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When a poorly conducting drop that is surrounded by a more conducting exterior fluid
is subjected to an electric field, the drop can deform into an oblate shape at low field
strengths. Such drops become unstable at high field strengths and display two types
of dynamics, dimpling and equatorial streaming, the physics of which is currently not
understood. If the drop is more viscous, dimples form and grow at the poles of the drop and
eventually the discocyte-shaped drop breaks up to form a torus. If the exterior fluid is more
viscous, the drop deforms into a lens and sheds rings from the equator that subsequently
break into a number of smaller droplets. A theoretical explanation as to why dimple-
and lens-shaped drops occur, and the mechanisms for the onset of these instabilities, are
provided by determining steady-state solutions by simulation and inferring their stability
from bifurcation analysis. For large drop viscosities, electric shear stress is shown to play
a dominant role and to result in dimpling. For small drop viscosities, equatorial normal
stresses (electric, hydrodynamic and capillary) become unbounded and lead to the lens
shape.

Key words: drops, electrohydrodynamic effects

1. Introduction

Coupling between electric fields Ẽ and hydrodynamics – electrohydrodynamics
(EHD) – has interested scientists since Gilbert reported that static electricity generated
from rubbed amber could ‘attract’ water (Gilbert 1958). The birth of the modern science
of EHD, however, can be traced to three papers: Rayleigh’s discovery (Rayleigh 1882;
Tsamopoulos, Akylas & Brown 1985) that highly charged drops can become unstable,
Taylor’s analysis (Taylor 1964) of equilibria and stability of conducting drops subjected
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to Ẽ that showed that strong fields can deform drops into prolate shapes with conical
tips along Ẽ (Miksis 1981; Basaran & Scriven 1990), and Taylor’s discovery (Taylor
1966) that imperfectly conducting or leaky dielectric (LD) (Melcher & Taylor 1969)
drops can be deformed parallel (prolate) or perpendicular (oblate) to Ẽ. These papers
and experiments (Zeleny 1917) on jet emission or EHD tipstreaming (Collins et al. 2008,
2013; Oddershede & Nagel 2000; Burton & Taborek 2011) from the conical ends of
pendant drops – electrospraying (Barrero & Loscertales 2007; Fernández de La Mora
2007; Ganán-Calvo et al. 2018) – laid the foundation for widely used applications.
Examples – all involving highly conducting drops surrounded by a gas and prolate
deformations – include electrospray ionization mass spectrometry, electrospinning, and
printing of cells (Fenn et al. 1989; Feng 2002; Jayasinghe, Qureshi & Eagles 2006;
Reneker & Yarin 2008).

Cases where both phases are viscous fluids (Marín et al. 2007; Vlahovska 2019)
and drops exhibit both prolate and oblate deformations have been receiving increasing
attention (Feng & Scott 1996; Lac & Homsy 2007; Yariv & Rhodes 2013; Das &
Saintillan 2017a,b) due to their wide-ranging importance (Harris, Sisson & Basaran 1992;
Zhang, Basaran & Wham 1995; Baygents, Rivette & Stone 1998; Eow et al. 2001; Marín
et al. 2007; Bird et al. 2009; Ristenpart et al. 2009). Recent experiments (Brosseau &
Vlahovska 2017) have uncovered a previously unknown type of EHD equatorial streaming
instability. Here, a poorly conducting drop is dispersed in a more conducting exterior liquid
(figure 1a). A weak Ẽ drives the drop to adopt an oblate shape, in accord with theory
(Taylor 1966; Melcher & Taylor 1969). As shown in Brosseau & Vlahovska (2017) and
Vlahovska (2019), such drops become unstable as |Ẽ| increases. Although it is known
that the nature of the instabilities that arise with oblate drops depends on the ratio of
fluid viscosities, the physical mechanisms for their onset have heretofore remained elusive
and are uncovered from theory in this paper. We demonstrate that if the drop is more
viscous, electric shear stress plays a dominant role and a strong Ẽ creates a dimple at each
pole of the oblate drop that resembles a discocyte or biconcave disk (figure 1b). These
dimples grow and the drop eventually ruptures to form a torus. This mode of breakup is
called dimpling. If the exterior phase is more viscous, we show that a strong Ẽ drives the
oblate drop into a biconvex lens (figure 1c) because equatorial normal stresses – electric,
hydrodynamic and capillary – become unbounded as |Ẽ| increases. Interestingly, Torza,
Cox & Mason (1971) have briefly mentioned in a couple of sentences the occurrence of
lenses in their experiments, albeit without further discussion. In the recent experiments,
rings of fluid are then emitted from the lens-shaped drop’s equator which subsequently
break into droplets (Brosseau & Vlahovska 2017; Vlahovska 2019). This mode of breakup
is called equatorial streaming.

We examine the physics for the onset of these two instabilities and their dependence
on viscosity ratio by determining steady-state solutions of the governing equations by
simulation. We adopt this approach as it is currently unclear whether dimpling and
equatorial streaming instabilities arise due to the loss of stability of a steady-state solution
at a turning (limit) point or a bifurcation point (Iooss & Joseph 2012) with respect
to applied field strength. We demonstrate that both instabilities arise at turning points
when the applied field strength reaches a critical value. First, we take advantage of
experimental results (Brosseau & Vlahovska 2017) to judiciously probe portions of the
relevant parameter space that have been overlooked in previous computational studies
(Feng & Scott 1996; Feng 1999; Lac & Homsy 2007). Second, contrary to some recent
studies, we do not approximate solutions using expansions based on spheroidal harmonics
(Bentenitis & Krause 2005; Zabarankin 2013). Lens-shaped drops have not been reported
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FIGURE 1. (a) A spherical drop subjected to an electric field. At large field strengths, the ratio
of outer to inner fluid viscosity (μ2/μ1) determines the drop’s fate: (b) discocyte and (c) lens.
Here and in all of the figures that can be found in the remainder of this paper, all drop shapes
that are shown are those that have been obtained from simulations.

in these previous studies relying on the use of expansions based on spheroidal harmonics.
Moreover, to date, when the exterior fluid is more viscous, only stable steady-states have
been computed numerically (Zabarankin 2013; Lanauze, Walker & Khair 2015). Hence,
for the first time, we resolve theoretically the onset of the instability that arises when
the exterior fluid is more viscous, in agreement with the equatorial streaming instability
experimentally observed in Brosseau & Vlahovska (2017).

The article is organized as follows. Section 2 describes the mathematical formulation
of the problem. A brief summary of the numerical method used in the simulations is then
provided in § 3. As it is imperative to impress upon the reader an intuitive understanding
of drop deformation caused by an applied electric field, a quick overview is presented in
§ 4 on the physics of electric-field-induced deformation in drops of LD fluids as opposed
to drops of perfectly conducting or perfectly insulating fluids. Simulation results are then
presented and discussed in § 5. The paper concludes in § 6 with concluding remarks and a
summary of possible directions for further study.

2. Problem statement

The system (figure 1) consists of two neutrally buoyant phases (i = 1, 2; i = 1, drop;
i = 2, exterior), each of which is an incompressible, Newtonian, LD (Melcher & Taylor
1969; Saville 1997) fluid of constant physical properties (viscosity μi, permittivity εi and
conductivity σi) undergoing Stokes flow. In the absence of electric field, Ẽi = 0, the drop
is a sphere of radius R. It bears no net charge. The interface separating the two fluids
has constant surface tension γ as well as diffusivity for charge Ds. We use a cylindrical
coordinate system (r̃, θ, z̃) based at the centre of the sphere and where these variables
stand for the radial, angular and axial coordinates. The drop is subjected to an electric field
Ẽ0 = Ẽ0ez of uniform strength Ẽ0 far from the drop (ez: unit vector in z̃ direction). The
problem is non-dimensionalized using as characteristic scales R for length, tc ≡ μ1R/γ

for time (tc: visco-capillary time), γ /R for hydrodynamic stress, Ẽ0 for electric field, ε2Ẽ0
for surface charge density and ε2Ẽ2

0 for electric stress. Aside from the three dimensionless
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parameter ratios χ ≡ σ1/σ2, κ ≡ ε1/ε2 and λ ≡ μ2/μ1, three other dimensionless groups
arise: (i) electric Bond number NE ≡ ε2Ẽ2

0R/2γ (the ratio of electric to surface tension
force), (ii) dimensionless charge relaxation time in either phase, αi ≡ (εi/σi)/tc (i = 1 or
2, α2/α1 = χ/κ), and (iii) Péclet number Pe ≡ (R2/Ds)/tc = γ R/μ1Ds (the ratio of the
time scale for charge diffusion on the surface R2/Ds and the visco-capillary time tc). In
what follows, variables without tildes are the dimensionless counterparts of those with
tildes.

The steady-state deformation of the drop and the flow field and electric potential
Φi (where Ei = −∇Φi) inside (Ω1) and outside (Ω2) the drop are governed by the
axisymmetric continuity, Stokes and Laplace equations:

∇ · vi = 0, ∇ · T H
i = 0, ∇2Φi = 0 in Ωi, (2.1a–c)

where vi is the velocity, T H
i ≡ −piI + (μi/μ1)[(∇v)i + (∇v)T

i ] the hydrodynamic stress,
and pi the pressure.

Along the drop surface Sf , the flow and electric field in each phase are coupled through
the traction condition

n · [T H
i + 2NET E

i ]2
1 = 2Hn, (2.2)

where T E
i ≡ (εi/ε2)(EiEi − E2

i I/2) is the electric (Maxwell) stress tensor (Melcher &
Taylor 1969), n the outward-pointing unit normal and 2H twice the mean curvature. The
notation [x]2

1 denotes the jump in x in going from phase 1 to phase 2. Along Sf , the
kinematic boundary condition n · v1 = n · v2 = 0 (Kistler & Scriven 1983; Christodoulou
& Scriven 1992; Deen 1998) and no slip t · [vi]2

1 = 0, where t denotes the unit tangent
to Sf in the cross-sectional plane, are imposed. Additionally along Sf , the tangential
component of the electric field is continuous, t · [Ei]2

1 = 0, but the normal component
of the electric displacement suffers a discontinuity given by the surface charge density,
q ≡ n · [(εi/ε2)Ei]2

1. In the LD model (Melcher & Taylor 1969), bulk density of charge
is zero but surface charge density on Sf is governed by a transport equation which, under
steady-state conditions, is given by

∇s · (qv) − Pe−1∇2
s q = 1

α2

(
σ1

σ2
n · E1 − n · E2

)
(2.3)

on Sf . Here, v is the velocity and E1 and E2 are electric fields at Sf , and ∇s is the
surface gradient. In this equation, the terms on the left side represent surface charge
transport by convection and diffusion, and the source-like terms on the right represent
charge transport from each phase to Sf by Ohmic conduction. In the limit where charge
transport by diffusion and charge transport by convection are negligible (Taylor 1966;
Melcher & Taylor 1969), this equation reduces to the continuity of the normal component
of the electric current, n · [(σi/σ2)Ei]2

1 = 0.

3. Simulations and numerical method

The governing equations are solved by numerical simulation using a finite-element-based
algorithm over one quadrant of the rz-plane (r, z ≥ 0) subject to symmetry conditions
along r = 0 (axis of symmetry) and z = 0 (plane of symmetry). Far from the drop’s
centre-of-mass, the electric potential is set to asymptotically approach that of a uniform
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field and the flow field is taken to be stress-free. Similar versions of the algorithm
employed here have been used for solving equilibrium (Basaran & Scriven 1990; Sambath
& Basaran 2014), steady-state (Basaran & Scriven 1988) and transient (Collins et al.
2013) problems in EHD. The algorithm relies on elliptic mesh generation (Christodoulou
& Scriven 1992) and continuation with adaptive parameterization (Abbott 1978) to
determine steady-state solution families (Feng & Basaran 1994), and automatically detects
points where changes of stability occur (Brown & Scriven 1980; Ungar & Brown 1982;
Yamaguchi, Chang & Brown 1984). In all simulations, Pe = 103 (Collins et al. 2008,
2013). We note that all simulation results presented in the paper are insensitive to changes
in Pe provided that Pe � 1, as shown in the appendix.

4. Physics of drop deformation

Interfacial flows and drop deformations observed in LD fluids are made possible by the
electric shear stress at Sf , [T E

nt]
2
1 ≡ n · [T E

i ]2
1 · t = qEt where Et ≡ t · Ei. Following Taylor

(1966), we focus first on the situation in the absence of charge convection and diffusion.
The electric normal stress at Sf can then be expressed as [T E

nn]2
1 ≡ n · [T E

i ]2
1 · n =

[E2
1,n(χ

2 − κ) + E2
t (κ − 1)]/2 where E1,n ≡ n · E1, and the charge density is given by

q = E1,n(χ − κ). When the drop has a smaller permittivity and is of relatively even lesser
conductivity than the surrounding fluid, χ/κ = (ε2/σ2)(σ1/ε1) < 1 and κ = ε1/ε2 < 1,
electric normal stress [T E

nn]2
1 is compressive, i.e. acts inward, but is not necessarily uniform,

on Sf . Moreover, both q and [T E
nt]

2
1 are negative (positive) on the top (bottom) half of the

drop, and the flow along Sf is therefore from the drop’s poles to its equator.
We now illustrate that electric normal stress alone is insufficient to determine the

drop’s fate when the applied field is sufficiently weak so that a spherical drop suffers
negligible deformation. If the drop were spherical, the field inside it would be uniform,
E1 = 3ez/(χ + 2). The electric normal stress at the poles is then given by E2

1(χ
2 − κ)/2,

and that at the equator is E2
1(κ − 1)/2. When χ → 0, in this spherical state, it follows that

the difference between the electric normal stress at the pole and at the equator, ΔP
E([T E

nn]2
1),

is given by E2
1(−2κ + 1)/2. Thus, if κ = ε1/ε2 > 1/2, then electric normal stress at the

pole is more compressive than that at the equator (ΔP
E([T E

nn]2
1) < 0), and the converse is

true for κ < 1/2. If electric normal stress is more (less) compressive at the pole than at the
equator, the drop is more likely to adopt an oblate (prolate) shape at finite field strengths.
However, non-uniformity in electric normal stress is just one way of driving deformation in
LD drops, whereas it is the sole way of doing so when the drop is either a perfect conductor
or perfect insulator and the exterior a perfect insulator (Taylor 1964). A more exact analysis
(Melcher & Taylor 1969) including electric shear stress shows that when χ → 0 and
λ→ ∞, transition between prolate and oblate deformations occurs at κ = 5/16 = 0.3125.
Thus, as was first shown by Taylor (1966) and Smith & Melcher (1967), considering
electric normal stress alone is in general insufficient, because it overlooks the role played
by electric tangential and hydrodynamic normal stresses that may arise on account of flows
induced by [T E

nt]
2
1.

To illustrate the crucial importance of electric shear stress, we examine next by
simulations situations in which ε1/ε2 = 1/2 when χ � 1 (as in the experiments of
Brosseau & Vlahovska (2017)). In this situation, electric normal stress is not only equal at
the poles and the equator but is in fact uniform everywhere on the surface of a spherical
drop. Since a uniform stress causes no deformation, the resulting drop deformation at low
field strengths is driven by the action of electric shear stress. As the role of viscosity ratio
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FIGURE 2. Steady-state streamlines (a) inside and (b) outside, and pressure distributions
inside/outside a drop in the limit of vanishingly small applied electric field strength for two
systems in which the drop is much less conducting and has a lower permittivity than the exterior.
Here and in the next two figures, (ε2/σ2)(σ1/ε1) = 0.02, ε1/ε2 = 1/2 and α2 = 2 × 10−4

(therefore, α1 = 10−2). Panels (a) and (b) correspond, respectively, to the limits in which exterior
viscosity and interior viscosity tend to zero. In both (a) and (b), warmer (cooler) or red (blue)
colour implies higher (lower) pressure.

in the dimpling and equatorial streaming instabilities has heretofore been incompletely
understood, it is reasonable to anticipate that the goal of elucidating the mechanisms for
the onset of these instabilities would be best accomplished by considering two limits in
which the drop is either much more or much less viscous than the exterior fluid, viz.
μ2/μ1 � 1 or μ2/μ1 � 1. In both limits, the direction of flow on Sf does not change, as
it is induced purely by electric shear stress, which depends solely on electrical properties.

5. Results and discussion

5.1. Limit of μ2/μ1 � 1
When μ2/μ1 → 0, the exterior fluid behaves as if it were a passive gas that simply exerts a
constant pressure on the drop, and the physics can be appreciated by focusing on the flow in
Ω1. Here, electric tangential stress at Sf drives fluid from the pole(s), (r, z) = (0, ±z|pole),
to the equator, (r, z) = (r|eq, 0). Because of mass conservation, the pressure at the equator
then has to rise compared to that at the pole(s) for the fluid to return to the pole(s). Thus, a
recirculating eddy arises as shown in figure 2(a), and the resulting flow resembles those in
the lid-driven cavity and Taylor pump (Melcher & Taylor 1969; Basaran & Scriven 1988).
Because the pressure rises at the equator and falls at the poles, the curvature increases at
the equator and decreases at the poles: the drop bulges out at the equator and flattens at
the poles.

To better quantify drop deformation, figure 3(a) shows in a bifurcation diagram the
variation of the steady-state deformation of the drop D ≡ (z|pole − r|eq)/(z|pole + r|eq)
with electric Bond number NE for a system in which the drop is less conducting and has
a lower permittivity but is much more viscous than the outer fluid. Figure 3(b) shows the
variation with D of the difference between the value at the pole and that at the equator of
all three normal stresses. In order to better discern the role of electric normal stress [T E

nn]2
1,

two sets of solutions are shown in that figure: one set where electric normal stress in (2.2)
is operative and another where this term has been turned off, i.e. [T E

nn]2
1 = 0 (Collins et al.

2008; Kamat et al. 2018). When electric normal stress is turned off, it can no longer induce
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FIGURE 3. Bifurcation diagram, stresses and drop shapes for steady-state solutions when the
drop is much less conducting and has a lower permittivity but is much more viscous than the
outer fluid (μ2/μ1 = 0.02). Variation of (a) deformation D with electric Bond number NE for
shape families of dimpled shapes and (b) difference between the value at the pole and the equator
of all three normal stresses (hydrodynamic (red), electric (green), and capillary (blue)) with D.
Solutions depicted in (a) and (b) here and in the next figure have been obtained from simulations
in which electric normal stress [T E

nn]2
1 is on (solid curves) and in its absence (dash-dotted curves).

In panel (a) here and in the next figure, circles indicate locations of turning points and shape
insets show drop profiles when [T E

nn]2
1 = 0 or /= 0 at points marked by a square symbol. (c)

Sequence of drop shapes obtained from simulations along the shape family for which electric
normal stress is turned off, [T E

nn]2
1 = 0, and (d) that for which this stress is operative, [T E

nn]2
1 /= 0.

In (c), the values of (NE, D) for which these shapes are shown are (0, 0), (0.583, −0.162),
(0.799, −0.431) and (0.714, −0.626). In (d), the values of (NE, D) for which these shapes are
shown are (0, 0), (0.581, −0.160), (0.685, −0.429) and (0.595, −0.625).

and hence contribute to the deformation of the drop. By comparing solutions obtained
when electric normal stress is acting and when it is absent, its role in determining the fate
of the drop can be made plain.

As can be seen in figure 3(b), electric tangential stress (as described earlier) causes
hydrodynamic normal stress to rise at the equator and fall at the poles (ΔP

E([T H
nn]2

1) < 0).
For small deformations (|D| < 0.2), simulations with electric normal stress turned on
show that there is virtually no electric normal stress difference between the pole and the
equator. Hence, capillary normal stress (capillary pressure) must balance hydrodynamic
normal stress (ΔP

E(2H) < 0). As field strength or NE increases, electric shear stress and
hence the concomitant flow strengthen, driving the hydrodynamic and capillary normal
stresses to further rise at the equator and fall at the poles, and thereby to cause drop
deformation to grow. This trend persists until the drop becomes flattened at the poles and

904 R4-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

77
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.779


B. W. Wagoner and others

the curvature there equals zero. Any further increase in electric shear stress and disparity in
hydrodynamic normal stress between the equator and the pole(s) then causes the curvature
at the pole(s) to change sign and hence causes a dimple(s) to form. Hence, we say that
steady-state solutions that lie along either solution branch – with normal stress on and
with it turned off – in the bifurcation diagram of figure 3(a) are members of the shape
family (families) of dimpled shapes (discocytes). Figure 3(a) shows that as NE increases
from zero, a turning point arises when (NE, D) = (N∗

E, D∗) along the solution families. It
is shown in standard books on bifurcation theory (Glendinning 1994; Seydel 2009; Iooss &
Joseph 2012) that starting with a solution that is known to be stable, solutions are linearly
stable as a control parameter is varied until a turning point is reached. Here, the known
stable solution corresponds to a spherical drop (D = 0) in the absence of electric field or
when the electrical Bond number NE – the control parameter – equals 0. Therefore, as
NE is increased, the solutions along a solution family or solution branch are stable until a
turning point (N∗

E, D∗) is reached. Whereas solutions for values of 0 < N∗
E, 0 ≤ |D| < |D∗|

are stable, those beyond the turning point(s) are unstable (Brown & Scriven 1980; Ungar
& Brown 1982; Yamaguchi et al. 1984; Feng & Basaran 1994; Glendinning 1994; Seydel
2009; Iooss & Joseph 2012). Comparison of the shape insets in figure 3(a) reveals that
dimpling and instability occur even in the absence of electric normal stress and that electric
normal stress acts to accentuate the dimple(s). Figure 3(a) further shows that the solution
family with [TE

nn]2
1 turned on exhibits a second turning point as |D| increases, a point that

is returned to below. Sequences of drop shapes of increasing deformation along both shape
families are shown in figures 3(c) and 3(d).

5.2. Limit of μ2/μ1 � 1
When μ2/μ1 → ∞, the drop behaves like a void in which pressure is constant. In Ω2,
electric tangential stress on Sf drives flow from the pole(s) to the equator just outside the
drop. Thus, a pressure gradient arises along the symmetry axis where fluid far from the
drop flows toward it such that pressure is low and normal viscous stress is compressive
at the drop’s pole(s), (r, z) = (0, ±z|pole), and a pressure gradient also arises at the plane
of symmetry where fluid is driven from the equatorial mid-plane toward infinity such that
pressure is high and normal viscous stress is extensional at the drop’s equator, (r, z) =
(r|eq, 0) (figure 2b). Unlike the dimpling case, here the pressure difference between the
pole and equator causes a prolate drop deformation while the (larger) viscous normal stress
difference drives an oblate deformation.

Figure 4(a) shows D as a function of NE for a system in which the drop is less conducting
and has a lower permittivity but is also much less viscous than the outer fluid. Figure 4(b)
shows the difference between the value at the pole and that at the equator of all three
normal stresses as a function of D. Once again, solutions depicted in figure 4 have been
obtained both with electric normal stress on and with it turned off. In the absence of
electric normal stress, [T E

nn]2
1 = 0, drop deformation is driven by hydrodynamic normal

stress and balanced by capillary stress (figure 4b dash-dotted curves). In this case, the
shape family reaches a turning point when NE ≈ 1: drops before the turning point are
stable whereas those after it are unstable. However, the steady-state shapes (figure 4c) do
not resemble the characteristic lens-like shapes that lead to equatorial streaming. This
shape family is referred to as the family of spheroids. By contrast and as shown in
figure 4(a), when [T E

nn]2
1 /= 0, electric normal stress acts to arrest the increase of D with

NE. This is made plain by figure 4(b) which reveals that electric normal stress at the equator
is more compressive than its counterpart(s) at the pole(s), thereby decreasing the extent of
deformation. While deformation on the drop-scale (measured by D) is arrested, interface
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FIGURE 4. Same as figure 3 but where the drop is much less viscous than the outer fluid
(μ2/μ1 = 50). Variation of (a) D with NE for shape families of spheroids ([T E

nn]2
1 = 0) and

lenses ([T E
nn]2

1 /= 0) and (b) difference between the value at the pole and the equator of all
three normal stresses (hydrodynamic (red), electric (green), and capillary (blue)) with D. The
upper right inset in (a) is a blow-up of the main figure where the turning point is located when
[T E

nn]2
1 /= 0, i.e. the lens family. In the inset, values of NE are shown along the horizontal axis

as in the main figure, but the vertical axis has been shifted so that the values shown correspond
to D + 0.444815 for clarity. (c) Sequence of drop shapes obtained from simulations along the
family of spheroids (for which electric normal stress is turned off, [T E

nn]2
1 = 0) and (d) that for

the lens family (for which this stress is operative, [T E
nn]2

1 /= 0). In (c), the values of (NE, D) for
which these shapes are shown are (0, 0), (0.731, −0.148), (1.122, −0.374) and (0.797, −0.608).
In (d), the values of (NE, D) for which these shapes are shown are (0, 0), (0.774, −0.155),
(1.442, −0.382) and (2.930, −0.445).

deformation at the local scale at the equator (measured by interface curvature or |2H|) is
enhanced. At the equator, under the action of ever increasing (normal) electric force, the
three stresses comprising compressive electric normal stress, extensional hydrodynamic
normal stress and capillary stress due to equatorial curvature not only compete but appear
to grow without bound, giving rise to the solution family of lens-like shapes – the
lens family – whose highly deformed members (figure 4d) are precursors to equatorial
streaming. Thus, for the first time, we theoretically observe the onset of this instability
(inset, figure 4a) in agreement with experimental results (Brosseau & Vlahovska 2017).

6. Conclusions

When the exterior fluid’s conductivity is much larger than the drop’s, members of shape
families of drops become increasingly deformed as electric field strength or electric Bond
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number NE rises and lose stability at turning points. Highly deformed members of these
families are discocytes when the drop is much more viscous than its exterior, μ2/μ1 � 1,
and lenses when μ2/μ1 � 1, in accord with experiments (Brosseau & Vlahovska 2017;
Vlahovska 2019). Through careful scrutiny of the stresses acting to deform a drop, it has
been conclusively shown that the instability that arises in the former case is caused by
a drastically different mechanism than the latter one. It has been shown that dimpling
occurs purely as a result of electric tangential stress: dimple-shaped drops arise and
become unstable at a turning point in NE with and without electric normal stress. However,
lens-shaped drops arise as a result of electric normal stress and do not occur in its absence.
Theoretical analysis of the rim of the lens, similar to those in studies of the conic cusp
singularity in EHD tipstreaming from the Taylor cones at the tips of prolate drops (Zubarev
2001; Collins et al. 2008), is so far lacking, but is underway.

While the geometry of the lens and that of the Taylor cone is similar, the analogy
between these two phenomena ends there. A Taylor cone (Taylor 1964) exists under
electrohydrostatic conditions, i.e. in the absence of flow, in which electric and capillary
normal stresses balance. Unlike Taylor cones, lenses form only in the presence of flow.
Consequently, viscous, electric and capillary normal stresses are in balance in the case of
lenses. Another crucial difference between the two cases is that in Taylor cones, electric
and capillary normal stresses act in opposite directions at the apex of the cone, whereas
in lenses they act in the same direction, i.e. they are compressional or act inward, at the
equator.

It was heretofore unknown whether equatorial streaming could be predicted using
the LD equations. It has been demonstrated here that these equations do give rise to
unstable solutions. Once destabilized, lens-shaped drops emit equatorial sheets, as has
been shown in a preliminary computational study in which the unstable steady-state
shapes beyond the turning point along the lens family are used as initial conditions in
transient simulations (Wagoner et al. 2019). Developing a thorough understanding of the
transient dynamics that occurs when drops become unstable and succumb to dimpling
(μ2/μ1 � 1) or equatorial streaming (μ2/μ1 � 1) is of great theoretical importance
and is underway. It is noteworthy that interface shapes in the vicinity of the axis of
symmetry, i.e. near r = 0, both above and below the plane of symmetry, appear conical
for drops that are members of the family of dimpled shapes (discocytes). When these
conical interfaces approach each other after the onset of the dimpling instability, the
dynamics that ensues should follow that reported in Bird et al. (2009). Thus, whether
the cone angle is larger or smaller than the critical cone angle reported in Bird et al.
(2009) would determine whether the outcome is dimple merger or recoil. Investigating
which of the two outcomes arises once a dimple-shaped drop has destabilized is left as
an open problem for future computational studies on the transient dynamics of unstable
discocytes.

According to the results presented in § 5.1, two turning points arise along the family of
discocytes (figure 3). Thus, while there is a loss of stability at the first turning point,
the family regains its stability at the second turning point (Glendinning 1994; Seydel
2009). Hence, the family of discocytes exhibits hysteresis in the parameter space of
drop deformation D versus electric Bond number NE. Yet another worthy goal of future
studies should be whether such hysteretic response, which has been widely encountered
in past studies of equilibria and dynamics of drops subjected to electric and/or magnetic
fields (Basaran & Wohlhuter 1992; DePaoli et al. 1995), can be observed in laboratory
experiments.
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Appendix. Effect of Péclet number Pe

In the main part of the paper, a value of Pe = 103 has been used to obtain all simulation
results. In this appendix, we examine the effect of Pe on the discocyte and lens families.

The value of the Péclet number of 103 used in this paper is based on the experiments of
Brosseau & Vlahovska (2017) and on certain reasonable assumptions that we had to make
to arrive at a ballpark value of this dimensionless group. In the experiments of Brosseau &
Vlahovska (2017), the drop fluid was silicone oil and the exterior fluid was castor oil. The
value of the surface or interfacial tension was γ = 0.0045 N m−1 for all drop–exterior
fluid combinations, and the typical radius of the undeformed drop was R = 0.001 m.
Using μ1 = 0.0138 Pa s (a typical value of the drop viscosity in the experiments) and the
definition of Pe, it follows that Ds = 3.26 × 10−4 Pe−1 m2 s−1. While it is hard to measure
surface charge diffusion coefficients Ds, and Brosseau & Vlahovska (2017) (and others)
do not report values of Ds, based on reported values of other surface diffusion coefficients
(e.g. for surfactant transport) we expect Ds to be of the order of 10−6 to 10−8 m2 s−1.
We therefore made the reasonable choice to use the intermediate value of Pe = 103 in the
main part of the paper. However, since the surface diffusivity and hence the Péclet number
can vary by a factor of about one hundred, we examine below the effect of varying Pe by
several orders of magnitude.

Figure 5 shows the variation of the steady-state deformation D as a function of the
electric Bond number NE for three Péclet numbers (Pe = 102, 103 and 104) when the drop
is (a) much more viscous (λ = 0.02) and (b) much less viscous (λ = 50) than the exterior
fluid. In both panels (a) and (b), the drop is less conducting and has a lower permittivity
than the surrounding fluid. As discussed in the article, when the drop is more viscous than
the exterior fluid, tangential electric stress and the flows induced by this stress deform the
drop into a dimpled or discocyte-like shape (figure 5a). When the drop is less viscous
than the exterior fluid, however, equatorial normal stresses grow rapidly with deformation
and give rise to a lens-like shape (figure 5b). Figure 5 makes plain that the existence of
both shape families – discocytes and lenses – and the occurrence of turning points along
each shape family where stable solutions lose stability as NE and/or D increase(s) are
independent of Pe.

For the family of dimpled shapes (figure 5a), varying Pe insignificantly affects the
solution family, the values of the critical Bond number N∗

E and critical deformation D∗
at the turning point(s), and the drop shape even at the largest value of the steady-state
drop deformation D shown in the figure. Indeed, the solution families and the drop
shapes shown as insets in figure 5(a) lie on top of each other and are virtually
indistinguishable.

For the lens family (figure 5b), varying Pe insignificantly affects the solution families
over most of the parameter space. The value of the critical electric Bond number for
instability, N∗

E, increases slightly with Pe. However, the value of the critical deformation
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FIGURE 5. Bifurcation diagram of steady-state solutions showing the variation of drop
deformation D with electric Bond number NE when the drop is much less conducting and
has a lower permittivity than the surrounding fluid, with (ε2/σ2)(σ1/ε1) = 0.02, ε1/ε2 = 1/2
and α2 = 2 × 10−3 (therefore, α1 = 10−1). (a) Drop is much more viscous than the outer fluid
(λ = 0.02): family of dimpled shapes (discocytes). (b) Drop is much less viscous than the outer
fluid (λ = 50): lens family. In both (a) and (b), simulation results are shown for Pe = 102 (red
curve), Pe = 103 (green curve) and Pe = 104 (blue curve). In both (a) and (b), circles denote the
locations of the turning points. The shape insets show the drop profile at the point marked by a
square symbol in (a) and at the turning points in (b). Solution curves or shape families and drop
shapes obtained at different Pe mostly overlap and hence appear as single curves in the figure.

D∗ is virtually unchanged, and drop shapes at the turning points obtained for different
values of Pe overlap so that they are virtually indistinguishable (see inset to figure 5b).
The variation of N∗

E with Pe is currently under further investigation, as it may have
promising applications. Specifically, comparison of the critical electric Bond number
obtained from simulations and experiments can provide a new method for determining the
surface diffusivity of charge (DS), which, like other surface properties, is often challenging
to measure.

In summary, the two distinct instabilities that arise when the drop is much more
viscous than the surroundings – dimpling – and the drop is much less viscous than
the surroundings – lens formation – are unaffected when Péclet number is varied. The
mechanisms of drop deformation and instability also remain the same as Pe is varied.
In particular, when lenses form, the rim of the lens is corner-like with a semi-angle
of approximately π/4 regardless of the value of Pe. Reassuringly, a similar corner-like
geometry and angle are observed at the incipience of instability in the experiments of
Brosseau & Vlahovska (2017).
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