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This article provides a borrower’s optimal strategies to terminate a mortgage with a fixed

interest rate by paying the outstanding balance all at once. The problem is modelled as a free

boundary problem for the appropriate analogue of the Black-Scholes pricing equation under

the assumption of the Vasicek model for the short-term rate of investment. Here the free

boundary provides the optimal time at which the mortgage contract is to be terminated. A

number of integral identities are derived and then used to design efficient numerical codes for

computing the free boundary. For numerical simulation, parameters for the Vasicek model are

estimated via the method of maximum likelihood estimation using 40 years of data from US

government bonds. The asymptotic behaviour of the free boundary for the infinite horizon

is fully analysed. Interpolating this infinite horizon behaviour and a known near-expiry

behaviour, two simple analytical approximation formulas for the optimal exercise boundary

are proposed. Numerical evidence shows that the enhanced version of the approximation

formula is amazingly accurate; in general, its relative error is less than 1%, for all time before

expiry.

1 Introduction

In this article, we consider a mortgage contract and the problem of finding the optimal

time for the mortgage borrower to terminate the mortgage by prepaying it with a lump

sum.

The mortgage contract under consideration has an expiration date T , a fixed mortgage

interest rate c (year−1) and a constant continuous rate of payment of m ($/year). At any

time t during the term of the mortgage, the outstanding balance owed, M(t), is reduced in

the time period [t, t+ dt) by dM(t) = cM(t)dt−mdt, where cM(t)dt is the interest accrued

on the balance and mdt is the payment. For the mortgage to be retired at t = T , the

condition M(T ) = 0 applies so that

M(t) =
m

c
{1 − ec(t−T )} ∀ t � T .

In this contract, the borrower is allowed to terminate the contract at any time t (t < T )

of his choice by paying a lump sum M(t) to the contract issuer. This decision for the

borrower to terminate the contract depends on the alternate investment strategy (e.g.

risk-free bonds) available to him.
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In this article, we use the Vasicek model [11] for the risk-free short-term market return

rate, rt, described by the stochastic differential equation

drt = k(θ − rt)dt + σ dWt, (1.1)

where k, θ and σ are assumed to be positive known constants and Wt is the standard

Wiener process. Here the units for k, θ, σ and Wt are year−1, year−1, year−3/2 and year1/2,

respectively. To address the fact that the Vasicek model is not sufficient to describe the

whole term structure, here we assume for simplicity that in this model, the market price of

risk has been incorporated into the drift k(θ− rt); that is to say, the probability associated

with the Brownian motion {Wt} is the risk-neutral probability [1, 12].

Intuitively, if an overall market return rate is expected to be low (relative to c) for a

certain amount of time, one should choose to terminate the contract early. On the other

hand, if the market return rate is strictly higher than c or if an overall market return

rate is expected to be higher than c for a certain amount of time, one should choose to

defer the closing date by an investment in the market of the capital M(t) for less than

the obligatory payment of m per unit time. Hence, at every moment that the contract

is in effect, the borrower must monitor the market return rate and decide whether to

immediately close the contract. Statistically, there is an optimal strategy in making such

a decision.

To find such a strategy, we introduce a function V (r, t) being the (arbitrage-free) price

of the contract at time t and current market return rate rt = r. This value can be regarded

as an asset that the contract issuer (the mortgage company) possesses, or a fair price

that a buyer would offer to the contract issuer in taking over the contract, say, in an

issuer’s restructuring or liquidation process. The value of V is calculated according to the

borrower’s optimal decision; that is, the issuer is a passive player. Since the borrower can

terminate the contract by paying M(t) at any time t, we have 0 � V (r, t) � M(t) for every

r ∈ � and t � T . This automatically implies that V (·, T ) ≡ 0.

According to general mathematical finance theory [12], for every r ∈ � and t < T , we

have

V (r, t) = min{M(t), m dt + �[V (r + drt, t + dt)e−rdt | rt = r] } ∀ r ∈ �, t < T

where � stands for conditional expectation (under the risk-neutral probability). Assuming

appropriate regularity on V and using Itô Lemma, we obtain from the above equation

that

V (r, t) = min{M(t), V (r, t) + [LV (r, t) + m] dt},

where

LV (r, t) =
∂V (r, t)

∂t
+

σ2

2

∂2V (r, t)

∂r2
+ k(θ − r)

∂V (r, t)

∂r
− rV (r, t).

Thus, V is the solution of the variational inequality

0 = min{M(t) − V (r, t), LV (r, t) + m}, 0 � V (r, t) ∀ r ∈ �, t � T . (1.2)
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Using a classical method (such as that used in [3] for an American put option), it is

easy to show that the variational problem (1.2) admits a unique solution and the solution

has bounded derivatives Vrr := ∂2V
∂r2

and Vt := ∂V
∂t

. With this regularity, one can construct

a delta hedging portfolio (using zero coupon bonds of various maturities) to replicate

the mortgage contract and to conclude that at any time t (t � T ) and spot rate rt = r,

the value of the mortgage contract is V (r, t). In addition, one can show by a comparison

principle that Vr(, t) := ∂V (r,t)
∂r

� 0 for every r ∈ �, t � T . Therefore, there is a function

R(·) : (−∞, T ) → [−∞,∞) such that

V (r, t) < M(t) ⇐⇒ r > R(t).

We call r = R(t) the optimal boundary for mortgage contract termination. That is, the best

strategy for the borrower is to terminate the mortgage contract at the first time that the

spot market return rate rt is below R(t).

One can further show that R(T−) = c, R′(t) � 0 for all t < T , and R(−∞) > −∞.

Hence, (R, V ) solves the following free boundary problem:

⎧⎪⎪⎨
⎪⎪⎩

LV (r, t) + m = 0 < M(t) − V (r, t) ∀ r > R(t), t < T ,

V (R(t), t) = M(t), Vr(R(t), t) = 0 ∀ t � T ,

V (r, T ) = 0 ∀ r � R(0) = c.

(1.3)

Once a solution (R, V ) of (1.3) is obtained, a solution of (1.2) can be obtained by extending

V to � × (−∞, T ] by setting V (r, t) = M(t) for every r < R(t) and t � T .

Similar problems have been studied from an option-theoretical viewpoint by Buser and

Hendershott [2], Epperson et al. [4], Kau et al. [8, 9], Pozdena and Iben [10], Kau and

Keenan [7], etc. The mathematical analysis for problem (1.3) has been completely carried

out by Jiang et al. [6]; see also relevant mathematical work by Yuan et al. [13]. In [6],

the authors proved that the problem is well-posed; namely, problem (1.3) admits a unique

solution that is smooth up to the free boundary r = R(t). Also, the free boundary R(·) is

a smooth function strictly increasing on (−∞, T ), and has the asymptotic behaviour

R(t) ∼ c − σκ̄
√
T − t as t ↗ T , κ̄ = 0.47386 . . . . (1.4)

In this article, we consider numerical aspects of this problem. In the course of this

study, we provide an analytical solution to the infinite horizon problem and show that

R(t) ∼ R∗ + ρ∗e−c(T−t) as t → −∞, (1.5)

where R∗ and ρ∗ are constants that can be easily calculated by solving an algebraic

equation involving Hermite functions. On the basis of the existing near-expiry behavior

(1.4) and our new long-term behavior (1.5), we provide global approximations R(t) ≈
RI (T − t) and R(t) ≈ RII (T − t) for all t � T , where

RI (τ) = c − (c − R∗)
√

1 − e−b∗τ, b∗ :=

(
0.474σ

c − R∗

)2

(1.6)
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RII (τ) = c − 0.474σ
√

1 − e−2cτ

√
2c

+ ρ∗(e−cτ − e−2cτ) +

[
R∗ − c +

0.474σ√
2c

]
(1 − e−2cτ). (1.7)

We numerically demonstrate that these approximations are very accurate. In the special

case when typical US economy parameters are used, we have

max
t�T

|R(t) − RI (T − t)|
R(T ) − R(−∞)

� 2%,
maxt�T |R(t) − RII (T − t)|

R(T ) − R(−∞)
< 0.4%. (1.8)

Here R(T ) − R(−∞) = c − R∗ is the total oscillation of R(·) on (−∞, T ]; see Figures 1(b)

and 3.

The article is organized as follows. In § 2, we use the statistical procedure of maximum

likelihood estimation (MLE) to determine reasonable values for the parameters k, θ and

σ appearing in the Vasicek model to be used for the stochastic market rate of return.

Without knowledge of the market price of risk, we can only speculate that these values

should be in the vicinity of those values that incorporate the market price of risk. In

§ 3, we make a change of variables to reduce problem (1.3) to a simpler version in

terms of the heat equation. § 4 develops integral identities that are used in § 5 to obtain

fast and accurate numerical schemes on the basis of Newton’s method. The logic for

approximations (1.6) and (1.7) is provided in § 7. Some numerical experiments are given

in § 8, with a final conclusion in § 9.

2 Calibration of the vasicek model using MLE

To determine the numerical values of the parameters k, θ and σ in the Vasicek model

(1.1), we use the method of maximum likelihood. Starting from an initial rate rτ = x, at

a later time t (t > τ), the probability density p for the rate rt to be equal to y is given by

p(τ, x; t, y) :=
Probability (rτ = x, rt ∈ (y, y + dy) )

dy
=

√
k exp(− k[(y−θ)−(x−θ)e−k(t−τ)]2

σ2(1−e−2k(t−τ))
)√

πσ2(1 − e−2k(t−τ))
.

Suppose {(ti, ri)}ni=0 is a list of sample rates where ri = rti . Assume that all ∆t =

ti+1 − ti are positive and equal. Using d(e−kt(rt − θ)) = σe−ktdWt, we can show that

{(rti+1
−θ)− (rti −θ)e−k∆t}ni=1 are independent and identically distributed random variables.

Hence, we can define the maximum likelihood function Φ(k, θ, σ) :=
∏n

i=1 p(ti−1, ri−1; ti, ri).

Consequently, the maximum likelihood estimators (MLEs) for k, θ and σ are defined as

the maximizer of the function Φ(·, ·, ·). Routine calculation gives the following MLEs

(maximizer of Φ):

k = − 1

∆t
log b, θ =

Ȳ − bX̄

1 − b
, σ2 = 2k

n − 1

n

Cov[Y , Y ] − b2Cov[X,X]

1 − b2
,

where

X̄ = 1
n

∑n
i=1 ri−1, Ȳ = 1

n

∑n
i=1 ri, b = Cov[X,Y ]

Cov[X,X]
,

Cov[X,Y ] = 1
n−1

∑n
i=1(ri − Ȳ )(ri−1 − X̄),

Cov[X,X] = 1
n−1

∑n
i=1(ri−1 − X̄)2, Cov[Y , Y ] = 1

n−1

∑n
i=1(ri − Ȳ )2.
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Table 1. Statistics of the yields of US 13-week treasury bills and the maximum likelihood

estimators for the parameters in the Vasicek model. Here “mean” and “StdDev” represent

the mean and standard deviation of the yield, measured in annual units.

From To Sample Mean (StdDev) k θ σ

1996 2006 Daily 0.035 (0.017) 0.101 0.032 0.007

1996 2006 Weekly 0.035 (0.017) 0.119 0.032 0.008

1996 2006 Monthly 0.036 (0.017) 0.100 0.033 0.007

1986 2006 Daily 0.045 (0.019) 0.108 0.039 0.008

1986 2006 Weekly 0.045 (0.019) 0.120 0.040 0.009

1986 2006 Monthly 0.045 (0.019) 0.103 0.039 0.008

1976 2006 Daily 0.060 (0.031) 0.148 0.058 0.017

1976 2006 Weekly 0.060 (0.031) 0.169 0.059 0.018

1976 2006 Monthly 0.060 (0.031) 0.177 0.059 0.018

1966 2006 Daily 0.059 (0.028) 0.178 0.059 0.017

1966 2006 Weekly 0.059 (0.028) 0.208 0.059 0.018

1966 2006 Monthly 0.059 (0.028) 0.229 0.059 0.019

Table 1 is a summary of the MLEs from US 13-week treasury bills. We use three

different time intervals ∆t = ti+1 − ti: daily, weekly and monthly. We calculated these data

using 10-, 20-, 30- and 40-year periods.

3 A transformation and well-posedness

For simplicity, in the sequel we use subscripts to denote partial derivatives. We con-

sider (1.2). First by a maximum principle, the condition V (r, t) � 0 can be replaced by

V (·, T ) ≡ 0, if we are working in the class of bounded solutions. Next, introduce the

change of variables

x =

√
kek(T−t)

σ

[
r +

σ2

k2
− θ

]
, s = e2k(T−t),

u(x, s) =
2ck

√
πk

mσ
{M(t) − V (r, t)} exp

{
− k

σ2

[
r +

σ2

2k2
− θ

]2

−
[
k +

σ2

2k2
− θ

]
(T − t)

}
.

Then problem (1.2) is transformed to{
min{u, us − 1

4
uxx − f } = 0 in � × (1,∞),

u(x, 1) = 0 ∀x ∈ �
(3.1)

where

f(x, s) :=
√

π(sγ − 1)s−ν−1(x − β
√
s)e

−( x√
s
−α)2

,
(3.2)

α :=
σ

2k3/2
, γ :=

c

2k
, β :=

√
k

σ

(
c − θ +

σ2

k2

)
, ν := 1 +

σ2

4k3
+

c − θ

2k
.
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Using a standard theory of variational inequalities (e.g. [5]), one can show that (3.1)

admits a unique solution. In addition, there exists X ∈ C([1,∞)) such that⎧⎪⎪⎨
⎪⎪⎩
us − 1

4
uxx = f(x, s) 1[X(s),∞)(x) in � × (1,∞),

u(x, s) > 0 ∀x > X(s), s > 1,

u(x, 1) = 0 ∀x ∈ �, u(x, s) = 0 ∀s > 1, x � X(s)

(3.3)

where

1[z,∞)(x) = 1 if x � z, 1[z,∞)(x) = 0 if x < z.

Here the differential equation for u is in the Lp sense, that is, both us and uxx are in

L
p
loc(�× [0,∞)) for any p ∈ (1,∞). Note that the existence of uss implies the free boundary

conditions

u(X(s), s) = 0, us(X(s), s) = 0 ∀ s � 1.

Once we find X(·), the optimal boundary r = R(t) for terminating the mortgage is given

by

R(t) = c +
σ√
k

(
X(e2k(T−t))

ek(T−t)
− β

)
. (3.4)

It is shown in [6] that R ∈ C∞((−∞, T )) so X ∈ C∞((1,∞)).

4 Integral equations

The fundamental solution associated with the heat operator ∂s − 1
4
∂2
xx is denoted by

Γ (x, s) :=
e−x2/s

√
πs

·

Using Green’s identity, the solution u to the differential equation in (3.3) can be expressed

as

u(x, s) =

∫ s

1

dς

∫ ∞

X(ς)

Γ (x − y, s − ς)f(y, ς) dy ∀x ∈ �, s � 1. (4.1)

4.1 The integral identities

In this section, we derive the following three integral identities for the unknown free

boundary function X(·) defined on (1,∞):

0 =

∫ s

1

dς

∫ ∞

X(ς)

Γ (X(s) − y, s − ς)f(y, ς) dy = 0 ∀s > 1, (4.2)

0 =

∫ s

1

dς

∫ ∞

X(ς)

Γx(X(s) − y, s − ς)f(y, ς) dy = 0 ∀ s > 1, (4.3)
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2f(X(s), s) = −
∫ s

1

Γx(X(s) − X(ς), s − ς)f(X(ς), ς)dς

+

∫ 1

s

∫ ∞

X(ς)

Γx(X(s) − y, s − ς)fy(y, ς) dydς ∀ s > 1. (4.4)

These identities correspond to the facts u(X(s), s) = 0, ux(X(s), s) = 0 and uxx(X(s)+, s)−
uxx(X(s)−, s) = −4f(X(s), s), respectively.

4.2 The first integral representation

Setting x = X(s) in (4.1), we immediately obtain the first integral equation (4.2) for the

unknown X(·).
Although u(x, s) = 0 for all x � X(s), equation (4.2) always produces the correct free

boundary, as shown in the following theorem.

Theorem 4.1 Suppose X : s ∈ [1,∞) → � is a continuous function satisfying (4.2). Define

u as in (4.1). Then (X, u) solves (3.3) and u is the unique solution to (3.1). In addition,

X(s) < β
√
s ∀s > 1. (4.5)

Proof Since X is continuous and f is smooth and bounded, the function u defined in (4.1)

satisfies the differential equation in (3.3). In the domain {(x, s) | s > 1, x < X(s)}, u satisfies

the heat equation us = 1
4
uxx and the zero boundary condition so u ≡ 0 in the domain.

After transforming to the original variable (r, V ), one can show that Vr � 0. From this,

we can derive that u > 0 when x > X(s) and s > 1. Hence, (X, u) solves (3.3).

Next we prove (4.5). Let U be the solution to

{
Us − 1

4
Uxx = f(x, s), (x, s) ∈ Ω := {(x, s) | s > 1, x > β

√
s},

U = 0 on ∂pΩ := [β,∞) × {0} ∪ {(β
√
s, s) | s > 1}.

Since f > 0 in Ω, we have U > 0 in Ω and Ux(β
√
s, s) > 0 for all s > 1. Comparing u and

U on Ω̄, we see that u � U on Ω̄. Since ux(X(s), s) = 0, Hopf’s lemma implies that u > U

when x = β
√
s, s > 1. Thus, X(s) < β

√
s for all s > 1.

Finally, notice that f < 0 whenever x < β
√
s, or whenever x < X(s), so that u satisfies

the variational inequality (3.1). It is a known fact that for any given smooth bounded

f, (3.1) admits a unique solution; see, for example, Friedman [5]. This completes the

proof. �

We remark that (4.2) is derived from u(X(s), s) = 0. Since both ux(X(s), s) = 0 and

us(X(s), s) = 0, it would not be easy to find a stable and efficient scheme based solely on

(4.2) and the standard Newton’s method. We shall derive numerical schemes on the basis

of alternate integral equations for X(·).
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4.3 The second integral identity

For every x ∈ � and s � 1, a differentiation with respect to x for u in (4.1) gives

ux(x, s) =

∫ s

1

dς

∫ ∞

X(ς)

Γx(x − y, s − ς)f(y, ς) dy.

Such differentiation is permitted since f is bounded and smooth, and

∫ s

1

∫
�

|Γx(x − y, s − ς)| dy dς =
4
√
s − 1√

π
< ∞.

The condition ux(X(s), s) = 0 immediately gives us the second integral equation (4.3).

For the same reason as before, although ux(x, t) = 0 for all x � X(s), a solution to (4.3)

always provides us the correct answer.

Theorem 4.2 Suppose X : s ∈ [1,∞) → � is continuous and satisfies (4.3). Then it is unique

and the function u defined in (4.1) solves (3.1) and (X, u) solves (3.3).

The proof is analogous to that for Theorem 4.1, and hence is omitted.

4.4 The third integral identity

To take another derivative, we use integration by parts to write

ux(x, s) =

∫ s

1

{
Γ (x − X(ς), s − ς)f(X(ς), ς) +

∫ ∞

X(ς)

Γ (x − y, s − ς)fy(y, ς) dy

}
dς.

Assume that X(·) is continuous. Then for x � X(s), we can interchange the order of

differentiation and integration to obtain

uxx(x, s) =

∫ s

1

{
Γx(x − X(ς), s − ς)f(X(ς), ς) +

∫ ∞

X(ς)

Γx(x − y, s − ς)fy(y, ς) dy

}
dς.

Suppose that [X(s) − X(ς)]/(s − ς)3/2 is integrable over ς ∈ (1, s). Then

∫ s

1

|Γx(X(s) − X(ς), s − ς)f(X(ς), ς)|dς = O(1)

∫ s

1

|X(s) − X(ς)|
(s − ς)3/2

dς < ∞.

As f is smooth, we derive that

lim
ε→0+

uxx(X(s) ± ε, s) = ∓2f(X(s), s) +

∫ s

1

{
Γx(X(s) − X(ς), s − ς)f(X(ς), ς)

+

∫ ∞

X(ς)

Γx(X(s) − y, s − ς)fy(y, ς) dy

}
dς.

Consequently, since uxx(x, s) = 0 for all x < X(s), we have uxx(X(s)+, s) = −4f(X(s), s)

and the integral identity (4.4).
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The fact that uxx(X(s)+, s) > 0 allows us to devise a stable and efficient Newton’s

iteration scheme to solve X from equation (4.3), which comes from ux(·, s) = 0. As we see,

the identity (4.4) plays an important role in simplifying our scheme.

5 A Newton iteration scheme

5.1 The derivation

We propose to numerically solve X from equation (4.3). For this, we define an operator

Q from ρ ∈ C1((1,∞)) to Q[ρ] by

Q[ρ](s) :=

∫ 1

s

∫ ∞

ρ(ς)

Γx(ρ(s) − y, s − ς)f(y, ς) dydς

=

∫ 1

s

∫ ∞

0

Γx(ρ(s) − ρ(ς) − z, s − ς)f(ρ(ς) + z, ς) dzdς ∀s > 1.

Thus, our problem is the following:

(P) Find X ∈ C([1,∞)) ∩ C∞((1,∞)) such that Q[X] ≡ 0.

To solve (P) numerically, we use Newton’s method. To implement this method, we need

to calculate the first variation of Q[ρ]. For every smooth function ζ, we compute

Q′[ρ, ζ](s) = lim
ε↘0

Q[ρ + εζ](s) − Q[ρ](s)

ε

=

∫ s

1

∫ ∞

0

{
(ζ(s) − ζ(ς))Γxx(ρ(s) − ρ(ς) − z, s − ς)f(ρ(ς) + z, ς)

+ ζ(ς)Γx(ρ(s) − ρ(ς) − z, s − ς)fy(ρ(ς) + z, ς)
}
dz dς

= ζ(s)

∫ 1

s

{
Γx(ρ(s) − ρ(ς), s − ς)f(ρ(ς), ς) +

∫ ∞

ρ(ς)

Γx(ρ(s) − y, s − ς)fy(y, ς) dy
}
dς

−
∫ s

1

ζ(ς)Γx(ρ(s) − ρ(ς), s − ς)fy(ρ(ς), ς) dς.

In particular, when ρ = X, we can use (4.4) to simplify the expression as

Q′[X, ζ](s) = −2f(X(s), s)ζ(s) −
∫ 1

s

ζ(ς)Γx(X(s) − X(ς), s − ς)f(X(ς), ς) dς.

Let ∆s, representing a particular mesh size, be small. Suppose ζ ≡ 0 on [1, s − ∆s].

Then

Q′[X, ζ](s) = −2f(X(s), s)ζ(s) −
∫ s

s−∆s

ζ(ς)Γx(X(s) − X(ς), s − ς)f(X(ς), ς) dς

= −2f(X(s), s)ζ(s) + o(1)‖ζ‖L∞([s−∆s,s]). (5.1)

Here we have assumed that the improper integral
∫ s

1 |Γx(X(s) − X(ς), s − ς)|dς is

convergent.

https://doi.org/10.1017/S0956792507006997 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792507006997


372 D. Xie et al.

5.2 The Newton iteration

Now we use Newton’s method to devise an iteration scheme for the unknown function X.

Suppose we have already found X in [1, s − ∆s] and want to find X on (s − ∆s, s].

Picking an initial guess Xold(s), say Xold ≡ X(s − ∆s) on [s − ∆s, s]. We can find an

iterative updating scheme from Xold to Xnew according to the following rationale. Let

ζ = X(s) −Xold(s) be the amount of unknown correction needed. Then Xold = X − ζ, and

using Q[X](s) = 0 and (5.1), we have

Q[Xold](s) = Q[X − ζ](s) − Q[X](s) ≈ 2f(X(s), s)ζ(s).

This gives us the approximation formula for the correction ζ(s) ≈ Q[Xold](s)
2f(X(s),s)

. Thus, we have

the following Newton scheme in a continuous setting:

Xnew(ς) = Xold(ς) +
Q[Xold](ς)

2f(Xold(ς), ς)
∀ ς ∈ (s − ∆s, s].

We remark that in the interval (1, 1 + ∆s], one could pick the very first initial guess

Xold ≡ β.

5.3 The operator Q

Since Q[X](s) = ux(X(s), s) involves a double integral over y ∈ (X(ς),∞) and ς ∈ (1, s),

to reduce the amount of calculation needed, we reduce the double integral to a single

integral. We begin with

ux(x, s) =

∫ 1

s

∫ ∞

X(ς)

Γx(x − y, s − ς)f(y, ς) dy dς

=

∫ s

1

(ςσ − 1)

sςν
√
s − ς

∫ ∞

X(ς)

2s(y − x)(y − β
√
ς)

(s − ς)ς
e− (x−y)2

s−ς
− (y−α

√
ς)2

ς dy dς.

Using integration by parts, we can derive that

ux(x, s) =

∫ s

1

G1(x,X(ς), s, ς)√
s − ς

dς +

∫ s

1

G2(x,X(ς), s, ς) dς ∀ x ∈ �, s > 1,

Q[X](s) =

∫ s

1

G2(X(s), X(ς), s, ς) dς − 2

∫ s

1

G1(X(s), X(ς), s, ς) d
√
s − ς ∀s > 1

where

G1(x, y, s, ς) :=
ςγ − 1

sςν

{
y − β

√
ς − s−ς

s
(x − α

√
ς)

}
e

− (x−y)2

s−ς
− (y−α

√
ς)2

ς ,

G2(x, y, s, ς) :=

√
π(ςγ − 1)e−(x−α

√
ς)2/s

s3/2ςν−1/2

{
1
2

−
(

x√
ς

− α
) (

x
√
ς

s
+ s−ς

s
α − β

) }

× Erfc

(√
s

(s−ς)ς
(y − x) +

(
x√
ς

− α
)√

s−ς
s

) (
Erfc(z) :=

2√
π

∫ ∞

z

e−t2dt

)
,
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G1(x, x, s, s) =
(sγ − 1)(x − β

√
s)e−(x/

√
s−α)2

sν+1
=

1√
π
f(x, s),

G2(x, x, s, s) =

√
π(sγ − 1)e−(x/

√
s−α)2

sν+1

{
1

2
−

(
x√
s

− α

)(
x√
s

− β

)}
.

5.4 The standard numerical scheme

Suppose we use mesh points {si}∞
i=0, where 1 = s0 < s1 < s2 < · · · . We denote the

approximation of X(si) by Xi. One can check that

X0 = X(s0) = X(1) = β.

We can use the trapezoid rule to discretize the integral for Q[X](sn):

Q[X](sn) ≈
n∑

i=1

(
√
sn − si−1 −

√
sn − si)(G1(Xn,Xi, sn, si) + G1(Xn,Xi−1, sn, si−1))

+

n∑
i=1

(si − si−1)
G2(Xn,Xi, sn, si) + G2(Xn,Xi−1, sn, si−1)

2
.

Consider z = Xn as an unknown. Numerically, we solve for it from the equation Qn(z) = 0.

Since G1(·, ·, ·, 1) ≡ 0 and G2(·, ·, ·, 1) ≡ 0, we have

Q1(z) :=
√

s1 − 1 G1(z, z, s1, s1) +
s1 − 1

2
G2(z, z, s1, s1),

Qn(z) :=
√
sn − sn−1G1(z, z, sn, sn) +

sn − sn−1

2
G2(z, z, sn, sn)

+

n−1∑
i=1

{
(
√
sn − si−1 −

√
sn − si+1)G1(z, Xi, sn, si) +

(si+1 − si−1)

2
G2(z, Xi, sn, si)

}

for n � 2.

Suppose X0, X1, · · · , Xn−1 are known. We solve for Xn = z from Qn(z) = 0 by the

following iteration:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
z0 = Xn−1 + Xn−1−Xn−2

sn−1−sn−2
(sn − sn−1),

zq+1 = zq +
Qn(zq)

2f(zq, sn)
, q = 0, 1, 2, · · · ,

Xn = zq+1 if |zq+1 − zq| � ε, a given tolerance.

(5.2)

Here z0 is an initial guess derived from a linear interpolation. We point out that Newton’s

method is quite efficient. For instance, in the example summarized on the left-hand side of

Table 2, when 1,024 evenly distributed division points are used for the interval [1, e2kT ] � s

with T = 1 (year) and the tolerance is set to be ε = 5 × 10−7, the sum of all the q’s in the

1,024 steps are 275; that is, the average number q of iterations is about 0.3, which means

q = 0 in most updating steps from Xn−1 to Xn.
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Table 2. Rate of convergence for the standard numerical scheme (left) and the upgraded

scheme (right). Here “grid” stands for the number of grids, “iteration” is the total Newton

iterations, “solution” is the value of X at s = e2kτ with τ = T −t = 1 (year), “improvement”

is the difference between the current solution with that in the previous row and “rate” is the

ratio of the consecutive improvements.

Upgraded
scheme (Tolerance 5.0 10–7)

Grid Iteration Solution Improvement Rate

8 21 0.2436451 2.9× 10–4 0.0

16 37 0.2438225 1.8× 10–4 1.7

32 59 0.2439030 8.1× 10–5 2.2

64 85 0.2439357 3.3× 10–5 2.5

128 142 0.2439484 1.3× 10–5 2.6

256 266 0.2439531 4.7× 10–6 2.7

512 253 0.2439548 1.7× 10–6 2.7

1024 213 0.2439555 6.3× 10–7 2.8

Standard
 scheme tolerance 5.0 10–7

Grid Iteration Solution Improvement Rate

8 61 0.2161798 3.0 ×10–2 3.1

16 90 0.2303882 1.4× 10–2 2.1

32 127 0.2373004 6.9× 10–3 2.1

64 183 0.2406784 3.4× 10–3 2.0

128 238 0.2423363 1.7× 10–3 2.0

256 353 0.2431532 8.2×
×
×

10–4 2.0

512 326 0.2435571 4.0 10–4 2.0

1024 275 0.2437574 2.0 10–4 2.0

× ×

Numerical simulation shows that this numerical scheme has an error of size X(sn)−Xn =

O((∆s)), where ∆s is the mesh size. That is to say, when the mesh size is halved, the error

reduces by half.

5.5 Upgraded numerical scheme

In general, one can improve the rate of convergence for numerical integration by using

higher order quadrature rules. Since in the current situation singular integrals are involved,

higher order quadrature rules are not very effective. Here we introduce a modified trapezoid

rule designed specifically for the singular integrals at hand.

Notice that for any constants a < b � s and linear function g(x) on [a, b], we have

∫ b

a

g(x)√
s − x

dx =

∫ b

a

(b − x)g(a) + (x − a)g(b)

(b − a)
√
s − x

dx

=
2(b − a)

3(
√
s − a +

√
s − b)2

{[
√
s − a + 2

√
s − b]g(a) + [2

√
s − a +

√
s − b]g(b)}.

Thus, we can use the following discretization for the function Q[X](sn). When

n = 1,

Q̄1(z) =
4
√
s1 − 1

3
G1(z, z, s, s) +

s1 − 1

2
G2(z, z, s, s).

When n � 2,

Q̄n(z) =
4
√
sn − sn−1

3
G1(z, z, sn, sn) +

sn − sn−1

2
G2(z, z, sn, sn)

+

n−1∑
i=1

si+1 − si−1

2
G2(z, Xi, sn, si)
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+

n−1∑
i=1

2G1(z, Xi, sn, si)

3

{
(si − si−1)(

√
sn − si + 2

√
sn − si−1)

(
√
sn − si +

√
sn − si−1)2

+
(si+1 − si)(

√
sn − si + 2

√
sn − si+1)

(
√
sn − si +

√
sn − si+1)2

}
.

Setting X0 = β and a ‘ghost’ value X−1 = β + 0.334
√
s1 − 1, we can calculate {Xn}

iteratively for n = 1, 2, · · · by scheme (5.2) (with Qn replaced by Q̄n). The rate of

convergence is observed by numerical experimentation to be about O((∆s)3/2): X(sn) −
Xn = O(∆s3/2). That is, when the mesh size ∆s is halved, the error reduces by a factor

2
√

2 = 2.8.

5.6 A numerical example

The rate of convergence for uniform mesh size for two simulations are summarized in

Table 2. In this example, we take a typical US economy in 2006, in annual units,

c = 0.055, θ = 0.05, σ = 0.015, k = 0.15.

One notices that the Newton iteration converges very fast; for example, when 1,024

evenly distributed grid points are used for the interval [1, e2kT ] with T = 1 (year), the

total number of iterations for the two schemes are 287 and 213, respectively, which means

iteration is not needed in most updates. Also, one sees that the upgraded scheme is

significantly better than the standard scheme.

Figure 1(a) illustrates the difference between the two schemes. Since the upgraded

scheme directly treats the singularity of the integral, the improvement of the solution at

the first node is significant.

5.7 Approximations at the first node

The equations for the numerical approximations X1 at the first node from the two schemes

are respectively the following:

Standard scheme: X1 − β
√
s1 = −

√
π

√
s1 − 1

2

{
1

2
−

(
X1√
s1

− α

) (
X1√
s1

− β

)}
.

Upgraded scheme:
4

3
(X1 − β

√
s1) = −

√
π

√
s1 − 1

2

{
1

2
−

(
X1√
s1

− α

) (
X1√
s1

− β

)}
.

Hence, we have the following asymptotic expansions:

Standard scheme: X1 ≈ β −
√

π
4

√
s1 − 1 ≈ β − 0.443

√
s1 − 1.

Upgraded scheme: X1 ≈ β − 3
√

π
16

√
s1 − 1 ≈ β − 0.332

√
s1 − 1.

We note that the true asymptotic expansion is X(s) = β − [0.334 . . . + o(1)]
√
s − 1 as

s ↘ 1.
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Figure 1. (a) Numerical solutions of the curve (t, R(t)) in annual units with 32 grid points. Dots

on the top curve are from the upgraded scheme; the dots on the bottom curve are for the

standard scheme. (b) Dots represent the ‘true’ solution, calculated by using 2, 048 division points

in the upgraded scheme outlined in § 5. The curve ‘on the dots’ is the second approximation, with

maximum relative error 0.004 that is not discernable from the plot. The curve below the dots is the

first approximation, with relative error 0.02.

5.8 An exact solution for a special f

.

When f in (3.2) is given by f(x, s) = γ
√

πe−(β−α)2 (x−β)(s− 1), there is an exact solution

of (3.3) as

X(s) = β − κ
√
s − 1, u(x, s) = γ

√
πe−(β−α)2 (s − 1)5/2g

(
β − x√
s − 1

)
,

where g, together with the unknown constant κ, solve the ‘free boundary’ problem

g′′(z) + 2zg′(z) − 10g(z) − 4z = 0 ∀z < κ, g(κ) = g′(κ) = 0,

g > 0 in (−∞, κ], g = 0 in (κ,∞), g(z) = O(z) as z → −∞.

We find that the solution to this free boundary problem is given by

g(z) =
1

2

{
κ

∫ z

−∞(z − t)5e−t2dt∫ κ

−∞(κ − t)5e−t2dt
− z

}
∀ z < κ,

where κ is the unique solution to the transcendental equation

5κ

∫ κ

−∞
(κ − t)4e−t2dt =

∫ κ

−∞
(κ − t)5e−t2dt ⇔

∫ ∞

κ

15e−t2dt

2t4(5 + 2t2)2
=

√
π.
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A numerical calculation gives

κ = 0.3343641440309 . . . .

This exact solution of (3.3) can be used to test the accuracy (rate of convergence) of our

numerical schemes. In [6], the asymptotic behaviour (1.4) (with κ̄ =
√

2 κ) is derived by a

method equivalent to replacing f by its asymptotic expansion γ
√

πe−(β−α)2 (x − β)(s − 1).

6 Asymptotic behaviour of R(t) when t → −∞

In this section, we prove the following.

Theorem 6.1 There exist constants R∗ ∈ (−∞, c) and ρ∗ > 0 such that (1.5) holds.

The idea here is to study first the limit (R∗, V ∗(·)) := limt→−∞(R(t), c
m
V (·, t)), which solves

a so-called infinite horizon problem, and then the limit ζ∗(r) := limt→−∞ ζ(r, t), where

ζ(r, t) :=
Vt(r, t)

Ṁ(t)
= − Vt(r, t)

mec(t−T )
.

After deriving the relation

Ṙ(t) =
c σ2

2m

Vtr(R(t)+, t)

(c − R(t))(1 − ec(t−T ))
=

cec(t−T ) σ2

2

ζr(R(t)+, t)

(R(t) − c)(1 − ec(t−T ))
,

we see that

ρ∗ :=
1

c
lim

t→−∞

Ṙ(t)

ec(t−T )
=

σ2

2

ζ∗
r (R

∗)

(R∗ − c)
.

The proof of the theorem is given in the following subsections. In the mean time, we

derive formulas for R∗, V ∗(·), ζ∗(·) and ρ∗.

6.1 The infinite horizon problem

In [6], it is shown that Ṙ(t) > 0. Also, one can show that Vt � 0. Hence, there exists

lim
t→−∞

(
R(t),

c

m
V (·, t)

)
= (R∗, V ∗(·)). (6.1)

From (1.3), one derives that (R∗, V ∗) is a solution to the following infinite horizon problem:⎧⎪⎨
⎪⎩

{
σ2

2

d2

dr2
+ k(θ − r)

d

dr
− r

}
V ∗ = −c in (R∗,∞),

V ∗(R∗) = 1, V ∗
r (R∗) = 0, 0 � V ∗ � 1 in (R∗,∞).

(6.2)

Theorem 6.2 Assume that σ, k, θ, c are positive constants. Then (6.2) admits a unique solu-

tion. In addition, the solution has the property that R∗ ∈ (−∞, c) and V ∗
r (r) < 0 for all

r ∈ (R∗,∞).
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In the next two subsections, we prove Theorem 6.2, along with formulas for R∗ and

V ∗(·).

6.2 The homogeneous equation

We begin with the homogeneous equation{
σ2

2

d2

dr2
+ k(θ − r)

d

dr
− r

}
G(r) = 0, r ∈ �.

In a self-adjoint form, this equation can be written as

{
e−k(r−θ)2/σ2

Gr(r)
}
r
= 2

σ2 e
−k(r−θ)2/σ2

r G(r), r ∈ �. (6.3)

If G1 and G2 are two linearly independent solutions, their Wronskian satisfies

G1r(r)G2(r) − G2r(r)G1(r) = Cek(r−θ)2/σ2

,

where C is a non-zero constant. Thus, if there is a solution bounded at r = ∞, it is unique

up to a constant multiple. We now find such a solution.

Lemma 1 Assume that σ > 0 and k > 0. Then (6.3) admits a unique solution satisfying

lim
r→∞

G(r)er/kr−µ = 1, µ :=
σ2 − 2θk2

2k3
.

In addition, there exists r0 ∈ [−∞, 0) such that

Gr < 0 < G in (r0,∞),

∫ ∞

r0

re−k(r−θ)2/σ2

G(r) dr = 0. (6.4)

In particular, (i) when σ2 � 2k2θ, r0 = −∞; (ii) when σ2 > 2k2θ, r0 > −∞ and Gr(r0) = 0.

Proof Make a change of variables

x =

√
k

σ

(
r +

σ2

k2
− θ

)
, H(x) = er/kG(r).

Then, H = H(x) satisfies the Hermite equation

Hxx = 2xHx − 2µH ∀ x ∈ �.

A particular solution of this ordinary differential equation (ODE) is the Hermite function

defined as

H(µ; x) =
(−1)m

Γ (m − µ)

∫ ∞

0

tm−µ−1 d
me−t2−2xt

dtm
dt ∀x, µ ∈ �, m ∈ � ∩ (Re(µ),∞). (6.5)

Here Γ (·) is the Gamma function, � = {0, 1, 2, · · ·} is the set of non-negative integers,

and, most importantly, the integral on the right-hand side is independent of the integer
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m, and hence H(µ; x) is an entire function of both variables µ ∈ � and x ∈ �. The integer

m here is introduced so that the integral is uniformly convergent. Without it, one can use

contour integrals to express

H(µ; x) =
1

Γ (−µ)[1 − e−2πµi]

∫
ω

t−µ−1e−t2−2xtdt ∀ x ∈ �, µ ∈ � \ �

where ω is any contour starting from ∞e2πi, rotating around the origin clockwise without

touching the origin and positive real axis, and finally ending at ∞e0i. One can derive the

relations

Hx(µ; x) = 2µH(µ − 1; x) ∀ x, µ ∈ �,

H(µ + 1; x) = 2xH(µ; x) − 2µH(µ − 1; x) ∀ x, µ ∈ �,

H(µ; x) ∼ (2x)µ as x → ∞ ∀ µ ∈ �

H(µ; x) ∼
√

πex
2

Γ (−µ)(−x)µ+1
as x → −∞ ∀ µ ∈ � \ �,

H(µ; −x) = (−1)µH(µ; x) ∀ x ∈ �, µ ∈ �.

Also, from [e−x2

Hx]x = −2µe−x2

H , one can derive that on the real axis, H(µ; ·) > 0 >

Hx(µ; ·) when µ � 0 and H(µ; ·) changes sign when µ > 0.

Now going back to the original variable, we find that

G(r)e−k(r−θ)2/σ2

= e−x2+xσk−3/2−θ/kH(µ; x).

It follows that

lim
|r|→∞

{|Gr(r)| + |G(r)|}e−k(r−θ)2/σ2

e|r|/(2k) = 0. (6.6)

Integrating (6.3) over �, we obtain
∫

� re−k(r−θ)2/σ2

G(r)dr = 0, where the improper integer

is uniformly convergent. Finally, we have the following:

(1) When σ2 > 2k2θ, we have µ > 0. As H(µ; ·) changes sign, so does G(·). Thus, there

exists a finite real r0 such that Gr(r0) = 0 and Gr < 0 in (r0,∞). This implies that G > 0

in [r0,∞). After integrating (6.3) over [r0,∞), we obtain the integral identity in (6.4).

(2) When σ2 � 2k2θ, we have µ � 0, so that H(µ; x) > 0 for all x ∈ �. Thus, G > 0

in �. As [e−k(r−θ)2/σ2

]r is positive in (0,∞) and negative in (−∞, 0), in view of (6.6), we

derive Gr < 0 on �. Hence, (6.4) holds with r0 = −∞. This completes the proof. �

6.3 Proof of Theorem 6.2

We divide the proof into several steps. Suppose (R∗, V ∗) solves (6.2). We first establish

certain properties of (R∗, V ∗) and then derive a formula for it, thereby obtaining both

existence and uniqueness.

1. First, we show that V ∗
r < 0 in (R∗,∞).

Suppose otherwise. Then V ∗
r (r1) � 0 at some r1 > R∗. Since V ∗(R∗) = 1 is a global

maximum, r2 := sup{r ∈ (R∗, r1) | V ∗
r (r) < 0} is well defined and by continuity V ∗

r (r2) = 0.

The case V ∗
rr(r2) < 0 is impossible since it would imply V ∗

r > 0 in (r2 − ε, r2) for some small
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positive ε, contradicting the definition of r2. The case V ∗
rr(r2) = 0 is also impossible since

it would imply by the ODE for V ∗ that r2V
∗(r2) = c > 0 and σ2

2
V ∗
rrr(r2) = V ∗(r2) > 0, so

that V ∗
r > 0 in (r2 − ε, r) for some small positive ε. Hence, V ∗

rr(r2) > 0 and, by the ODE,

r2V
∗(r2) > c. Set r3 = sup{r > r2 | V ∗

r > 0 in (r2, r)}. Then for every r ∈ (r2, r3), rV
∗(r) >

r2V (r2) > c and [e−k(r−θ)2/σ2

Vr(r)]r = (rV − c)e−k(r−θ)2/σ2

> 0. That is, e−k(r−θ)2/σ2

Vr is a

strictly increasing function on [r2, r3). This implies r3 = ∞ and limr→∞ e−k(r−θ)2/σ2

Vr > 0,

which further implies limr→∞ V ∗
r = ∞, contradicting the boundedness of V ∗. Thus, we

must have V ∗
r < 0 in (R∗,∞). Consequently, 0 < V ∗ < 1 in (R∗,∞).

2. Next, we show that R∗ > r0. For this, consider the weighted Wronskian

W (r) = {V ∗
r (r)G(r) − V ∗(r)Gr(r)}e−k(r−θ)2/σ2

.

It satisfies σ2

2
Wr = −ce−k(r−θ)2/σ2

G. Integrating this equation over (r,∞) gives

W (r) =
2c

σ2

∫ ∞

r

Ge−k(r−θ)2/σ2

dt ∀ r � R∗. (6.7)

First, consider the case r0 > −∞. Should R � r0, we would have 0 < W (r0) =

V ∗
r (r0)G(r0)e

−k(r−θ)2/σ2

� 0, a contradiction, since Gr(r0) = 0 and G > 0 on [r0,∞).

Next, we consider the case r0 = −∞. Then G > 0 on �. Should R∗ = −∞, the

boundedness of V ∗ implies that along a sequence Rj → −∞, Vr(Rj) → 0 so that, in view

of (6.6), W → 0 along the sequence {Rj}, thus contradicting (6.7). Thus, we must have

R∗ > r0.

3. Now we show that R∗ needs to satisfy the following solvability condition for R∗:∫ ∞

R∗
(r − c)G(r)e−k(r−θ)2/σ2

dr = 0, R∗ > r0. (6.8)

In fact, substituting V ∗(R∗) = 1 and V ∗
r (R∗) = 0 into (6.7) at r = r∗ gives

e−k(r−θ)2/σ2

Gr(R
∗) = − 2c

σ2

∫ ∞

R∗
Ge−k(r−θ)2/σ2

dt.

Equation (6.8) then follows by noting that

e−k(r−θ)2/σ2

Gr(R
∗) =

∫ R∗

∞
[e−k(r−θ)2/σ2

Gr(r)]rdr = − 2

ω2

∫ ∞

R∗
re−k(r−θ)2/σ2

G(r) dr.

4. Here we show that (6.8) has a unique solution R∗. Since
∫ ∞
r0

rG(r)e−k(r−θ)2/σ2

dr = 0

and G > 0 on [r0,∞), we see that r0 < 0 and that the function

Ψ (c, r) :=

∫ ∞

r

(t − c)G(t)e−k(t−θ)2/σ2

dt, c > 0, r ∈ �

has the property

Ψ (c,∞) = 0, Ψr(c, ·) < 0 in (c,∞), Ψr(c, ·) > 0 in (r0, c), Φ(r0) < 0.

It then follows that the algebraic equation Ψ (c, ·) = 0 has a unique root in (r0,∞). Thus,
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R∗ is the unique root to (6.8) and

r0 < R∗ < c, lim
c↘0

R∗ = r0 ∈ [−∞, 0).

One notices that Ψ (c, r) > 0 for all r > R∗.

5. We are ready now to derive a formula for V ∗. Integrating over [R∗, r), equation (6.7)

multiplied by ek(r−θ)2/σ2

G−2 and using V ∗(R∗) = 1, we obtain

V ∗(r) := G(r)
{ 1

G(R∗)
+

2c

σ2

∫ r

R∗

ek(t−θ)2/σ2

G2(t)

∫ ∞

t

G(s)e−k(s−θ)2/σ2

ds dt
}
. (6.9)

Using

1

G(R∗)
− 1

G(r)
=

∫ r

R∗

Gr(t)

G2(t)
dt = − 2

σ2

∫ r

R∗

ek(t−θ)2/σ2

G2(t)

∫ ∞

t

s G(s)e−k(s−θ)2/σ2

ds dt,

we can write the above expression as

V ∗(r) = 1 − 2G(r)

σ2

∫ r

R∗

ek(t−θ)2/σ2

G2(t)

∫ ∞

t

(s − c)G(s)e−k(s−θ)2/σ2

ds dt. (6.10)

In conclusion, if (R∗, V ∗) solves (6.2), then R∗ is the unique root to (6.8) and V ∗ is given

by (6.9), which is equivalent to (6.10).

6. Finally, from (6.9), we see that V ∗ > 0 on [R∗,∞). Also, as Ψ (c, r) > 0 for all r > R∗,

we see from (6.10) that V ∗ < 1 in (R∗,∞) and that V ∗(R∗) = 1, and Vr(R
∗) = 0. It is then

an easy exercise to show that V ∗ in (6.9) satisfies the ODE in (6.2). Thus, (R∗, V ∗) obtained

in this manner is indeed a solution to (6.2). We have hence established the existence of a

unique solution to (6.2), thereby completing the proof of Theorem 6.2. �

6.4 Asymptotic behaviour of R(t) as t → ∞

Recall that [6]

Vr(R(t), t) = 0, Vt(R(t), t) = Ṁ(t) = −mec(t−T ).

This implies, by the partial differential equation (PDE) for V in (1.3) and by differentiating

Vr(R(t), t) = 0, that

Vrr(R(t)+, t) =
2

σ2
{rM(t) − m − Ṁ} =

2m

cσ2
(r − c)(1 − ec(T−t)),

Ṙ(t) = −Vrt(R(t)+, t)

Vrr(R(t)+, t)
=

c σ2

2m

Vtr(R(t)+, t)

(c − R(t))(1 − ec(T−t))
.

Hence, to find the asymptotic behaviour of Ṙ(t) as t → −∞, it suffices to find the

asymptotic behaviour of Vtr(R(t)+, t) as t → −∞. For this, we consider the function Vt

whose boundary value at r = R(t) is known to be Vt = Ṁ(t) = −mec(t−T ). Also, Vt satisfies{
∂

∂t
+

σ2

2

∂2

∂r2
+ k(θ − r)

∂

∂r
− r

}
Vt = 0, r > R(t), t < T .
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For the leading order expansion of Vt as t → −∞, it is natural to consider

ζ(r, t) :=
Vt(r, t)

Ṁ(t)
= − Vt

m ec(t−T )
.

Then ζ satisfies the following problem:

⎧⎪⎨
⎪⎩

{
∂

∂t
+

σ2

2

∂2

∂r2
+ k(θ − r)

∂

∂r
+ (c − r)

}
ζ(r, t) = 0, r > R(t), t < T ,

ζ(r, t) = 1 ∀r � R(t), t < T , ζ(r, T ) = 1 ∀r ∈ �.

(6.11)

Here the initial and boundary data for ζ follow from the fact that V (r, t) = M(t) for all

r � R(t) and that V (·, T ) = 0. We prove in a subsequent subsection that there is a limit

lim
t→−∞

ζ(r, t) = ζ∗(r) ∀ r > R∗ (6.12)

that satisfies the ODE problem⎧⎪⎨
⎪⎩

{
σ2

2

d2

dr2
+ k(θ − r)

d

dr
+ (c − r)

}
ζ∗(r) = 0 ∀ r > R∗,

ζ∗(R∗) = 1, supr�R∗ ζ∗(r) < ∞.

(6.13)

For this, we have the following:

Lemma 2 Problem (6.13) has a unique solution, and the solution satisfies

ζ∗
r (r) < 0, 0 < ζ∗(r) � 1 ∀ r � R∗.

In addition, in terms of the Hermite function, it is given by

ζ∗(r) =
e(R∗−r)/kH(µ + c/k; x)

H(µ + c/k; x∗)
,

x :=

√
k

σ

(
r +

σ2

k2
− θ

)
, x∗ :=

√
k

σ

(
R∗ +

σ2

k2
− θ

)
, µ :=

σ2 − 2k2θ

2k3
.

Now we can calculate

lim
t→−∞

Ṙ(t)e−c(t−T ) =
c σ2

2
lim

t→−∞

ζr(R(t)+, t)

(R(t) − c)(1 − ec(t−T ))

=
cσ2ζ∗

r (R
∗)

2(R∗ − c)
=

c σ
√
k

2(c − R∗)

{
σ

k
√
k

− Hx(µ + c/k; x∗)

H(µ + c/k; x∗)

}
.

Consequently, using

R(t) = R∗ +

∫ t

−∞
{Ṙ(t̂)e−c(t̂−T )}ec(t̂−T )dt̂,

we obtain the asymptotic expansion R(t) ∼ R∗ + ρ∗ec(t−T ) for large negative t, as stated in
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Theorem 6.1, where

ρ∗ :=
σ2ζ∗

r (R
∗)

2(R∗ − c)
=

σ
√
k

2 (c − R∗)

{
σ

k
√
k

− Hx(µ + c/k; x∗)

H(µ + c/k; x∗)

}
. (6.14)

�
Now to complete the proof of Theorem 6.1, it remains to prove Lemma 2 and (6.12),

which are the subjects of the next two subsections.

6.5 The problem (6.13)

The ODE in (6.13) is homogeneous and has two linearly independent solutions, at least

one of which is unbounded near r = ∞ (by using the Wronskian). Hence, if (6.13) has a

solution, it is unique. Consider

Ĝ(r) = e−r/θH(µ + c/θ; x).

It satisfies {
σ2

2

d2

dr2
+ k(θ − r)

d

dr
+ (c − r)

}
Ĝ = 0 ∀ r ∈ �, Ĝ(∞) = 0.

We show that Ĝr < 0 on [R∗,∞). For this, notice that V ∗ satisfies{
σ2

2

d2

dr2
+ k(θ − r)

d

dr
+ (c − r)

}
V ∗ = c(V ∗ − 1) < 0 ∀r > R∗.

Thus, the Wronskian of Ĝ and V ∗ satisfies

d

dr
{e−k(r−θ)2/σ2

[V ∗
r Ĝ − ĜrV

∗]} = c(V ∗ − 1)Ĝe−k(r−θ)2/σ2

.

Suppose that Ĝr < 0 on [R∗,∞) is not true. Then there exists r1 � R∗ such that

Ĝr(r1) = 0 and Ĝr < 0 on (r1,∞). However, this would imply Ĝ > 0 on [r1,∞) and that,

since V ∗
r (r1) � 0,

0 � V ∗
r Ĝ − ĜrV

∗
∣∣∣
r=r1

= ek(r1−θ)2/σ2

∫ ∞

r1

c(1 − V ∗)Ĝe−k(r−θ)2/σ2

dr > 0,

a contradiction. Thus, Ĝr < 0 on [R∗,∞). Consequently, 0 < Ĝ(r) < Ĝ(R∗) for all r > R∗,

and

ζ∗(r) =
Ĝ(r)

Ĝ(R∗)
=

e(R∗−r)/kH(µ + c/k; x)

H(µ + c/k; x∗)

is the unique solution to (6.13). This completes the proof of Lemma 2. �

6.6 The limit of ζ as t → −∞

Here we verify (6.12).
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1. Since V (r, t) = M(t) for all r � R(t), we have Vt(r, t) = Mt(t) for all r � R(t). Also

since V (·, T ) = 0, we know from the PDE in (1.3) that Vt(r, T ) = −m for all r > c = R(0).

Thus,

ζ(r, t) = 1 ∀ r � R(t), t � T , ζ(r, T ) = 1 ∀r ∈ �.

In addition, 0 is a subsolution and e(c−R∗)(T−t) is a supersolution to ζ, so that

0 < ζ(r, t) < e(c−R∗)(T−t) ∀ r � R∗, t < T .

This implies that for each t � T , ζ(·, t) is a bounded function.

2. Let ζ∗ be the unique solution to (6.13), as stated in Lemma 2. Now using ζ(R(t), t) =

1 > ζ∗(R(t)) for all t � T and comparing the function ζ and ζ∗ on {(r, t) | r � R(t), t � T },
we see that ζ(r, t) > ζ∗(r) for all r � R(t). As ζ(r, t) = 1 > ζ∗(r) for r ∈ (R∗, R(t)], we see

that

ζ(r, t) > ζ∗(r) ∀r > R∗, t � T .

3. To estimate the upper bound, let

G1(r) = ζ∗(r)

{
1 +

∫ r

R∗

ek(t−θ)2/σ2

ζ∗2(t)
dt

}
∀r ∈ �.

This is another solution to the ODE in (6.13) that satisfies limr→∞ G1(r) = ∞. Define

δ(t) := inf{δ > 0 | ζ(r, t) � ζ∗(r) + δG1(r) ∀r � R∗}, ∀t � T .

Since ζ(·, t) is bounded and G1(∞) = ∞, δ(t) is positive and finite. In addition,

ζ(r, t) � ζ∗(r) + δ(t)G1(r) ∀ r � R∗, t � T .

Furthermore, since Ṙ > 0, we have ζ(r) + δ(t̂)G1(r)|r=R(t) � ζ(R(t), t̂) = 1 for all t < t̂.

Hence, comparing ζ(r, t) and ζ∗(r) + δ(t̂)G1(r) on {(r, t) | r � R(t), t � t̂}, we have

ζ(r, t) < ζ∗(r) + δ(t̂)G1(r) ∀ r > R(t), t < t̂ � T .

Hence, 0 < δ(t) < δ(t̂) for all t < t̂1 � T . Consequently, there exists

δ∗ := lim
t→−∞

δ(t) ∈ [0,∞).

4. Here we show that δ∗ = 0. Suppose on the contrary that δ∗ > 0.

(a) On the spatially bounded domain {(r, t) | r ∈ [R∗, c+2], t < T }, let ζ̂ be the solution

to the boundary value problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
∂

∂t
+

σ2

2

∂2

∂r2
+ k(θ − r)

∂

∂r
+ (c − r)

}
ζ̂(r, t) = 0, r ∈ (R(t), c + 2), t < T ,

ζ̂(c + 2, t) = ζ∗(c + 2) + δ(t)G1(c + 2) ∀t < T ,

ζ̂(r, T ) = 1 ∀r ∈ [R∗, c + 2], ζ̂(r, t) = 1 ∀r ∈ [R∗, R(t)], t � T .
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By comparison,

ζ(r, t) � ζ̂(r, t) ∀ r ∈ [R∗, c + 2], t � T .

Also, using an elementary PDE analysis, say the Fourier series, one can show that

uniformly in r ∈ [R∗, c + 2], limt→−∞ ζ̂(r, t) = ζ̂(r,−∞), where ζ̂(r,−∞) is the solution to

the ODE in (6.13) on [R∗, c + 2] with the boundary value

ζ̂(R∗,−∞) = 1, ζ̂(c + 2,−∞) = ζ∗(c + 2) + δ∗G1(c + 2).

By comparison, it is easy to see that ζ̂(r,−∞) < ζ∗(r) + δ∗G1(r) for all r ∈ [R∗, c + 2).

Thus, there exists δ1 ∈ (0, δ∗) such that

ζ̂(r,−∞) < ζ∗(r) + δ1G1(r) ∀r ∈ [R∗, c + 1].

This also implies that there exists t1 � −1 such that

ζ(r, t) < ζ∗(r) + δ1G1(r) ∀r ∈ [R∗, c + 1], t � t1.

(b) Now we compare the function ζ(r, t) and ζ∗(r) + δ1G1(r) on [c + 1,∞) × (−∞, t1].

Since δ1 < δ∗, for each fixed t < t1, we see from the definition of δ∗ that the maximum of

ϕ(r, t) := ζ(r, t) − [ζ∗(r) + δ1G1(r)], r ∈ [R∗,∞)

is positive. As ϕ(r, t) < 0 for all r ∈ [R∗, c+1] and ϕ(∞, t) = −∞, there exists r̂(t) ∈ (c+1,∞)

such that 0 < ϕ(r̂, t) = maxr�R∗ ϕ(r, t). Using ϕr(r̂, t) = 0 � ϕrr(r̂, t) and the PDE for ϕ,

we have

0 = ϕt + σ2

2
ϕrr + (η − θr)ϕr + (c − r)ϕ|r=r̂

� ϕt(r̂, t) + (c − r̂)ϕ(r̂, t).

Hence, denoting K(t) := ϕ(r̂, t) = maxr>R(t) ϕ(r, t), we have

d

dt
K(t) := lim inf

h→0

K(t + h) − K(t)

h
� lim

h→0

ϕ(r̂, t + h) − ϕ(r̂, t)

h
= ϕt(r̂, t)

� (r̂ − c)ϕ(r̂, t) � ϕ(r̂, t) = K(t).

Thus, d
dt

[K(t)e−t] � 0 for all t < t1. After integration, this gives

0 < K(t) � K(t1)e
t−t1 ∀ t < t1, lim

t→−∞
K(t) = 0.

This implies that for all sufficiently large negative t, maxr�R∗ ϕ(r, t) = K(t) � 1
2
(δ∗ −

δ1) minr�R∗ G1(r), so that ζ(r, t) � ζ∗(r) + 1
2
(δ1 + δ∗)G1(r) for all r � R∗ and sufficiently

large negative t, contradicting the definition of δ∗.

In conclusion, we must have 0 = δ∗ = limt→−∞ δ(t).

5. Denote K1(t) = maxr∈[R∗ ,c+2] |ζ(r, t) − ζ∗(r)|. Then

0 � lim
t→−∞

K1(t) � sup
r∈[R∗ ,c+2]

G1(r) lim
t→−∞

δ(t) = 0.
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Figure 2. Optimal termination boundaries rt = R(t) as a function of time T − t to maturity.

Each curve corresponds to a particular value of σ.

Set

K2(t) := sup
r�c+1

|ζ(r, t) − ζ∗| = lim
ε↘0

max
r�c+1

[ζ(r, t) − ζ∗(r) − εG1(r)].

Using a similar idea as in 4(b), one can show that

K2(t) � K1(t) + K2(T )e(t−T ) ∀ t � T .

This implies that limt→−∞ K2(t) = 0. Thus,

lim
t→−∞

sup
r�R∗

|ζ(r, t) − ζ∗(r)| = 0.

Finally, since Ṙ is bounded in (−∞, T − 1] (c.f. [6]), one can use a local regularity theory

for parabolic equations to show that limt→−∞ ζr(R(t)+, t) = ζr(R
∗+). This completes the

proof of (6.12) as well as the proof of Theorem 6.1. �

7 Global approximations

7.1 The simple global approximation

We seek a simple approximation formula for R(T − τ) such that (i) it has asymptotic

expansion c − κ̄σ
√
τ for a small positive τ and (ii) it exponentially approaches R∗ for a

large τ. For this, we seek an approximation of the form

R(T − τ) ≈ RI (τ) := c − κ̄σ

√
1 − e−bτ

b
.

For any b > 0, this approximation has the right asymptotic behaviour for small τ = T − t.

To match it with the large τ behaviour, we need R∗ = c − σκ̄
√

1
b
, that is, b = ( κ̄σ

c−R∗ )
2.

Hence, we have the first approximation for R in (1.6).
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Figure 3. Relative errors of the first approximation RI (thin curve) and the second approximation

RII (thick curve) as functions of parameters.

7.2 An enhanced approximation

In the above approximation, we only used the information R(t) ∼ R∗ as t → −∞. Here we

use the more detailed information that R(t) ∼ R∗ +ρ∗e−cτ = O(e−2cτ) for t = T − τ → −∞
to guess the approximation R ≈ RII , where RII is as in (1.7).

It is a pleasant surprise to find that for a typical parameter set, the relative errors of

the two approximations satisfy (1.8); see Figures 1(b) and 3.

8 Numerical examples

In Figure 2, we display the optimal termination boundaries as σ changes, keeping other

parameters fixed. Similar figures (not displayed here) of the boundaries can also be

obtained as only one of the four parameters is changing. We can reasonably conclude

that the optimal mortgage termination boundary rt = R(c, θ, k, σ; t) is (i) increasing in c,

(ii) decreasing in θ, (iii) increasing in k and (iv) decreasing in σ.
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In Figure 3, we display the relative errors of our two analytical approximation formulas

for the optimal boundary, as one of the parameters changes while others are kept fixed.

One can see that when 0 < θ � c, both approximations are extremely accurate.

9 Conclusion

We have designed efficient numerical algorithms for calculating the optimal boundary

for mortgage termination. In addition, we provide a rigorous analysis for the asymptotic

behaviour of the infinite horizon problem. This, together with the earlier result in [6],

allows us to provide a quite complete theoretical study of the problem. Most importantly,

we provided two simple analytic formulas that provide global approximation of the

termination boundary. Our numerical evidence shows that the analytical approximation

is extremely accurate across all expiries.
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