
Robotica (2014) volume 32, pp. 143–163. © Cambridge University Press 2013
doi:10.1017/S0263574713000787

Fast and efficient visible trajectories planning for the
Dubins UAV model in 3D built-up environments
Oren Gal∗ and Yerach Doytsher
Mapping and Geo-Information Engineering, Technion, Israel Institute of Technology, Haifa, Israel

(Accepted June 26, 2013. First published online: August 2, 2013)

SUMMARY
In this paper, we study the visible trajectories planning for unmanned aerial vehicles (UAVs)
modeled with a Dubins airplane in 3D urban environments. Our method is based on a fast and exact
spatial visibility analysis of the 3D visibility problem from a viewpoint in 3D built-up environments.
We consider the 3D urban environment buildings modeled as cubes (3D boxes) and present an
analytic solution to the visibility problem. Based on an analytic solution, the algorithm computes
the exact visible and hidden parts from a viewpoint in the urban environment. We present a local
trajectory planner generating the most visible trajectory in a known 3D urban environment model,
taking into account the dynamic and kinematic UAV constraints. The planner computes, at each
time step, the next UAV’s attainable velocities and explores the most visible node, while avoiding
buildings as static obstacles in the environments, using the velocity obstacle method. The visibility
type of the trajectory can be configured beforehand as visible roofs and surfaces in the environments.
We demonstrate our visibility and trajectory planning method in simulations in several 3D urban
environments, showing visible trajectory planning capabilities.

KEYWORDS: Trajectory planning; 3D Urban environments; Spatial analysis; Visibility.

1. Introduction
Autonomous aircrafts and unmanned aerial vehicles (UAVs) are increasingly used for different
applications such as mobile surveillance, environmental monitoring, search and rescue, and Homeland
Security (HLS).

HLS has seen a rapid development since 9/11, and nowadays this is one of the major issues
that are being researched. One of the relevant aspects for HLS applications concerns special forces
action in urban environments, dealing with hostile activities. Planning visible trajectories for UAVs
in 3D complex urban environments can be used to aid special forces in preventing terrorist actions
by planning a visible or hidden trajectory in 3D urban environments. In such cases of trajectory
planning, spatial analysis of a 3D urban environment should be carried out in a very short period of
computation time for planning the most undetectable trajectory.

In this paper, we introduce visible trajectories planning for UAVs in 3D urban environments, based
on a fast and exact solution to the 3D visibility problem, from a viewpoint in the urban environment.
We consider 3D urban environment buildings modeled as cubes (3D boxes) and present an analytic
solution to the visibility problem, a solution that does not suffer from approximations. The algorithm
computes the exact visible and hidden parts from a viewpoint in the urban environment, using an
analytic solution, without the expensive computational process of scanning all objects’ points. The
algorithm is demonstrated by a schematic structure of an urban environment, using simple topological
geometric operators.

Our method uses simple geometric relations between the objects and the lines connecting the
viewpoint and the objects’ boundaries, extending the visibility boundary calculation from 2D to a 3D
environment by bypassing these singular points.1 The spatial relationship between different objects is

* Corresponding author. E-mail: orengal@tx.technion.ac.il

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

144 Fast and efficient visible trajectories planning

computed by using fast visible pyramid (VP) volumes from the viewpoint, projected to the occluded
buildings.2,3

We present a local UAV trajectory planner that generates one step ahead every time step, which
takes into account kinematic and dynamic constraints modeling UAV trajectories with the Dubins
airplane model for time-optimal trajectories. For the first time, this planner generates fast and exact
visible trajectories, based on the analytic solution described above. We assume knowledge of the 3D
urban environment model, and avoid collision with buildings presented as static obstacles by using
velocity obstacles (VOs).4

In the following, we first introduce relevant work related to trajectory planning and visibility in 3D
urban environments, in Section 3. In Section 4, the UAV model is presented. We present 3D spatial
analysis focused on visibility from viewpoint in 3D urban environments in Section 5. In Section 6, we
present the UAV local trajectory planner. Simulations are presented in Section 7. Finally concluding
comments are given in Section 8.

2. Related Work
In this section we include previous work in the area of UAV trajectory planning in 3D environments,
as well as relevant work on visibility analysis in 3D urban environments.

2.1. UAV trajectory planning in 3D environments
Trajectory planning has developed alongside the increasing numbers of UAVs all over the world,
with a wide range of applications such as surveillance, information gathering, suppression of enemy
defenses, air to air combat, mapping buildings and facilities, etc.

Most of these applications are involved in very complicated environments (e.g., urban), with
complex terrain for civil and military domains.5

With these growing needs, several basic capabilities must be achieved. One of these capabilities is
the need to avoid obstacles such as buildings or other moving objects, while autonomously navigating
in 3D urban environments.

Path planning problems have extensively been studied in the robotics community, finding a
collision-free path in static or dynamic environments, i.e., moving or static obstacles. Over the
past 20 years, many methods have been proposed, such as starting roadmap, cell decomposition, and
potential field.6

Path planning becomes trajectory planning when a time dimension is added for dynamic
obstacles.7,8 Later on, a vehicle’s dynamic and kinematic constraints have been taken into account,
in a process called kinodynamic planning.9 All of these methods focus solely on obstacle avoidance.

Trajectory planning for air traffic control and ground vehicles has been well studied,10 based on
short-path algorithms using 2D polygons, 3D surfaces.11 UAVs navigation has also been explored
with vision-based methods,12 with local planning or a predefined global path.13

UAV path planning is different from simple robot path planning, due to the fact that a UAV cannot
stop, and must maintain its velocity above the minimum, as well as not being able to make sharp
turns.

UAV path planning methods usually decompose the path planning into two steps: first, using
some common path planning method in a polygonal environment,6 then, considering UAV dynamic
and kinematic constraints into the trajectory.14 These methods assume decoupling which affects the
trajectory, as stated by all authors.

However, most of the effort focused on UAV trajectory planning is related to obstacle avoidance
with kinodynamic constraints, without taking into account visibility analysis as part of the nature of
the trajectory in urban environments.

2.2. Visibility in 3D urban environments
The visibility problem has extensively been studied over the last 20 years, due to the importance
of visibility in GIS and Geomatics, computer graphics and computer vision, and robotics. Accurate
visibility computation in 3D environments is a very complicated task demanding a high computational
effort, which could hardly have been done in a very short time using traditional well-known visibility
methods.15 The exact visibility methods are highly complex, and cannot be used for fast applications
due to their long computation time. Previous research in visibility computation has been devoted

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

Fast and efficient visible trajectories planning 145

Fig. 1. Dubins airplane model in the X–Y plane (Source ref. [24]).

to open environments using DEM models, representing raster data in 2.5D (Polyhedral model), and
do not address, or suggest solutions for, dense built-up areas. Most of these works have focused
on approximate visibility computation, enabling fast results using interpolations of visibility values
between points, calculating point visibility with the line of sight (LOS) method.16 Other fast algorithms
are based on the conservative potentially visible set.17 These methods are not always completely
accurate, as they may render hidden objects’ parts as visible due to various simplifications and
heuristics.

A vast number of algorithms have been suggested for speeding up the process and reducing
computation time. Franklin18 evaluates and approximates visibility for each cell in a DEM model
based on greedy algorithms. Wang et al.19 introduced a grid-based DEM method using viewshed
horizon, saving computation time based on relations between surfaces and the LOS method. Later
on, an extended method for viewshed computation was presented, using reference planes rather than
sightlines.20

One of the most efficient methods for DEM visibility computation is based on shadow-casting
routine. The routine cast shadowed volumes in the DEM, like a light bubble.21 Extensive research
treated digital terrain models in open terrains, mainly triangulated irregular network and regular square
grid structures. Visibility analysis in terrain was classified into point, line and region visibility, and
several algorithms were introduced, based on horizon computation describing visibility boundary.22

Only a few works have treated visibility analysis in urban environments. A mathematical model
of an urban scene, calculating probabilistic visibility for a given object from a specific viewcell in the
scene, has been presented in ref. [23]. This is a very interesting concept, which extends the traditional
deterministic visibility concept. Nevertheless, the buildings are modeled as cylinders, and the main
challenges of spatial analysis and building model were not tackled. Other methods were developed,
subject to computer graphics and vision fields, dealing with exact visibility in 3D scenes, without
considering environmental constraints. Plantinga and Dyer15 used the aspect graph – a graph with all
the different views of an object. Due to their computational complexity, all of these works are not
applicable to a large scene with near real-time demands, such as UAV trajectory planning.

3. The UAV Model
We introduce a UAVs model, based on the well-known Dubins airplane.24 Nowadays, several fixed-
wing UAVs fit to the Dubins airplane model,25 such as AscTec Hummingbird platform,26 and many
other autopilot controllers can be designed for such trajectories.27 The Dubins airplane28 model
extends the Dubins car model with continuous change of altitude without reverse gear, avoiding
sudden altitude speed rate variation. Our UAV model includes kinematic and dynamic constraints
that ignore pitch and roll rotation or wind disturbances, and allows setting time-optimal trajectory
trims.28

3.1. Kinematic constraints
We use a simple UAV model with four dimensions, each configuration is q = (x, y, z, θ), when
x, y, z are the coordinates of the origin, and θ is the orientation, in the x–y plane relative to the x-axis,
as can be seen in Fig. 1 for a simple car-like model.

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

146 Fast and efficient visible trajectories planning

The steering angle is denoted as φ. The distance between front and rear axles is equal to 1. The
kinematic equations of a simple UAV model can be written as

ẋ = us cos θ,

ẏ = us sin θ,

ż = uz,

θ̇ = us tan uφ,

(1)

where us is the speed parallel to the x–y plane, climb rate (speed parallel to the z-axis) is uz, and the
control on steering angle uφ . We denote the control vector as u = (us, uz, uφ). Each of the controllers
is bounded, uφ ∈ [−φmax, φmax], where φmax < π/2, the speed us ∈ [umin

s , umax
s] and climb rate

uz ∈ [−umax
z , umax

z]. umin
s > 0, so UAV cannot stop.

3.2. Dynamic constraints
The UAV model has to take into account the dynamic constraints, preventing instantaneous changes
(increase or decrease) of the control vector u = (us, uz, uφ).

The UAV model also includes dynamic constraints,u̇s ∈ [−as, as],u̇z ∈ [−az, az] and u̇φ ∈
[−aφ, aφ].

4. 3D Spatial Analysis
In this section, we introduce a fast and efficient accumulated visibility computation from a viewpoint
in 3D urban environments for UAV visible trajectory planning. Spatial analysis in a 3D environment
appears to be one of the most challenging topics in the communities currently dealing with spatial
data. One of the most basic problems in spatial analysis is related to visibility computation in such
an environment. Visibility calculation methods aim to identify the visible parts from a single point,
or multiple points, of the objects in the environment.

The 3D visibility problem has extensively been studied over the past 20 years, due to the importance
of visibility in many disciplines such as GIS, computer graphics, computer vision, and robotics. Most
previous works approximate the visible parts to find a fast solution in open terrains, and do not
challenge or suggest solutions for a 3D dense urban environment. The exact visibility methods are
highly complex, and cannot be used for fast applications due to their long computation time.

In this section, we present an analytic solution to the visibility problem in a dense urban
environment. At each viewpoint, an exact visibility value is calculated, i.e., the sum of the visible
surfaces from viewpoint to buildings. Based on the calculated visible and hidden surfaces from the
viewpoint, we can accumulate the viewpoint visibility value. The viewpoint visibility value can also
indicate the viewpoint’s hidden level, since hidden surfaces are also computed.

4.1. Spatial relations – problem statement
We consider the basic visibility problem in a 3D urban environment, consisting of 3D buildings
modeled as 3D cubic (box) parameterization

∑N
i=1 Ci(x, y, z =hmax

hmin
), and viewpoint V (x0, y0, z0).

Given:

� A viewpoint V (x0, y0, z0)in 3D coordinates.
� Parameterizations of N objects

∑N
i=1 Ci(x, y, z =hmax

hmin
) describing a 3D urban environment model.

Computes:

� Set of all visible points in
∑N

i=1 Ci(x, y, z =hmax
hmin

) from V (x0, y0, z0).

This problem seems to have been solved by conventional geometric methods, but as mentioned
before, it demands a long computation time. We introduce a fast and efficient computation solution
for a schematic structure of an urban environment that demonstrates our method.

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

Fast and efficient visible trajectories planning 147

Fig. 2. Visible silhouette pointsSv
C from viewpoint V to curve C(t).

4.2. Solution for a single-object concept
In this section, we first introduce the visibility solution from a single point to a single 3D object.
This solution is based on an analytic expression, which significantly improves time computation by
generating the visibility boundary of the object without the need to scan the entire object’s points.

Our analytic solution for a 3D building model is an extension of the visibility chart in 2D introduced
by1 for continuous curves. For such a curve, the silhouette points, i.e., the visibility boundary of the
object, can be seen in Fig. 2.

The visibility chart solution was originally developed for dealing with the Art Gallery Problem for
infinite viewpoint; it is limited to 2D continuous curves using a multivariate solver,1 and cannot be
used for online application in a 3D environment.

Based on this concept, we define the visibility problem in a 3D environment for more complex
objects as

C ′(x, y)zconst
× (C(x, y)zconst

− V (x0, y0, z0)) = 0, (2)

where 3D model parameterization is C(x, y)zconst
, and the viewpoint is given asV (x0, y0, z0). Solutions

to Eq. (2) generate a visibility boundary from the viewpoint to an object, based on basic relations
between viewing directions from V to C(x, y)zconst

using cross-product characters.
A three-dimensional urban environment consists mainly of rectangular buildings, which can hardly

be modeled as continuous curves. Moreover, an analytic solution for a single 3D model becomes
more complicated due to the higher dimension of the problem, and is not always possible. Object
parameterization is therefore a critical issue, allowing us to find an analytic solution and, using that,
to very quickly generate the visibility boundary.

4.3. 3D urban environmental model
In this section, we introduce a 3D urban environment model for exact and fast visibility computation
at each trajectory point. Our 3D model can be easily generated from available data, such as Google
Map.3 We assume that the model is uploaded to the UAV computer offline before starting mission.

Most of the common 3D City Models are based on object-oriented topologies, such as 3D formal
data structure (3D FDS), simplified spatial model (SSS), and urban data model (UDM).29 These
models are very efficient for web-oriented applications. However, the fact that a building consists
of several different basic features makes it almost impossible to generate analytic representation. A
three-dimensional building model should be, on the one hand, simple, enabling analytic solution, and
on the other hand, as accurate as possible. We examined several building object parameterizations, and
the preferred candidate was an extended n-order sphere coordinates parameterization, even though
such a model is a very complex, and will necessitate a special analytic solution.

We introduce a model that can be used for analytic solution of the current problem, which is the
key to generate a fast and exact solution to the hard computational demands of visibility problem in
3D environments. The basic building model can be described as

x = t, y =
(

xn − 1
1 − xn

)
, z = c, −1 ≤ t ≤ 1

n = 350, (3)

c = c + 1.

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

148 Fast and efficient visible trajectories planning

Fig. 3. Topside view of the building model using Eq. (3). (a) n = 50; (b) n = 200; (c) n = 350.

Fig. 4. (Colour online) A three-dimensional analytic building model with Eq. (3), where z
hmax=9
hmin=0 .

This mathematical model approximates building corners, not as singular points, but as continuous
curves. This building model is described by Eq. (3), when lower order badly approximates the building
corners, as depicted in Fig. 3. Corner approximation becomes more accurate using n = 350 or higher.
This approximation enables us to define an analytic solution to the problem.

We introduce a basic building structure that can be rotated and extracted using simple matrix
operators (Fig. 4). Using a rotation matrix does not affect our visibility algorithm, and for a simple
demonstration of our method, we present samples of parallel buildings.

4.4. The analytic solution
In this part, we demonstrate the analytic solution for a single 3D building model. As mentioned above,
we should integrate building model parameterization to the visibility statement. After integrating
Eqs. (2) and (3):

C ′(x, y)zconst
× (C(x, y)zconst

− V (x0, y0, z0)) = 0 →
xn − Vy0 − n · xn−1(x − Vx0) − 1 = 0, (4)

xn + Vy0 − n · xn−1(x − Vx0) − 1 = 0.

n = 350 − 1 ≤ x ≤ 1

Based on the geometric relation of cross product, object parameterization, and viewpoint described in
Eq. (2), visible silhouette can be generated for continuous curves, and extended for building’s object
in 3D in this research. Due to that, visibility boundary is the solution for these coupled equations
described in Eq. (4).

As can be noticed, these equations are not related to the Z-axis, and the visibility boundary points
are the same ones for each x–y surface due to the model’s characteristics. Later on, we treat the
relations between a building’s roof and visibility height in our visibility algorithm, as part of the
visibility computation.

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

Fast and efficient visible trajectories planning 149

Fig. 5. (Colour online) Visibility volume computed with the analytic solution. (a) Single building. (b) Two
nonoverlapping buildings.

The visibility statement leads to two polynomial Norder equations, which appear to be a complex
computational task. The real roots of these polynomial equations are the solution to the visibility
boundary. These equations can be solved efficiently by finding where the polynomial equation
changes its sign and cross zero value; generating the real roots in a very short time computation (these
functions are available in Matlab, Maple, and other mathematical programs languages). Based on the
polynomial cross zero solution, we can compute a fast and exact analytic solution for the visibility
problem from a viewpoint to a 3D building model. This solution allows us to easily define the visible
boundary points.

Visible Boundary Points (VBP). We define VBP of the object i as a set of boundary points
j = 1 . . Nbound of the visible surfaces of the object, from viewpoint V (x0, y0, z0).

VBPj=1..Nbound

i=1 (x0, y0, z0) =

⎡
⎢⎣

x1, y1, z1

x2, y2, z2

..

xNbound
, yNbound

, zNbound

⎤
⎥⎦ . (5)

Roof Visibility. The analytic solution in Eq. (4) does not treat the roof visibility of a building. We
simply check if viewpoint height Vz0 is lower or higher than the building height hmaxCi

and use this to
decide if the roof is visible or not:

Vz0 ≥ Z = hmaxCi
. (6)

If the roof is visible, roof surface boundary points are added to VBP. Roof visibility is an integral
part of VBP computation for each building. Currently, we assume a flat roof’s surface that will be
extended to more complex roof models in our future work. For simplicity, we define roof visible
surface as the third one.

Two simple cases using the analytic solution from a visibility point to a building including visible
roofs can be seen in Fig. 5. The visibility point is marked in black, the visible parts colored in red,
and the invisible parts colored in blue. VBP are marked with yellow circles. The visible volumes are
computed immediately with very low computation effort, without scanning all the model’s points, as
is necessary in LOS-based methods for such a case.

4.5. Visibility computation in urban environments
In the previous sections, we treated a single building case, without considering hidden surfaces
between buildings, i.e., building surfaces (or parts of surfaces) occluded by other buildings, which
directly affect the visibility volumes solution. In this section, we introduce our concept for dealing

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

150 Fast and efficient visible trajectories planning

Fig. 6. (Colour online) A VP from a viewpoint to VBP of a specific surface.

with these spatial relations between buildings, based on our ability to rapidly compute visibility
volume for a single building by generating VBP sets.

Hidden surfaces between buildings are simply computed by intersecting the VPs for each object.
The visible volumes are defined easily using VBP, and are defined, in our case, as VPs. The invisible
components of the far building are computed by intersecting the projection of the closer buildings’
VP base to the far building’s VP base, as described above.

4.5.1. The VP.

VP. We define V P
j=1..Nsurf

i (x0, y0, z0) of the object i as a 3D pyramid generated by connecting VBP
of specific surface j to a viewpoint V (x0, y0, z0).

In the case of a box, the maximum number of Nsurf for a single object is three. VP boundary
colored with green arrows viewpoint marked as black dot, as can be seen in Fig. 6.

More complex building models can be subdivided to basic box structures using procedural
modeling and basic shape grammar profiles.3

The intersection of VPs allows us to efficiently compute the hidden surfaces in urban environments,
as can be seen in the next subsection.

4.5.2. Hidden surfaces between buildings. As mentioned earlier, invisible parts of the farther buildings
are computed by intersecting the projection of the closer buildings’ VP to the far buildings’ VP base.

Let VPi
1 and VPj

2 be VPs from a viewpoint V(x0, y0, z0). The projected surface PS
V P i

2

V P i
1

of the closer

buildings’ VPi
1 to the farther buildings’ VPj

2 base plane consists of the projection of VBP1..Nb
1 points:

PS
V P

j

2

V P i
1

=

⎡
⎢⎢⎢⎢⎢⎣

xp1, yp1, zp1

xp2, yp2, zp2

..

xpi, ypi, zpi

..

xpNbound
, ypNbound

, zpNbound

⎤
⎥⎥⎥⎥⎥⎦

. (7)

where the normal of the VP2
j base plane is (a.b.c.) and the plane can be written as ax + by + cz + d =

0. The projected point (xpi, ypi, zpi) described in Eq. (7) is

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

Fast and efficient visible trajectories planning 151

Fig. 7. (Colour online) Generating VP. (a) VP1
1 boundary colored by green lines. (b) VP2

1 boundary colored by

purple lines. (c) The two buildings – VP1
1 in green and VP2

1 in purple (from the viewpoint) and IS
V P i

2

V P i
1

in white.

xpi = xV BP i
1
− a

axV BP i
1
+ byV BP i

1
+ czV BP i

1
+ d

a2 + b2 + c2
,

ypi = yV BP i
1
− b

axV BP i
1
+ byV BP i

1
+ czV BP i

1
+ d

a2 + b2 + c2
, (8)

zpi = zV BP i
1
− c

axV BP i
1
+ byV BP i

1
+ czV BP i

1
+ d

a2 + b2 + c2
.

The intersected surface IS
V P i

2

V P i
1

between PS
V P

j

2

V P i
1

and VP2
j base plane, ∂V P J

2 , can be generally described
as polygons intersection:

IS
V P

j

2

V P i
1

= PS
V P

j

2

V P i
1

∩ ∂V P J
2 ∪ ∂PS

V P
j

2

V P i
1

∩ V P J
2 . (9)

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

152 Fast and efficient visible trajectories planning

Fig. 8. (Colour online) Projection of VP1
1 to VP2

1 base plane PS
V P i

2

V P i
1

marked with dotted lines.

The intersected surface IS
V P

j

2

V P i
1

is also the invisible one from a viewpoint V(x0, y0, z0), as can be seen in
Fig. 9. For simplicity, we demonstrate the method with two buildings from a viewpoint V (x0, y0, z0)
one (denoted as the first one) of which hides, fully or partially, the other (the second one).

As can be seen in Fig. 7, in this case, we first compute VBP for each building separately,
V BP 1..4

1 , V BP 1..4
2 ; based on these VBPs, we generate VPs for each building, V P 1

1 , V P 1
2 . After

that, we project V P 1
1 base to V P 1

2 base plane, PS
V P i

2

V P i
1
, as seen in Fig. 8, if existing. At this point,

we intersect the projected surface in the V P 1
2 base plane and update V BP 1..4

2 and V P 1
2 (decreasing

the intersected part). The intersected part is the invisible part of the second building from viewpoint

V (x0, y0, z0) hidden by the first building, IS
V P i

2

V P i
1
, which is marked in white in Fig. 9.

In the case of a third building, in addition to the buildings introduced in Fig. 9, the projected VP
will only be the visible ones, and the VBP and VP of the second building will be updated accordingly
(as described in the next subsection). In cases of several buildings, the VP base would not necessarily
be rectangular, due to the intersected surface profile of the previous projection. We demonstrated a
simple case of an occluded building. A general algorithm for more a complex scenario contains the
same actions between all the combinations of VP between the objects. Projection and intersection
of 3D pyramids can be done with simple computational geometry elements, which demand a very
low computation effort. Simulation results for a number of urban scenes and mass modeling complex
urban environments visibility can be found in refs. [2, 3].

A pseudocode of the visibility algorithm from a viewpoint can be found in ref. [2].

4.6. Viewpoint invisibility value
Planning UAVs visible trajectory is based on the ability to accumulate the visibility value of each
viewpoint explored as part of the planner algorithm. We calculate the exact invisible value of a specific
viewpoint, i.e., the total sum of the invisible surfaces and roofs from viewpoint.

We divide point invisibility value into invisible surfaces value (ISV) and invisible roofs value
(IRV). This classification allows us to plan delicate and accurate trajectory upon demand. We define
ISV and IRS as the total sum of the invisible roofs and surfaces (respectively).

ISV of a viewpoint is defined as the total sum of the invisible surfaces of all the objects in a 3D
environment, as described in Eq. (10):

ISV (x0, y0, z0) =
Nobj∑
i=1

IS
V P

j=1..Nbound −1
i

V P
j=1..Nbound −1
i

. (10)

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

Fast and efficient visible trajectories planning 153

Fig. 9. (Colour online) Computing hidden surfaces between buildings, VP2
1 base plane, IS

V P i
2

V P i
1
.

In the same way, we define IRV value as the total sum of all the invisible roofs surfaces:

IRV (x0, y0, z0) =
Nobj∑
i=1

IS
V P

j=Nbound
i

V P
j=Nbound
i

. (11)

5. UAV Planner
Our planner, similar to previous work,4 is a local one, generating one step ahead every time step
reaching toward the goal, which is a depth first A∗ search over a tree. We extend previous planners
that take into account kinematic and dynamic constraints9,14 and present a local planner for UAV
with these constraints, which for the first time generates fast and exact visible trajectories based on
analytic solution. The fast and efficient visibility analysis of our method, presented in Section 5,
allows us to generate the most visible trajectory from a start state qstart to the goal state qgoal in 3D
urban environments, and demonstrates our capability, which can be extended to real performances in
the future. We assume knowledge of the 3D urban environment model as mentioned in Section 5.3,
and use the well-known VO method to avoid collision with buildings presented as static obstacles,
exploring safe and maximum visible node in the next time step.

At each time step, the planner computes the next eighth attainable velocities (AVs), as detailed in
Section 5.2. The safe nodes not colliding with buildings, i.e., nodes outside VOs,4 are explored. The
planner computes the cost for these safe nodes and chooses the node with the lowest cost. Trajectory
can be characterized by the most visible roofs only, surfaces only, or another combination of these
kinds of visibility types, as will be detailed in Section 5.4. We repeat this procedure while generating
the most visible trajectory.

In this planner, we consider only static obstacles as buildings. Safety can be guaranteed in
static environments using the VO method, which can easily avoid moving obstacles in dynamic
environments,4 unlike other motion planning algorithms in static environments (Visibility graph,
Voronoi Diagram, etc.). Considering moving obstacles in urban environments for visible trajectories
planning is part of our future work.

5.1. Velocity obstacles
The VO4 is a well-known method for obstacle avoidance in static and dynamic environments, used
in our planner to prevent collision between UAV and the buildings (as static obstacles), as part of the
trajectory planning method.

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

154 Fast and efficient visible trajectories planning

Fig. 10. (Colour online) Linear VOs.

V
b

V
a

Fig. 11. (Colour online) Tree search method.

The VO represents the set of all colliding velocities of the UAV with each of the neighboring
obstacles, in our case static obstacles buildings. Each building is bounded by cylinder instead of
circle in 2D case4 and mapped as static obstacle into the UAV’s velocity space.

We introduce the VO of a planar circular obstacle, B, which is moving at a constant velocity vb, as
a cone in the velocity space of UAV, A, reduced to a point by correspondingly enlarging obstacle B.

Each point in VO represents a velocity vector that originates at A. Any velocity of A that penetrates
VO is a colliding velocity that would result in a collision between A and B at some future time.
Figure 10 shows two velocities of A: one that penetrates VO, va2, and is hence a colliding velocity,
and one that does not, va1.

All velocities of A that are outside of VO are safe as long as B stays on its current course or in our
case a static one. The VO thus allows us to determine if a given UAV velocity will cause a collision.

5.2. Attainable velocities
Based on the dynamic and kinematic constraints, UAVs velocities at the next time step are limited.
At each time step during the trajectory planning, we map the AVs, the velocities set at the next time
step t + τ , which generate the optimal trajectory, as is well-known from Dubins theory.28

We denote the allowable controls as u = (us, uz, uφ) as U , where V ∈ U .
We denote the set of dynamic constraints bounding control’s rate of change as u̇ = (u̇s, u̇z, u̇φ) ∈

U ′.
Considering the extremals controllers as part of the motion primitives of the trajectory cannot

ensure time-optimal trajectory for the Dubins airplane model,28 but is still a suitable heuristic based
on time-optimal trajectories of the Dubins car and point mass models.

We calculate the next time step’s feasible velocities Ũ (t + τ), between (t, t + τ):

Ũ (t + τ) = U ∩ {u|u = u(t) ⊕ τ · U ′}. (12)

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

Fast and efficient visible trajectories planning 155

0t t= . best startq q=

1. While ()best goalq q≠ do:

 1.1. Calculate AV nodes from bestq ,

~
8 8

1 1()i iAV U t τ= == + .

 1.2. For each node iq AV∈ check:

if

0
1

hbuild
tn N

i j
j t

q VO
=•

=

∈

iq is illegal.

Else

Calculate node visibility cost ()iw q

1.3. If all nodes are illegal

STOP! No trajectory to the goal

Else

1.3.1. Find node with minimal cost min { | min ()}i iq q w q= .

1.3.2. Update minbestq q=

1.3.3. t t dt= +

 End

Fig. 12. UAV planner pseudocode.

Integrating Ũ (t + τ)with the UAV model yields the next eight possible nodes for the following
combinations:

Ũ (t + τ) =
⎛
⎝ Ũs(t + τ)

Ũz(t + τ)
Ũφ(t + τ)

⎞
⎠ =

⎛
⎝ umin

s , us(t) + asτ

−umax
s tan φmax, us(t) tan uφ(t) + umax

s tan aφ

umax
z , uz(t) − azτ

⎞
⎠ . (13)

At each time step, we explore the next eight AV at the next time step as part of our tree search, as
explained in the next subsection.

5.3. Tree search
Our planner uses a depth first A∗ search over a tree that expands over time to the goal. Each node
(q, q̇·), where q = (x, y, z, θ), consists of the current UAVs position and velocity at the current time

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

156 Fast and efficient visible trajectories planning

Fig. 13. (Colour online) Trajectory planning in simple urban environment with three buildings. (a, b) Start and
goal points with scenario demonstration. (c, d) Visible and invisible parts in the environments at a specific point.
(e) Final trajectory with two kinds of visibility characters.

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

Fast and efficient visible trajectories planning 157

Fig. 14. (Colour online) Total sum of visible surfaces area during running time in two kinds of visibility
characters.

Fig. 15. (Colour online) Final planned trajectory from start to goal points with α = β = 0.

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

158 Fast and efficient visible trajectories planning

Fig. 16. (Colour online) Total sum of visible surfaces and roof area during running time in the case of α = β = 0.

step. At each state, the planner computes the set of admissible velocities (AVs), Ũ (t + τ), from the
current UAV velocity,U (t), as shown in Fig. 11. We ensure the safety of nodes by computing a set of
VO.

In Fig. 11, nodes inside VO, marked in red, are inadmissible. Nodes out of VO are further evaluated;
safe nodes are colored in blue. The safe node with the lowest cost, which is the next most visible
node, is explored in the next time step. This is repeated while generating the most visible trajectory,
as discussed in the next subsection.

Admissible velocities profile is similar to a trunked cake slice, as seen in Fig. 11, due to the Dubins
airplane model with one time step integration ahead. Simple models admissible velocities, such as
point mass, create rectangular profile.4

5.4. Cost function
Our search is guided by minimum invisible parts from viewpoint V to the 3D urban environment
model. The cost function for each node is a combination of IRV and ISV, with different weights as
functions of the required task.

The cost function is computed for each safe node (q, q̇) /∈ V O, i.e., node outside VO, considering
UAV position at the next time step (x(t + τ), y(t + τ), z(t + τ)) as viewpoint:

w(q(t + τ)) = α · ISV (q(t + τ)) + β · IRV (q(t + τ)), (14)

where α, β are coefficients, affecting the trajectory character. The cost function w(q(t + τ)) produces
the total sum of invisible parts from the viewpoint to the 3D urban environment, meaning that the
velocity at the next time step with the minimum cost function value is the most visible node in our
local search.

5.5. Planner pseudocode
The pseudocode of the UAV planner is as follows as can be seen in Fig. 12.

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

Fast and efficient visible trajectories planning 159

Fig. 17. (Colour online) Third scene based on real data of urban environments. (a) Gibson House Museum
Region, Beacon St, MA, USA. (b) Top view modeling. (c) Side view from a random viewpoint.

6. Simulations
We have implemented the presented algorithm and tested some urban environments on a 1.8 GHz Intel
Core CPU with Matlab. We computed the visible trajectories using our planner, with several types of
trajectories consisting of roof and surfaces visibility, based on the introduced visibility computation
method.

The initial parameters values are: us(t = 0) = 10 (m/s), uz θ(t = 0) = 5 (deg). UAV dynamic and
kinematic constraints are φmax = π/4, umax

z = 0.3 (m/s). umin
s = 1 (m/s), umax

s = 15 (m/s), time step
was dt = 1(s).

In the following figures, the start and goal points are marked in blue and yellow triangles
(respectively), visible surfaces are marked in red, and invisible surfaces are marked in green.

In the first scene, we demonstrate our method on a simple case with three different buildings, as
seen in Fig. 13(a). In Fig. 13(b), the same scenario is demonstrated as an opposite case of the locations
of the start and the goal points. Start point set to (40, 30, 2) and the goal point set to (−10, −18, 2).

In Figs. 13(c) and 13(d), UAV trajectories are represented by points, showing the visible and
invisible surfaces at a specific point in the middle of the trajectory demonstrating visible and invisible
parts at this point, from two different views.

The final trajectory can be seen in Fig. 13(e), where the purple trajectory was generated with
α = β = 0, which is the most visible trajectory, whereas the blue trajectory in the figure is with

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

160 Fast and efficient visible trajectories planning

Table I. Three test cases for the third scene with maximum visible area parameters.

Case number Starting point Goal point Maximum visible area

Case 1 (220, 20, 20) (−85, 4, 12) α = 0, β = 0
Case 2 (220, −40, 50) (−120, 120, 50) α = 0, β = 0
Case 3 (−60, 90, 65) (210, −75, 50) α = 0, β = 1

α = β = 1. It can be noticed that UAVs avoid the close building at the start point due to the VO
obstacle avoidance method.

As can be predicted, the total sum of areas of the visible surfaces in case of α = β = 1 is larger
than the total sum of the trajectory generated in the case of α = β = 0, as seen in Fig. 14 (the blue
line for the first case and the red line for the second).

We tested the second scene with the same previous scenario, but with a higher altitude of the start
and target point (their Z values are higher than building’s Z values) in order to analyze the influence
of roof visibility in such cases. The start point is (40, 30, 10) and the target point is (−10, −15, 15)
and the trajectory depicted in Fig. 15 is for the case of α = β = 0.

In Fig. 16, we present the total sum of visible roof and visible surfaces for each point along the
trajectory. The total sum of visible roofs area was a constant maximum value. It is obvious that the
total area of visible surfaces at each point in this scenario (Fig. 16) is larger than the corresponding
values for the previous scenario (Fig. 14).

Fig. 18. (Colour online) Final planned trajectory from start to goal points in the third scene according to
Table I: (a) Case 1: top view. (b) Case 1: side view. (c) Case 2: side view. (d) Case 3: side view.

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

Fast and efficient visible trajectories planning 161

Fig. 19. (Colour online) Total sum of visible surfaces and roof area during running time for the third scene as
detailed in Table I.

In the third scene, we demonstrate our method on a dense urban environment modeled from real
data of the Gibson House Museum Region, Beacon St., MA, USA. The scene is depicted in Fig. 17(a)
and was taken from Google Maps. This scene has been modeled, and a top view and a side view are
depicted in Figs. 17(b) and 17(c), respectively.

We tested three cases of start and goal points with different coordinates and different parameters of
α, βequals to one or to zero. The parameters that generated the maximum visible area are detailed in
Table I, with start and goal points’ location, including different Z coordinate values, for these cases.

In Figs. 18, we introduce three trajectories for each case, as detailed in Table I. The total sum of
the visible parts (surfaces and roofs) for the different cases can be seen in Fig. 19. One can notice that
the maximum total sum of visible area in most of the cases is achieved for the case of α = 0, β = 0.
In our case, with cubes building’s model, “higher is better.” Note that the influence of Z coordinate
value is not necessarily better one as introduced in ref. [30], where roof’s surfaces profiles are not
rectangular.

Complexity analysis of our visibility algorithm is detailed in ref. [2] with performances comparison
to the LOS method. The average running time for time step in the third scene is 0.7 s. We tested our
method with Matlab to validate our concept. Further work will focus on converting our algorithm to
real-time implementation by using GPU or parallel computation methods.

7. Conclusions and Future Work
We have presented an efficient UAV planning algorithm for visible trajectories in a 3D urban
environment, modeling basic building structure with mathematical approximation for presentation of
buildings’ corners as continuous functions.

The planner takes into account dynamic and kinematic constraints using the Dubins airplane model.
We compute at each time step the next UAV’s attainable velocities and explore the most visible node,
while avoiding buildings as static obstacles in the environments using the VO method.

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

162 Fast and efficient visible trajectories planning

The main contribution of the method presented in this paper is that it does not require special
hardware, and is suitable for UAV online visible trajectory planning based on the algorithms’
performances. The visible trajectory is exact and allows us to configure the type of visible object, i.e.,
roof or surfaces visibility of the trajectory, and can be used for different kinds of applications. The
algorithm was tested and verified in several kinds of simulations based on real urban environment
models.

Further research will focus on modeling more types of roofs in urban environments and
examining other global planning algorithms methods integrating other obstacle avoidance concepts
and algorithms’ real-time implementation. Future work will also include a real-time UAV platform
testing our approach in experiments.

References
1. G. Elber, R. Sayegh, G. Barequet and R. Martin, “Two-Dimensional Visibility Charts for Continuous

Curves,” Proceedings of Shape Modeling, MIT, Boston, USA (2005) pp. 206–215.
2. O. Gal and Y. Doytsher, “Fast and Accurate Visibility Computation in a 3D Urban Environment,”

Proceedings of the Fourth International Conference on Advanced Geographic Information Systems,
Applications, and Services, Valencia, Spain (2012) pp. 105–110.

3. O. Gal and Y. Doytsher, “Fast Visibility Analysis in 3D Procedural Modeling Environments,” Proceedings
of the 3rd International Conference on Computing for Geospatial Research and Applications, Washington
DC, USA (2012).

4. P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity obstacles,” Int. J. Robot.
Res. 17, 760–772 (1998).

5. Office of the Secretary of Defense, Unmanned Aerial Vehicles Roadmap, Tech. Rep., December (2002).
6. J. C. Latombe, Robot Motion Planning (Kluwer Academic Press, 1990).
7. M. Erdman, and T. Lozano-Perez, “On multiple moving objects,” Algorithmica 2, 477–521 (1987).
8. T. Fraichard, “Trajectory planning in a dynamic workspace: a ‘state-time space’ approach,” Adv. Robot. 13,

75–94 (1999).
9. S. M. LaValle and J. Kuffner, “Randomized Kinodynamic Planning,” Proceedings of the IEEE International

Conference on Robotics and Automation, Detroit, MI, USA (1999) pp. 473–479.
10. Z. H. Mao, E. Feron and K. Bilimoria, “Stability and performance of intersecting aircraft flows under

decentralized conflict avoidance rules,” IEEE Trans. Intell. Transport. Syst. 2, 101–109 (2001).
11. J. Bellingham, A. Richards and J. How, “Receding Horizon Control of Autonomous Aerial Vehicles,”

Proceedings of the IEEE American Control Conference, Anchorage, AK, USA (2002) pp. 3741–
3746.

12. B. Sinopoli, M. Micheli, G. Donata and T. Koo, “Vision Based Navigation for an Unmanned Aerial Vehicle,”
Proceedings of the IEEE International Conference on Robotics and Automation (2001).

13. J. Sasiadek and I. Duleba, “3D local trajectory planner for UAV,” J. Intell. Rob. Syst. 29, 191–210 (2000).
14. S. A. Bortoff, “Path Planning for UAVs,” Proceedings of the American Control Conference, Chicago, IL,

USA (2000) pp. 364–368.
15. H. Plantinga and R. Dyer, “Visibility, occlusion, and aspect graph,” Int. J. Comput. Vis. 5, 137–160

(1990).
16. Y. Doytsher and B. Shmutter, “Digital Elevation Model of Dead Ground,” Proceedings of the Symposium

on Mapping and Geographic Information Systems (Commission IV of the International Society for
Photogrammetry and Remote Sensing), Athens, Georgia, USA (1994).

17. F. Durand, 3D Visibility: Analytical Study and Applications PhD Thesis (Universite Joseph Fourier,
Grenoble, France, 1999).

18. W. R. Franklin, “Siting Observers on Terrain,” Proceedings of 10th International Symposium on Spatial
Data Handling, Springer-Verlag (2002) pp. 109–120.

19. J. Wang, G. J. Robinson and K. White, “A fast solution to local viewshed computation using grid-based
digital elevation models,” Photogramm. Eng. Remote Sens. 62, 1157–1164 (1996).

20. J. Wang, G. J. Robinson and K. White, “Generating viewsheds without using sightlines,” Photogram. Eng.
Remote Sens. 66, 87–90 (2000).

21. C. Ratti, “The lineage of line: space syntax parameters from the analysis of urban DEMs’,” Environ. Plan.
Plan. Des. 32, 547–566 (2005).

22. L. De Floriani and P. Magillo, “Visibility algorithms on triangulated terrain models,” Int. J. Geograph. Inf.
Syst. 8, 13–41 (1994).

23. B. Nadler, G. Fibich, S. Lev-Yehudi and D. Cohen-Or, “A qualitative and quantitative visibility analysis in
urban scenes,” Comput. Graph. 5, 655–666 (1999).

24. S. M. LaValle, Planning Algorithms (Cambridge University Press, Cambridge, UK, 2006).
25. M. Hwangbo, J. Kuffner and T. Kanade, “Efficient Two-phase 3D Motion Planning for Small Fixed-wing

UAVs,” Proceeding of the 2007 IEEE International Conference on Robotics and Automation, ICRA 2007,
Roma, Italy (Apr. 10–14, 2007).

26. http://www.asctec.de/uav-applications/research/products/asctec-hummingbird/.

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

Fast and efficient visible trajectories planning 163

27. A. Bhatia, M. Graziano, S. Karaman, R. Naldi and E. Frazzoli, “Dubins Trajectory Tracking Using
Commercial Off-the-Shelf Autopilots,” Proceedings of the AIAA Guidance, Navigation and Control
Conference and Exhibit, Honolulu, Hawaii (Aug. 18–21, 2008).

28. H. Chitsaz and S. M. LaValle, “Time-Optimal Paths for a Dubins Airplane,” Proceedings of the IEEE
Conference on Decision and Control, USA (2007) pp. 2379–2384.

29. S. Zlatanova, A. Rahman and S. Wenzhong, “Topology for 3D spatial objects,” Proceedings of the
International Symposium Exhibition on Geoinformation (2002) pp. 22–24.

30. W. R. Franklin and C. Ray, “Higher isn’t necessarily better: visibility algorithms and experiments,” In:
Advances in GIS Research: Sixth International Symposium on Spatial Data Handling (T. C. Waugh and
R. G. Healey, eds.) (Taylor & Francis, Edinburgh, 1994) pp. 751–770.

https://doi.org/10.1017/S0263574713000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000787

