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The scope of the paper is twofold. We show that for a large class of measurable
vector fields in the sense of Weaver (i.e. derivations over the algebra of Lipschitz
functions), called in the paper laminated, the notion of integral curves may be
naturally defined and characterized (when appropriate) by an ordinary differential
equation. We further show that for such vector fields the notion of a flow of the given
positive Borel measure similar to the classical one generated by a smooth vector field
(in a space with smooth structure) may be defined in a reasonable way, so that the
measure ‘flows along’ the appropriately understood integral curves of the given vector
field and the classical continuity equation is satisfied in the weak sense.
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1. Introduction

Every sufficiently smooth and bounded vector field V in the Euclidean space E =
R

n is well known to generate a canonical flow of a given finite Borel measure µ in
E by setting µt := ϕt

V #µ, t ∈ R
+, where ϕt

V (x) := θ(t), θ standing for the unique
solution to the differential equation

θ̇(t) = V (θ(t)) (1.1)

satisfying the initial condition θ(0) = x. Such a flow satisfies the continuity equation

∂µt

∂t
+ div vtµt = 0 (1.2)
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in the weak sense in E×R
+, where vt : E → E is some velocity field (non-unique, of

course, for the given V , but, in particular, in this case this equation is satisfied with
vt := V ). The goal of this paper is to try to explain to what extent the above asser-
tions can be extended to the case in which the vector field V can be non-smooth,
and even strongly discontinuous, for instance when it is just measurable. Namely,
we are interested in establishing whether one can say that a measurable vector field
V defines a reasonable flow of a given measure along the integral curves of V while
satisfying the continuity equation (1.2). Of course, the notion of an integral curve
of V must be now understood in a weaker sense, namely, as absolutely continuous
Carathèodory solutions of (1.1) (i.e. the latter equations must be satisfied almost
everywhere in R

+). The following simple example shows, however, that we might
not expect this to be possible for all measurable vector fields, because in fact some
of them may admit no non-constant integral curves.

Example 1.1. Let K ⊂ [0, 1] be a Cantor set of positive Lebesgue measure (or just
any closed totally disconnected set of positive Lebesgue measure) and let V (x) :=
1K(x). Then there is no absolutely continuous solution to (1.1) different from the
constant curves θ(t) ≡ x �∈ K.

Looking at the above example from another point of view, one might guess that
in fact to overcome the possible difficulty with the pointwise definition of the inte-
gral curve it would be helpful to have the right ‘relaxation’ of the notion of a
smooth vector field. The idea of the appropriate weak concept comes from differ-
ential geometry. In fact, a classical smooth vector field can be viewed as a linear
operator over the algebra of smooth functions over E satisfying the Leibniz rule,
or, in other words, the derivation (in this way one customarily identifies the vector
field, i.e. a map V : E → E with the directional derivative along the latter). The
correct weak analogue of this notion can be obtained by substituting smooth func-
tions with appropriately less smooth ones. Namely, we will view the measurable
vector field as a linear operator that maps Lipschitz functions into measurable ones
(with respect to some measure) and satisfies the Leibniz rule and some extra con-
tinuity assumption. This notion was first introduced in [22] and adapted to metric
measure spaces in [16] (for a detailed treatment of the subject as well as recent
results related to it, see also [12,13]). It is well known that such vector fields can in
fact be identified with the one-dimensional metric currents introduced in [3]. It is
the main goal of this paper to show that for a large class of such measurable vector
fields the notion of integral curves still makes sense, and the flow of a given mea-
sure along the respective integral curves can be defined in a reasonable way, and,
in particular, it satisfies the continuity equation (1.2) with some natural velocity
field vt related to V .

Measurable vector fields and integral curves

The measurable vector fields (or, equivalently, one-dimensional metric currents)
admitting the natural notion of ‘integral curves’, called in this paper laminated, are
those that can be represented as integrals of vector fields associated with single abso-
lutely continuous curves in some possibly σ-finite measure η over the space of curves
C(R+; E). As shown in [19, 20], this class includes normal vector fields, i.e. those
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for which the weak divergence is a signed Radon measure (in the Euclidean space
this is a consequence of representation results for normal de Rham one-dimensional
currents due to Smirnov [21]), in which case there is a finite measure η representing
such a vector field. However, the class of laminated vector fields is strictly larger,
although it does not include all measurable vector fields (in particular, the one from
example 1.1; see remark A.12). Note that in view of proposition A.4 a laminated
vector field must have rather particular structure: namely (at least in a Euclidean
space), it corresponds to a vector measure with the field of directions tangential to
its mass measure in the sense of Bouchittè et al . [9], which is not the case for generic
measurable vector fields by remark A.5. Our first main result is theorem 5.1, which
says in particular that in a Banach space E with the Radon–Nikodym property (for
example, in a finite-dimensional space), the following hold.

• Every laminated vector field X has a pointwise representation as a pair con-
sisting of a ‘total variation’ measure mX (or, equivalently, the mass measure
of the respective metric current) and a Borel ‘field of directions’, i.e. a Borel
function V : E → E with ‖V (y)‖ = 1 for mX -almost every (a.e.) y ∈ E (‖ · ‖
standing for the norm in E) such that

(Xπ)(y) = 〈V (y), dπ(y)〉 for mX -a.e. y ∈ E,

for every π ∈ Lip(E) a quasi-differentiable function with bounded derivative
dπ satisfying some rather weak continuity property (the respective class of
functions being denoted by Q1(E)), 〈·, ·〉 standing for the usual duality pairing
between E and its continuous dual; the map V is unique up to mX -almost
everywhere equality.

• An η-a.e. curve θ ∈ C(R+; E) parametrized by arc length is an absolutely
continuous integral curve of X in the sense that when E is strictly convex, θ
is a Carathéodory solution of (1.1) with V the above ‘field of directions’ of
X and t ∈ (0, �(θ)), where �(θ) stands for the length of θ; if E is not strictly
convex, then (1.1) has to be substituted by a differential inclusion.

Transportable measures and their flows

Let us describe in very rough and heuristic terms the notion of the flow of a given
measure µ by a given laminated vector field X that we propose in this paper. The
flow is seen as a movement of an ensemble of particles, each one moving along some
integral curve of X. The movement of this ensemble is assumed to be given by a
measure σ over C(R+; E)×R

+ so that, intuitively, σ(θ, s) stands for the number of
particles that move along the curve θ ∈ C(R+; E) at time s ∈ R

+. Suppose that we
set our timer at t := 0 and observe the distribution of the particles. Each particle
at this instant is moving along some curve θ ∈ C(R+; E) for some time s ∈ R

+

and hence is observed at the position β0(θ, s) := θ(s) ∈ E, so that we observe the
distribution of particles given by the measure µ := β0#σ. After a time t ∈ R

+

has elapsed (i.e. when our timer shows t), we observe the measure µt := βt#σ,
where βt(θ, s) := θ(s + t) ∈ E. The family {µt}t∈R+ may be viewed thus as a flow
of the measure µ = µ0. In order that each particle in the flow of the measure µ
be flowing along an integral curve of X, one has to request that the projection
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of the measure σ to the space of curves C(R+; E) be absolutely continuous with
respect to η. It is worth remarking that our notion of the measure σ producing the
flow is very similar to that of a randomized stopping time introduced in [18] and
recently successfully employed in [6]. A curious feature of this definition of the flow
is its sensibility to equivalent choices of distances in E, which is due to the same
sensibility of the notion of ‘integral curves’ to a measurable vector field; in fact,
even for a finite-dimensional normed space, different choices of the norm produce
different representations of the same measurable vector field and hence different
flows.

Clearly, there is a very strong non-uniqueness of the constructed flow due to both
non-uniqueness of a measure η representing the given vector field X and also that
of the measure σ producing the flow. Part (but not all) of this non-uniqueness may
be avoided by providing natural constructions of flows for particular subclasses of
vector fields. We do this in § 7 for so-called cyclic, or divergence-free, and acyclic
vector fields separately (it is worth keeping in mind that every vector field can be
represented, though again not uniquely, as a sum of a cyclic one and an acyclic
one).

More importantly, it is not guaranteed that for the given µ and X (and η repre-
senting X) the flow (i.e. the measure σ producing the latter) in fact exists. When it
exists, we say that µ is transportable by X. One might anyhow easily assume that
each µ is transportable by every laminated vector field X by admitting possibly
very unnatural flows (in particular, such that every measure be not moving at all,
that is, µt = µ for all t ∈ R

+). In order to avoid this we must not consider the
measures η over curves that charge constant curves (those concentrated over sin-
gletons). This produces physically reasonable flows but the transportability of all
measures is sacrificed. In particular, for the measure µ to be transportable by X
it has to be concentrated over the support of X. We show that, given a laminated
vector field X, a lot of measures are still transportable by X, in particular, the
negative part of its weak divergence (if the latter is a finite measure) and its mass
measure; and, moreover, every ν 	 µ is transportable by X if µ is transportable as
well (see proposition 4.2).

Continuity equations

The principal result of this paper regarding flows of transportable measures is
theorem 6.1, which shows in particular that in a Banach space with the Radon–
Nikodym property (for example, in a finite-dimensional normed space) every flow
µt corresponding to X satisfies the continuity equation (1.2) in the appropriately
weak sense. Moreover, if the norm in E is strictly convex, then the velocity field vt

is collinear to V , the Borel map pointwise representing X (in fact, vt = V (1 − ϕt),
where ϕt : E → [0, 1] is some bounded function that may be non-zero due to the
fact that some mass is stopped during the movement).

Note that the results established in this paper may be considered complemen-
tary to superposition principles obtained in [5, §§ 7 and 8] and in [2, theorem 12],
although they look in the opposite direction: there one considers families of mea-
sures satisfying the continuity equation (1.2) and shows that under appropriate
conditions they have to ‘flow’ along the trajectories of some ordinary differential
equation.
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The basic notation as well as some useful auxiliary results on metric currents are
reported in appendix A. Some remarks on the representation of currents by curves
are provided in appendix A.3. Appendix B contains more or less folkloric technical
results that are only provided for the reader’s convenience and to explain some
notation.

2. Notation and preliminaries

2.1. Framework and basic notation

The metric spaces we deal with in what follows are always assumed to be complete.
Unless explicitly stated otherwise, E will stand for a complete metric space (our
main results, theorems 5.1 and 6.1, are among notable exceptions: there E stands
for a Banach space). For a D ⊂ E, we will denote by D̄ its closure, by ∂D its
topological boundary, by 1D its characteristic function, by Hk the k-dimensional
Hausdorff measure and let Dc := E \ D. The notation Br(x) ⊂ E stands for the
open ball of E centred at x ∈ E with radius r > 0. For real numbers α and β we
employ the usual brief notation α∨β := max{α, β} and α∧β := min{α, β}. By ēi,
i = 1, . . . , n, we denote the unit vectors along the axes xi in R

n. The notation Ln

stands for the Lebesgue measure in R
n.

If E is a Banach space with norm ‖ · ‖, its dual will be denoted by E′ and
assumed to be equipped with the dual norm ‖ · ‖′, the duality being denoted by
〈·, ·〉 : E ×E′ → R. The space E will also be silently identified, if necessary, with its
natural isometric embedding in E′′. A Banach space E is said to be strictly convex
if its unit ball is strictly convex.

2.2. Measures

The Borel σ-algebra of a metric space E will be denoted by B(E). In what fol-
lows, all the measures over a metric space E we will consider are Borel. We say
that a positive measure µ over E is concentrated over D ∈ B(E) if µ(Dc) = 0.
Furthermore, all finite positive Borel measures we will be working with are silently
assumed to be tight (i.e. concentrated over a σ-compact set), and hence, in fact,
Radon, since E is assumed to be complete. This is true for all finite positive Borel
measures if E is Polish (i.e. complete separable) or, more generally, if the density
character (i.e. the minimum cardinality of a dense subset) of E is an Ulam num-
ber (see, for example, [8, proposition 7.2.10]). Note that it is consistent with the
Zermelo–Fraenkel set theory to assume that the latter holds for every metric space.
Anyhow, if µ is a tight positive finite Borel measure over E, then it is concentrated
over a closed separable subspace S ⊂ E (for S one can take, for instance, the sup-
port suppµ of µ, or the closed linear span of suppµ if E is a Banach space and
one wants S to be linear), and hence, in all such situations for the purposes of this
paper, up to substituting E by its separable subspace S we may suppose, without
loss of generality, that E is separable itself. For two measures µ and ν over the same
measurable space we use the standard notation ν 	 µ to say that ν is absolutely
continuous with respect to µ, and ν⊥µ to say that these measures are mutually
singular. We say that µ and ν are equivalent if µ 	 ν 	 µ.
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If a Borel measure µ over a metric space E can be represented (we customarily
use the term disintegrated) as

µ(B) =
∫

X

µx(B) dν for all B ∈ B(E),

where ν is a Borel measure over another metric space X and each µx is a Borel
measure over E, the map x ∈ E → µx(B) being ν-measurable for all B ∈ B(E),
then we will write µ = ν ⊗ µx in order to emphasize that the above disintegration
formula may be seen as a generalization of the Fubini theorem for product measures.

2.3. Curves

Curves in a metric space E will always be assumed to be parametrized over R
+

and continuous. The space of such curves C(R+; E) is equipped with uniform con-
vergence over bounded intervals. The latter convergence is provided, for instance,
by the distance

d(u, v) :=
+∞∑
k=1

1
2k

dk(u�[0, k], v�[0, k])
1 + dk(u�[0, k], v�[0, k])

,

where dk stands for the usual uniform distance in C([0, k];E) and u�[a, b] stands for
the restriction of the curve u ∈ C(R+; E) to the interval [a, b]. In what follows we
find it suitable to think of the space C([a, b];E) of continuous functions over [a, b]
with values in E (equipped with the usual uniform norm ‖ · ‖∞) as continuously
embedded in C(R+; E) (equipped with the above distance) by the embedding map
ı : C([a, b];E) → C(R+; E) defined by ı(θ)(t) := θ(a ∧ t ∨ b). Note that once E
is separable, C(R+; E) equipped with the latter distance is separable too (in fact,
once Vk is a dense subset of C([0, k];E),

⋃
k ı(Vk) is dense in C(R+;E)).

For an absolutely continuous curve θ ∈ C(R+; E) we let

�(θ) =
∫

R+
|θ̇|(t) dt,

where |θ̇|(t) stands for the metric derivative of θ at t ∈ R
+, which exists almost

everywhere in R
+ and is everywhere in what follows silently assumed to be locally

integrable as part of the definition of absolutely continuous curves. Note that if E
is a Banach space with the Radon–Nikodym property, then in fact the derivative
θ̇(t) is well defined for a.e. t ∈ R

+ (with the limit in the definition of the derivative
intended in the sense of the norm), and hence ‖θ̇(t)‖ = |θ̇|(t) for a.e. t ∈ R

+.
The value �(θ) is usually referred to as the parametric length of θ. An absolutely
continuous curve θ ∈ C(R+; E) will be called rectifiable if �(θ) < +∞. For every
rectifiable curve θ the sequence {θ(tk)} for tk → +∞ is Cauchy, since for tk � tj
one has

d(θ(tk), θ(tj)) � �(θ�[tk, tj ]) = �(θ�[0, tk]) − �(θ�[0, tj ]) → 0

as k, j → +∞. Thus, the limit

end(θ) := lim
t→+∞

θ(t)
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is well defined (we will refer to it as the ending point of θ). The starting point
start(θ) is just start(θ) := θ(0). The function et : C(R+; E) → E is defined by
et(θ) := θ(t), t ∈ R

+. We will say that a rectifiable curve θ is parametrized by arc
length if |θ̇|(t) = 1 for a.e. t ∈ [0, �(θ)] and |θ̇|(t) = 0 for a.e. t � �(θ) (so that, in
particular, start(θ) = θ(0) and end(θ) = θ(t) for all t � �(θ)).

2.4. Spaces

For a metric space E we denote by Lip(E) (respectively, Lipb(E)) the set of
all real-valued Lipschitz maps (respectively, all bounded Lipschitz maps), and by
Cb(E) the set of all real-valued bounded continuous maps equipped with the uni-
form norm. The notation Lp(E; µ) (respectively, Lp

loc(E; µ)) will stand for the usual
Lebesgue space of (classes of µ-almost everywhere equal) real-valued maps over E
integrable (respectively, locally integrable) with power p ∈ [1; +∞) with respect
to the positive (possibly σ-finite) Borel measure µ (or µ-essentially bounded for
p = +∞). If (Ω, Σ, µ) is a measure space with some positive σ-finite measure µ,
and E is a Banach space, then L1(Ω, µ; E) stands for the space of Bochner inte-
grable functions f : Ω → E. By C1(Rn) (respectively, C1

0 (Rn)) we denote as usual
the set of continuously differentiable functions (respectively, continuously differen-
tiable with compact support) in R

n.
For a Banach space E, the function ϕ : E → R is called quasi-differentiable if for

every x ∈ E there is a functional dϕ(x) ∈ E′ such that

ϕ(θ(t + ε)) = ϕ(θ(t)) + 〈θ̇(t), dϕ(θ(t))〉ε + o(ε)

as ε → 0+ whenever θ ∈ C(R+; E) is differentiable at t ∈ R
+ \ {0} and θ(t) =

x. This notion of differentiability is slightly stronger than the Gâteaux one but
strictly weaker than the Fréchet one. By Q1(E) we denote then the set of quasi-
differentiable functions ϕ : E → R such that ‖dφ(·)‖′ is uniformly bounded and
the map (x, y) → 〈y, dϕ(x)〉 is continuous. Note that Q1(E) ⊂ Lip(E), since for
u ∈ Q1(E) one has

|u(y) − u(x)| =
∣∣∣∣
∫ 1

0

d
dt

u((1 − t)x + ty) dt

∣∣∣∣
=

∣∣∣∣
∫ 1

0
〈y − x,du((1 − t)x + ty)〉 dt

∣∣∣∣
�

∫ 1

0
‖y − x‖‖du((1 − t)x + ty)‖′ dt

� C‖y − x‖,

where C > 0 is such that ‖du(z)‖′ � C for all z ∈ E.

2.5. Metric currents

For metric currents we use the notation from [19], which is taken from [3], except
the notation for the mass measure. In particular, Dk(E) = Lipb(E) × (Lip(E))k

stands for the space of metric k-forms, its elements (i.e. k-forms) being denoted
by f dπ, where f ∈ Lipb(E), π ∈ (Lip(E))k, Mk(E) stands for the space of
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k-dimensional metric currents, M(T ) stands for the mass of a current T , ∂T for
its boundary, and mT stands for the mass measure associated with this current
(the latter is denoted by ‖T‖ in [3] and mT in [19, 20], but here we introduce a
different notation in order to avoid confusion between mass measures of currents,
norms, and flows of measures). Since we assume by default that every finite Borel
measure is tight, we also presume that the mass measures of the currents are all
tight, i.e. concentrated over σ-compact sets (which is automatically true if E is
separable, or, more generally, when the density character of E is an Ulam num-
ber). In fact, all the statements on metric currents from [3] remain valid under this
assumption.

We also use the notion of subcurrents from [19]. Namely, an S ∈ Mk(E) is called
a subcurrent of a T ∈ Mk(E), written S � T , if M(S)+M(T −S) = M(T ). Finally,
the current T ∈ Mk(E) is normal if ∂T ∈ Mk−1(E), i.e. is still a metric current.

The one-dimensional current associated with a Lipschitz curve θ : [a, b] → E is
denoted by [[θ]], namely,

[[θ]](f dπ) :=
∫ b

a

f(θ(t)) dπ(θ(t))

for every f dπ ∈ D1(E). Recall that M([[θ]]) � �(θ). The sequence of currents
{Tν} ⊂ Mk(E) is said to converge weakly to a T ∈ Mk(E), written Tν ⇀ T , if
Tν(ω) → T (ω) as ν → ∞ for all ω ∈ Dk(E).

3. Vector fields as derivations

In what follows we will be working with the following notion of a measurable vector
field introduced in [22]. We use it in the form adapted to metric measure spaces
in [16].

Definition 3.1. Let µ be a Borel measure over E. We will call a bounded linear
operator X : Lipb(E) → L∞(E; µ) a µ-vector field (or measurable vector field or
even just vector field when we do not need to mention the underlying measure) if
it satisfies the following.

• Leibniz rule: X(fg) = fXg + gXf for all {f, g} ⊂ Lipb(X).

• Weak continuity: limk Xfk = Xf in the weak∗ sense of L∞(E; µ), i.e. when-
ever limk fk(x) = f(x) for all x ∈ E and supk(‖fk‖∞ + Lip fk) < +∞.

It is worth mentioning that operators over function algebras satisfying the Leibniz
rule are usually called derivations.

As mentioned in appendix A.2, a µ-vector field X can be extended by locality to
the whole of Lip(E) (and we do not change the name for this extension). Further-
more, by proposition A.8 there is a one-to-one correspondence between measurable
vector fields and metric currents, namely, every µ-vector field X over E defines a
metric current T ∈ M1(E) by the formula

T (f dπ) :=
∫

E

fXπ dµ, (3.1)
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with mT � Cµ, and, conversely, every T ∈ M1(E) with mT � Cµ defines a unique
µ-vector field X over E such that (3.1) holds. This gives rise to the possibility of
identifying one-dimensional metric currents with measurable vector fields, which we
will always do in what follows. In particular, we may attribute the terminology of
currents to vector fields, for example, calling the vector field normal if the respective
current is.

We also introduce the following notion, which will be important in what follows.

Definition 3.2. We will say that a current T ∈ M1(E) is represented by a σ-finite
Borel measure η over C(R+; E) without cancellation of mass if

T (ω) =
∫

C(R+;E)
[[θ]](ω) dη(θ) for all ω ∈ D1(E),

M(T ) =
∫

C(R+;E)
�(θ) dη(θ).

⎫⎪⎪⎬
⎪⎪⎭ (3.2)

A µ-vector field X over E will be said to be represented by a σ-finite Borel
measure η over C(R+; E) if the respective metric current T ∈ M1(E) defined
by (3.1) is as well. Such vector fields and currents will in what follows be called
laminated.

4. Transportable measures and their flows

Define βt : C(R+; E) × R
+ → E by the formula

βt(θ, s) := θ(t + s)

so that, in particular, β0(θ, s) = θ(s). Consider also the projection

q : (θ, s) ∈ C(R+; E) × R
+ → θ ∈ C(R+; E).

Following the idea presented in the introduction, we give the following definition.

Definition 4.1. A finite positive Borel measure µ over E will be called trans-
portable by a σ-finite Borel measure η over C(R+; E) through a finite Borel measure
σ over C(R+; E) × R

+, if
β0#σ = µ,

q#σ 	 η.

}
(4.1)

We will also say that µ is transportable by η if there is a σ satisfying (4.1). The
family of measures {µt}t∈R+ defined by

µt := βt#σ

will then be called the flow of measures corresponding to η.
Furthermore, the measure µ will be called transportable by a laminated mea-

surable vector field X (or, equivalently, by the respective current T ∈ M1(E)) if
there is a σ-finite Borel measure η over C(R+; E) representing X (respectively, T )
without cancellation of mass, which does not charge constant curves, such that µ
is transportable by η.
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Assume that a Borel measure µ over E is transportable by a Borel measure
η over C(R+; E) through a Borel measure σ over C(R+; E) × R

+ (i.e. the latter
satisfies (4.1)). Clearly, with this definition one has µt(E) = µ(E), µ0 = µ and the
family {µt} forms a narrowly continuous curve in the space of finite Borel measures
over E. Furthermore, by the disintegration theorem we have

σ = µ ⊗ ηx,

where {ηx}x∈E is a family of Borel probability measures over C(R+; E) × R
+ con-

centrated over

β−1
0 (x) := {(θ, s) ∈ C(R+; E) × R

+ : θ(s) = x}.

Setting hx,t := βt#ηx, one has in particular that

µt = βt#σ = µ ⊗ hx,t,

and for every t ∈ R
+ the map x ∈ E → hx,t is weakly measurable. In other words,

µt(B) :=
∫

E

hx,t(B) dµ(x)

for every Borel B ⊂ E.
We now study the notion of transportability of the measures introduced above.

The following easy statement is valid.

Proposition 4.2. Assume that a Borel measure µ over E is transportable by a
Borel measure η over C(R+; E). Then every finite measure ψ 	 µ is transportable
by η.

Proof. By the Radon–Nikodym theorem we may write ψ = αµ with a measurable
α : E → R

+. Let σ be a Borel measure over C(R+; E) × R
+ satisfying (4.1). We

define the Borel measure τ over C(R+; E) × R
+ by setting τ := (α ◦ β0)σ. Note

that τ is a σ-finite Borel measure (in fact, it is finite if ψ is), because∫
β−1
0 (B)

α ◦ β0 dσ =
∫

B

α dβ0#σ =
∫

B

α dµ = ψ(B) (4.2)

for every Borel B ⊂ E. Therefore, τ 	 σ, and hence q#τ 	 q#σ 	 η. On the other
hand, by construction one has that β0#τ = ψ by (4.2). Therefore, ψ is transportable
by η through τ .

Note that in definition 4.1 in the notion of transportability by a laminated mea-
surable vector field X it has been requested that a measure η over curves represent-
ing X without cancellation of mass does not charge constant curves (i.e. curves, the
images of which are singletons). If this requirement were dropped, then every mea-
sure µ would be transported by every laminated measurable vector field X. In fact,
let η be an arbitrary σ-finite Borel measure over C(R+; E) representing X without
cancellation of mass, and let f : E → C(R+; E) be defined by f(x)(t) := x (i.e. f
maps a point x ∈ E to the constant curve θ(t) = x). Letting η′ := f#µ we have that
η+η′ still represents the same measurable vector field without cancellation of mass,
and µ is transportable by η+η′, say, by a measure σ := η′ ⊗δ0 over C(R+; E)×R

+.
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However, the respective flow is in fact absolutely unreasonable since one has µt = µ
for all t ∈ R

+, which has nothing to do with the vector field in consideration. Thus,
we have to sacrifice the possibility of transporting all of the measures in order to
have reasonable flows. In fact, not all the measures are transportable by a given
measurable vector field, as the following statement shows.

Proposition 4.3. If µ is a measure over E transportable by a laminated measur-
able vector field X (or, equivalently, by the respective current T ∈ M1(E)), then µ
is concentrated over suppT (i.e. suppµ ⊂ suppT ).

Proof. Let η be a σ-finite Borel measure over C(R+; E)×R
+ representing T without

cancellation of mass, and not charging constant curves, such that µ is transportable
by η through some measure σ over C(R+; E) × R

+. By remark A.9, one has then
that θ ⊂ suppT in the sense of traces for η-a.e. θ, i.e. θ(t) ∈ suppT for η-a.e.
θ ∈ C(R+; E) and all t ∈ R

+, and hence for σ-a.e. (θ, t) ∈ C(R+; E) × R
+. Thus

β0#σ = µ is concentrated over suppT .

We now give some examples of transportable measures.

Example 4.4. Assume that η is a finite measure. Then µ := start# η = e0#η is
transportable by η through σ := η ⊗ δ0. In fact,∫

E

u(x) d(β0#σ)(x) =
∫

E

u(x) dβ0#(η ⊗ δ0)(x)

=
∫

C(R+;E)×R+
u(β0(θ, s)) d(η ⊗ δ0)(θ, s)

=
∫

C(R+;E)×R+
u(θ(s)) d(η ⊗ δ0)(θ, s)

=
∫

C(R+;E)
u(θ(0)) dη(θ)

=
∫

E

u(x) d(e0#η)(x)

=
∫

E

u(x) dµ(x)

for every Borel function u over E, so that β0#σ = µ, and hence σ satisfies (4.1).
We have now that each ηx is concentrated over

e−1
0 (x) × {0} = {θ ∈ C(R+; E) : θ(0) = x} × {0} ⊂ C(R+; E) × R

+,

and

hx,t(B) = ηx({(θ, s) ∈ C(R+; E) × R
+ : θ(s + t) ∈ B})

= ηx({θ ∈ C(R+; E) : θ(t) ∈ B} × {0})

= ηx(e−1
t (B) × {0}).
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Finally, one has µt = et#η. In fact,

µt(B) =
∫

E

hx,t(B) dµ(x) =
∫

E

ηx(e−1
t (B) × {0}) dµ(x)

= (η ⊗ δ0)(e−1
t (B) × {0})

= η(e−1
t (B))

= (et#η)(B)

for all Borel B ⊂ E.

Another important example is the following one.

Example 4.5. Let η be a σ-finite measure over C(R+; E) such that η-a.e. θ ∈
C(R+; E) is parametrized by arc length and∫

C(R+;E)
�(θ) dη(θ) < +∞.

Then the finite measure µ over E defined by

µ := η⊗θ#(L1�[0, �(θ)]), i.e. µ(B) =
∫

C(R+;E)
L1(θ−1(B)∩ [0, �(θ)]) dη(θ), (4.3)

for every Borel set B ⊂ E, is transportable by η. In fact, setting σ := η⊗L1�[0, �(θ)],
one has

(β0#σ)(B) = σ({(θ, s) ∈ C(R+; E) × R
+ : θ(s) ∈ B})

=
∫

C(R+;E)
L1(θ−1(B) ∩ [0, �(θ)]) dη(θ)

= µ(B)

for every Borel B ⊂ E.
In particular, if η represents some laminated current T ∈ M1(E) without can-

cellation of mass, while η-a.e. θ ∈ C(R+; E) is parametrized by arc length, then
the mass measure mT is transportable by η through σ := η ⊗ L1�[0, �(θ)], because
clearly in this case one has µ = mT .

It is worth mentioning that the measure µ defined by (4.3) can be interpreted as
the transport density. This notion is frequently used in the context of the Monge–
Kantorovich optimal transportation problem (i.e. when η and/or T represent the
solution to the latter problem) [1, 10].

Note that example 4.5 provides a measure transportable by a measurable vector
field by any measure η representing the latter without cancellation of mass. In
general this is not the case, i.e. if a measure is transportable by a measurable
vector field, it is not true that it is transportable by all measures η representing the
latter without cancellation of mass, as the following example shows.

Example 4.6. If E := R, T := [[[0, 1]]], then the measure µ := δ0 is transportable
by η := δθ with θ := [0, 1] (i.e. θ(t) := t for all t ∈ [0, 1]) by example 4.4. However,
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A O

Figure 1. The measure δA is not transportable, while δO is transportable.

µ is not transportable by η′ :=
∑∞

k=1 δθk
(note that this measure is not finite) with

θk := [1/2k+1, 1/2k] (i.e. θk(t) := (1 − t)/2k+1 + t/2k for all t ∈ [0, 1]), while both
η and η′ represent T without cancellation of mass.

We will now give an example of a measure not transportable by a given measure
η over C(R+; E).

Example 4.7. Let E := R
2 and η := L1�[0, 2] ⊗ δθy , where θy(t) := (t ∧ 1, y) for

each y ∈ [0, 2] (with the parameter t ∈ R
+). This measure represents the current

(L2�[0, 1] × [0, 2]) ∧ ē1 without cancellation of mass. Let A := (0, 1) = θ1(0) (see
figure 1). Then µ := δA is not transportable by η. In fact, suppose the contrary,
i.e. the existence of a measure σ over C(R+; E) × R

+ satisfying (4.1). Writing
σ := η̃ ⊗ λθ, where η̃ := q#σ, we get that η̃ is concentrated over {θy : y ∈ [0, 2]}
(because η̃ 	 η) and λθ = 0 for all θ �= θ1 because µ = β0#σ is concentrated over
a singleton A that is the starting point of θ1. This means that σ = 0, giving the
obvious contradiction µ = 0.

On the contrary, again letting E := R
2 and

η′ := L1�[−1, 1] ⊗ δθ′
k
,

where θ′
k(t) := (t ∧ 1, k(t ∧ 1)) with the parameter t ∈ R

+ and k ∈ [−1, 1], we
have that η′ represents some normal current T ′ (the one solving the optimal mass
transportation problem of minimizing M(T ) among normal currents T satisfying
∂T = H1�I − 2δO, where I stands for the segment with endpoints (1,−1) and
(1, 1)). The latter current is concentrated over the triangle with vertices O, (1,−1)
and (1, 1) and has the field of directions v given by

v(x, y) =
(x, y/x)
|(x, y/x)|

(see figure 1). Then δO is transportable by η′ by example 4.4.

Remark 4.8. It is worth remarking that if the finite Borel measure µ is trans-
portable by a measurable vector field corresponding to a laminated current T , then
there is a normal current S � T , S �= 0, and a finite Borel measure ν over E such
that ∂S = ν − µ̃, where µ̃ is equivalent to µ. In fact, in this case there is a σ-finite
Borel measure η over C(R+; E) representing T without cancellation of mass and a
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Borel measure σ over C(R+; E) × R
+ satisfying (4.1). Disintegrating σ = αη ⊗ λθ,

where α ∈ L1(C(R+; E), η) and each λθ is a Borel probability measure over R
+,

define

η̃ :=
α

|α|η = 1{α>0}η, σ̃ := η̃ ⊗ λθ,

S :=
∫

C(R+;E)×R+
[[θ�[s,+∞)]] dσ̃(θ, s),

and keeping in mind that η̃ represents the laminated current Tη̃ without cancellation
of mass by lemma A.15, we get from lemma A.17 (applied with Tη̃ and σ̃ instead
of T and σ, respectively) that S � Tη̃ � T (the latter inequality being due to the
fact that η̃ � η). Finally, one has

∂S =
∫

C(R+;E)×R+
(δend(θ) − δθ(s)) dσ̃(θ, s)

=
∫

C(R+;E)
δend(θ) dη̃(θ) −

∫
C(R+;E)×R+

δθ(s) dσ̃(θ, s),

but∫
E

f(x) d(∂S)(x) =
∫

C(R+;E)
f(end(θ)) dη̃(θ) −

∫
C(R+;E)×R+

f(θ(s)) dσ̃(θ, s)

=
∫

E

f(x) d(end# η̃ − β0#σ̃)(x)

for every f ∈ Cb(E), so that ∂S = end# η̃ − β0#σ̃, and it remains to observe that
for µ̃ := β0#σ̃ one has µ̃ 	 µ 	 µ̃ as claimed.

Let us illustrate remark 4.8 by the following easy example.

Example 4.9. Let E := R, T = [[[0, 1]]], η := δθ, where θ := [0, 1], and µ = mT =
L1�[0, 1]. Set S :=

∫ 1
0 [[[s, 1]]] ds. Clearly, T − S =

∫ 1
0 [[[0, s]]] ds, so that

M(S) �
∫ 1

0
(1 − s) ds = 1/2

and analogously M(T − S) � 1/2, which gives M(S) + M(T − S) � 1 = M(T );
hence S � T . Furthermore,

∂S =
∫ 1

0
(δ1 − δs) ds = δ1 −

∫ 1

0
δs ds = δ1 − µ,

because ∫
E

f(x) d(∂S)−(x) =
∫ 1

0
f(s) ds =

∫
E

f dµ

for every f ∈ Cb(E).

As a partial converse to remark 4.8, we may claim the following easy statement.

Proposition 4.10. For a normal current T ∈ M1(E), if there is a normal current
S � T such that µ 	 (∂S)−, then the measure µ is transportable by T .
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Proof. Let T and S � T be normal one-dimensional currents. It is enough to show
that (∂S)− is transportable by T and then refer to proposition 4.2. Let η be a
finite Borel measure over C(R+; E) representing S without cancellation of mass
and concentrated on curves parametrized, say (for the sake of definiteness), over
[0, 1] (i.e. being constant outside of this interval). By example 4.4, one has that
e0#η is transportable by η. But since ∂S = e1#η − e0#η, we have (∂S)− � e0#η,
and thus (∂S)− is transportable by η again by proposition 4.2. Now let η′ be a finite
Borel measure over C(R+; E) representing R := T −S without cancellation of mass.
Then, clearly, η + η′ represents T without cancellation of mass, and since (∂S)− is
transportable by η, it is also transportable by any bigger measure, in particular, by
η + η′, and hence is transportable by T , which concludes the proof.

In a particular case in which the metric space E is isometrically embedded in
a strictly convex Banach space with the Radon–Nikodym property, we are able to
give the following more precise characterization of the transportability condition
and the flow it generates.

Proposition 4.11. Let T ∈ M1(E) be a laminated current, where E is isometri-
cally embedded into a strictly convex Banach space with the Radon–Nikodym prop-
erty, let µ be a finite Borel measure over E transportable by T through a finite Borel
measure σ over C(R+; E) × R

+ such that∫
C(R+;E)

�(θ) d(q#σ)(θ) < +∞,

the respective flow of µ being given by the family of measures {µt} with µ0 = µ.
Then there is a γ ∈ L1(E; mT ) such that T�γ is a normal current, and for some
finite Borel measure η over C(R+; E) representing T�γ without cancellation of mass
one has µt = et#η for all t ∈ R

+.

Proof. Since q#σ is absolutely continuous with respect to some measure represent-
ing T without cancellation of mass, by lemma A.18 there is a γ ∈ L1(E, mT ) such
that for an S ∈ M1(E) defined by (A 9) one has that S is normal and S = T�γ.
Defining ϕ : C(R+; E) × R

+ → C(R+; E) by ϕ(θ, s)(t) := θ(s + t), we have that
η := ϕ#σ represents S without cancellation of mass. Finally,

et#η = et#(ϕ#σ) = (et ◦ ϕ)#σ = βt#σ = µt,

concluding the proof.

Note that the flow µt may be not unique, as the following example shows.

Example 4.12. Let E := R
2, η := δθ, where θ is the self-intersecting curve shown

in figure 2. The parametrization of θ is such that the point A of self-intersection is
attained at two instants t1 and t2 with t2 > t1. Let σi := η ⊗ δti

, i = 1, 2. Then
µ := δA is transportable by η both through σ1 and through σ2, but the flows µt

generated by σ1 and by σ2 move the measure δA along different branches of the
curve θ, namely, in the first case µt = δA1

t
, while in the second case µt = δA2

t
(see

figure 2).
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Figure 2. Non-uniqueness of the flow of δA in example 4.12.

Note that some (but of course not all) of the non-uniqueness of the flows is due
to the fact that the same curves may be parametrized in several different ways. In
fact, if we reparametrize in some measurable way all the curves in the support of
the measure η transporting the given measure µ, we will get a new flow of the same
measure. However, as the following easy statement shows, the measure µ will still
remain transportable.

Proposition 4.13. Assume that η is a σ-finite Borel measure on C(R+; E) and let
µ be a Borel measure over E transportable by η. Suppose that there exists a Borel
reparametrization map

ψ : C(R+; E) × R
+ → R

+

such that ψ(θ, ·) is surjective, non-decreasing and θ(t1) = θ(t2) whenever ψ(θ, t1) =
ψ(θ, t2). Then µ is transportable by g#η, where g : C(R+; E) → C(R+; E) is a Borel
map uniquely defined by

g(θ)(ψ(θ, t)) = θ(t) for all t ∈ R
+. (4.4)

Proof. Since ψ(θ, ·) is surjective, there exists a map ψ−1(θ, ·) such that

ψ(θ, ψ−1(θ, t′)) = t′

for all t′ ∈ R
+. The map ψ−1(θ, ·) must be strictly increasing and one can prove

that t′ → θ(ψ−1(t′)) is continuous. Hence, (4.4) is satisfied by a unique map
g : C(R+; E) → C(R+; E) defined by g(θ)(t′) = θ(ψ−1(θ, t′)) (note that although
ψ−1 clearly may be non-unique, the map g is unique because θ(t1) = θ(t2) whenever
ψ(θ, t1) = ψ(θ, t2)).

We also define f : C(R+; E) × R
+ → C(R+; E) × R

+ by f(θ, t) = (g(θ), ψ(θ, t)),
so that β0 ◦ f = β0 in view of (4.4). Moreover, q ◦ f = g ◦ q since q(f(θ, t)) = g(θ) =
g(q(θ, t)). If µ is transportable by η, then by definition 4.1 there is a Borel measure
σ over C(R+; E) × R

+ satisfying (4.1). Setting σ′ := f#σ one has

β0#σ′ = β0#(f#σ) = (β0 ◦ f)#σ = β0#σ = µ

and
q#σ′ = q#(f#σ) = (q ◦ f)#σ = (g ◦ q)#σ = g#(q#σ) 	 g#η,

which concludes the proof.
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Remark 4.14. The most natural example of the situation in which proposition 4.13
applies is given by the arc-length reparametrization of curves, i.e. g(θ) standing for
the arc-length reparametrization of θ and

ψ(θ, t) :=

{
�(θ�[0, t]) if �(θ�[0, t]) < �(θ),
�(θ) + t − t̄(θ) otherwise,

where t̄(θ) := inf{t : �(θ�[0, t]) = �(θ)}, which is Borel in θ and continuous in t.

Remark 4.15. It is worth mentioning that always when η represents some current
T without cancellation of mass, and a Borel map g : C(R+; E) → C(R+; E) is such
that g(θ) is a reparametrization of θ for η-a.e. θ ∈ C(R+; E), the measure g#η
represents the same current, also without cancellation of mass.

In view of the above remarks the following immediate corollary to proposition 4.13
holds true.

Corollary 4.16. Let µ be transportable by some laminated current T ∈ M1(E).
Then there is a σ-finite Borel measure η representing T without cancellation of
mass and concentrated over arc-length parametrized curves in C(R+; E) such that
µ is transportable by η.

A measure η singled out in corollary 4.16 is of course not unique (since the current
T may be represented by different measures over curves without cancellation of
mass, and µ may be transportable by several of the latter); nevertheless, in most
situations such measures are the most interesting.

5. Representation of currents and vector fields

The following result on representation of laminated currents (and hence also of
measurable vector fields) will be important in what follows.

Theorem 5.1. Let E be a Banach space, let T ∈ M1(E) be a laminated current
represented by a σ-finite Borel measure η over C(R+; E) without cancellation of
mass such that η-a.e. θ is norm differentiable almost everywhere (in particular, this
holds when E has the Radon–Nikodym property since then all absolutely continuous
curves are so). Then there is a Borel function VT : E → E with ‖VT (y)‖ = 1 for
mT -a.e. y ∈ E satisfying

T (f dπ) =
∫

E

f(y)〈VT (y), dπ(y)〉 dmT (y) (5.1)

when (f, π) ∈ L1(E; mT ) × Q1(E). Furthermore, for η-a.e. θ ∈ C(R+; E) and a.e.
t ∈ R

+ one has
θ̇(t) ∈ VT (θ(t))′′|θ̇|(t) (5.2)

(where V ′
T is defined by (B 1)), and, in particular, when the norm in E is strictly

convex,
θ̇(t) = VT (θ(t))|θ̇|(t). (5.3)
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If, moreover, η-a.e. θ ∈ C(R+; E) are parametrized by arc length, then for η-a.e.
θ ∈ C(R+; E) and a.e. t ∈ [0, �(θ)) one has

θ̇(t) ∈ VT (θ(t))′′, (5.4)

and, in particular, when the norm in E is strictly convex,

θ̇(t) = VT (θ(t)). (5.5)

Moreover, the claims (5.2) and (5.4) hold for every VT satisfying (5.1).

Remark 5.2. If E is a finite-dimensional normed space, then for every (not neces-
sarily laminated) T ∈ M1(E) a Borel map VT satisfying (5.1) exists by lemma A.3.
The representation (5.1) together with proposition A.8 establishes the natural cor-
respondence between one-dimensional metric currents in a Euclidean space, mea-
surable vector fields and vector-valued Borel maps. In fact, according to propo-
sition A.8, for every T ∈ M1(E) there is a unique measurable vector field XT

satisfying

T (f dπ) =
∫

E

f(y)(XT π)(y) dmT (y)

for all f dπ ∈ D1(E), and so (XT π)(y) = 〈VT (y), dπ(y)〉 for mT -a.e. y ∈ E. Clearly,
if T is normal, then additionally

divmT
XT = div VT mT

is a signed Borel measure of finite total variation (note the different meanings of
the two divergence symbols in the above relationship: it is the abstract divergence
operator applied to measurable vector fields on the left-hand side and the usual dis-
tributional divergence on the right-hand side). Note that the map VT satisfying (5.1)
is unique up to mT -almost everywhere equality by remark A.2. Theorem 5.1 there-
fore gives just the additional information on every representative of VT in the class
of mT -almost everywhere equal Borel maps in the case in which T is laminated, or,
equivalently, on the structure of measures over curves representing the laminated
current T .

Proof. We may further assume without loss of generality E to be separable (substi-
tuting it, if necessary, with the linear span of suppmT , which is separable since mT

is assumed to be tight). Let σ be a finite measure over C(R+; E) × R
+ equivalent

to η ⊗ L1. Disintegrate the measure η ⊗ L1 over C(R+; E) × R
+ as

η ⊗ L1 = µ ⊗ τy, where µ := β0#σ,

so that µ is equivalent to β0#(η ⊗ L1) and τy are σ-finite measures concentrated
over β−1

0 (y) ⊂ C(R+; E) × R
+, and define

V (y) :=
∫

C(R+;E)×R+
θ̇(t) dτy(θ, t) =

∫
β−1
0 (y)

θ̇(t) dτy(θ, t), (5.6)

the integrals of functions with values in E here and below being intended in the
sense of Bochner. Note that for µ-a.e. y ∈ E the measure τy does not charge η⊗L1-
nullsets, and thus for τy-a.e. (θ, t) the derivative θ̇(t) is well defined. Moreover, the
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map (θ, t) ∈ C(R+; E) × R
+ → θ̇(t) ∈ E is η ⊗ L1-almost everywhere equal to

a Borel map by lemma B.2, and hence τy-measurable, and so is the map (θ, t) ∈
C(R+; E) × R

+ → |θ̇|(t) ∈ E (say, because |θ̇|(t) = ‖θ̇(t)‖ for a.e. t ∈ R
+). The

calculation∫
E

dµ(y)
∫

C(R+;E)×R+
|θ̇|(t) dτy(θ, t) =

∫
R+

dt

∫
C(R+;E)

|θ̇|(t) dη(θ)

=
∫

C(R+;E)
�(θ) dη(θ)

= M(T ), (5.7)

shows then that V (y) is well defined for µ-a.e. y ∈ E.
Let π ∈ Q1(E). Observe that

T (f dπ) =
∫

C(R+;E)
[[θ]](f dπ) dη(θ)

=
∫

C(R+;E)
dη(θ)

∫
R+

f(θ(t))〈θ̇(t), dπ(θ(t))〉 dt. (5.8)

Recalling that f ∈ Cb(E) and that ‖dπ(y)‖′ � Lipπ, we get∫
C(R+;E)

dη(θ)
∫

R+
|f(θ(t))〈θ̇(t), dπ(θ(t))〉| dt

� ‖f‖∞ Lipπ

∫
C(R+;E)

dη(θ)
∫

R+
|θ̇|(t) dt

= ‖f‖∞ Lipπ

∫
C(R+;E)

�(θ) dη(θ)

= ‖f‖∞ LipπM(T )

< +∞,

and thus we may change the order of integration in (5.8) obtaining

T (f dπ) =
∫

C(R+;E)×R+
f(θ(t))〈θ̇(t), dπ(θ(t))〉d(η ⊗ L1)(θ, t)

=
∫

E

dµ(y)
∫

C(R+;E)×R+
f(θ(t))〈θ̇(t), dπ(θ(t))〉 dτy(θ, t)

=
∫

E

f(y)
〈( ∫

C(R+;E)×R+
θ̇(t) dτy(θ, t)

)
, dπ(y)

〉
dµ(y)

=
∫

E

f(y)〈V (y), dπ(y)〉 dµ(y). (5.9)

The latter also implies that mT = ‖V ‖µ by lemma A.1. Defining

VT (y) :=
V (y)

‖V (y)‖
with the convention 0/0 := 0, we note that VT may be assumed to be Borel up
to changing it on a set of zero measure mT , that ‖VT (y)‖ = 1 for mT -a.e. y ∈ E
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and (5.1) holds. Moreover,

‖V (y)‖ =
∥∥∥∥

∫
C(R+;E)×R+

θ̇(t) dτy(θ, t)
∥∥∥∥ =

∫
C(R+;E)×R+

|θ̇|(t) dτy(θ, t) (5.10)

for µ-a.e. y ∈ E, in view of (5.7) and the equality
∫

E
‖V (y)‖ dµ(y) = M(T ). There-

fore, for such y ∈ E one has

θ̇(t) ∈
(
∫

C(R+;E)×R+ θ̇(s) dτy(θ, s))′′∫
C(R+;E)×R+ |θ̇|(s) dτy(θ, s)

|θ̇|(t)

by lemma B.1, or, in other words,

θ̇(t) ∈ V (y)′′

‖V (y)‖ |θ̇|(t) = VT (y)′′|θ̇|(t) (5.11)

for τy-a.e. (θ, t) ∈ C(R+; E) × R
+, so that η-a.e. θ ∈ C(R+; E) satisfies (5.2) for

a.e. t ∈ R
+. Note that (5.11) makes sense since for µ-a.e. y ∈ E such that V (y) = 0

one has |θ̇|(t) = 0 for τy-a.e. (θ, t) ∈ C(R+; E) × R
+. Therefore, also

η ⊗ L1({(θ, t) ∈ C(R+; E) × R
+ : V (θ(t)) = 0 but |θ̇|(t) �= 0}) = 0

(where by writing |θ̇|(t) �= 0 for brevity we mean that |θ̇|(t) is either defined
and non-zero or undefined). Relationships (5.3)–(5.5) now follow straightforwardly
from (5.11).

It remains to show that (5.4) and (5.2) hold for every VT satisfying (5.1). We
start with (5.4). Suppose that T = ṼT ∧mT . Then VT (x) = ṼT (x) for mT -a.e. x ∈ E
by remark A.2. We show that then for η-a.e. θ ∈ C(R+; E) and a.e. t ∈ [0, �(θ)),
relationship (5.4) is valid with ṼT instead of VT . This is true since mT = β0#(η ⊗
L1�[0, �(θ))), and hence

η ⊗ L1�[0, �(θ))({(θ, t) ∈ C(R+; E) × R
+ : VT (θ(t)) �= ṼT (θ(t))})

= mT ({x ∈ E : VT (x) �= ṼT (x)})
= 0,

proving the claim.
Finally, we show that (5.2) holds for every VT satisfying (5.1). Let g(θ) stand

for the arc-length reparametrization of θ, that is, g(θ)(t) := θ(ϕθ(t ∧ �(θ))), where
ϕθ(s) := inf{t ∈ R

+ : ψθ(t) = s}, ψθ(t) := �(θ�[0, t]). Defining η′ := g#η, we get
from (5.4), for η′-a.e. γ ∈ C(R+; E) and a.e. t � �(γ), the inclusion

γ̇(t) ∈ VT (γ((t)))′′. (5.12)

But since for γ = g(θ) one has

γ̇(t) = θ̇(ϕθ(t)) · ϕ̇θ(t) =
θ̇(ϕθ(t))
|θ̇|(ϕθ(t))

for a.e. t � �(γ) = �(θ), we get from (5.12) the relationship

θ̇(ϕθ(t))
|θ̇|(ϕθ(t))

∈ VT (θ(ϕθ(t)))′′.
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This means that the set of t ∈ R
+ such that ψ̇θ(t) = |θ̇|(t) �= 0 and

θ̇(t)
|θ̇|(t)

�∈ VT (θ(t))′′

has zero Lebesgue measure (in view of the area formula), which implies (5.2) for
η-a.e. θ ∈ C(R+; E) and a.e. t ∈ R

+, and hence concludes the proof for the case in
which η-a.e. θ ∈ C(R+; E) are norm differentiable almost everywhere.

It is not difficult to show that when the norm in E is not strictly convex, the
inclusion in (5.2) (or (5.3)) does not necessarily become an equality, as the following
easy though instructive example shows.

Example 5.3. Equip E := R
2 with the norm ‖ · ‖1 defined by ‖(x1, x2)‖1 :=

|x1| + |x2|. Define ηi, i = 1, 2, by the formulae

η1 := L1�[0, 1] ⊗ δθx2
, where θx2(t) := (t ∧ 1, x2) for each x2 ∈ [0, 1],

η2 := L1�[0, 1] ⊗ δθx1
, where θx1(t) := (x1, t ∧ 1) for each x1 ∈ [0, 1]

(with the parameter t ∈ R
+). Clearly, Tηi = ēi ∧ L2�([0, 1] × [0, 1]), M(Tηi) = 1.

Setting η := η1 + η2, one has

T := Tη1 + Tη2 = (ē1 + ē2) ∧ L2�Q,

and thus M(T ) = 2; hence, Tηi � T and η represents T without cancellation of
mass. One has mT = 2L2�Q, VT = (ē1 + ē2)/2, and θ̇(t) ∈ V ′′

T for η-a.e. θ and
for all t ∈ [0, 1] (because V ′′

T = {λ1ē1 + λ2ē2 : λi � 0, i = 1, 2} in this case), but
θ̇(t) �= VT .

It is worth remarking, however, that if one equips E instead with the usual
Euclidean norm, then one still has M(Tηi) = 1, but M(T ) =

√
2, and hence Tηi �� T ,

i = 1, 2; moreover, ∫
C(R+;E)

M([[θ]]) dη = 2 > M(T ),

and thus η does not represent T without cancellation of mass.

A few remarks regarding theorem 5.1 and its proof have to be made.

Remark 5.4. If E is a Banach space and η is just some σ-finite measure over
C(R+; E) concentrated over absolutely continuous almost everywhere norm-differ-
entiable curves and one has∥∥∥∥

∫
C(R+;E)×R+

θ̇(t) dτy(θ, t)
∥∥∥∥ =

∫
C(R+;E)×R+

|θ̇|(t) dτy(θ, t)

for µ-a.e. y ∈ E, or, equivalently (by lemma B.1), with the notation of the proof,

θ̇(t) ∈ V (y)′′

‖V (y)‖ |θ̇|(t)
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for τy-a.e. (θ, t) ∈ C(R+; E) × R
+ and for µ-a.e. y ∈ E, then η represents Tη ∈

M1(E) without cancellation of mass. In fact, since by (5.9)

Tη(f dπ) =
∫

E

f(y)〈V (y), dπ(y)〉 dµ(y),

where π ∈ Q1(E), we have

M(Tη) =
∫

E

‖V (y)‖ dµ(y)

in view of lemma A.1. Thus,

M(Tη) =
∫

E

dµ(y)
∥∥∥∥

∫
C(R+;E)×R+

θ̇(t) dτy(θ, t)
∥∥∥∥

=
∫

E

dµ(y)
∫

C(R+;E)×R+
|θ̇|(t) dτy(θ, t)

=
∫

R+
dt

∫
C(R+;E)

|θ̇|(t) dη(θ)

=
∫

C(R+;E)
�(θ) dη(θ),

showing the claim.

Remark 5.5. If under the conditions of theorem 5.1 one has additionally that η
is finite (and thus the current T is normal), and η-a.e. θ is parametrized by arc
length, then

VT (θ(t)) = E(θ̇; β−1
0 (B(E)))(t),

where E(·; Σ) stands for the conditional expectation with respect to the σ-algebra
Σ. To see this, one recalls that β0#(η ⊗ L1�[0, �(θ)]) = mT (example 4.5) and
calculates that∫

β−1
0 (e)

E(θ̇; β−1
0 (B(E)))(t) d(η ⊗ L1�[0, �(θ)])(θ, t)

=
∫

E

dmT (y)
∫

β−1
0 (y)

1β−1
0 (B)(θ, t)E(θ̇; β−1

0 (B(E)))(t) dτ̄y(θ, t)

=
∫

E

1B(y) dmT (y)
∫

β−1
0 (y)

E(θ̇; β−1
0 (B(E)))(t) dτ̄y(θ, t)

=
∫

B

dmT (y)
∫

β−1
0 (y)

E(θ̇; β−1
0 (B(E)))(t) dτ̄y(θ, t)

for every B ∈ B(E), where τ̄y is a Borel probability measure concentrated over
β−1

0 (y) and satisfying the disintegration identity

η ⊗ L1�[0, �(θ)] = mT ⊗ τ̄y.

Keeping in mind that

E(θ̇; β−1
0 (B(E)))(t) = λ(β0(θ, t)) = λ(θ(t))
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Figure 3. The situation in example 5.7.

for some Borel vector function of λ over E, we have that over β−1
0 (y) the latter

conditional expectation depends only on y (and not on θ and t), so that∫
β−1
0 (B)

E(θ̇; β−1
0 (B(E)))(t) d(η ⊗ L1�[0, �(θ)]) =

∫
B

λ(y) dmT (y).

But, on the other hand, by definition of the conditional expectation one has∫
β−1
0 (B)

E(θ̇; β−1
0 (B(E)))(t) d(η ⊗ L1�[0, �(θ)])(θ, t)

=
∫

B

dmT (y)
∫

β−1
0 (y)

θ̇(t) dτ̄y(θ, t)

=
∫

B

VT (y) dmT (y),

recalling (5.5). Thus, λ(y) = VT (y) for mT -a.e. y ∈ E, which is exactly the claim
being proven.

Remark 5.6. It is important to remark that when η-a.e. θ ∈ C(R+; E) is paramet-
rized by arc length, one can assert that (5.4) (or, in a particular case, (5.5)) holds
for η-a.e. θ ∈ C(R+; E) only for a.e. t ∈ [0, �(θ)) and not for a.e. t ∈ R

+, as the
following simple example shows.

Example 5.7. Let E := R
2 and η := L1�[0, 2] ⊗ δθy + δθ̄, where θy(t) := (t ∧ 1, y)

for each y ∈ [0, 2] and θ̄(t) := (1, t ∧ 2) (with the parameter t ∈ R
+). This measure

represents the current (L2�[0, 1] × [0, 2]) ∧ ē1 + (H1�I) ∧ ē2 without cancellation of
mass, where I stands for the vertical segment with endpoints (1, 0) and (1, 2) (see
figure 3). Clearly, one has VT (y) = ē1 for L2-a.e. y ∈ (0, 1) × (0, 2) and VT (y) = ē2
for H1-a.e. y ∈ I. Thus, for instance, for all y ∈ (1, 2] one has θ̇y(t) = 0 for all
t ∈ (1, 2) but VT (θy(t)) = VT ((1, y)) = ē2 �= 0 for L1-a.e. y ∈ (1, 2], and the
measure η of this set of curves is positive.

6. Flows generated by measurable vector fields

The following theorem gives the characterization of flows of a measure transportable
by some measurable vector field (or, equivalently, one-dimensional current) in a
Banach space.
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Theorem 6.1. Assume that a finite measure µ over a Banach space E is trans-
portable by a σ-finite measure η, concentrated over some separable subset of C(R+;
E) consisting only of absolutely continuous curves, through a measure σ over C(R+;
E) × R

+ such that η̃ := q#σ satisfies∫
C(R+;E)

�(θ) dη̃(θ) < +∞, (6.1)

and η-a.e. θ is norm differentiable almost everywhere (in particular, the latter holds
when E has the Radon–Nikodym property since then all absolutely continuous curves
are so). Then the following assertions are valid.

(A) Representing by disintegration σ = µt ⊗ νy
t , where µt := βt#σ, so that each

νy
t is a probability measure concentrated over

β−1
t (y) = {(θ, s) ∈ C(R+; E) × R

+ : θ(s + t) = y},

and defining

vt(y) :=
∫

C(R+;E)×R+
θ̇(s + t) dνy

t (θ, s) =
∫

β−1
t (y)

θ̇(s + t) dνy
t (θ, s), (6.2)

we have that vt is Bochner integrable with respect to µt for a.e. t ∈ R
+ (and

even more, the function v : E×R
+ → E defined by v(t, x) := vt(x) is Bochner

integrable with respect to dt ⊗ µt), and the continuity equation

∂µt

∂t
+ div vtµt = 0 (6.3)

is valid in the weak sense, i.e.

−
∫

R+
ψ̇(t) dt

∫
E

ϕ(y) dµt(y) −
∫

R+
ψ(t) dt

∫
E

〈vt(y), dϕ(y)〉 dµt(y) = 0 (6.4)

for every ϕ ∈ Q1(E) ∩ Cb(E) and ψ ∈ C1
0 (R+).

(B) If, moreover, η represents some laminated current T ∈ M1(E) without can-
cellation of mass, then theorem 5.1 holds. In particular, if in this case η-a.e.
θ ∈ C(R+; E) is parametrized by arc length, then

θ̇(t) ∈ VT (θ(t))′′ (6.5)

(with the equality θ̇(t) = VT (θ(t)) if E is strictly convex) for η-a.e. θ ∈
C(R+; E) and for a.e. t ∈ [0, �(θ)). If, in addition, E is strictly convex, then
one also has

vt(y) = VT (y)(1 − ϕt(y)) (6.6)

for a.e. t ∈ R
+ and µt-a.e. y ∈ E, where ϕt(y) := νy

t (Sy
t ) stands for the

proportion of mass that is stopped at point y after time t,

Sy
t := {(θ, s) ∈ C(R+; E) × R

+ : θ(s + t) = y, s + t � �(θ)}
= {(θ, s) ∈ C(R+; E) × R

+ : θ(s + t) = y = end(θ)},
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and thus, in particular,

∂µt

∂t
+ div VT (1 − ϕt)µt = 0 (6.7)

in the weak sense.

It is worth remarking that the construction (6.2) of the vector field vt as the
superposition of the speeds of the relevant curves is quite similar to the construction
of [17, theorem 7]. Note that the term containing ϕt must appear in (6.7) in view
of remark 5.6. It is also worth emphasizing that the relationship (6.6) is just a
µt-almost everywhere equality. For instance, in example 5.7 with µ := H1�({0} ×
[0, 2])+ δ(1,0) one gets µt = H1�({t∧ 1}× [0, 2])+ δ(1,t∧2), and, when t > 1, one has
vt(x) = ē2 for x = (1, t ∧ 2) and vt(x) = 0 elsewhere.

Proof. We divide the proof into several steps in order to simplify the reading.

Step 1. First we show that (6.2) is a correct definition. To this end, let Nθ ∈ R
+

for a given θ ∈ C(R+; E) stand for the set

Nθ := {s ∈ R
+ : θ̇(s) is undefined}.

Representing by disintegration σ = η̃ ⊗ λθ with λθ Borel probability measures over
R

+, we get from lemma 6.2 (applied with µ := λθ, B := Nθ) that λθ(Nθ − t) = 0
for a.e. t ∈ R and η̃-a.e. θ ∈ C(R+; E). Hence, observing that

Nθ − t = {s ∈ R
+ : θ̇(s + t) is undefined},

we get that

σ({(θ, s) ∈ C(R+; E) × R
+ : θ̇(s + t) is undefined}) = 0

for a.e. t ∈ R
+, which implies that for such t ∈ R

+ the derivative θ̇(s + t) is well
defined for νy

t -a.e. (θ, s) ∈ C(R+; E) × R
+ and µt-a.e. y ∈ E. Furthermore, the

function (θ, s) ∈ C(R+; E) × R
+ → θ̇(s + t) is η̃ ⊗ L1-almost everywhere equal to a

Borel map by lemma B.2, and hence νy
t -measurable (and automatically separable

valued by an assumption on η).
Now, the estimate∫
R+

dt

∫
E

dµt(y)
( ∫

C(R+;E)×R+
|θ̇|(s + t) dνy

t (θ, s)
)

=
∫

C(R+;E)×R+
dσ(θ, s)

∫
R+

|θ̇|(s + t) dt =
∫

C(R+;E)×R+
dσ(θ, s)

∫ +∞

s

|θ̇|(τ) dτ

=
∫

C(R+;E)×R+
�(θ�[s,+∞)) dσ(θ, s)

�
∫

C(R+;E)×R+
�(θ) dσ(θ, s)

=
∫

C(R+;E)
�(θ) dη̃(θ)

< +∞ (6.8)
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shows that the Bochner integral in (6.2) is well defined for a.e. t ∈ R
+ and µt-a.e.

y ∈ E, and, moreover, that for such t one has that vt is Bochner integrable with
respect to µt for a.e. t ∈ R

+ (and even more, the function v : E × R
+ → E defined

by v(t, x) := vt(x) is Bochner integrable with respect to dt ⊗ µt), because∫
R+

dt

∫
E

‖vt(y)‖ dµt(y)

�
∫

R+
dt

∫
E

dµt(y)
( ∫

C(R+;E)×R+
|θ̇|(s + t) dνy

t (θ, s)
)

< +∞.

Step 2. We show now the validity of the continuity equation (6.3). Let ϕ ∈ Q1(E)∩
Cb(E). Since, in the notation of step 1, for η̃-a.e. θ ∈ C(R+; E) the equality

(
d
dt

)
ϕ(θ(t)) = 〈θ̇(t), dϕ(θ(t))〉

is valid for all t ∈ R
+\Ñθ, where L1(Ñθ) = 0, from lemma 6.2 (applied with µ := λθ,

B := Ñθ) we have that λθ(Ñθ − t) = 0 for a.e. t ∈ R
+ and η̃-a.e. θ ∈ C(R+; E),

and thus

σ

({
(θ, s) ∈ C(R+; E) × R

+ :
d
dt

ϕ(θ(s + t)) �= 〈θ̇(s + t), dϕ(θ(s + t))〉
})

= 0

for a.e. t ∈ R
+. Hence, for all such t ∈ R

+ for µt-a.e. y ∈ E one has

νy
t

({
(θ, s) ∈ C(R+; E) × R

+ :
d
dt

ϕ(θ(s + t)) �= 〈θ̇(s + t), dϕ(θ(s + t))〉
})

= 0,

which implies that∫
C(R+;E)×R+

d
dt

ϕ(θ(s + t)) dσ(θ, s)

=
∫

E

dµt(y)
( ∫

C(R+;E)×R+

d
dt

ϕ(θ(s + t)) dνy
t (θ, s)

)

=
∫

E

dµt(y)
( ∫

C(R+;E)×R+
〈θ̇(s + t), dϕ(θ(s + t))〉 dνy

t (θ, s)
)

=
∫

E

dµt(y)
〈( ∫

C(R+;E)×R+
θ̇(s + t) dνy

t (θ, s)
)

, dϕ(y)
〉

=
∫

E

dµt(y)〈vt(y), dϕ(y)〉.

Note that the above calculation makes sense since∣∣∣∣ d
dt

ϕ(θ(s + t))
∣∣∣∣ � Lipϕ|θ̇|(s + t),
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so that the above integral is defined in view of (6.8). Multiplying the above equation
by ψ(t), integrating over R

+ and using integration by parts in dt, we get∫
R+

ψ(t) dt

∫
E

〈vt(y), dϕ(y)〉 dµt(y)

=
∫

R+
ψ(t) dt

∫
C(R+;E)×R+

d
dt

ϕ(θ(s + t)) dσ(θ, s)

=
∫

C(R+;E)×R+
dσ(θ, s)

∫
R+

ψ(t)
d
dt

ϕ(θ(s + t)) dt

= −
∫

C(R+;E)×R+
dσ(θ, s)

∫
R+

ψ̇(t)ϕ(θ(s + t)) dt

= −
∫

R+
ψ̇(t) dt

∫
C(R+;E)×R+

ϕ(θ(s + t)) dσ(θ, s)

= −
∫

R+
ψ̇(t) dt

∫
E

ϕ(x) dµt(y),

so (6.3) (in the sense of (6.4)) is proven.

Step 3. Assume now that η represents some laminated current T without cancel-
lation of mass. The relationship (6.5) follows from theorem 5.1. Under the addi-
tional assumption that η-a.e. θ ∈ C(R+; E) is parametrized by arc length, we have
θ̇(t) ∈ VT (θ(t))′′, and, if E is also strictly convex, then θ̇(t) = VT (θ(t)) for η-a.e.
θ ∈ C(R+; E) and for a.e. t ∈ [0, �(θ)) by theorem 5.1. In other words, in the latter
case the set

M := {(θ, τ) ∈ C(R+; E) × R
+ : θ̇(τ) �= VT (θ(τ)), τ < �(θ)}

satisfies (η ⊗L1)(M) = 0. Setting Mθ := {τ ∈ R
+ : (θ, τ) ∈ M}, we have L1(Mθ) =

0 for η-a.e. θ ∈ C(R+; E). From lemma 6.2 applied with µ := λθ, B := Mθ we
conclude that λθ(Mθ − t) = 0 for a.e. t ∈ R

+ and η-a.e. θ ∈ C(R+; E). Hence,
observing that

Mθ − t = {s ∈ R
+ : θ̇(s + t) �= VT (θ(s + t)), s + t < �(θ)},

we obtain

σ({(θ, s) ∈ C(R+; E) × R
+ : θ̇(s + t) �= VT (θ(s + t)), s + t < �(θ)}) = 0 (6.9)

for a.e. t ∈ R
+, because σ = η̃ ⊗ λθ with η̃ 	 η. Now, (6.9) implies that θ̇(s + t) =

VT (θ(s + t)) for νy
t -a.e. (θ, s) ∈ C(R+; E) × R

+ such that s + t < �(θ) and µt-a.e.
y ∈ E, for a.e. t ∈ R

+. Thus, from (6.2) we get

vt(y) =
∫

(Sy
t )c

θ̇(s + t) dνy
t (θ, s) =

∫
(Sy

t )c
VT (θ(s + t)) dνy

t (θ, s)

=
∫

β−1
t (y)\Sy

t

VT (y) dνy
t (θ, s)

= VT (y)(1 − ϕt(y)),

which shows (6.6) and hence concludes the proof.
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Lemma 6.2. Let B ⊂ R be a Borel set with L1(B) = 0 and let µ be a finite Borel
measure over R. Then µ(B − t) = 0 for a.e. t ∈ R.

Proof. Otherwise there is a Borel set ∆ ⊂ R with L1(∆) > 0 such that µ(B−t) > 0
for all t ∈ ∆. This implies that

I :=
∫

R

1∆(t) dt

∫
R

1B(x + t) dµ(x) > 0,

but on the other hand, by the Tonelli theorem one has

I =
∫

R

dµ(x)
∫

R

1∆(t)1B(x + t) dt =
∫

R

dµ(x)
∫

R

1∆(t)1B−x(t) dt = 0

(since the inner integral vanishes), and this contradiction concludes the proof.

Remark 6.3. It is worth mentioning that under the conditions of theorem 6.1(B),
if η-a.e. θ ∈ C(R+; E) is parametrized by arc length, then ‖vt‖µt 	 mT for a.e.
t ∈ R

+. In fact, if B ⊂ E is such that mT (B) = 0, then (η ⊗ L1)(M̃) = 0, where

M̃ := {(θ, τ) ∈ C(R+; E) × R
+ : θ(τ) ∈ B, τ < �(θ)}.

Thus, L1(M̃θ) = 0, where M̃θ := {τ ∈ R
+ : (θ, τ) ∈ M} for η-a.e. θ ∈ C(R+; E),

and hence by lemma 6.2 (applied with λθ, M̃θ instead of µ, B, respectively) one
has λθ(M̃θ − t) = 0 for a.e. t ∈ R

+ and η-a.e. θ ∈ C(R+; E), so that

σ({(θ, s) ∈ C(R+; E) × R
+ : θ(s + t) ∈ B, s + t < �(θ)}) = 0

for a.e. t ∈ R
+, because σ = η̃ ⊗ λθ with η̃ 	 η. Now,∫

B

‖vt(y)‖ dµt(y) �
∫

B

dµt(y)
( ∫

C(R+;E)×R+
|θ̇|(s + t) dνy

t (θ, s)
)

=
∫

B

dµt(y)
( ∫

{(θ,s)∈C(R+;E)×R+ : s+t<�(θ)}
dνy

t (θ, s)
)

= σ({(θ, s) ∈ C(R+; E) × R
+ : θ(s + t) ∈ B, s + t < �(θ)})

= 0

for a.e. t ∈ R
+.

One has to note that if E is not strictly convex, then our construction may provide
a lot of ‘unreasonable’ flows of a given measure. For instance, in the notation of
example 5.3, if µ := H1�([0, 1] × {0}), then the flow of µ produced by the measure
η (through σ := η ⊗ δ0; see example 4.4) is given by µt := H1�([0, 1] × {t ∧ 1}),
although T = VT ∧ mT with mT = 2L2�Q, VT = (ē1 + ē2)/2, i.e. this flow is not in
the direction of VT . This does not happen when we equip E with a strictly convex
(say, Euclidean) norm.

7. Canonical flows

We present here two particular constructions of the flow that may be considered
canonical.
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7.1. Acyclic vector fields

Consider a measurable vector field corresponding to an acyclic normal current
T ∈ M1(E) (i.e. such that C ∈ M1(E), C � T , and ∂C = 0 implies that C = 0).
In this case there is a measure η over C(R+; E) representing T without cancellation
of mass and satisfying (∂T )+ = end# η and (∂T )− = start# η. We may now claim
the following result.

Proposition 7.1. Let µ be a finite measure over E with µ⊥(∂T )+. The following
assertions hold true.

(i) If µ is transportable by η, then there is a normal current S � T with µ
equivalent to (∂S)−. Furthermore, one has that µt is equivalent to et#η̄ for
some η̄ representing S without cancellation of mass.

(ii) If η is concentrated over curves parametrized by arc length (which can always
be assumed without loss of generality) and almost everywhere differentiable,
and E is a strictly convex Banach space, then, for any flow µt corresponding
to η, if there is an interval (0, τ) such that µt⊥(∂T )+ = 0 for t ∈ (0, τ), one
has

∂µt

∂t
+ div VT µt = 0 (7.1)

in the weak sense over (0, τ).

Proof. To prove (i), recall that by remark 4.8, if µ is transportable by η, then there
is a normal current S � T such that ∂S = ν − µ̃ with ν equivalent to end# η
and µ̃ equivalent to µ. But by assumption on η one has end# η = (∂T )+, and
hence µ⊥ end# η (by the assumption on µ), and therefore also µ̃⊥ end# η. Hence,
(∂S)− = µ̃. Furthermore, in the notation of remark 4.8 we have that S is represented
by a measure η̄ over C(R+; E) without cancellation of mass, where

η̄(B) := σ̃({(θ, s) ⊂ C(R+; E) × R
+ : s ∈ R

+, rs(θ) ∈ B}),

where rs(θ)(t) = et(r(θ, s)) = θ(t+s), r : C(R+; E)×R
+ → C(R+; E) is defined by

r(θ, s)(t) := θ(t + s), and B ⊂ C(R+; E) is an arbitrary Borel set (in other words,
η̄ := r#σ̃). Thus, one has βt#σ̃ = et#η̄, and recalling that µt is equivalent to βt#σ̃,
one concludes the proof of (i).

Now, under the assumption of (ii) we have that µt⊥ end# η for all t � τ . Hence,
for µt-a.e. y ∈ E one has, in the notation of theorem 6.1(C), that Sy

t = ∅, which
gives ϕt(y) = 0 for t � τ , which proves (ii).

7.2. Cyclic vector fields

Consider a flow of a given measure generated by some cyclic, or, in other words,
divergence-free vector field, i.e. such that the respective current T ∈ M1(E) is a
cycle, ∂T = 0. According to our definition this is a flow produced by some measures
η over C(R+; E) representing T without cancellation of mass and concentrated
over a set of curves of finite length. This might lead to a non-natural notion of
the flow. For instance, if η-a.e. θ ∈ C(R+; E) is parametrized by arc length, then
|θ̇|(t) = 0 for a t > �(θ), which means that each ‘particle’ moving along the path θ
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stops at instant �(θ). Let, for instance, T be a cycle associated with the clockwise
oriented unit circumference in E = R

2, let µ := δ(−1,0), and observe that T = Tη

with η := δθ1 + δθ2 , θ1 and θ2 being arc-length parametrized right and left semi-
circumferences, directed from top to bottom and from bottom to top, respectively.
Clearly, δθ2 transports µ through the measure σ := δθ2 ⊗ δ0 (see example 4.4), but
one has in this situation that µt = δ(− cos t,sin t) when t ∈ [0, π/2), and µt = δ(0,1)
when t � π/2, so that the particle stops moving after π/2. On the contrary, since
∂T = 0 what one naturally expects is that the particle never stops moving (because
there is ‘no boundary to reach’). It is not difficult, however, to assert the existence
of such a natural flow, as the following proposition shows. In particular, in the
above example the particle under such a flow will endlessly rotate along the unit
circumference.

Proposition 7.2. Let η represent some cycle T ∈ M1(E), ∂T = 0, without can-
cellation of mass and concentrated over arc-wise-parametrized curves of unit length
(i.e. parametrized with unit speed over [0, 1] and stopping definitely at t = 1). Then
there is a Borel measure η̂ over C(R; E) (equipped with the topology of uniform
convergence over bounded intervals) concentrated over Lip1(R; E) such that

(a) π1
#η̂ = η, where πk : C(R; E) → C(R+; E) is the map defined by

πk(θ)(t) := θ(t ∧ k), t ∈ R
+;

(b) g±
#η̂ = η̂, where g± : C(R; E) → C(R; E) are the shift maps defined by

g±(θ)(t) := θ(t ± 1);

(c) for η̂-a.e. θ ∈ C(R; E) one has θ(R) ⊂ suppT ;

(d) πk
#η̂ represents the current kT without cancellation of mass;

(e) η̂-a.e. θ ∈ C(R; E) never stops, namely, it has almost everywhere constant
unit velocity.

If µ is transportable by η through a measure σ = η̃ ⊗λθ over C(R+; E)×R
+ with

η̃ := q#σ 	 η, η̃ = αη for some α ∈ L1(C(R+; E), η), then µ is transportable by η̂
through

σ̂ := ((α ◦ π1)η̂) ⊗ λπ1(θ).

If E is a strictly convex Banach space, and the η-a.e. curve is almost everywhere
differentiable, then the respective flow µ̂t := βt#σ̂ satisfies

∂µ̂t

∂t
+ div VT µ̂t = 0 (7.2)

in the weak sense and
θ̇(t) = VT (θ(t)) (7.3)

for a.e. t ∈ R
+ and η̂-a.e. θ ∈ C(R+; E).
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Proof. Existence of the measure η̂ with properties (a)–(c) is just proposition 4.2
from [20], property (d) is remark 4.3 from the same paper, and, finally, (e) follows
from (a) and the fact that η-a.e. θ ∈ C(R+, E) is parametrized with unit speed
over [0, 1] stopping definitely at t = 1. Thus, (7.3) follows from (d) combined with
theorem 5.1.

To show that µ is transportable by η̂ through σ̂, we note that q#σ̂ = (α ◦ π1)η̂
and, recalling (a), we get∫

C(R+;E)
(α ◦ π1)(θ) dη̂(θ) =

∫
C(R+;E)

α(θ) d(π1
#η̂)(θ) =

∫
C(R+;E)

α(θ) dη(θ) � +∞,

because a ∈ L1(C(R+; E), η). Thus α ◦ π1 ∈ L1(C(R+; E), η), and hence q#σ̂ 	 η̂.
We now calculate β0#σ̂. For every f ∈ Cb(E) one has∫

E

f(x) d(β0#σ̂)(x) =
∫

C(R+;E)×R+
f(θ(s)) dσ̂(θ, s)

=
∫

C(R+;E)
α(π1(θ)) dη̂(θ)

∫
R+

f(θ(s)) dλπ1(θ)(s)

=
∫

C(R+;E)
α(θ) d(π1

#η̂)(θ)
∫

R+
f(θ(s)) dλθ(s),

the latter relationship being due to the change of variables and the fact that
((π1)−1(θ))(s) = θ(s) for s ∈ [0, 1] and that the λθ are concentrated over [0, 1].
Thus, recalling (a), we get∫

E

f(x) d(β0#σ̂)(x) =
∫

C(R+;E)
α(θ) dη(θ)

∫
R+

f(θ(s)) dλθ(s)

=
∫

C(R+;E)×R+
f(θ(s)) dσ(θ, s)

=
∫

E

f(x) d(β0#σ)(x)

=
∫

E

f(x) dµ(x),

because µ is transportable through σ. Therefore, β0#σ̂ = µ, and thus µ is trans-
portable also through σ̂.

It remains to show (7.2). To this end, observe that

µ̂t = βt#σ̂ = βt#σ̂k,

where k ∈ N is any natural number satisfying k � �t� + 1, and

σ̂k := (((α ◦ π1) ◦ πk)πk
#η̂) ⊗ λπ1(θ) = ((α ◦ π1)πk

#η̂) ⊗ λπ1(θ)

(the latter equality being due to the fact that π1(πk(θ)) = π1(θ) for all θ ∈
C(R+; E)). In particular, this means that µ = µ̂0 is transportable by πk

#η̂ through
σ̂k. Now let τ > 0 be arbitrary and let k := �t� + 1. Recalling (d), we get (7.2) for
t ∈ (0, τ) with the help of theorem 6.1(C) (note that ϕt ≡ 0, because the πk

#η̂-a.e.
curve does not stop definitely). But since τ > 0 is arbitrary, we get (7.2) for t ∈ R

+,
thus concluding the proof.
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Appendix A. Metric currents and measurable vector fields

A.1. Metric currents, mass measures and fields of directions

We provide some results on the representation of an arbitrary current T ∈ M1(E)
in a Banach space E in the form

T (f dπ) =
∫

E

f(x)〈V (x), dπ(x)〉 dµ(x) (A 1)

for some Borel measure µ and some Borel map V : E → E, ‖V ‖ ∈ L1(E; µ), where
π ∈ Q1(E). If such a representation exists, we will write (as it is usual in the
context of de Rham currents) T = V ∧ µ. Of course, such a representation is not
unique; for instance, 2V ∧ µ/2 gives the same current. The map V can be viewed
as representing the ‘field of directions’ of the current.

Lemma A.1. Let E be a Banach space endowed with the norm ‖ · ‖ and let T =
V ∧ µ ∈ M1(E). Then mT = ‖V (x)‖µ. In particular, if µ = mT , then ‖V (x)‖ = 1
for mT -a.e. x ∈ E.

Remark A.2. It follows from lemma A.1 that for a given µ the map V providing
the representation (A 1) is unique up to µ-almost everywhere equality. In fact, if
V ∧ µ = Ṽ ∧ µ, then (V − Ṽ ) ∧ µ = 0, and hence one has

∫
E

‖V − Ṽ ‖ dµ = 0.

Proof. Since for π ∈ Q1(E) one has ‖dπ(x)‖′ � Lipπ for all x ∈ E, the representa-
tion (A 1) implies that

|T (f dπ)| �
∫

E

|f(x)|‖dπ(x)‖′‖V (x)‖ dµ(x) � Lipπ

∫
E

|f(x)|‖V (x)‖ dµ(x) (A 2)

for π ∈ Q1(E). We may assume without loss of generality E to be separable (if not,
just substitute it for the linear span of the closure of a σ-compact set on which mT

is concentrated). Now, as shown in [14], if π ∈ Lipb(E) with E a separable Banach
space, then there is a sequence πk ∈ Q1(E)∩Cb(E) with Lipπk � Lipπ converging
to π pointwise as k → ∞, so that limk T (f dπk) = T (f dπ). This provides (A 2)
for all π ∈ Lipb(E). Finally, if π ∈ Lip(E), then defining πk := (−k) ∧ π ∨ k we
have πk ∈ Lipb(E) with Lipπk � Lipπ, and limk πk(x) = π(x) for every x ∈ E,
and therefore limk T (f dπk) = T (f dπ), which means that (A 2) holds for every
f dπ ∈ D1(E), thus implying that mT � ‖V ‖µ by the definition of the mass
measure.
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To prove the opposite inequality, note that since µ is a tight measure it is con-
centrated on some separable set S ⊂ E. By [8, lemma 6.10.16], the set V (S) is
separable (since V is Borel), and thus we may choose a countable dense subset
{αj} ⊂ V (S). For a given ε > 0 let

Ei := {x ∈ S : ‖V (x) − αi‖ � ε},

D1 := E1, Di := Ei \
i−1⋃
j=1

Di.

We have that the function Vε : E → E defined by Vε(x) :=
∑

i αi1Di
(x) is Borel

and ‖V (x) − Vε(x)‖ � ε for µ-a.e. x ∈ E. Now let aj ∈ E′ be such that ‖aj‖′ = 1
and 〈αj , aj〉 = ‖αj‖, and set aε(x) :=

∑
i ai1Di

(x) so that aε : E → E′ is Borel with
‖aε(x)‖′ = 1 and 〈Vε(x), aε(x)〉 = ‖Vε(x)‖ for µ-a.e. x ∈ E. Let also πi : E → R

stand for the linear functional πi(x) := 〈x, ai〉 (so that Lipπi = 1). Then for every
Borel B ⊂ E one gets the estimate

mT (B) �
∑

i

T (1e1Di
dπi)

=
∫

B

〈V (x), aε〉 dµ(x)

�
∫

B

〈Vε(x), aε〉 dµ(x) −
∫

E

‖V (x) − Vε(x)‖‖aε(x)‖′ dµ(x)

�
∫

B

‖Vε(x)‖ dµ(x) − εµ(E).

Sending ε → 0+, we get

mT (B) �
∫

B

‖V (x)‖ dµ(x),

which concludes the proof since B ⊂ E is arbitrary.

Lemma A.3. Let E be a finite-dimensional normed space endowed with the norm
‖ · ‖, and let T ∈ M1(E). Then T = VT ∧ mT for some Borel map VT : E → E
satisfying ‖VT (x)‖ = 1 for mT -a.e. x ∈ E.

Proof. The representation of T in the form (A 1) with VT ∈ L∞(E; mT ) is due
to [23, theorem 1.3] for the case in which mT 	 Ln. To prove it for the general
case, let Tk ∈ M1(E) be such that Tk ⇀ T , mTk

⇀ mT as k → +∞, and mTk
	 Ln

for all k ∈ N (such a sequence is constructed, say, by convolutions of T with smooth
approximate identity, like, for example, in step 1 of the proof of lemma C.1 in [19];
note that there one only proves that Tk ⇀ T , M(Tk) → M(T ), and then mTk

⇀ mT

is lemma A.3 from [20]). Then Tk = Vk ∧mTk
for some Borel Vk : E → E satisfying

‖Vk(x)‖ = 1 for mTk
-a.e. x ∈ E. Up to a subsequence (not relabelled) we have

that the sequence of vector measures {VkmTk
} over E is weakly convergent to some

vector measure in E of finite total variation. Denoting the latter limit measure
by V µ for some positive Borel measure µ and some Borel V : E → R

n satisfying
‖V (x)‖ = 1 for µ-a.e. x ∈ E, we get for f dπ ∈ D1(E) and π ∈ C1(E) ∩ Lip(E) the
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relationship

T (f dπ) = lim
k

Tk(f dπ) =
∫

E

f(x)〈V (x), dπ(x)〉 dµ(x),

so that T = V ∧ µ, and hence mT = ‖V ‖µ by lemma A.1. It suffices now to set
VT (x) := V (x)/‖V (x)‖ (with the convention 0/0 := 0).

We find it useful to provide here a rather particular property of laminated currents
regarding the representation (A 1), which, although not used elsewhere in the paper,
is useful to get a clear idea of how different they are from generic metric currents.
We will state it in the particular case in which E = R

n is a Euclidean space. Recall
the following definition of a tangent space with respect to a finite positive Borel
measure µ over R

n introduced in [9] and further studied in [11]. Denote by Xµ the
set of vector-valued Borel functions V : E → E such that |V | ∈ L1

loc(E; µ) and the
distributional divergence div V µ, defined as

〈ϕ, div V µ〉 :=
∫

Rn

∇ϕ · V dµ, ϕ ∈ C∞
0 (E),

is a finite signed Radon measure over E. Then the tangent space Qµ to a measure
µ at each point x ∈ R

n is defined as the µ-essential union of {V (x) : V ∈ Xµ},
i.e. Qµ : R

n → 2R
n

is the unique µ-measurable closed-valued multifunction such
that

(i) if V ∈ Xµ, then V (x) ∈ Qµ(x) for µ-a.e. x ∈ R
n; and

(ii) it is minimal among all such multifunctions with respect to the inclusion
µ-almost everywhere, i.e. if P : R

n → 2R
n

is another µ-measurable closed-
valued multifunction such that when V ∈ Xµ, V (x) ∈ P (x) for µ-a.e. x ∈ R

n,
then necessarily Qµ(x) ⊂ P (x) for µ-a.e. x ∈ R

n.

Proposition A.4. If E = R
n is Euclidean space, then for every laminated current

T ∈ M1(E) the representation T = VT ∧ mT implies that VT (y) ∈ QmT
(y) for

mT -a.e. y ∈ E.

Remark A.5. Note that the representation T = VT ∧mT with VT tangent to mT is
not true for a generic (not necessarily laminated) current T : in fact, for the current
from remark A.12 one has QmT

(y) = {0} for mT -a.e. y ∈ E = R, and hence the
existence of such a representation would give T = 0, which is obviously not the
case.

Proof. Let us show that VT (y) ∈ QmT
(y) for mT -a.e. y ∈ E. In fact, this is clearly

true if T is normal, since in this case

〈div VT mT , ϕ〉 =
∫

E

∇ϕ · VT dmT = T (1 dϕ) = ∂T (ϕ), ϕ ∈ C∞
0 (E),

so that |〈div V µ, ϕ〉| � M(∂T ) · ‖ϕ‖∞, which in other words means that VT ∈ XmT
.

Now passing to the general case of a laminated current T , let Bk ⊂ C(R+; E)
be an increasing sequence of Borel sets Bk ↗ C(R+; E) such that the measures
ηk := η�Bk

are finite. Clearly, one has that Tk := Tηk
are represented by ηk without
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cancellation of mass, are normal (because the ηk are finite), and Tk � Tk+1 �
T for every k ∈ N, and M(T − Tk) → 0 as k → ∞ (because �(·)η is a finite
measure). Thus, by lemma A.6 one has that Tk = V ∧ λkmT = λkV ∧ mT for
some λk ∈ L∞(E; mT ), 0 � λk � 1, and, moreover, the sequence of functions λk

is pointwise non-decreasing, λk ↗ 1 as k → ∞. As already proven, one then has
that λk(y)VT (y) ∈ QmT

(y) for mT -a.e. y ∈ E. Since for each such y ∈ E there is a
j ∈ N such that λk(y) � λj(y) > 0, we have that VT (y) ∈ QmT

(y), as claimed.

The following auxiliary statement, which is of certain interest by itself, has been
used in the above proof.

Lemma A.6. If E is a strictly convex finite-dimensional normed space, T = V ∧
mT ∈ M1(E), S ∈ M1(E) with S � T , then there is a λ ∈ L∞(E; mT ) with
0 � λ(x) � 1 for mT -a.e. x ∈ E such that mS = λmT and S = V ∧mS = V ∧λmT .

Proof. Since S � T , we have mS + mT−S = mT , and, in particular, mS � mT

(see [19, remark 3.5]), and hence there is a λ ∈ L∞(E; mT ) with 0 � λ(x) � 1 for
mT -a.e. x ∈ E such that mS = λmT and mT−S = (1 − λ)mT . By lemma A.3 one
has S = VS ∧ λmT = λVS ∧ mT , with ‖VS(x)‖ = 1 for λmT -a.e. x ∈ E, and

T − S = VT−S ∧ (1 − λ)mT = (1 − λ)VT−S ∧ mT ,

with ‖VT−S(x)‖ = 1 for (1 − λ)mT -a.e. x ∈ E. On the other hand,

T − S = (V − λVS) ∧ mT

so that V −λVS = (1−λ)VT−S . Thus, for mT -a.e. x ∈ E such that λ(x) �= 0, either
λ(x) = 1, which implies that VS(x) = V (x), or 0 < λ(x) < 1, which implies that

‖V (x) − λVS(x)‖ = 1 − λ(x) = ‖(V (x)‖ − ‖λ(x)VS(x))‖,

which is only possible (recalling that ‖V (x)‖ = ‖VS(x)‖ = 1) when VS(x) = V (x),
thus concluding the proof.

Remark A.7. It is easy to observe from the proof of lemma A.6 that its statement
is true in a generic metric space E if one knows a priori that both S = VS ∧ mS

and T − S = VT−S ∧ mT−S for some Borel maps VS and VT−S .

A.2. Remarks on measurable vector fields

We mention the following easy properties of measurable vector fields.

(1) Change of measure. If ψ 	 µ, then a µ-vector field is also a ψ-vector field
(because L∞(E; µ) ⊂ L∞(E; ψ) with continuous embedding; to prove weak
continuity one just observes that for each v ∈ L1(E; ψ) one has v(dψ/dµ) ∈
L1(E; µ), where dψ/dµ stands for the respective Radon–Nikodym derivative).

(2) Locality. If f(x) = const. for µ-a.e. x ∈ A ⊂ E, then (Xf)(x) = 0 for
µ-a.e. x ∈ A if X is a µ-vector field (see [16, lemma 13.4]). In particular, if
f(x) = g(x) for µ-a.e. x ∈ A, then (Xf)(x) = (Xg)(x) for µ-a.e. x ∈ A.
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(3) Bounds. One has that |(Xf)(x)| � C Lip f for µ-a.e. x ∈ E (with C >
0 depending on X). Moreover, thanks to the locality property, X can be
uniquely extended to the whole of Lip(E) (we will slightly abuse the notation,
denoting this extension by the same letter X) with such a bound (see [13,
theorem 2.15]). This extension satisfies the weak continuity property in the
form limk Xfk = Xf in the weak∗ sense of L∞(E; µ) whenever limk fk = f
pointwise and with Lip fk uniformly bounded. In fact, for a fixed z ∈ E,
defining fr := infBr(z) f ∨ f ∧ supBr(z) f for an f ∈ Lip(E), we get f = fr

over Br(z), and hence for an arbitrary g ∈ L1(E; µ) one has∫
E

gXfk dµ =
∫

E

g1Br(z)Xfr
k dµ +

∫
E

g1Br(z)cXfk dµ,∫
E

gXf dµ =
∫

E

g1Br(z)Xfr dµ +
∫

E

g1Br(z)cXf dµ,

so that the claim follows from the estimates∣∣∣∣
∫

E

g1Br(z)cXfk dµ

∣∣∣∣ �
∫

Br(z)c
|g| dµ → 0 as r → +∞ uniformly in k,∣∣∣∣

∫
E

g1Br(z)cXf dµ

∣∣∣∣ �
∫

Br(z)c
|g| dµ → 0 as r → +∞

and from the fact that now the fr
k are uniformly bounded in k (with a bound

depending only on f(z), on the bound on the Lipschitz constants of fk, and
on r), and hence limk

∫
E

g1Br(z)Xfr
k dµ =

∫
E

g1Br(z)Xfr dµ.

We now show the relationship between measurable vector fields and metric cur-
rents.

Proposition A.8. Every µ-vector field X over E defines a metric current T ∈
M1(E) by the formula

T (f dπ) :=
∫

E

fXπ dµ, (A 3)

with mT � Cµ. Conversely, for every metric current T ∈ M1(E) with mT � Cµ
there is a unique µ-vector field X over E such that (A 3) holds.

Proof. One immediately verifies that if X is a µ-vector field, then T defined by (A 3)
is a one-dimensional metric current, and

|T (f dπ)| := C Lipπ

∫
E

|f | dµ,

so that mT � Cµ. On the other hand, if T ∈ M1(E), then for every π ∈ Lipb(E)
define XT π ∈ L∞(E; mT ) by the relationship∫

E

fXT π dmT := T (f dπ)

for every f ∈ L1(E; mT ). It is immediate to verify that XT is an mT -derivation. If
µ �= mT , then mT 	 µ implies by the Radon–Nikodym theorem that mT = αµ for
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some Borel α : E → R
+. Letting Xπ := αXT π, we get∫

E

fXπ dµ =
∫

E

fα(XT π) dµ =
∫

E

fXT π dmT = T (f dπ),

and since this is valid for every f ∈ L1(E; µ), and hence for every f ∈ L1(E; mT ),
we have Xπ ∈ L∞(E; µ). The uniqueness of the vector field X follows from the
immediate observation that

∫
E

fXπ dµ = 0 for every f ∈ L1(E; µ), which means
that Xπ = 0 for every π ∈ Lip(E), and hence X = 0.

Note that if one decides to use the language of measurable vector fields instead of
that of currents, then the notion of the boundary of a current has to be substituted
by the equivalent one of the divergence of a µ-vector field X defined as a linear
continuous functional over Lipb(E) (equipped with the norm ‖u‖Lip := ‖u‖∞ +
Lipu) by the formula

〈f,divµ X〉 :=
∫

E

Xf dµ = T (1 df) = ∂T (f), (A 4)

where f ∈ Lipb(E), T ∈ M1(E), and 〈·, ·〉 stands for the duality between Lipb(E)
and its continuous dual. If X is normal, then in fact the above defined divergence is
a signed Radon measure of finite total variation |divµ X|(E) � M(∂T ), and hence
definition (A 4) may be extended to f ∈ Cb(E), and 〈·, ·〉 may be interpreted as the
standard duality between Cb(E) and the space of signed Radon measure of finite
total variation. If E = R

n and µ is the Lebesgue measure, when V : R
n → R

n is
a bounded measurable map (i.e. a finite-dimensional vector field in the classical
sense), and X is defined as the classical directional derivative along V , i.e. Xf :=
V · ∇f for smooth functions f , we have that divµ X is identified with the usual
distributional divergence of V .

A.3. Representation of currents by measures over curves

The following remarks are worth being made.

Remark A.9. If a non-negative σ-finite Borel measure η over C(R+; E) is such
that

T (ω) =
∫

C(R+;E)
[[θ]](ω) dη(θ) for all ω ∈ D1(E), (A 5)

which we commonly write as T = Tη, then

M(T ) �
∫

C(R+;E)
M([[θ]]) dη(θ) �

∫
C(R+;E)

�(θ) dη(θ). (A 6)

In fact,

|T (f dπ)| �
∫

C(R+;E)

(
Lipπ

∫
E

|f | dm[[θ]]

)
dη(θ),

which gives for a Borel set B ⊂ E the inequality

mT (B) �
∫

C(R+;E)
m[[θ]](B) dη(θ), (A 7)
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and hence, in particular, (A 6) (plugging in B := E). The inequality in (A 6) may
eventually be strict, as is seen even with the trivial example of θ1 being any rec-
tifiable curve parametrized, say, over [0, 1], and θ2(t) := θ1(1 − t), so that T = 0
satisfies (A 5) with η := δθ1 + δθ2 .

However, if η represents T ∈ M1(E) without cancellation of mass, then the
inequalities in (A 6) become equalities,

M(T ) =
∫

C(R+;E)
M([[θ]]) dη(θ) =

∫
C(R+;E)

�(θ) dη(θ),

and hence, in particular,

mT (B) =
∫

C(R+;E)
m[[θ]](B) dη(θ) =

∫
C(R+;E)

dη(θ)
∫

θ−1(B)
|θ̇|(t) dt (A 8)

for every Borel B ⊂ E (because the equality holds when B = E).
An easy consequence of the latter is that η-a.e. non-constant θ ∈ C(R+; E) belong

to the support of T , i.e. θ ⊂ suppT (in the sense of traces). In particular, note that
then every measure η representing T ∈ M1(E) without cancellation of mass, just
under our assumption on tightness of mT , is necessarily tight since it is concentrated
on a separable space C(R+; suppT ) (recalling that a tight measure is concentrated
over its support and the latter is separable).

The following statement, which combines the results from [19, 20] extending the
representation theorems from [21] for currents over a Euclidean space to metric
currents, shows in particular that every normal current is laminated (although, of
course, there are laminated currents that are not normal).

Proposition A.10. The current T ∈ M1(E) is normal if and only if it is repre-
sented by some finite Borel measure η over C(R+; E) without cancellation of mass.

Proof. The ‘only if’ part (i.e. the existence of a finite Borel measure η representing
T without cancellation of mass) is [20, corollary 3.3], while the ‘if’ part follows
from [19, theorem 4.2].

Remark A.11. The representation of laminated (or even normal) current by some
measure over curves is of course not unique: for instance, the current [[[0, 1]]] (in R)
is represented both by the measure δθ1 + δθ2 and by δθ1◦θ2 , where θ1 := [0, 1/2],
θ2 := [1/2, 1] and θ1◦θ2 stands for the usual composition of curves, i.e. θ1◦θ2 = [0, 1].
However, if T ∈ M1(E) is an acyclic normal current, i.e. C � T with ∂C = 0
implies that C = 0, then there is a representation of T by a finite Borel measure
η over C(R+; E) that may be considered canonical, namely, η-a.e. θ ∈ C(R+; E) is
an injective curve stopping definitely at t = 1 (and hence, in particular, it may be
considered without loss of generality to be parametrized over [0, 1]), and e1#η =
(∂T )+, e0#η = (∂T )−, where ei(θ) := θ(i) (see [19, theorem 5.1]).

Remark A.12. Not every T ∈ M1(E) can be represented by a σ-finite Borel mea-
sure η over C(R+; E), and hence the class of laminated currents does not coincide
with M1(E). In the context of classical Whitney flat chains in a Euclidean space,
the example of a flat chain that is not laminated in the sense of definition 3.2 was

https://doi.org/10.1017/S0308210517000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000312


Flows of measures generated by vector fields 811

provided in [10]. We consider here its analogue in the setting of metric currents.
Let, as in example 1.1, K ⊂ [0, 1] be a Cantor set of positive Lebesgue measure
(actually every closed totally disconnected set of positive Lebesgue measure will
suit) and define the current T ∈ M1(R) by setting

T (f dπ) :=
∫

K

f(x) dπ(x).

Clearly, T �= 0 and suppT ⊂ K. On the other hand, T cannot be represented
by any σ-finite Borel measure η over C(R+; E), because otherwise η-a.e. θ would
be supported over K by (A 8), and hence would be constant (its trace being a
singleton) implying that [[θ]] = 0, which would give T = 0 by (A 5).

Remark A.13. It is worth mentioning that the representation (3.2) does not really
depend on the distance in E, but rather on the lengths of the curves it generates.
In fact, if the distances d1 and d2 over E have the same geodesic distance d (this
means, in particular, that the lengths of every absolutely continuous curve θ for all
of these distances coincide, and hence will be denoted by �(θ)), and η represents
T ∈ M1(E1) without cancellation of mass, then it also represents the same current
but viewed as T ∈ M1(E2) without cancellation of mass, where E1, E2 and E
stand for E equipped with distances d1, d2 and d, respectively. In fact,

d1(start(θ), end(θ)) � �(θ)

for every absolutely continuous curve θ, which implies that d � d1, and hence
M(T ) � M1(T ), where M1, M2 and M stand for the masses in M1(E1), M1(E2)
and M1(E), respectively. But then

M(T ) �
∫

C(R+;E)
�(θ) dη(θ) = M1(T ) � M(T ),

the first inequality being valid in view of (A 6), and hence all the above inequalities
are in fact equalities. Thus, also

M2(T ) =
∫

C(R+;E)
�(θ) dη(θ),

and hence η represents T in M1(E2) without cancellation of mass.

Remark A.14. If η represents Tη without cancellation of mass and 0 � η̃ � η, then
η̃ represents Tη̃ also without cancellation of mass. In fact, one has that T − Tη̃ =
Tη−η̃, and hence by remark A.9 one gets

M(Tη̃) �
∫

C(R+;E)
�(θ) dη̃(θ), M(Tη−η̃) �

∫
C(R+;E)

�(θ) d(η − η̃)(θ),

so that

M(T ) � M(Tη̃) + M(T − Tη̃) = M(Tη̃) + M(Tη−η̃) �
∫

C(R+;E)
�(θ) dη(θ) = M(T ),

which means that the all the inequalities above are in fact equalities.
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We provide also the following lemmas on measures over curves representing some
currents without cancellation of mass.

Lemma A.15. Suppose that η is a σ-finite Borel measure over C(R+; E) that rep-
resents some laminated current T ∈ M1(E) without cancellation of mass, and let
η̃ be another σ-finite Borel measure over C(R+; E) having η̃ 	 η and∫

C(R+;E)
�(θ) dη̃(θ) < +∞.

Then η̃ represents Tη̃ without cancellation of mass.

Proof. One has η̃ = αη for some α ∈ L1(C(R+; E), η), α � 0. The statement is
clear when α is a simple (i.e. finite-valued) function. In fact, denoting ᾱ as the norm
of α in L∞(C(R+; E), η), we have that η̃ � ᾱη, while the latter measure represents
Tᾱη = ᾱTη without cancellation of mass; hence η̃ represents Tη̃ � Tᾱη without
cancellation of mass by remark A.14.

If α is generic, we approximate it as a supremum of simple functions αk converging
to α in L1(C(R+; E), η) as k → ∞. Then for every ω = f dπ ∈ D1(E) one has

Tαkη(ω) − Tαη(ω) =
∫

C(R+;E)
[[θ]](ω)(α(θ) − αk(θ)) dη(θ),

and therefore

M(Tαkη − Tαη) �
∫

C(R+;E)
�(θ)(α(θ) − αk(θ)) dη(θ),

the latter integral vanishing as k → ∞ by the Beppo Levi theorem. Hence, Tαkη →
Tαη = Tη̃ in mass as k → ∞, and, in particular,

M(Tη̃) = lim
k

M(Tαkη) = lim
k

∫
C(R+;E)

�(θ)αk(θ) dη(θ)

=
∫

C(R+;E)
�(θ)α(θ) dη(θ)

=
∫

C(R+;E)
�(θ) dη̃(θ),

again by the Beppo Levi theorem, showing the statement.

Lemma A.16. Let E be isometrically embedded into a strictly convex Banach space
with the Radon–Nikodym property. Under the conditions of lemma A.15 one has
then that Tη̃ = T�γ for some γ ∈ L1(E, mT ) (and with mTη̃

= γmT ).

Proof. Since the statement is stable with respect to isometric embeddings of the
metric space E, we may assume E to be a strictly convex Banach space with the
Radon–Nikodym property. The proof will be provided in several steps.

Step 1. Assume that η̃ � η. Then Tη̃ � Tη = T . Hence, recalling that both Tη̃

and T −Tη̃ = Tη−η̃ are laminated currents represented by η̃ and η − η̃, respectively,
without cancellation of mass by remark A.14, and hence satisfying the conditions
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of remark A.7 in view of theorem 5.1, we apply remark A.7 to get the existence of
a β ∈ L1(E, mT ), with 0 � β � 1, such that S = T�β.

Step 2. Assume that η̃ = αη, where α ∈ L1(C(R+; E), η) is a simple function,
i.e. there is a finite partition P := {Bk} of η-almost all C(R+; E) consisting of
Borel subsets Bj ⊂ C(R+; E) such that α is a non-negative constant αj over each
Bj . Then Tη̃(ω) =

∑
k αkSk(ω), where

Sk(ω) :=
∫

C(R+;E)
[[θ]](ω) d

(
1
αk

η̃�Bk

)
(θ)

for every ω ∈ D1(E). Applying the result of step 1 to each Sk, we get the existence
of βk ∈ L1(E, mT ) satisfying 0 � βk � 1 such that Sk = T�βk, and hence S = T�γ
with γ :=

∑
k αkβk.

The following observation regarding this construction is important. Let η̃′ = α′η,
where α′ ∈ L1(C(R+; E), η) is a simple function with α′ � α. Then Tη̃′ = T�γ′

with γ′ � γ. In fact, there is a finite partition Q := {Bk} of η-almost all C(R+; E)
consisting of Borel subsets Bj ⊂ C(R+; E) such that both α and α′ are constant
over each Bj . Defining for brevity α′

j := α′�Bj , we get Tη̃′(ω) =
∑

k α′
kS′

k(ω), where

S′
k(ω) :=

∫
C(R+;E)

[[θ]](ω) d
(

1
α′

k

η̃′�Bk

)
(θ)

=
∫

C(R+;E)
[[θ]](ω) d(η�Bk)(θ)

=
∫

C(R+;E)
[[θ]](ω) d

(
1
αk

η̃�Bk

)
(θ)

= Sk(ω)

= T�βk(ω)

for every ω ∈ D1(E). Thus, Tη̃′ = T�γ′ with γ :=
∑

k α′
kβk, which implies that

γ′ � γ because α′
k � αk for all k.

Step 3. Consider now the general case η̃ = αη with an arbitrary non-negative
α ∈ L1(C(R+; E), η). Letting αk ∈ L1(C(R+; E), η) be a non-decreasing sequence
of simple functions with αk � α and αk ↗ α pointwise, we get as in the proof of
lemma A.15 that Tαkη → Tαη = Tη̃ in mass as k → ∞. But according to the result
of step 2, one has Tαkη = T�γk for some non-negative γk ∈ L1(E, mT ), with γk a
pointwise non-decreasing sequence. Clearly, one also has Tαkη � Tαη = Tη̃ so that,
in particular, ∫

E

γk dmT = M(Tαkη) � M(Tη̃) < +∞.

Defining γ := supk γk, by the Beppo Levi theorem we get

M(Tαkη) =
∫

E

γk dmT →
∫

E

γ dmT as k → +∞,

but since limk M(Tαkη) = M(Tη̃), we get M(Tη̃) =
∫

E
γ dmT . Finally,

lim
k

Tαkη(f dπ) = lim
k

T (γkf dπ) = T (γf dπ)
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for all f dπ ∈ D1(E), because γkf → γf in L1(E, mT ), and hence Tη̃ = T�γ,
proving the claim.

Finally, the lemmas below provide a construction that we use in analysing the
transportability condition.

Lemma A.17. Let σ be a σ-finite Borel measure over C(R+; E)×R
+ such that q#σ

represents some laminated current T ∈ M1(E) without cancellation of mass. Then
for S ∈ M1(E) defined by

S :=
∫

C(R+;E)×R+
[[θ�[s,+∞)]] dσ(θ, s) (A 9)

one has S � T and

M(S) =
∫

C(R+;E)×R+
�(θ�[s,+∞)) dσ(θ, s). (A 10)

Proof. Letting R :=
∫

C(R+;E)×R+ [[θ�[0, s]]] dσ(θ, s), we get

S + R =
∫

C(R+;E)×R+
[[θ]] dσ(θ, s) =

∫
C(R+;E)

[[θ]] d(q#σ)(θ) = T,

and

M(S) �
∫

C(R+;E)×R+
�(θ�[s,+∞)) dσ(θ, s),

M(R) �
∫

C(R+;E)×R+
�(θ�[0, s]) dσ(θ, s),

so that

M(S) + M(R) �
∫

C(R+;E)×R+
�(θ) dσ(θ, s) =

∫
C(R+;E)

�(θ) d(q#σ)(θ) = M(T ),

which concludes the proof.

Lemma A.18. Let E be isometrically embedded in a strictly convex Banach space
with the Radon–Nikodym property, let T ∈ M1(E) be a laminated current rep-
resented by some σ-finite Borel measure η over C(R+; E) without cancellation of
mass, and let σ be a finite Borel measure over C(R+; E) × R

+ such that q#σ 	 η
and ∫

C(R+;E)
�(θ) d(q#σ)(θ) < +∞.

Then for an S ∈ M1(E) defined by (A 9) one has that S is a normal current, (A 10)
is valid and S = T�γ for some γ ∈ L1(E, αmT ).

Proof. For the sake of brevity, define η̃ := q#σ. By lemma A.15 this measure
represents Tη̃ without cancellation of mass, and by lemma A.16 one has Tη̃ = T�α
for some α ∈ L1(E, mT ). Lemma A.17 says then that S � Tη̃ and is a normal current
and (A 10) holds. By lemma A.6 we then get S = Tη̃�β for some β ∈ L∞(E, mT ),
with 0 � β � 1, and to conclude the proof it is enough to set γ := αβ.
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Appendix B. Some auxiliary statements

In this section E stands for an arbitrary Banach space.

B.1. Duality of Banach spaces
For a v ∈ E we set

v′ := {ξ ∈ E′ : 〈v, ξ〉 = ‖v‖‖ξ‖′}. (B 1)

Of course, v′ �= ∅ and 0′ = E′. Clearly, v ∈ v′′, where v′′ := (v′)′. But if E is strictly
convex, then u ∈ v′′, u ∈ E implies that u = λv for some λ ∈ R

+. In fact, otherwise
there is a ξ ∈ v′ ⊂ E′, with, say, ‖ξ‖′ = 1 such that u ∈ ξ′, and thus ξ ∈ u′. The
claim then follows from [15, theorem 2]. Thus, for a strictly convex space E one has
v′′ ∩ E = {λv : λ ∈ R

+}.
The following easy statement, which identifies the cases in which equality holds

in the Jensen inequality, is valid.

Lemma B.1. Let f ∈ L1(Ω, µ; E), where (Ω, Σ, µ) is a measure space with some
positive σ-finite measure µ. If∥∥∥∥

∫
Ω

f(x) dµ(x)
∥∥∥∥ =

∫
Ω

‖f(x)‖ dµ(x), (B 2)

then either f = 0 or

f(x) ∈
(
∫

Ω
f(y) dµ(y))′′∫

Ω
‖f(y)‖ dµ(y)

‖f(x)‖

for µ-a.e. x ∈ E. In particular, if E is strictly convex, then (B 2) implies either
f(x) = 0 or

f(x) =

∫
Ω

f(y) dµ(y)∫
Ω

‖f(y)‖ dµ(y)
‖f(x)‖

for µ-a.e. x ∈ E.

Proof. We first consider the case in which µ = P a probability measure. For every
ξ ∈ (

∫
Ω

f(y) dP(y))′ one has∫
Ω

〈f(y), ξ〉 dP(y) =
〈 ∫

Ω

f(y) dP(y), ξ
〉

=
∥∥∥∥

∫
Ω

f(y) dP(y)
∥∥∥∥‖ξ‖′

=
( ∫

Ω

‖f(y)‖ dP(y)
)

‖ξ‖′, (B 3)

the latter equality being due to (B 2). But since 〈f(x), ξ〉 � ‖f(x)‖‖ξ‖′, we have
〈f(x), ξ〉 = ‖f(x)‖‖ξ‖′ for P-a.e. x ∈ E (since otherwise (B 3) would become a strict
inequality), which shows that

f(x) ∈
( ∫

Ω

f(y) dP(y)
)′′

(B 4)

for P-a.e. x ∈ E. In the general case, assuming that f �= 0 and letting

P :=
‖f‖ dµ∫

Ω
‖f(y)‖ dµ(y)

,

it suffices to apply (B 4) with f/‖f‖ instead of f .
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B.2. Differentiability of curves in Banach spaces

The curve θ ∈ C(R+; E) is called weakly (respectively, norm) differentiable at
t ∈ R

+ if there is a map θ̇ : R
+ → E satisfying

lim
h→0

1
h

(θ(t + h) − θ(t) − θ̇(t)h) = 0 (B 5)

in the sense of weak (respectively, strong, i.e. norm) convergence.
The following more or less folkloric assertions hold true.

Lemma B.2. If a curve θ ∈ C(R+; E) is weakly differentiable at a.e. t ∈ R
+,

then θ̇ : R
+ → E is almost everywhere equal to a Borel function, and, moreover,

locally Bochner integrable (respectively, Bochner integrable) when θ is absolutely
continuous (respectively, rectifiable). Moreover, if S ⊂ E is some closed separable
linear subspace of E, and B ⊂ C(R+; S) is a Borel set of curves weakly differentiable
almost everywhere, and η is a Borel measure concentrated on B, then the map
(θ, t) : B × R

+ → θ̇(t) is η ⊗ L1-almost everywhere equal to a Borel map, and,
moreover, is Bochner integrable with respect to η ⊗ L1 over B × K, with K ⊂
R

+ an arbitrary compact set (respectively, B × R
+) when η-a.e. θ is absolutely

continuous and θ → �(θ�K) is η-integrable (respectively, rectifiable and θ → �(θ) is
η-integrable).

Proof. For the second part of the statement, we observe that every function (θ, t) ∈
B ×R

+ → 〈θ̇(t), ψ〉 ∈ R for every ψ ∈ E′ is equal for all θ ∈ B and a.e. t ∈ R
+ (and

hence for η ⊗ L1-a.e. (θ, t) ∈ B × R
+) to a Borel map gψ(θ, t) := lim supk k〈θ(t +

1/k)−θ(t), ψ〉, and hence the map (θ, t) : B×R
+ → θ̇(t) is η⊗L1-weakly measurable.

But since for all θ ∈ B one has θ̇(t) ∈ S whenever it is defined, i.e. almost everywhere
(because S is also weakly closed), and S is separable, this map is also strongly
measurable as claimed. Recalling that clearly ‖θ̇(t)‖ � |θ̇|(t) for a.e. t ∈ R

+ and
every θ ∈ B (in fact, it is not difficult to prove that the equality holds, but we do
not need it), we have also the claimed Bochner integrability under the respective
absolute continuity conditions of η-a.e. θ ∈ B.

The first part follows from the second one by choosing B := {θ}, η := δθ, the
Dirac measure concentrated on θ, and S ⊂ E any closed separable linear subspace
containing θ(R+) (which exists because the latter set is separable).

Lemma B.3. If θ ∈ C(R+; E) is weakly differentiable almost everywhere and the
weak derivative θ̇ is locally Bochner integrable, then θ is also norm differentiable
almost everywhere. In particular, every absolutely continuous function θ ∈ C(R+; E)
is weakly differentiable almost everywhere if and only if it is norm differentiable
almost everywhere.

Proof. Observe that

〈θ(b) − θ(a), ψ〉 =
∫ b

a

〈θ̇(τ), ψ〉 dτ =
〈 ∫ b

a

θ̇(τ) dτ, ψ

〉

for every ψ ∈ E′, and hence

θ(b) − θ(a) =
∫ b

a

θ̇(τ) dτ
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for every pair {a, b} ∈ R
+. Thus,∥∥∥∥θ(t + s) − θ(t)

s
− θ̇(t)

∥∥∥∥ =
∥∥∥∥1

s

∫ t+s

t

(θ̇(τ) − θ̇(t)) dτ

∥∥∥∥
� 1

|s|

∫
B|s|(τ)

‖θ̇(τ) − θ̇(t)‖ dτ → 0

as s → 0 whenever τ ∈ R
+ is a Lebesgue point of θ̇ (by [7, proposition 5.3], a.e.

point is so), thus concluding the proof.

We remark for the sake of completeness that in the case in which E is a dual of
some Banach space, one can define the notion of weak∗ differentiability of the curve
θ : R

+ → E by requiring the limit in (B 5) to be intended in the weak∗ sense. In
this case the first part of lemma B.3 remains valid (with the obvious modification,
i.e. substituting ‘weak∗’ for ‘weak’), while the second part is not: in fact, as shown
in [4], every absolutely continuous curve in a dual of a separable Banach space
is weak∗ differentiable almost everywhere (and the norm of the weak∗ derivative
coincides almost everywhere with the metric derivative), but clearly might not be
norm differentiable unless E has the Radon–Nikodym property; therefore, the weak∗

derivative is not necessarily measurable in the strong sense, and hence the first part
of lemma B.2 also fails. The problem is that the weak∗ derivative is only weakly∗

measurable, but might fail to be separable valued.
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