ · Ψldt +

1

g
f̄l

∂Ψl

∂t
·
(
f̄mΨm

))
= 0 (4.5)

In order to construct time-harmonic evolution equations, we assume Ψl to be of the
form

Ψm(x, t) = ψm(x) e− iωmt + ψ∗
m(x) e iωmt , (4.6)

where (∗) denotes the complex conjugate. The free-surface elevation η and the velocity
potential at the free surface, φ, can be assumed as a superposition of time-harmonic
solutions as well,

η(x, t) =

N∑
l=1

(
ηl(x) e− iωl t + η∗

l (x) e iωl t
)
, (4.7)

φ(x, t) =

N∑
l=1

(
φl(x) e− iωl t + φ∗

l (x) e iωl t
)
. (4.8)
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514 Y. Toledo and Y. Agnon

Substituting (4.6) and (4.8) into (4.3) and (4.4), eliminating φ and taking into account
only resonant triad interaction (i.e. the nonlinear terms that have the same angular
frequency as of the linear part) yield a set of evolution equation for each harmonic
ψn:

−∇ (a (∇ · ψn) + b (∇h · ψn)) + (b∇ · ψn + c∇h · ψn) ∇h − kn(h)2aψn

−
∑n−1

l=1

(
i

ωn−l

∇ (∇ · ψl) (∇ · ψn−l) − iωn−l

g
(∇ · ψl) f̄ n−lψn−l

)

−
∑N−n

l=1

(
i

ωn+l

∇
(
∇ · ψ∗

l

)
(∇ · ψn+l) − i

ωl

∇ (∇ · ψn+l)
(
∇ · ψ∗

l

)
− iωn+l

g

(
∇ · ψ∗

l

)
f̄ n+lψn+l +

iωl

g
(∇ · ψn+l) f̄ lψ

∗
l

)
+ ∇φNL

n = 0,

φNL
n =

1

ω2
n

n−1∑
l=1

(
ig

ωn−l

∇ ·
(
f̄ lψl

)
(∇ · ψn−l)

− i

(
ωn−l +

1

2
ωn

)
f̄ l f̄ n−lψlψn−l + iωn (∇ · ψl) (∇ · ψn−l)

)

+
1

ω2
n

N−n∑
l=1

(
ig

ωn+l

∇ ·
(
f̄ lψ

∗
l

)
(∇ · ψn+l) − i (ωn+l − ωl + ωn) f̄ l f̄ n+lψ

∗
l ψn+l

− ig

ωl

∇ ·
(
f̄ n+lψn+l

)
∇ · ψ∗

l + iωn

(
∇ · ψ∗

l

)
(∇ · ψn+l)

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.9)

where

a(h) =

∫ 0

−h

f 2 dz − g

ω2
=

coth(kh)

2k

(
1 +

2kh

sinh(2kh)

)
= −gk2

ω4
CCg, (4.10)

b(h) =

∫ 0

−h

f
∂f

∂h
dz =

1

4 sinh2(kh)

2kh cosh(2kh) − sinh(2kh)

2kh + sinh(2kh)
, (4.11)

c(h) =

∫ 0

−h

(
∂f

∂h

)2

dz

=
k

12 sinh2(kh)

−12kh + 8(kh)3 + 3 sinh(4kh) + 12(kh)2 sinh(2kh)

(2kh + sinh(2kh))2
. (4.12)

This set of N coupled vector equations (2N scalar ones) extends the CMSE vector
equation of Kim & Bai (2004) with the nonlinear triad interaction terms. If needed,
φn can be calculated afterwards using the relation

φn = − g

ω2
n

∇ · ψn + φNL
n . (4.13)

5. Numerical results
5.1. Superharmonic class III Bragg resonance

Class III Bragg resonance refers to a nonlinear wave–wave–bottom resonant triad
interaction. Its resonance conditions can be satisfied by an interaction between a single
wave and an undulated bottom. For the two-dimensional problem, the superharmonic
resonance creates a transmitted wave with an angular frequency 2ω and a wavenumber
2k + kb. Here, kb is the wavenumber of the bottom undulation, and ω and k are the
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Figure 1. The results for class III superharmonic Bragg resonance over a patch of five sinusoidal
ripples. The wave amplitude is normalized by the first-harmonic incident wave amplitude, and the
position is normalized by the bottom wavelength. Panels (a), (b), (c) and (d ) refer to ka = 0.01, 0.02,
0.03 and 0.06 respectively. The dashed line represents the first harmonic of the nonlinear CMSE
model; the thin solid line represents the second harmonic of the nonlinear CMSE model including
the bound wave; the thick solid line represents the second harmonic of the HOS method by Liu &
Yue (1998); and the dot-dashed line represents the second harmonic of the perturbation solution
by Liu & Yue (1998) accurate up to x = O(ε−1) without the bound wave.

angular frequency and the wavenumber of the incident wave, which satisfy the linear
dispersion relation, ω2 = gk tanh(kh).

The particular case of class III Bragg resonance over an oscillatory bottom was
addressed using other models as well (Agnon, Pelinovsky & Sheremet 1998; Liu &
Yue 1998; Madsen, Fuhrman & Wang 2006). Here, the bathymetry for this numerical
simulation was taken as in Liu & Yue (1998): flat bottom with a patch of five
sinusoidal ripples, where kbd = 0.025 and kbh = 0.325. The patch starts at x = 0 and d

represents its amplitude. The solution was compared with the analytical perturbation
solution and the numerical solution of Liu & Yue (1998). Note that the analytical
solution is an approximation, which does not contain the bound wave, and is only
accurate up to x = O(ε−1).

Figure 1 presents the numerical results of (4.9) with two harmonics except in
the case of ka = 0.06, which was calculated using four harmonics. The agreement
with the analytical growth of the transmitted wave amplitude is excellent for lower
values of ka (0.01, 0.02, 0.03). For ka = 0.06, we can see that towards the end of the
patch the transmitted wave amplitude growth starts to decrease compared with the
analytical perturbation solution. This is expected, as the analytical solution becomes
less accurate at this distance. However, the initial growth of the amplitudes agree.

For ka = 0.03, 0.06, Liu & Yue (1998) solved this problem as well, using a high-
order spectral (HOS) method. It appears that the bound wave was filtered out of their
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Figure 2. The results for the nonlinear CMSE class III Bragg superharmonic resonance over
a patch of 22 sinusoidal ripples for ka = 0.05 and kbd = 0.03. The wave amplitude is normalized
by the first-harmonic incident wave amplitude, and the position is normalized by the bottom
wavelength. The dashed line represents the first harmonic of the nonlinear CMSE model, and
the thin solid line represents the second harmonic of the nonlinear CMSE model.

results, as their second harmonic starts with no energy, and therefore their results
contain no steep undulations as the ones of the nonlinear CMSE. In figure 1, their
graphs were shifted up in the magnitude of the nonlinear CMSE’s bound wave to
allow an easier comparison of the second-harmonic amplitude growth. Note that in
any MS-type equation the bound waves are not approximated well because of the
assumption of a free wave’s vertical structure. Still, it is the free-wave evolution that
is the most important.

The exact linearized class III condition for the above problem is (k/kb) = 2.031. In
the nonlinear CMSE the condition for ka = 0.03 was the exact one, and for ka = 0.06
it was 2.06. In the HOS calculations the conditions for ka =0.03, 0.06 were 2.021
and 2.025 respectively. We can see very good agreement for the free-wave solution
between the nonlinear CMSE and the HOS in both cases.

Mei (1985) presented a multiple-scale perturbation solution for class I Bragg
resonance, where he showed that the resonant wave gains energy from the incident
wave and then transfers it back in a harmonic way, as it continues to resonate on
the sinusoidal patch. The same mechanism applies to the case of class III Bragg
resonance; so the linear transfer of energy is expected to apply for the lower-wave-
steepness (ka) calculations because the patch of five bottom wavelengths lies still
within x � O(ε−1). For higher ka or longer patches the analytical solution should
apply only as the initial growth of the transmitted wave amplitude. Figure 2 presents
the resulting transmitted wave amplitude for ka = 0.05, kbd =0.03 and a patch of 22
sinusoidal ripples, where we can see the transfer of energy back and forth.

5.2. Submerged one-dimensional obstacle

Beji & Battjes (1993), Dingemans (1994) and Luth, Klopman & Kitou (1980)
conducted wave tank experiments of monochromatic waves propagating over a
trapezoidal bar, using different scalings. The relatively shallow water together with
the changes in bathymetry gives rise to near-resonant interactions, which transfer
energy to higher harmonics.

The experimental set-up of Dingemans (1994) consists of a trapezoidal shoal region
with an up-slope and down-slope of 1:20 and 1:10 respectively from a constant depth
of h0 = 0.8 m to the shallow flat bar-crest at the depth of hbar = 0.2 m and back.
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Figure 3. The bathymetry in the experiment of Dingemans (1994). The wavemaker is
positioned at x = 0 with incident wave height of H = 4 cm and period of T = 2.86 s. The
circles indicate the cross-sections monitored by wave gauges.

(a) ω0 (b) 2ω0

(c) 3ω0 (d) 4ω0

0

0.01

0.02

0.03

0.04

A
 (

m
)

A
 (

m
)

x (m)

0

0

0.01

0.02

0.03

0.04

0 10 20 30 40 50

10 20 30 40 50

x (m)

10 20 30 40 50

10 20 30 40 50

0.01

0.02

0.03

0.04

0.005

0.010

0.015

0.020

Figure 4. The numerical results of the nonlinear CMSE for the experiment of Dingemans
(1994) (solid line) and the gauge measurements of the wave tank experiment (solid circles).
Panels (a), (b), (c) and (d ) show the first, second, third and fourth harmonics respectively.

The bathymetry and the monitored sections are shown in figure 3. The incident wave
height was H = 4 cm and the period T = 2.86 s.

The nonlinear CMSE model (4.9) was used for the calculation taking into account
four harmonics. The results for the numerical experiment together with the wave tank
ones are given in figure 4. The numerical results for the first and second harmonics
seem to excellently agree with the experimental results. The accuracy of the third
and fourth harmonics is not expected to be high because the nonlinear part of the
model is accurate up to O((ka)2). Still, the high harmonics behave qualitatively well.
Quantitatively, after the shoal area, the error of the third harmonic wave is between
10 % and 20 %, and the error of the fourth is greater.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

23
69

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009992369


518 Y. Toledo and Y. Agnon
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Figure 5. The bathymetry in the experiment of Ohyama et al. (1995) with incident wave
height of H =5 cm, period of T = 2.682 s and constant depth of h0 = 0.5 m.

Ohyama, Kioka & Tada (1995) conducted wave tank experiments of
monochromatic waves propagating towards a trapezoidal bar as well, but in their
experiment the bar had steep slopes of 1:2. The main qualitative difference of
this experiment is that the steep obstacle creates a significant reflected wave. The
experimental set-up consists of a trapezoidal shoal region with an up-slope and a
down-slope of 1:2 from a constant depth of h0 = 0.5 m to the shallow flat panel at the
depth of hbar = 0.15 m. The bathymetry and the monitored cross-sections are shown
in figure 5. The incident wave height was H = 5 cm and the period T = 2.682 s.

The nonlinear CMSE model (4.9) was used for the calculation, again taking into
account four harmonics. The results for the numerical experiment together with the
wave tank results are shown in figure 6. The numerical results agree well with the
measurements and also with accurate nonlinear numerical model runs by Ohyama &
Nadaoka (1991), with the exception of some undulations in the transmitted waves.
These undulations are caused by an error in modelling the bound wave. This error is
inherent in MS-type models because the assumed vertical profile is for a free wave
that is different in nature than the profile for a bound wave.

6. Summary and conclusions
The CMSE was shown to be in better agreement with exact linear theory compared

with other MS-type equations (see Kim & Bai 2004). The main novel concept behind it
is the use of a streamfunction formulation which allows the vertical profile assumption
to accurately satisfy the kinematic bottom boundary condition.

In the present work, the CMSE was extended up to second order to enable nonlinear
coupling between frequency components. This was done by applying Hamilton’s
principle to the IGN Lagrangian. The nonlinear CMSE exploits the same advantages
of the linear CMSE also for nonlinear triad interactions, resulting in higher accuracy
of the interactions between the waves and the bottom and an improved energy transfer
between modes.

The model’s validity is confirmed by comparison with an accurate numerical
model and laboratory experiments over submerged obstacles and with an analytical
perturbation solution of class III Bragg resonance. The results give good agreements,
which reassure the use of the nonlinear CMSE for practical problems.
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Figure 6. The numerical results of the nonlinear CMSE for the experiment of Ohyama et al.
(1995) shown by the solid line. The dashed lines represent the fully nonlinear solution by
Ohyama & Nadaoka (1991). The circles show the wave gauge measurements of the wave tank
experiment. The wave amplitude is normalized by the first-harmonic incident wave amplitude,
and the position is normalized by the flat bottom depth. Panels (a), (b), (c) and (d ) indicate
the first, second, third and fourth harmonics respectively.

This model is elliptic in nature and allows for solving problems that include
reflection and refraction, as in harbour design. It is especially economic for narrow-
banded wave spectra, as the number of triad interactions is relatively small. For
broad-banded waves, the high-order Boussinesq models may be more economic, even
though they need to be integrated in the time domain as well.
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2004-205) and by the Germany–Israel (BMBF-MOST) Joint Research programme
(grant 1946).

REFERENCES

Agnon, Y., Pelinovsky, E. & Sheremet, A. 1998 Disintegration of cnoidal waves over smooth
topography. Stud. Appl. Math. 101 (1), 49–71.

Agnon, Y. & Sheremet, A. 1997 Stochastic nonlinear shoaling of directional. J. Fluid Mech. 345,
79–99.

Agnon, Y., Sheremet, A., Gonsalves, J. & Stiassnie, M. 1993 Nonlinear evolution of a
unidirectional shoaling wave field. Coastal Engng 20, 29–58.

Beji, S. & Battjes, J. A. 1993 Experimental investigation of wave propagation over a bar. Coastal
Engng 19, 151–162.

Dingemans, M. W. 1994 Comparison of computations with Boussinesq-like models and laboratory
measurements. Tech Rep. h1684.12. Delft Hydraulics.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

23
69

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009992369


520 Y. Toledo and Y. Agnon

Eldeberky, Y. & Madsen, P. A. 1999 Deterministic and stochastic evolution equations for fully
dispersive and weakly nonlinear waves. Coastal Engng 38 (1), 1–24.

Ertekin, R. C. & Becker, J. M. 1998 Nonlinear diffraction of waves by a submerged shelf in
shallow water. J. Offshore Mech. Arctic Engng 120 (4), 212–220.

Green, A. E. & Naghdi, P. M. 1976 Oblique wave incidence on a plane beach: the classical problem
revisited. Proc. R. Soc. Lond. A 347, 447–473.

Kaihatu, J. M. & Kirby, J. T. 1995 Nonlinear transformation of waves in finite water depth. Phys.
Fluids 8, 175–188.

Kim, J. W. & Bai, K. J. 2004 A new complementary mild-slope equation. J. Fluid Mech. 511, 25–40.

Kim, J. W., Bai, K. J., Ertekin, R. C. & Wbster, W. C. 2001 A derivation of the Green–Naghdi
equations for irrotational flows. J. Engng Math. 40, 17–42.

Kim, J. W., Bai, K. J., Ertekin, R. C. & Wbster, W. C. 2003 A strongly nonlinear model for water
waves in water of variable depth – the irrotational Green–Naghdi model. J. Offshore Mech.
Arctic Engng 125, 25–32.

Kim, J. W., Ertekin, R. C. & Bai, K. J. 2007 Linear and nonlinear wave models based on Hamilton’s
principle and stream-funcion theory: CMSE and IGN. In ASME 2007 26th International
Conference on Offshore Mechanics and Arctic Engineering, 10–15 June 2007, San Diego, CA.

Liu, Y. & Yue, D. K. P. 1998 On generalized Bragg scattering of surface waves by bottom ripples.
J. Fluid Mech. 356, 297–326.

Luth, H. R., Klopman, G. & Kitou, N. 1980 Kinematics of waves breaking partially on an offshore
bar; ldv measurements for waves with and without a net onshore current. Tech Rep. h1573.
Delft Hydraulics.

Madsen, P. A., Fuhrman, D. R. & Wang, B. 2006 A Boussinesq-type method for fully nonlinear
waves interacting with a rapidly varying bathymetry. Coastal Engng 53, 487–504.

Mei, C. C. 1985 Resonant reflection of surface water waves by periodic sandbars. J. Fluid Mech.
152, 315–335.

Ohyama, T., Kioka, W. & Tada, A. 1995 Applicability of numerical models to nonlinear dispersive
waves. Coastal Engng 24, 297–313.

Ohyama, T. & Nadaoka, K. 1991 Development of a numerical wave tank for analysis of nonlinear
and irregular wave field. Fluid Dyn. Res. 8, 23l–251.

Stiassnie, M. & Drimer, N. 2006 Prediction of long forcing waves for harbour agitation studies.
J. Waterway Port Coastal Ocean Engng 132 (3), 166–171.

Toledo, Y. 2008 Refraction and diffraction of linear and nonlinear waves. PhD thesis, Technion–
Israel Institute of Technology, Haifa, Israel.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

23
69

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009992369

