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Abstract

The spatial analysis by distance indices (SADIE) technique was developed to
evaluate the spatial pattern of point-referenced count data as well as the spatial
association between two sets of data sharing the same point locations. This paper
presents an analysis of spatial patterns in aphid count data and the association of
these data with climate across north-west Europe. The paper tests the applicability
of the technique to large geographical areas. Aggregation and cluster indices were
calculated for the total annual abundance of the peach–potato aphid Myzus persicae
(Sulzer) and for the annual mean rainfall and temperature at aphid monitoring
sites. Association indices demonstrated the stability in time of aphid spatial
structures and the correlation between aphid density and climate patterns. Groups
of relatively large numbers of aphids, termed patches, and groups of relatively
small numbers of aphids, termed gaps, were located and their mean size esti-
mated. The aphid patterns were quite stable in time and the spatial patterns of
temperature and rainfall were weakly associated with M. persicae annual abun-
dance. Similarities were observed between the results of SADIE and those from the
more widely used technique of spatial autocorrelation (SAC). However, the SADIE
association index has the advantage of quantifying the possible associations
between aphid data and the factors that determine population distribution. Thus,
high temperature and low rainfall were identified as environmental factors that
were positively associated with aphid abundance across north-west Europe.

Introduction

Spatial patterns are concerned with the location of
particular points relative to one another that give rise to
random, clustered or regular distributions (Bailey & Gatrell,
1995). Determining whether the geographical distribution is
random or not, and describing the pattern, can be used to
infer the processes that are responsible for generating the

patterns (Legendre & Legendre, 1998). Within this frame-
work, a wide range of techniques can be applied, and these
have been developed in various branches of science, e.g.
ecology, geography and geology (Dale et al., 2002). Their
suitability depends primarily on the characteristics of the
data, on the hypothesis to be tested, and on their potential
for quantifying spatial structures at the global and local level
(Perry et al., 2002). The statistical analyses of spatial data
used in ecology were the subject of a recent review that
established some conceptual and mathematical relationships
among the different methods (Dale et al., 2002), but high-
lighted that most of these methods seek to answer slightly
different questions.
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In ecology, aggregated, regular or random spatial
patterns were first differentiated by variance-mean methods
(s2/m, index of cluster size, index of cluster frequency,
Lloyd’s patchiness and crowding indices, Morisita’s index
Id, and the coefficient of Taylor’s power law) (Upton &
Fingleton, 1985), but these indices ignored the spatial loca-
tion of samples, were based on the assumption that sample
values were not correlated and sometimes failed to differ-
entiate more complex spatial patterns (Liebhold et al., 1991;
Sharov et al., 1996). These shortcomings have led to the
development of other methods for specific ecological data
types, such as block and quadrat variance methods, neigh-
bour networks and spatial analysis by distance indices
(SADIE; see Dale et al., 2002 for a complete review). These
latter methods are most often applied in the field of insect
and plant ecology.

Statistics measuring spatial autocorrelation (SAC) such as
Moran’s I and Geary’s c, which are commonly used in
geography, are also capable of characterizing spatial
patterns, of dealing simultaneously with the location and the
values of ecological data, and are applicable to a wide range
of data types: ordinal, nominal, or interval data and regu-
larly or irregularly distributed points (Jumars et al., 1977;
Sokal, 1978; Sokal & Oden, 1978). This family of statistics is
commonly used in transport geography (Black & Thomas,
1998) and in epidemiology (Burra et al., 2002), but is
increasingly used to characterize the spatial distribution of
species (Judas et al., 2002; Cocu et al., in press, a) or fine-scale
spatial structures in genetics and molecular ecology
(Gömöry & Paule, 2002).

Methods originally developed in the field of geology,
collectively known as geostatistics (variograms, kriging,
etc.), have also been used relatively recently to quantify
spatial patterns in ecological count data (Sokal et al., 1987;
Schotzko & O’Keefe, 1989; Liebhold et al., 1991, 1993;
Schotzko & Knudsen, 1992). These techniques are, however,
employed less frequently when data are sparse and cover
large geographical areas.

The focus of this paper is on point-counts of insects, with
data in the form: x,y,z, where x,y references a spatial location
and z is the count of insects at that point. The family of
analytical techniques known as SADIE has been used to
describe the spatial features of point-referenced individual
count data and requires only the coordinates of each point
(x, y) and its associated count (z) to be specified (Perry, 1995,
1998a,b; Perry et al., 1996, 1999). Moreover, the technique
places no restriction on the number and arrangement of the
sample units and irregular spacing of units is perfectly
acceptable (Perry et al., 1996; Perry & Klukowski, 1997). The
SADIE technique can be applied at two different spatial
scales, at a global and a local level (i.e. for the entire study
area and for each sample point), and allows hypothesis
testing, e.g. determining whether the observed pattern is
significantly different from random. The method detects and
tests non-randomness and measures the overall spatial
pattern by indices. Moreover, local contributions to the
degree of global clustering can be identified and quantified
for individual sample units. Other developments of the
SADIE method allow determination of the spatial association
and dissociation between two data sets that share the same
spatial locations. This methodology has already proved
useful in the study of within-field spatial distributions of
insects (Winder et al., 1999), for understanding predator–
prey relationships (Holland et al., 1999; Winder et al., 2001)

and for determining external factor influences on the spatial
distributions of species (Holland et al., 2000; Thomas et al.,
2001). However, there has not yet been a published study in
which the technique has been used for data points that are
distributed over large geographical areas such as north-west
Europe. One purpose of this paper, therefore, is to test its
applicability in such circumstances.

The methodology applied here is described and il-
lustrated through the use of aphid annual counts for the pest
peach–potato aphid Myzus persicae (Sulzer) (Hemiptera:
Aphididae) collected in suction traps distributed across
north-west Europe. Myzus persicae is a major pest of crops
including potato and sugarbeet and, although it is present
throughout north-west Europe, it is not uniformly distrib-
uted. The objectives are to assess whether SADIE can be used
to reveal spatial structure in the aphid data over large areas,
determine the average size of spatial clusters and measure
how stable the spatial structure remains over time.

One of the goals in identifying spatial patterns in species
distribution and abundance is to aid understanding and
identification of the underlying mechanisms. The distribu-
tion and dynamics of Myzus persicae, like most aphids, are
strongly influenced by environmental variables, especially
temperature, which has a major effect on developmental and
reproductive rates, as well as on life cycle strategy and
winter survival (Harrington et al., 1995). Few studies have
been able to establish relationships between the spatial
structure of environmental factors and the spatial structure
of population distributions. An exploration of the spatial
structure of climatic data may reveal explanatory relation-
ships. Assuming that the spatial structures of the aphid and
climate data are dependent, if the climate is distributed in a
heterogeneous way then the aphid spatial structure will be
rather similar. If the climate is more homogeneous, it can be
supposed that M. persicae abundance will also be more
homogeneous and, in the same way, a random climatic
structure should give rise to a random distribution of
abundance. The purpose of this paper, therefore, is to
determine whether there are associations between climate
and aphid spatial patterns. SADIE techniques are used to
determine whether environmental variables are associated
with the aphid distributions.

Cocu et al. (in press, a) have recently measured spatial
autocorrelation (SAC) on the same dataset, using global and
local Moran’s I statistics. These analyses highlighted the
presence of an aggregated structure in the aphid data except
in 1989, 2000 and 2001. The technique also differentiated the
location of homogeneous zones from heterogeneous zones,
but did not give any information on the density in these
zones, i.e. high or low aphid counts. Consequently, in this
study, the potential contribution of each technique (SADIE
and SAC) is discussed and the results are compared.

Materials and methods

Data

Aphid data

Aphid data were obtained from the Exploitation of Aphid
Monitoring in Europe (EXAMINE) database which covers the
entire European network of suction traps providing daily,
standardized, quantitative information for many species
(http://www.rothamsted.bbsrc.ac.uk/examine/; Harring-
ton et al., 2004). Data were selected for the peach–potato
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aphid M. persicae because of its importance as a pest
throughout north-west Europe. The data were aggregated to
annual counts of individuals for 34 sites within Great Britain,
France and Belgium (fig. 1). This small number of sample
sites would limit the value of traditional methods of quan-
tifying spatial patterns. However, the use of such sparse data
is acceptable to SADIE because of the differences in its
underlying philosophy compared to other techniques (Dale
et al., 2002; Perry et al., 2002).

Climatic data

Climate data were obtained from the mean monthly data
set generated by the European Union Advanced Terrestrial
Ecosystem Analysis and Modelling (ATEAM) project
(Mitchell et al., 2004). These data were interpolated from large
numbers of weather stations across Europe to a 10-min
longitude/latitude grid. The annual mean temperature and

precipitation data were extracted for the 10-min grid cells to
which each trap belongs for the years 1989 to 2000. These
data were therefore considered also as point-referenced data
with a climatic attribute that was converted into integer
form, a requirement of the SADIE method.

Methods

General approach

For the data of M. persicae annual abundance, the work
was based on four stages: (i) quantification of the global
spatial pattern for each year; (ii) quantification of the global
and local degree of clustering for each year; (iii) visualization
of the results and quantification of the mean cluster size by
generating smoothed surfaces from the cluster indices; and
(iv) measurement of the spatial association indices for pairs
of years for the aphid data. These tests allowed an investi-
gation of the spatial, temporal and spatio-temporal changes
in the distribution of M. persicae.

Analysis of climate data was based on four stages:
(i) quantification of the global spatial pattern by the use of
aggregation indices; (ii) quantification of the global and local
degree of clustering; (iii) visualization of the results by
generating smoothed surfaces from the cluster indices; and
(iv) quantification of the spatial association between the
spatial patterns of aphid and climate data.

Indices of aggregation

The SADIE technique consists of quantifying the spatial
pattern in a sampled population by measuring the total
distance that the individuals of the observed sample must
move in order to reach a regular arrangement in space.
Regularity corresponds to the situation where the sampled
individuals are as dispersed as possible. Perry (1998a)
defined Ia, the index of aggregation. A value of Ia > 1 indi-
cates the presence of an aggregated sample, an index equal
to 1 characterizes a spatially random sample and a value of
Ia < 1 indicates the presence of a regular sample. The index
has an associated probability (Pa) that the data are not
distributed randomly. This probability is obtained by
comparing the observed spatial pattern with the corre-
sponding values obtained by random permutations of the
observed counts among the sample units.

Cluster indices and graphical displays

Two standardized dimensionless cluster indices: ni and nj
(Perry et al., 1999) have been used in order to provide a local
measure of the degree of small-scale clustering for each
individual sample point. These indices quantify the degree
to which the sampled count contributes toward clustering
either as part of a patch (a cluster of relatively large numbers
of aphids) or a gap (a cluster of relatively low numbers of
aphids). Winder et al. (1999, 2001) defined clusters as areas
enclosed by contour levels of +1.5 or x1.5. When ni > 1.5,
the index indicates patchiness; when nJ <x1.5, it conveys the
idea that the sampled point has membership of a gap, and
when the cluster index equals one, it indicates a random
placement of that point value in relation to others. Conse-
quently, a map of the degree of clustering, the cluster plot
(red-blue plot), can help to visualize the areas where popu-
lation counts are relatively large or small. A formal test of the
overall degree of clustering into patches and gaps in the

Fig. 1. Distribution map of the aphid data sampling points
extracted from the European EXAMINE suction trap network.

Spatial patterns in aphid data 49

https://doi.org/10.1079/BER2004338 Published online by Cambridge University Press

https://doi.org/10.1079/BER2004338


entire dataset is provided by their overall average values
�nni and �nnj that are compared with their corresponding values

from randomization (Perry et al., 1999).

Overall association indices

Two sets of data may be spatially positively associated,
negatively associated or occur at random with respect to one
another (Perry, 1998b). An overall spatial association index,
X (Perry & Dixon, 2002) may be used to quantify the rela-
tionship of the spatial structure between two sets of counts
sharing the same location. X is equivalent to the correlation
coefficient between the clustering indices for the two sets of
counts. X also corresponds to the mean of the local spatial
association values xk and its significance can be tested by
Dutilleul-adjusted randomizations (Dutilleul, 1993; Winder
et al., 2001; Perry & Dixon, 2002). At the local scale, positive
association suggests coincidence of patch clusters or of gap
clusters for the two sets, whereas negative association is
indicated by a patch coinciding with a gap (Perry & Dixon,
2002).

Results

Aphid spatial pattern

The distribution of M. persicae in 1989, 2000 and 2001 was
different from the other years (fig. 2). The index of aggre-
gation Ia was minimal, nearly equal to 1 and was not
significant, which indicates that for these years there were no
major clusters at a global scale in the data set. Conversely, a
value of Ia higher than 1 and a low value of Pa suggest that
there was a strong and significant aggregation, e.g. for 1991
to 1993 and for 1997 to 1999. For the other years, the value of
Ia indicates the presence of a moderately strong spatial
pattern, but one which is not significant.

Compared to the other years, which all show some spatial
structuring, the average clustering indices of the SADIE
technique shown in fig. 3 also confirm that 1989, 2000 and

2001 were different since no overall spatial clusters either in
patches or in gaps can be identified: j�nnij and j�nnjj were mini-

mal, nearly equal to 1 and were not significant. These indices
emphasize the observation that there was strong clustering
into patches and gaps in 1991, 1993, 1999 (j�nnij and j�nnjj> 1.5);

into patches in 1992 and 1994 (j�nnij> 1.5), and into gaps in
1997 and 1998 (�nnj <x2), but the overall clustering indices

were not significant in 1990, 1994, 1995 and 1996. Clusters
were located by the position of their centroid and there
appears to be a trend in their location over the period
considered (only the years 1989, 2000, 2001 and 1991 to 1993
are shown in fig. 4): the south-east of Great Britain and the
north-east and south-east of France were usually clustered
as patches (the maximum counts are recorded at Valence
(site 72) (1553 M. persicae in 1991 and 990 M. persicae in 1993)
and at Poitiers (site 70) (4976 M. persicae in 1997)), while the
Scottish traps and the western part of Great Britain were
mainly grouped as gaps. It is likely that these patterns reflect
a climatic or a land use effect because individuals of
M. persicae were abundant in warmer areas that were rich in
host plants, and less abundant in wetter zones characterized
by less arable land.

Measurement of the association indices for pairs of aphid
data (table 1) showed that the spatial pattern was quite stable
in time at the beginning of the considered time-series. For
the first five years (1989 to 1993), there were positive asso-
ciations at lag one (just above the diagonal), i.e. the spatial
pattern was fairly stable from year to year, but then the
system switched to more-random changes between years.
The association indices suggest that the spatial patterns
observed in 1994 and 1995 were still similar to the structure
observed in the previous years but, after this, dissimilarity
occurred, especially in 1996, 1997, 1999 and 2000. Moreover,
even if both 1989 and 2001 were characterized by the absence
of an overall spatial structure, the negatively significant
value of the association index suggests that the patterns were
dissimilar. The plot of the mean overall association index, X,
versus lag period (analogous to a correlogram of Moran’s I)

A
gg

re
ga

tio
n 

In
de

x 
(la

)

Year

Fig. 2. Global spatial pattern analysis of the annual abundance of Myzus persicae (log(n+1)) and climate in north-western Europe. Plots
of the spatial aggregation index Ia versus year for M. persicae annual abundance (m); mean annual temperature (^) and mean annual
rainfall (&).

50 N. Cocu et al.

https://doi.org/10.1079/BER2004338 Published online by Cambridge University Press

https://doi.org/10.1079/BER2004338


confirms these observations and indicates that similarity in
aphid catches between years decreased during the first seven
years, reaching zero at lag 7 (fig. 5).

Climatic spatial pattern

The aggregation index (fig. 2) was not significant for
precipitation. There was no particularly strong spatial
structure associated with the mean annual precipitation data
across north-west Europe (Ia nearly equal to 1) except in
1998, where Ia was maximum and significantly exceeded the
value of 1, implying the presence of an aggregated pattern.
Thus, the precipitation data were not characterized by a
particular spatial structure at this scale, and this finding is
broadly valid for the whole of the considered period.
Conversely, the index calculated for temperature demon-
strates the presence of a strong and highly significant
aggregated structure. The index of aggregation Ia repre-
sented in fig. 2 is higher than 3 for each year.

The mean cluster indices for rainfall (fig. 3) confirm the
absence of spatial clusters at the global level as well as in
the form of patches or gaps. However, at the local level, the
location of patches and gaps was rather stable; the south-east
of the UK as well as the north-east of France form zones of
low precipitation, i.e. gaps, and the west of the UK form
zones of high precipitation, i.e. patches (e.g. years 1991 to
1993 in fig. 6). For temperature, the indices (fig. 3) confirm
the presence of a strong spatial structure defined by the
presence of both patches and gaps. The cluster plots allow
visualization of these structures at a local level (e.g. years
1991 to 1993 in fig. 6). The location of the patches and the
gaps was stable over time: the south-west of France was a
patch area since the climate there was milder, whilst the UK

and the north-east of France form homogeneous zones
where the annual mean temperature was cooler.

Spatial association between the spatial patterns of aphids
and climate

The results of the cluster analysis on climate and the
spatial distribution of M. persicae abundance can be
compared visually in figs 4 and 6. The location of M. persicae
patches (zones of high abundance) appear to correspond
with the location of rainfall gaps (zones of low levels of
precipitation) and vice versa and, in the same way, the
M. persicae patches seem linked to the temperature patches
(zones of high temperature), although this could correspond
with more favourable zones in terms of land use.

The overall association indices obtained between
M. persicae and rainfall, and between M. persicae and
temperature were generally weak (fig. 7) and do not indicate
either a significant association or disassociation. However,
for some specific years, the results suggest a slight negative
and significant relationship with rainfall (in 1992, 1994, 1995
and 1998) and a slight positive and significant association
with temperature (in 1991, 1997 and 1998).

Discussion

In spite of the description of a random pattern for rainfall
and of an aggregated distribution of temperature over the
period 1989–2000, the results do not suggest that particular
climatic conditions explain the random spatial structure of
M. persicae abundance observed in 1989, 2000 and 2001.
There are, however, indications of a possible influence of
climate, both temperature and precipitation, on the aphid
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Fig. 3. Local spatial pattern analysis of the annual abundance of Myzus persicae (log(n+1)) and climate (around each aphid monitoring
site). Plots of mean clusters indices (j�nnijand j�nnjj) versus year for M. persicae annual abundance (m); mean annual temperature (^) and
rainfall (&).
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distribution, which suggests an association between these
different patterns. The pattern of the results is more inter-
esting than the significance level. Indeed, the results suggest
that temperature and rainfall had opposing effects: precipi-
tation was almost always negatively associated and
temperature almost always positively associated with the
aphid spatial pattern. Thus, there may be a slight influence

of temperature (positive) and of rainfall (negative) on the
aphid spatial structure, but these relationships were not
strong at the global level. It is possible that climate influences
the spatial structure of M. persicae abundance by reflecting
the geographical distribution of suitable habitat. Thus, the
climate may affect aphid abundance either directly or
indirectly through its effect on host plant distribution.

Table 1. Results of the spatial association analysis of the annual abundance of Myzus persicae across north-west Europe.

Years 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

1989 0.58* 0.16 0.42 0.23 0.62* 0.33 x0.11 0.22 0.20 0.17 0.23 x0.48*
1990 0.49* 0.55* 0.54* 0.35 0.52* x0.14 x0.12 0.30 x0.12 x0.20 x0.01
1991 0.68* 0.45* 0.05 0.31 0.25 x0.23 0.47* 0.00 x0.11 0.46*
1992 0.62* 0.22 0.51* 0.02 x0.10 0.41 x0.07 x0.05 0.31
1993 0.04 0.39* x0.14 x0.21 0.34 x0.16 x0.13 0.35
1994 0.51* x0.30 x0.21 0.36 x0.08 0.04 x0.17
1995 x0.22 x0.46* 0.13 x0.04 x0.23 x0.12
1996 0.32 0.00 0.14 x0.09 0.27
1997 0.09 0.13 0.56* x0.06
1998 0.23 0.48 0.44
1999 0.39 0.01
2000 0.02

Values of the overall spatial association index X between pairs of years; *P< 0.05.

1989 2000 2001

1991 1992 1993

500 km

Fig. 4. Local spatial pattern analysis of the annual abundance of Myzus persicae (log(n+1)). The years 1989, 2000 and 2001 represent the
case where no structure has been identified at the global scale and the years 1991 to 1993 are presented as examples of the years with a
global aggregated spatial pattern. Contour levels have been created on the basis of cluster indices interpolated in Arc View 3.2 by using
the inverse distance weights method and a nearest neighbour approach. Light grey shading and dashed lines indicate strong gaps with
index values <x1.5 ; dark grey shading and continuous lines indicate strong patchiness with index value > 1.5.
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However, disaggregating these two effects has not been
possible here due to a lack of data on host plants. Analysing
the spatial pattern of host plant distribution, i.e. of land use,
would be relevant to aid understanding of the mechanisms
that drive M. persicae abundance. Indeed, Cocu et al. (in
press, b) highlighted that specific land use types within
agricultural crops played a key role in determining total
aphid numbers in north-west Europe.

Comparison of methodologies

This paper illustrates the use of the SADIE technique to
study spatial patterns in M. persicae counts from suction
traps. Aggregation at a global scale was quantified and
local clusters, either patches or gaps, were identified and
localized. SADIE is not the only methodology that could
have been applied at a global and local scale to aphid count
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Fig. 5. Plot of the overall association index, X, between pairs of
years, averaged for each lag period. Only the first seven years
have been plotted as calculations for longer lags involve less
than one half of the association measures. A downward linear
trend suggests that similarity in Myzus persicae catches decreases
to 0 at lag 7 (R2 = 0.70).

Fig. 6. Local spatial pattern analysis of climate data (annual mean): Plots and overlaid contour of SADIE clustering indices for precipi-
tation (a) and temperature (b) for the years 1991 to 1993. Contour levels have been created on the basis of cluster indices interpolated
in Arc View 3.2 by using the inverse distance weights method and a nearest neighbour approach. Light grey shading and dashed
lines indicate strong gaps with index values <x1.5 ; dark grey shading and continuous lines indicate strong patchiness with index
value > 1.5.
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data that would fulfil the same prerequisites (coping with
irregularly spaced data, hypothesis testing, providing
information on multiple scales). A technology much more
familiar to geographers, spatial autocorrelation analysis
(SAC), is also useful (table 1 in Perry et al., 2002). In a previous
study, Cocu et al. (in press, a) used the Moran index on the
same data set as reported here to estimate the presence or
absence of spatial autocorrelation at all sites across the study
area (global level), to identify the possible contributions of
each site to the global index (local Moran index of spatial
autocorrelation – LISAs) and to try to quantify the area that
is represented by a suction trap. The two techniques address
slightly different questions: spatial autocorrelation analysis
focuses on the identification and differentiation of homo-
geneous zones (either of low or high counts) and hetero-
geneous zones, whereas SADIE is not concerned with
heterogeneous groups, but allows differentiation between
homogeneous areas with relatively large counts and areas
with small counts.

Despite these differences, similarities exist between the
results obtained with the SADIE technique and the Moran
index. Both techniques were unable to distinguish a spatial
pattern at the global scale for the years 1989, 2000 and 2001.
However, although the presence of local spatial auto-
correlation or local clusters was identified by both tech-
niques, the location of these areas of similarity at a local scale
was slightly different. These differences may result from the
fact that, for Moran’s I, the weightings are not conditional on
the abundance values, but rather on the distance between
points. Conversely, the SADIE technique measures and
maps spatial pattern, giving little weight to isolated, large, or
small values (Perry et al., 2002).

Finally, the SADIE cluster plots localize patches and gaps
and quantify their mean size while the spatial autocorrela-
tion analysis can identify local pockets of spatial auto-
correlation (by the use of LISAs) and quantify the range of
distances over which the pattern exists. The distance over
which the Moran index is positive can be interpreted as an
estimate of the dominant cluster size (Perry et al., 2002).
Therefore, the spatial autocorrelation analysis of M. persicae

annual abundance indicated similarity between traps over a
large range; c. 500 km (Cocu et al., in press, a). The clusters
can be relatively large and their size can be quantified by the
area of the region enclosed by the appropriate contour level.
It is, however, necessary to pay attention to the edge effect
for the clusters located at the margins of the sampled areas.
If the size of the closed clusters entirely within the study area
is averaged over the full period, the distance of influence of a
trap (radius or width) can be estimated coarsely at between
110 km and 180 km if the form of the cluster is approximated
to a circle or to a square, respectively. Assuming that the
clusters are closed by the borders of the study area, the
radius or width change can be estimated coarsely to be
between 160 km and 290 km. These values are much lower
than for the Moran results, but the values are probably
underestimations because of the approximation of the clus-
ter shapes and by the constraint of closing clusters by the
border of the study area. Although this observation agrees
with values quoted in the literature, e.g. a circle of about
100 km (Hullé & Gamon, 1990), there appear reasonable
grounds to believe that the similarity between traps can
occur over larger distances (Cocu et al., in press, a).

An important advantage of the SADIE technique is the
graphic and cartographic facilities that allow presentation of
visual information to support conclusions drawn from the
indices. The cluster plots allow identification of global trends
in the spatial pattern of data such as, in this particular case, a
south-east towards north-west gradient of M. persicae abun-
dance. Moreover, SADIE is a useful mapping tool that is
lacking in spatial autocorrelation analysis, since the location
of homogeneous high or low aphid counts allows the
construction of hypotheses regarding the factors that explain
aphid spatial structure. Contrary to spatial autocorrelation
analysis, SADIE is not able to quantify spatial data structures
in relation to distance lags, but spatial association can be
quantified in relation to time lags. The spatial correlogram of
spatial autocorrelation is important as it gives clues to the
factors which can explain the underlying spatial structure
and the associated structure function can have implications
for interpolation between unsampled counts. However, as
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Fig. 7. Association in the spatial structure of Myzus persicae abundance and climate data. Plot of the overall spatial association index,
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pointed out by Legendre & Legendre (1998) the information
provided by a correlogram is not specific and a blind inter-
pretation may often be misleading if not supported by maps.
It seems reasonable to conclude, therefore, that different
methods should be used in combination to cover all aspects
of the spatial characteristics of a data set (Perry et al., 2002).
The results indicate that the use of SADIE together with
spatial autocorrelation analysis allows characterization of
most spatial aspects of the aphid data.

The SADIE technique is also interesting because of its use
of association measures, which allow an evaluation of the
stability of the aphid spatial patterns over time. The results
of the analysis presented here showed that the spatial
structure of M. persicae was rather stable, suggesting a rela-
tionship between the species and surrounding environ-
mental factors. For example, the stability in the aphid spatial
patterns could reflect stability in underlying environmental
factors such as the mean annual temperature. The results of
the analysis undertaken here suggest that climate plays a
role in structuring the annual abundance of M. persicae across
north-west Europe. However, neither the pattern of the
precipitation variable nor the spatial structure of the
temperature was able to explain anomalous years. Thus,
other variables may be acting on the aphid data structure
such as land-use variables that determine food resources, the
presence of suitable host plants and natural enemies. Further
analyses, based on multiple linear regression, residual
maximum likelihood and artificial neural networks, are thus
planned in order to improve understanding and knowledge
of the environmental variables which contribute to these
processes.

Conclusions

The analysis presented here investigated the spatial,
temporal and spatio-temporal changes in the distribution of
M. persicae. Over the period 1989–2001, the spatial pattern of
M. persicae was shown to be quite stable in time and gener-
ally aggregated either into groups of relatively large annual
counts (patches) and small annual counts (gaps). SADIE is
an effective technique for analysing biogeographical spatial
patterns even over large geographical areas. The absence of
satisfactory tools to describe structures at small spatial
scales, i.e. over wide geographic areas, and for relatively
restricted data sets, is the principal reason why SADIE
provides an interesting way to progress. Such techniques
should, however, be combined with other types of analysis.
For example, SADIE can be supplemented by correlograms
which add to the quantification of the global and local spatial
patterns, providing information concerning the evolution of
this structure at several distances. It is essential to consider
the whole range of existing spatial analysis techniques,
independently of their applicability, because each was
developed with its own characteristics, in particular
concerning the level of prerequisites (i.e. organization of the
data) and objectives. Moreover, the SADIE association tool
provides many interesting possibilities for geographical
analyses. In this analysis, the spatial patterns of the
mean annual temperature and rainfall were shown to be
weakly associated with the structure of M. persicae annual
abundance. The use of these association indices has already
been effective in other ecological fields, for example, linking
patterns of virus infection with patterns of insect vectors
(Korie et al., 2000) and understanding predator–prey

interactions (Winder et al., 2001). Furthermore, recent devel-
opments that permit the calculation and mapping of local
spatial association measures could allow further exploration
of the relationships between a species and its habitat.
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