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We study the sustainability of long-run growth in a two-sector economy where a
renewable natural resource is exploited under private property rights. We obtain short-
and long-run growth trajectories in closed form, examine transitional dynamics, and
characterize convergence properties. We find conditions for sustainable long-run growth,
which depend on the harvesting rate, and show that the speed of convergence decreases
during transition. We identify a stronger version of Hartwick’s rule and analyze
parameter dependences for endogenous variables. Economic growth relies less on
abundance or scarcity of natural resources than on the way they are managed.
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1. INTRODUCTION

It is commonly accepted in natural resources economics that there is a strong
connection between resource endowments and economic growth results. Evi-
dence on historical episodes as well as post-World War II examples are used
to analyze this relationship. Sachs and Warner (1995) point out that countries
with abundant natural resources tend to grow more slowly than countries poorly
endowed. A negative relationship between high natural resource intensity, namely,
a high value of resource-based exports to GDP, and the rate of growth appears as
a robust empirical fact, with many examples showing resource-poor economies
that outperform resource-rich economies in terms of economic growth. Sachs and
Warner (2001) even refer to the curse of natural resources, after exploring and
statistically rejecting the possibility of a spurious negative correlation between
natural resources and growth.
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There is, however, the traditional viewpoint according to which most of the
current rich economies once developed with the aid of their natural resources.
However, this argument seems to work as a counterexample only for periods,
regions, and natural resources for which high transportation costs made proximity
decisive for physical availability. On the other hand, Sachs and Warner (2001)
and Gylfason and Zoega (2001) show that such historical examples correspond
to countries such as the UK and the USA, where the natural resource intensity
measured as a percentage of GDP, was much smaller than the ratios observed in
the well-endowed countries during the second half of the twentieth century.

The literature refers to multiple social, political, and economic factors explain-
ing the adverse effects of resource abundance on growth. Nevertheless, the most
accepted explanation focuses on two elements: the direct effect known as Dutch
disease (unfavorable exchange rate with high price levels and wages, as well as
dependence on primary exports), and the indirect crowding-out effect that flows
through human and social capital deterrence. Gylfason (2001a,b) empirically ana-
lyzes these effects and finds that in most countries that are rich in natural resources,
the rates of growth of per capita production over the long term have been lower
than in other countries that are less well endowed. Hence, economic growth varies
inversely with natural resource abundance. However, it has to be emphasized that
the problem may not be the existence of natural wealth as such, but rather the lack
of reaction face to the dangers that accompany the gifts of nature. In any case, it
seems less than obvious that abundant natural resources will always prevent the
emergence of a dynamic economy or that the discovery of such resources acts to
dampen an already developed economy. Natural resources can be a blessing or a
curse as long as they bring risks: abundant natural resources may imbue people
with a false sense of security and lead governments to lose sight of the need for
good economic management. In contrast, countries without natural resources have
a smaller margin for error and they have to manage efficiently in search of growth
improvements. Auty (2001) considers two kinds of development models on the
basis of the attributes and qualities of political institutions: the competitive indus-
trialization model that shows virtuous social and economic circles, and applies
to extreme resource-poor countries; and the staple trap model, which especially
applies to resource-abundant countries. Rodrı́guez and Sachs (1999) suggests that
resource-rich countries grow more slowly because they are living beyond their
means. Hence, the adjustment of income per capita to its steady state comes from
above, displaying negative rates of growth during the transition. These authors
show that it can be optimal for resource-rich countries to overshoot their long-run
equilibrium growth path.

The scarce theoretical literature concerning the relationship between natu-
ral resources availability and economic growth usually refers to nonrenewable
resources in the context of neoclassical exogenous growth models. As Brown
(2000) remarks, technical complexities have led to a limited role for renewable
resources in growth models. Although, in recent years, some articles have been
filling the hole [i.e., Tahvonen and Kuuluvainen (1991, 1993), Ayong Le Kama
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(2001), and Wirl (2004)], they still develop into the neoclassical tradition, enlarged
just to include an environmental resource sector. Two significant exceptions are
Mourmouras (1991) and Gylfason et al. (1999). The first author studies interactions
between capital accumulation and renewable resource exploitation in an overlap-
ping generations model. Gylfason et al. build a stochastic two-sector endogenous
growth model with tradable and nontradable goods, respectively. They study the
consequences from specialization as well as conditions for the emergence of a
secondary human-capital-intensive sector, which is the only one that may en-
gender sustained growth. In this paper, however, we come up with a two-sector
endogenous growth model à la Lucas (1988), where a single consumption good is
obtained using a renewable resource (natural capital) in combination with physical
capital. Both inputs are essential for production and, up to some degree, technical
substitutes. In this resource-based-economy model, we study the feasibility for
sustainable long-run growth. A renewable resource has the capacity to grow in
size over time, being able to supply increasing productive inputs to the final-
good sector forever without bound. This capability, however, does not materialize
automatically because it depends on the endogenous rate of extraction as well as
on the exogenous intrinsic rate of growth. The latter mainly arises from natural
demographic behavior of the resource stock, but also may be influenced by human
ecologically based interventions.

According to Hardin (1968), Clark (1973), Brander and Taylor (1998), and
Brown (2000), in the absence of property rights the inefficient overexploitation
of natural resources leads the economy to collapse. To avoid this tragedy of the
open-access regime, a matter that is beyond the goal of this paper, we assume
a private property rights system properly defined over the natural resource. In
particular, the stock of natural capital is equally and uniformly owned by con-
sumers. Accordingly, firms do not have open access to the stock because they
have to pay the consumers a unit price for the harvested resource. Nevertheless,
though the usual market failure caused by nonexcludability had been removed,
we introduce a production externality in the final-good sector associated with
the natural resource. This assumption is not fundamental for the results in our
model, but it enlarges the framework for discussion and opens the possibility
for multiple equilibrium paths in connection with the existence, at the aggregate
level, of increasing returns to scale over accumulable factors. The presence of an
externality in this model, however, makes it necessary to distinguish between the
competitive equilibrium solution and the socially optimal solution. In this paper,
we focus on the competitive suboptimal equilibrium results.

In this context, we study whether long-run growth may be sustainable in a
natural-resource-based competitive economy. Further, we analyze the long-run
growth trajectories, examine transitional dynamics, and characterize convergence
properties. We find conditions for sustainable long-run growth, which crucially
depend on the chosen harvesting rate. We obtain long- as well as short-run trajec-
tories in closed form for all the variables in levels, and show how they can be used
to characterize cases of overtaking among different countries. Moreover, we find
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that every short-run trajectory converges to another long-run one, with the speed of
convergence decreasing during transition. We also identify a savings rule that plays
the role of the well-known Hartwick’s rule in our model. Finally, we supply an
exhaustive study of dependences on parameters for all the endogenous variables.
Our results show, like those of Gylfason et al. (1999), that natural resource endow-
ments may be a mixed blessing. Usually, abundance is considered as a misfortune,
but this is not necessarily true because a higher or lower positive growth is in
large measure a matter of choice, and then an endogenously determined outcome.
Economic growth relies less on abundance or scarcity of natural resources than on
the way they are managed.

The article is organized as follows. In Section 2, we describe the model econ-
omy. In Section 3, we solve the intertemporal optimization problem for a compet-
itive economy, and provide the dynamic system that governs its state over time.
In Section 4, we show the main analytical competitive equilibrium results. In
Section 5, we study economic features associated with equilibrium trajectories,
particularly the properties of sustainability, growth, and convergence. In Section 6,
we conclude. The complete closed-form solution to the dynamic system is supplied
in the Appendix.

2. MODEL

We consider a closed and competitive economy that is populated by many identical
and infinitely lived agents. Population, which we assume constant, is denoted by
N . Individual preferences are represented by a CIES function, 0 < σ−1 ≶ 1, for
consumption

U(c(t)) = c(t)1−σ − 1

1 − σ
. (1)

There are two sectors in the economy, the natural resource and the final-good
sector.

2.1. The Natural Resource Sector

There is a renewable natural resource,1 which is an essential input for production
and is treated as a private good: it shares the properties of rivalry and excludability
with the remaining inputs. This is because the natural resource is owned privately
by consumers under an individualistic property rights system. For the sake of
simplicity, we assume that property rights are equally and uniformly distributed
among consumers. There is no common property or open access, but a regime that
allows for an efficient exploitation of the resource.

The stock of natural capital at date t is denoted by Q(t). We assume that such
a stock is composed of homogeneous units and it changes over time because
of two different flows that have opposite and offsetting effects on the stock.
First, in the absence of any human economically based intervention, the natural
resource evolves according to a biotic law of motion that implies exponential
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growth at a constant rate δ > 0.2 The intrinsic rate δ still may be considered as
the net result of different exogenous natural processes: births, deaths, and human
ecologically based interventions. Second, the stock of natural capital is subject
to an economically motivated extraction process, or harvesting activity, because
it is required for production of the final good. We define z(t) as the aggregate
extraction rate, with z(t)∈ [0, 1], and assume that there are many individual firms,
each of them extracting a percentage zi(t) from the aggregate stock. If we con-
sider every firm as being identical to each other and, for the sake of simplicity,
we assume that there are exactly the same number of firms as consumers, we
get z(t)= ∑N

i=1 zi(t)= Nzi(t). The harvesting function is linear, according to
which the renewable resource diminishes each period by the amount z(t)Q(t).
In short, we assume that resources used for harvesting are homogeneous, all
harvesters have the same objective function, and the marginal product of effort is
equal to the average one. Moreover, although the model considers free entry and
costless harvesting,3 there is no open access to the natural capital stock because
the individual firm has to pay for the use of the natural resource.

The extraction rate is an endogenous variable, and the way the economy decides
its value has direct effects on the opportunity set for present and future consump-
tion. If the resource is harvested for too long at a rate exceeding its regeneration
capabilities, the stock of natural capital will decrease over time.4 Combining the
two flows that affect the evolution of this natural capital stock, we obtain the law
of motion5

Q̇(t) = δ(1 − z(t))Q(t) − z(t)Q(t). (2)

2.2. The Final-Good Sector

Production of the final single good is carried out by many identical com-
petitive firms with technology represented by a Cobb-Douglas function Yi =
AK

β

i (ziQ)1−βQ
γ
a . Production, Yi , depends positively on the stock of physical

capital, Ki , on the amount of natural resource that is harvested, destroyed, or
transformed each period, ziQ, as well as on the aggregate stock of natural capital,
Qa . The latter plays the role of an external effect in the production process, given
that all firms benefit from it, but none of the individual harvesting decisions have
a significant effect on the aggregate. This externality affects productivity of all
private factors of production. It represents the positive effect that the size of the
natural stock exerts on the flow of produced goods, simply by augmenting total
factor productivity or under the form of a lower implicit cost and a greater implicit
quality associated with the harvested natural resource.6 Each firm takes Qa as
given, and the individual production function exhibits constant returns to scale.
Aggregating over firms, we get

Y (t) = AK(t)β(z(t)Q(t))1−βQa(t)
γ . (3)
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Technology shows constant returns to scale over private internal factors. For
fixed Qa , there are diminishing returns to K and Q. If, however, Qa rises along
with K , diminishing returns will not arise because of the increasing returns to
scale with respect to all the accumulable factors taken together; that is, there
are increasing returns to scale at the social level. In this function the efficiency
parameter A roughly represents the constant technological level in final-goods
sector, parameter β is the elasticity of output with respect to physical capital, and
parameter γ is a positive constant capturing the weight of the external effects.

Output may be allocated to either aggregate consumption or physical capital
accumulation.7 For the sake of simplicity, we assume that there is no physical
capital depreciation. Hence, the aggregate resources constraint is

K̇(t) = AK(t)β(z(t)Q(t))1−βQa(t)
γ − Nc(t). (4)

3. SOLVING THE MODEL

The optimization problem facing this economy, for a given constant intertemporal
discount rate ρ > 0, consists in choosing the controls c(t) and z(t) ∀ t ≥ 0 such
that

max
∫ ∞

0

c(t)1−σ − 1

1 − σ
Ne−ρt dt (P)

subject to (2) and (4), for K(0) = K0 > 0 and Q(0) = Q0 > 0 given.
Because of the technological externality, the economy does not fulfil the re-

quired assumptions for the basic welfare theorems to be satisfied. Consequently,
the competitive solution of this problem does not correspond to a social optimum.
The external effect introduces a distortion between private and social marginal
productivity of natural capital, and the intertemporal growth paths are not optimal
growth paths in the sense of Pareto. In this paper, we focus on the study of the
competitive suboptimal equilibrium and its outcomes, which is still compatible
with the presence of increasing returns to scale because of the nonincreasing private
returns to both capitals. Therefore, individual agents face a concave optimization
problem, as long as the representative agent takes Qa(t) as given when he decides
the variables under his control. From now on, we consider the constant popula-
tion N normalized to 1 and remove the time subscripts from the variables. The
current-value Hamiltonian associated with the previous intertemporal optimization
problem is8

Hc(K,Q, θ1, θ2, c, z; σ,A, β, γ, δ, {Qa(t) : t ≥ 0})

= c1−σ − 1

1 − σ
+ θ1

[
AKβ(zQ)1−βQγ

a − c
]+ θ2[(δ − (1 + δ)z)Q], (5)

where θ1 and θ2 are the costate variables (shadow prices) associated with K and Q,
respectively. The first-order necessary conditions arising from Pontryagin’s max-
imum principle, under the equilibrium condition Qa = Q that makes individual
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decisions compatible at the aggregate level, are

c−σ = θ1, (6)

θ1(1 − β)AKβz−βQ1−β+γ = θ2(1 + δ)Q, (7)

θ̇1 = ρθ1 − θ1βAKβ−1z1−βQ1−β+γ , (8)

θ̇2 = ρθ2 − θ1(1 − β)AKβz1−βQ−β+γ − θ2δ

[
1 −

(
1 + δ

δ

)
z

]
, (9)

K̇ = AKβz1−βQ1−β+γ − c, (10)

Q̇ = δ

[
1 −

(
1 + δ

δ

)
z

]
Q. (11)

The boundary conditions are K0 and Q0 and

lim
t→∞ θ1K exp{−ρt} = 0, (12)

lim
t→∞ θ2Q exp{−ρt} = 0. (13)

Equation (6) shows that on the margin, the final good must be equally valuable
in its two uses: consumption and physical capital accumulation. Namely, the
marginal utility of consumption must be equal to the marginal value (implicit
price) of physical capital. Equation (7) shows that, at equilibrium, the value of
the marginal productivity of natural resource (in case of being harvested) must be
equal to the value of its marginal contribution to natural capital accumulation (in
case of being saved). The Euler equation (8) states that the marginal productivity of
physical capital (the benefit of delaying consumption) equals its rental price, which
in the absence of depreciation is given by the difference between the discount rate
and the rate of physical capital gains or losses, ρ − (θ̇1/θ1). The Euler equation
(9) supplies an intertemporal efficiency condition to be satisfied in the process of
natural capital allocation. The value, in terms of natural capital, of the marginal
productivity of Q in the final-good sector must be equal to its opportunity cost:
the difference between the discount rate and the rate of change of the aggregate
shadow value of the natural capital stock. This is a modified version of the Hotelling
rule, which imposes intertemporal efficiency to the resource extraction activities.
After substituting the static efficiency condition (7) into (9), we find that dynamic
efficiency requires the intrinsic exogenous rate of growth of natural resource (the
benefit of waiting) to be equal to the difference between the discount rate and the
rate of capital gains or losses associated with natural capital (the opportunity cost),
δ = ρ − (θ̇2/θ2).

From (6) and (7), we get the control functions

c = θ
− 1

σ

1 , (14)

z =
(

(1 − β)A

(1 + δ)

) 1
β
(

θ1

θ2

) 1
β

Q
γ

β
−1

K. (15)
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Substituting these expressions in (8)–(11), we obtain the dynamic system

θ̇1 = ρθ1 − ξθ
1
β

1 θ
− 1−β

β

2 Q
γ

β , (16)

θ̇2 = −(δ − ρ)θ2, (17)

K̇ = ξ

β
θ

1−β

β

1 θ
− 1−β

β

2 KQ
γ

β − θ
− 1

σ

1 , (18)

Q̇ = δQ −
(

1 − β

β

)
ξθ

1
β

1 θ
− 1

β

2 KQ
γ

β , (19)

where K and Q represent either the aggregate as well as per capita levels of
physical and natural capital, respectively, and

ξ ≡ β(1 + δ)

(1 − β)

(
(1 − β)A

(1 + δ)

) 1
β

> 0.

These equations, together with the initial conditions K0 and Q0, and the transver-
sality conditions (12) and (13), make the competitive equilibrium dynamics com-
pletely determined over time.

4. COMPETITIVE EQUILIBRIUM RESULTS

The complete closed-form solution for the variables of the dynamic system (16)–
(19), as well as for the controls of the model, can be found in the Appendix.
There, we have solved it under the assumption σ = β. Our solution shows that
trajectories are different depending on the parameter configuration. There are two
disjoint sets of parameter values for which at least one solution trajectory under
competitive equilibrium conditions exists. One of them implies a multiplicity of
solutions and, hence, indeterminacy. It is the case of multiple solution trajectories
starting from the same initial conditions, all of them converging to a unique
steady state or balanced growth path. Nevertheless, this case is very implausible
because of its counterintuitive predictions. For example, the long-run rate of
growth emerges as positively related to the discount rate, whereas the rate of
extraction from the natural resource stock shows a negative dependence on this
parameter. Consequently, we focus on the parameter subspace which ensures the
existence of a unique solution trajectory for every variable. This is the case where
the externality is not too strong. In what follows, we summarize the competitive
equilibrium results for natural capital, extraction rate, physical capital, output, and
the ratio between the two capital stocks.

Result 1. Under the competitive equilibrium conditions, if γ < β and δ(1+γ −
β) − ρ < 0, then
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(i) there exists a unique equilibrium path for the renewable natural capital stock Q,
starting from Q0,

Q = Q0 exp

{
δ − ρ

β − γ
t

}
;

(ii) there are no transitional dynamics for Q, which grows permanently along a balanced
growth path at a positive or negative constant rate ḡQ = (δ − ρ)/(β − γ ), depending
on whether δ ≷ ρ.

Result 2. Under the competitive equilibrium conditions, if γ < β and δ(1+γ −
β) − ρ < 0, then

(i) there exists a unique equilibrium path for the extraction rate z, which is constant
forever,

z = − δ(1 + γ − β) − ρ

(1 + δ)(β − γ )
;

(ii) the constraint 0 < z < 1 holds if and only if γ − β + ρ − δ < 0.

Result 3. Under the competitive equilibrium conditions, if γ < β and −[(β −
γ )/β]ρ < δ(1 + γ − β) − ρ < 0, then

(i) there exists a unique equilibrium path for the physical capital stock K , starting from
K0,

K = β

ρ

[{(
ρ

β
K0

)1−β

− (β − γ )βC0
0Q

1+γ−β

0

δβ(1 + γ − β) − γρ

}
exp

{
− (1 − β)ρ

β
t

}

+ (β − γ )βC0
0Q

1+γ−β

0

δβ(1 + γ − β) − γρ
exp

{
(δ − ρ)(1 + γ − β)

(β − γ )
t

}] 1
1−β

,

where the constant C0
0 = (

1 −β

β
)ξ(

(
γ − β

β )(1 −β)ξ σ
ρ

δ(1 + γ − β) − ρ
)β−1 is positive;

(ii) this equilibrium path shows transitional dynamics, approaching asymptotically to the
unique balanced growth path

K̄ = β

ρ

(
(β − γ )βC0

0Q
1+γ−β

0

δβ(1 + γ − β) − γρ

) 1
1−β

exp

{
1 + γ − β

1 − β

(
δ − ρ

β − γ

)
t

}
,

along which K grows permanently, at a positive or negative constant rate

ḡK = 1 + γ − β

1 − β

(
δ − ρ

β − γ

)
,

depending on whether δ ≷ ρ.

Combining the previous results into the production function we get Result 4.

Result 4. Under the competitive equilibrium conditions, if γ < β and −[(β−γ )/

β]ρ < δ(1 + γ − β) − ρ < 0, then
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(i) there exists a unique equilibrium path for per capita production Y , starting from
Y0 = AK

β

0 Q
1+γ−β

0 {−[δ(1 + γ − β) − ρ]/[(1 + δ)(β − γ )]}1−β :

Y = AKβz1−βQ1+γ−β = A

(
β

ρ

)β

Q
1+γ−β

0

(
− δ(1 + γ − β) − ρ

(1 + δ)(β − γ )

)1−β

·
[(

ρ

β
K0

)1−β

− (β − γ )βC0
0Q

1+γ−β

0

δβ(1 + γ − β) − γρ

]
exp

{
(1 − β)[δ(1 + γ − β) − ρ]

(β − γ )β
t

}

+ (β − γ )βC0
0Q

1+γ−β

0

δβ(1 + γ − β) − γρ
exp

{
(1 + γ − β)

β

(
δ − ρ

β − γ

)
t

} β
1−β

; (20)

(ii) this equilibrium path shows transitional dynamics, approaching asymptotically to the
unique balanced growth path

Ȳ =
A
(

β

ρ

)β

Q
1+γ−β

1−β

0

(
− δ(1 + γ − β) − ρ

(1 + δ)(β − γ )

)1−β

(
δβ(1 + γ − β) − γρ

(β − γ )βC0
0

) β
1−β

exp

{
1 + γ − β

1 − β

(
δ − ρ

β − γ

)
t

}
, (21)

along which Y grows permanently at a positive or negative constant rate

ḡY = 1 + γ − β

1 − β

(
δ − ρ

β − γ

)
,

depending on whether δ ≷ ρ.

And using the previous results on Q and K , we obtain Result 5.

Result 5. Under the competitive equilibrium conditions, if γ < β, δβ > γρ, and
−[(β − γ )/β]ρ < δ(1 + γ − β) − ρ < 0, then

(i) there exists a unique equilibrium path for the ratio K/Q, starting from K0/Q0,

K

Q
= β

ρQ0

[(
ρ

β
K0

)1−β

− (β − γ )βC0
0Q

1+γ−β

0

δβ(1 + γ − β) − γρ

]
exp

{
− (1 − β)(δβ − γρ)

β(β − γ )
t

}

+ (β − γ )βC0
0Q

1+γ−β

0

δβ(1 + γ − β) − γρ
exp

{
γ

(
δ − ρ

β − γ

)
t

} 1
1−β

; (22)

(ii) this equilibrium path shows transitional dynamics, approaching asymptotically to the
unique balanced growth path

(K/Q) = β

ρ
Q

γ
1−β

0

(
(β − γ )βC0

0

δβ(1 + γ − β) − γρ

) 1
1−β

exp

{
γ

1 − β

(
δ − ρ

β − γ

)
t

}
, (23)

along which the ratio between capitals grows exponentially at a constant rate or
decreases monotonically to zero, depending on whether δ ≷ ρ;

(iii) in the particular case where no externality does exist, γ = 0, the ratio K/Q fol-
lows a unique equilibrium path approaching monotonically to the positive constant
(ξ/δ)

1
1−β (−[δ(1 − β) − ρ]/[(1 − β)ξ ]).
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5. GROWTH, CONVERGENCE, AND SUSTAINABILITY

In this section we interpret the previous results stressing the properties of the
model in terms of long-run sustainability and growth as well as short-run growth
and convergence.

5.1. Sustainability and Long-Run Growth

We find that ḡQ is positive when δ > ρ. In such a case, using the value of z,
we get positive long-run growth for Q associated with a harvesting rate lower
than zS = δ/(1 + δ).9 This condition also implies the positivity of the long-
run rates of growth ḡK , ḡc, and ḡY . In the alternative case where δ < ρ, results
are reversed, associated with a harvesting rate greater than zS . In short, positive
long-run growth is sustainable as long as z < zS . Given that zS is increasing
with the intrinsic growth rate of natural capital, δ, several exogenous factors
affecting birth and death rates, as well as off-the-model human ecologically based
interventions, may have an important positive impact on the margins for sustainable
growth. Usually, sustainability means a state with a sustained long-run level of
per capita consumption in which the natural capital stock, or its flow of resource
services, is nondeclining through time. In this paper, we go further, supplying
conditions for a positive and sustained long-run rate of growth of consumption
per capita. Our results show that, under a well-defined system of property rights,
an efficient private management of the natural resource, in both senses intra- and
intertemporally, can produce sustainable economic growth even if the presence of
a productive externality makes this competitive outcome suboptimal from a social
point of view.

The common long-run value of the rate of growth associated with physical
capital, consumption, and production, ḡY , depends positively on parameter δ,
which represents the biotic rate of growth of natural capital, but negatively on the
rate of discount, ρ. These two relationships hold irrespective of the sign of growth.
Moreover, this rate of growth depends positively on the parameter associated
with externality, γ , when the economy experiences positive growth, δ >ρ, but
it changes to the opposite when there is negative growth, δ < ρ. Because of the
presence of the externality, the effect of the physical capital share in goods sector,
β, on the long-run rate of growth is ambiguous. However, as long as the value
of γ is small enough, we can expect a negative effect when δ >ρ and a positive
one when δ < ρ. On the other hand, the rate of growth of natural capital, ḡQ,
depends positively on the parameter δ and negatively on ρ, regardless of the sign
of growth. This rate, instead, depends negatively on β and positively on γ when
the economy experiences positive growth, changing to the opposite when there is
negative growth.

Looking now at the harvesting rate z, we can see that it depends negatively on
the intrinsic growth rate δ, and positively on the rate of discount, ρ, irrespective
of what happens in terms of growth. However, the harvesting rate increases with
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β and decreases with γ only when the rate of growth in the economy is positive;
otherwise these effects are reversed.

Consequently, an increase in δ that expands the margins for sustainability,
because it increases zS and reduces z, has an additional positive effect because
it increases the values of the long-run rates of growth ḡQ and ḡY . On the other
hand, a more patient society chooses a lower harvesting rate and reaches a greater
long-run rate of growth. The same is true for an economy with a slightly stronger
externality and a lower physical capital share, as long as such economy experiences
positive growth. Moreover, in a more patient society, positive long-run growth is
still compatible with a natural capital subject to lower biotic rates of growth.

5.2. Transitional Dynamics and Convergence

In the short run, however, from (20) the rate of growth of per capita production
can be written as

1

Y (t)

dY (t)

dt
= δ(1 + γ − β)− ρ

β − γ
+ δβ(1 + γ − β)− γρ

(1 − β)(β − γ )

[
(K/Q) (t)

(K/Q)(t)

]1−β

. (24)

From Result 3, the rate of growth of physical capital stock, which is equal to
the rate of growth of per capita consumption according to (A.26), is

1

K(t)

dK(t)

dt
= 1

c(t)

dc(t)

dt
= − ρ

β
+ δβ(1 + γ − β)− γρ

(1 − β)β(β − γ )

[
(K/Q) (t)

(K/Q) (t)

]1−β

. (25)

The rates of growth for Y , c, and K are above or below their common long-run
rate of growth,

ḡ = 1 + γ − β

1 − β

(
δ − ρ

β − γ

)
,

depending on whether the ratio (K/Q) is below or above its long-run level (K/Q).
The latter, in turn, depends on whether

Q0 ≷
(

δβ(1 + γ − β) − γρ

(β − γ )βC0
0

) 1
1+γ−β

(
ρ

β

) 1−β

1+γ−β

K
1−β

1+γ−β

0 .

Hence, short-run transitional rates of growth converge, from above or below,10 to
their long-run values because of the convergence to unity experienced by the ratio

(
(K/Q)(t)

(K/Q) (t)

)1−β

= 1 +



(

ρ

β
K0

)1−β

(δβ(1 + γ − β) − γρ)

(β − γ )βC0
0Q

1+γ−β

0

− 1




× exp

{
−δβ(1 + γ − β) − γρ

β(β − γ )
t

}
. (26)

Coming back to the levels of the variables, in the short run, trajectories for K and
Y show transitional dynamics as well as convergence to their long-run levels and
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rates of growth. There are no transitional dynamics for Q and z. The ratio between
capital stocks shows transitional dynamics and convergence in both their levels
and rates of growth. It has to be remarked that, although the long-run trajectory
for Q depends on the initial condition Q0, those of K and Y do not depend on
K0, but only on Q0. Actually, this means that what matters for the long-run levels
of per capita production is not the initial endowment of physical capital but the
endowment of natural resources.11

If we take two similar countries A and B, with the only difference in their initial
endowments of physical and natural capital, they will converge to the same rate
of growth. However, during the transition, their growth rates may differ due to
differences in the levels of both natural and physical capital stocks. According to
(24), the short-run rate of growth of production per capita depends positively on
the distance between the short-run and long-run levels of the ratio K/Q. Instead, in
terms of the levels of production per capita there could be overtaking, divergence
without overtaking, or convergence, depending on the initial conditions.12 First,
consider a resource-poor country A relative to another resource-rich country B,
QA

0 < QB
0 , but the former is endowed with a bigger initial physical capital stock,

KA
0 > KB

0 . Then, as long as the initial production in country A is still bigger than
in country B, YA(0)>YB(0), country B will overtake country A in a finite time
period, given that in the long-run Ȳ A < Ȳ B . Here, overtaking appears as absolutely
dependent on the initial endowments of natural capital across countries and does
not depend on the rate of extraction that they choose during the transition. The
resource-rich country will always emerge in finite time as the richest country.
Second, pure divergence without overtaking also appears in this model when we
observe a relatively resource-rich country A, QA

0 > QB
0 , endowed with a higher

initial physical capital stock, KA
0 � KB

0 . In such a case, we have YA(0) > YB(0)

and also Ȳ A > Ȳ B in the long run. Third, we can still observe convergence in levels
for any initial distribution of physical capital stocks, KA

0 ≷ KB
0 , if we have two

equal resource-rich countries, QA
0 = QB

0 . In such a case, although YA(0) ≷ YB(0),
we will observe that, in the long run, Ȳ A = Ȳ B . In summary, all these cases show
how much more relevant is natural capital over physical capital, in determining
the pattern of growth for different countries over time.

From the definition of speed of convergence and using (20)–(23), we get

SC(t) ≡
− d

dt

[
ln
(

Y (t)

Ȳ (t)

)]
ln Y (t) − ln Ȳ (t)

= δβ(1 + γ − β) − γρ

(β − γ )β

[
(K/Q)(t)

(K/Q)(t)

]1−β

. (27)

This expression gives the speed of convergence of the current production
level to the long-run level. It approaches, from above or below, to the long-run
value

lim
t→∞ SC(t) = δβ(1 + γ − β) − γρ

(β − γ )β
> 0,
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depending on whether (
K/Q

)
(t)(

K/Q
)
(t)

≶ 1.

The long-run value of the speed of convergence depends positively on the natural
resource intrinsic growth rate, δ, and negatively on the intertemporal rate of dis-
count, ρ. It also depends positively on the externality, γ , when δ > ρ but negatively
when δ < ρ. The effect of β is ambiguous.

In general, to the extent that as countries develop their current K/Q values and
per capita production levels approach the long-run ones from below, then (27)
shows that the speed of convergence decreases during the transition. Furthermore,
as long as sustainability is ensured, the rates of growth during the transition are
always positive. The picture that Rodrı́guez and Sachs (1999) describe in terms
of short-run evolution for per capita production has nothing to do with ours.
They find that, for a developing country, convergence to the steady-state levels
occurs from above and predict negative rates of growth during the transition.
According to those authors, natural capital abundance allows an economy to
afford extraordinary consumption possibilities and, hence, on the transition to the
steady state, it grows more slowly because they have an unsustainably high level of
income. Nevertheless, the process of convergence in our model does not produce
anything comparable to their mechanism of overshooting.

5.3. Hartwick’s Rule

From the definition of saving rate and using our solutions for K , c, and Y as well
as (22) and (23), we obtain

s(t)≡ 1 − c(t)

Y (t)
= 1 − ρ

β

K(t)

Y (t)
= 1 − (1 − β)ρ(β − γ )

δβ(1 + γ − β)− γρ

[
(K/Q)(t)

(K/Q)(t)

]1−β

.

(28)

Under the condition δ > ρ, the saving rate converges, from above or below, to
its unique long-run value

0 < lim
t→∞ s(t) = (1 + γ − β)β(δ − ρ)

δβ(1 + γ − β) − γρ
< 1,

depending on whether [(K/Q)(t)]/[(K/Q) (t)] ≶ 1. The long-run saving rate
depends positively on δ, as well as on the size of the externality, γ . Moreover, it
depends negatively on the discount rate, ρ, but the sign of the effect associated
with β is ambiguous. This sign will be positive or negative depending on whether
β ≷ (1 + γ )/2, if and only if γ �= 0. Otherwise, this parameter would not have
any influence on the asymptotic saving rate.
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The result in (28) connects with the well-known Hartwick’s rule, which was
developed in the context of a neoclassical growth model with a depletable non-
renewable natural resource. It is a savings rule that concerns the rate at which
physical capital must be accumulated to compensate for the diminishing natural
resource.13 Hartwick’s rule ensures that an aggregate measure of capital is being
maintained at a constant level, but also imposes strong conditions such as efficient
extraction and substitutability between natural and physical capital. By following
this rule, we increase the opportunities for a sustained level of consumption per
capita in the future. That notwithstanding, what we have found is a general savings
rule, which determines the amount of physical capital that has to be accumulated to
justify a positive long-run rate of growth of consumption per capita. Furthermore,
this rule is obtained along with conditions that ensure an increasing stock of natural
capital as well as an efficient harvesting programme.

In a recent paper, Gylfason and Zoega (2001) analyze from a theoretical point
of view the influence of natural resource abundance on the saving rate, the rate of
growth, and the speed of convergence. They carry out the above study using both
a neoclassical growth model as well as an endogenous growth model à la Romer,
expanded to include natural resources. In the context of the former, those authors
show that the share of natural capital in national income has a negative impact on
the saving rate as well as on the long-run level of output per capita, but a positive
one on the speed of convergence. In the context of the second model, they show
that the saving rate as well as the long-run rate of growth depend negatively on the
natural capital share. For now, in this two-sector endogenous growth model, our
results show that the long-run value of the saving rate does not depend on the share
of natural capital in national income, 1 − β, if we make comparable the models
assuming γ = 0. We confirm their result concerning the speed of convergence but,
we find instead, that the long-run rate of growth depends positively on the natural
capital share.

6. CONCLUSIONS

Experience seems to show that abundant natural wealth, if not well managed,
reduces economic growth in the long run. It does provide nations with short-
term increased wealth, but in the long term, this may slow economic growth. In
particular, inasmuch as natural resource abundance involves open access to scarce
natural resources by private agents, inefficient harvesting and overexploitation will
necessarily appear. Here, we showed that under a well-defined system of property
rights, the efficient management of the natural resource use can produce sustainable
growth, even if the presence of a productive externality makes this competitive
outcome suboptimal from a social point of view. If agents are impatient, positive
long-run growth is only possible when the natural resource experiences a high
biotic rate of growth. An increase in the intrinsic rate of growth of natural resource
expands the margins for sustainability and has an additional positive effect on the
long-run rate of growth. Moreover, a patient society chooses a lower harvesting
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rate and reaches a greater long-run rate of growth. We also showed that in the
short run, production and consumption show transitional dynamics as well as
convergence to their long-run levels and rates of growth. During transition, the
speed of convergence decreases. In the particular case of no externality affecting
production, our model predicts that the saving rate does not depend on the natural
capital share; the long-run rate of growth and the speed of convergence depend
positively, and the extraction rate negatively. In general, we can explain most of the
empirical facts described by Gylfason and Zoega (2001) and Gylfason (2001a,b).
If we consider two differently endowed economies, they will converge in rates of
growth whenever they share the same technological and preference parameters.
However, things are very different in terms of the levels of variables since there
could be overtaking, divergence without overtaking, or convergence, depending
on the initial conditions. In any case, the prominent importance of natural capital
for growth has to be noted.

Our analytical results have been obtained under the simplifying assumption that
the inverse of the intertemporal elasticity of substitution equals the physical capital
share. This imposes three shortcomings: consumption is proportional to physical
capital stock, the initial physical capital stock does not appear to be determining
any of the long-run balanced growth paths, and transitional dynamics are partially
simplified. Consequently, our model has to be considered only as an indicative
theory of the growth process in economies where production is obtained using a
renewable natural resource in combination with other factors.

Given the nature of the model and its assumptions, we find different opportu-
nities for public intervention. First, governmental organizations, mainly national
and international, have an important role to play by establishing a well-functioning
legal system that enhances private property rights or well-managed common
ownership. Second, governmental organizations coordinated at different levels,
mainly regional and local, can play a major role undertaking active ecological
and environmental policies that, by affecting the intrinsic rate of growth of nat-
ural resources, expand the margins for sustainable economic growth. Finally, by
means of a direct regulation, optimal taxes and subsidies can be designed to
create appropriate incentives for private behavior to eliminate the wedge between
decentralized and social planner solutions. In future research, we will take the
natural-resource-based economy described in this paper and study the solution to
the social optimum problem as well as the issue of tax regulation and the problem
of resource exploitation under an open access regime.

NOTES

1. According to Stiglitz (1980), a renewable natural resource is a commodity or factor that is
provided by nature and not produced, or producible, by man. It is renewable in the sense of a stock
that can be maintained, provided it is not consumed too rapidly, or because its supply can be increased
after utilization.

2. This means that the natural resource is not subject to the traditional biological laws that apply to
animal species, commonly represented by the logistic equation, or that we abstract from the negative
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feedbacks associated with overcrowding and environmental resistance. See Peterson and Fisher (1977),
as well as Shone (1997) and Perman et al. (1999), for an integrated study of all these biological and
economic concepts from an analytical point of view.

3. As Stiglitz (1980) points out, natural resources require human activity to convert them into a
useful form and indeed to extract them, but for simplicity we assume here that extraction costs are
negligible.

4. Even though natural capital is renewable, this does not mean that it should be inexhaustible.
In fact, there is a crucial difference between physical and natural capital: The first one may be used
repeatedly without any consequence to its available quantity because only depreciation can reduce it,
but the second one disappears automatically from the stock as it is used for production.

5. This expression may be encompassed in a more general law of motion for animal species that
are subject to human harvesting:

Q̇ = δ(1 − z)Q

(
1 − (1 − z)Q

Sc

)
− zQ.

Our equation, then, comes immediately under the particular assumption of no saturation level or an
infinite carrying capacity Sc , the maximum stock that the habitat can support.

6. For example, in the case of the forest resource and wooded land, a lower stock might imply
either more time and a greater distance to find wood of a certain quality, which must be considered
as a higher implicit price, or a lower quality of the harvested wood for a given implicit price. Given
that our model does not consider explicitly these elements, which are important for harvesters in their
decisionmaking processes, they are indirectly taken into account under the form of a positive external
effect.

7. As previously set, we do not consider explicit extraction costs, which are usually modeled as
reducing the amount of output available for consumption and investment.

8. In the underlying decentralized optimization problem, each competitive firm faces the stationary
problem

max
{Ki ,zi }

πi = F(Ki, ziQ, Qa) − rKi − qziQ,

and the consumers side solves the intertemporal optimization problem (P ), but taking into account the
dynamic constraint K̇ = rK + qzQ + 	 − Nc instead of (4). Price q represents the market price of
natural resource paid by firms to consumers, r is the interest rate, and in equilibrium:

(i) r = FK(Ki, ziQ,Qa) = βAK
β−1
i (ziQ)1−βQ

γ
a ,

(ii) q = F2(Ki, ziQ,Qa) = (1 − β)AK
β
i (ziQ)−βQ

γ
a .

Given the assumption of constant returns to scale at the private level, output exactly exhausts
by paying the inputs according to their marginal productivities. Hence, aggregate economic rents 	

become zero.
9. The value zS represents the harvesting rate for which the stock of natural capital remains constant

over time.
10. When δ >ρ, convergence from above occurs for short-run rates of growth always positive, but

convergence from below may be found even for initially negative short-run rates of growth crossing
the zero axis in finite time. When δ <ρ, convergence from below occurs for short-run rates of growth
always negative, but convergence from above may be found even for initially positive short-run rates
of growth crossing the zero axis in finite time.

11. This particular result strongly depends on the assumption σ = β. In general, things are not
so simple but it is a worthwhile example, which helps us to learn about some complex relation-
ships.

12. This is true only for the case where variables experience positive growth because in the opposite
case, when δ <ρ, the only feasible result is convergence, but convergence to zero.
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13. Rodrı́guez and Sachs (1999) suggest that an economy has to invest its temporary resource
windfalls in international assets that pay permanent annuities, and then consume the interest it earns
on such assets.
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APPENDIX

Here we solve in closed form the nonlinear dynamic system (16)–(19), together with the
initial conditions K0 and Q0 and the transversality conditions (12) and (13), and supply the
analytical solution trajectories for its variables. The assumption required to do this, as in Xie
(1994), is that the inverse of the intertemporal elasticity of substitution equals the elasticity
of final-good production with respect to physical capital stock, that is, the physical capital
share. We characterize the parameter space with some constraints that define different
subspaces where states, costates, and controls may follow a unique equilibrium trajectory,
a multiplicity of equilibrium trajectories, or even no equilibrium trajectory at all.

PROPOSITION 1. Along any equilibrium path, θ2 grows permanently at a constant
rate, −(δ −ρ) ≶ 0. Each of these paths, in turn, represents a balanced growth path for θ2.

Proof. From (17), we obtain θ̇2/θ2 constant. Hence,

θ2 = θ2(0) exp{−(δ − ρ)t}, (A.1)

where θ2(0) has still to be determined.

Consider now the instrumental variable X defined as

X ≡ θ
1
σ

1 K = K/c. (A.2)

By totally differentiating and substituting from (16) and (18), we get

Ẋ = 1

σ

θ̇1

θ1
X + K̇

K
X = ρ

σ
X − ξ

σ
θ

1
β −1

1 θ
− 1−β

β

2 Q
γ
β X + ξ

β
θ

1
β −1

1 θ
− 1−β

β

2 Q
γ
β X − X

θ
1
σ

1 K

,

which, under the assumption σ = β, transforms into the following linear differential equa-
tion with constant coefficients

Ẋ = ρ

σ
X − 1. (A.3)

Given K0 and a certain initial value θ1(0), for the moment unknown, we can generate an
initial condition for X, namely X(0) = θ1(0)

1
σ K0. Then, a particular solution to (A.3) is

X = σ

ρ
+
[
X(0) − σ

ρ

]
exp

{
ρ

σ
t

}
. (A.4)

The transversality condition (12) allows us to establish and prove Proposition 2.

PROPOSITION 2. Along any equilibrium path, X remains constant at the stationary
value X = σ

ρ
.

Proof. From (A.2) and (A.4), under the assumption σ = β, we get

θ1K = Xθ
− 1−β

β

1 = σ

ρ
θ

− 1−β
β

1 +
[
X(0) − σ

ρ

]
θ

− 1−β
β

1 exp

{
ρ

σ
t

}
.

https://doi.org/10.1017/S1365100505040149 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100505040149


NATURAL RESOURCE AND GROWTH 189

Then, (12) may be written as

lim
t→∞

θ1K exp{−ρt} = lim
t→∞

σθ
− 1−β

β

1 exp{−ρt}
ρ

+ lim
t→∞

[
X(0) − σ

ρ

]
θ

− 1−β
β

1

× exp

{
ρ

(
1 − β

β

)
t

}
= 0. (A.5)

Given that X is always nonnegative, the transversality condition imposes as a necessary but
not sufficient condition

lim
t→∞

θ
− 1−β

β

1 exp{−ρt} = 0. (A.6)

Consequently, looking at the second right-hand term of (A.5), we realize that the transversal-
ity condition also imposes the constraint X(0)= σ/ρ, from which we deduce the stationarity
of X simply by substituting in (A.4). This is the unique nonexplosive solution trajectory
for X, a constant value given by its initial condition. This result implies a particular and
well-defined initial value for θ1:

θ1(0) =
(

σ

ρ

1

K0

)σ

, (A.7)

where σ = β.

PROPOSITION 3. Under the competitive equilibrium conditions:

(i) If γ > β and δ(1 + γ − β) − ρ > 0, then there exists a continuum of equilibrium
paths for Q starting from Q0. These paths may be characterized by the multiplic-

ity of initial values θ2(0) = (1 + ε)(
(

γ − β
β )(1 −β)ξ σ

ρ

δ(1 + γ − β) − ρ
)βQ

γ−β

0 , where ε ≷ 0 is indeter-
minate.

(ii) If γ > β and δ(1 + γ − β) − ρ � 0, then no equilibrium path exists for Q starting
from Q0.

(iii) If γ < β and δ(1 + γ − β) − ρ � 0, then no equilibrium path exists for Q starting
from Q0.

(iv) If γ < β and δ(1 + γ − β) − ρ < 0, then a unique equilibrium path exists for Q

starting from Q0. This unique path may be characterized by the initial value

θ2(0) =


(

γ − β

β

)
(1 − β) ξ σ

ρ

δ (1 + γ − β) − ρ




β

Q
−(β−γ )

0 ,

given ε = 0.

Proof. Using the previous result on X, we come back to the system (16)–(19), which
now may be sequentially solved in closed form. Substitute the results from Propositions 1
and 2 in (19), getting

Q̇ = δQ − ψ1Q
γ
β , (A.8)

where

ψ1 =
(

1 − β

β

)
ξθ2(0)

− 1
β

σ

ρ
exp

{
δ − ρ

β
t

}
.

Equation (A.8) may be solved in two steps using Bernoulli’s method, which leads to the
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general solution

Q =
{[

Q
β−γ

β

0 + W1

]
exp

{
δ(β − γ )

β
t

}
− W1 exp

{
δ − ρ

β
t

}} β
β−γ

, (A.9)

where

W1 = −
(

γ − β

β

)
(1 − β) ξθ2(0)

− 1
β σ

ρ

δ(1 + γ − β) − ρ
.

The transversality condition (13), in turn, may be written as

0 = lim
t→∞


(θ2(0)Q0)

β−γ
β −

(
γ − β

β

)
(1 − β)ξθ2(0)

− 1+γ−β
β σ

ρ

δ(1 + γ − β) − ρ

+
(

γ − β

β

)
(1 − β)ξθ2(0)

− 1+γ−β
β σ

ρ

δ(1 + γ − β) − ρ
exp

{
δ(1 + γ − β) − ρ

β
t

}
β

β−γ

, (A.10)

and the different cases in Proposition 3 arise automatically.

From Proposition 3, we find that θ2(0) admits the general specification

θ2(0) = (1 + ε)



(

γ − β

β

)
(1 − β)ξ σ

ρ

δ(1 + γ − β) − ρ




β

Q
γ−β

0 . (A.11)

This expression corresponds to case (i) under the additional constraints γ > β and δ(1 +
γ − β) − ρ > 0 for any ε ≷ 0. Moreover, it corresponds to case (iv) under the alternative
set of constraints: ε = 0, γ < β, and δ(1 + γ − β) − ρ < 0. On the other hand, the

coefficient W1 appearing in (A.9) may be simplified by defining W1 = −(1 + �)Q
β−γ

β

0 ,
where 1 + � ≡ (1 + ε)

− 1
β and � ≷ 0, depending on whether ε ≶ 0. Now, we can use this

definition to derive a general expression for Q, which encompasses the two cases (i) and
(iv) from Proposition 3:

Q = Q0[
1 + � − � exp

{
− δ(1 + γ −β) − ρ

β
t
}] β

γ−β

exp

{
ρ − δ

γ − β
t

}
. (A.12)

This expression corresponds to case (i) under γ > β and δ(1 + γ − β) − ρ > 0, for any
� ≷ 0. It shows a multiplicity of solution trajectories for Q because of the indeterminate
value of parameter �. Moreover, it corresponds to case (iv) under ε = � = 0, γ < β, and
δ(1 + γ − β) − ρ < 0, showing a unique solution trajectory for Q because in this case �

takes a definite value.

PROPOSITION 4. Under the competitive equilibrium conditions:

(a) If γ > β and δ(1 + γ − β) − ρ > 0, then there exists a continuum of equilib-
rium paths for θ2. These paths may be characterized by the multiplicity of initial
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values

θ2(0) = (1 + �)−β



(

γ − β

β

)
(1 − β)ξ σ

ρ

δ(1 + γ − β) − ρ




β

Q
γ−β

0 ,

where � ≷ 0 is indeterminate.
(b) If γ < β and δ(1 + γ − β) − ρ < 0, then there exists a unique equilibrium path for

θ2. This unique path may be characterized by the initial value

θ2(0) =


(

γ − β

β

)
(1 − β) ξ σ

ρ

δ(1 + γ − β) − ρ




β

Q
−(β−γ )

0 ,

given � = 0.

Otherwise, no equilibrium path for θ2 exists.

Proof. Take (A.1) and substitute θ2(0) from (A.11). Then,

θ2 = (1 + �)−β



(

γ − β

β

)
(1 − β)ξ σ

ρ

δ(1 + γ − β) − ρ




β

Q
γ−β

0 exp{−(δ − ρ)t}. (A.13)

Multiplicity arises from the indeterminate value of �, whereas in case (b), where � = 0,
the indeterminacy disappears and we get a unique trajectory.

COROLLARY 1. The equilibrium paths for θ2 and Q take only positive values if and
only if � > − 1.

Proof. From (A.13), given the correlation among the signs of the parameter constraints
as shown in Proposition 4, the positiveness of θ2 depends on the constraint � > − 1,

alone. From (A.12), the positiveness of Q also depends on � > − 1, given the sign of the
constraints in Proposition 3.

PROPOSITION 5. If γ > β, δ(1 + γ − β)− ρ > 0, and � > −1, then any of the multi-
ple equilibrium trajectories for Q starting from Q0, while describing transitional dynamics,
approaches asymptotically to an undetermined positive balanced growth path where the
natural capital stock grows permanently at a constant rate ḡI

Q = (ρ − δ)/(γ − β) ≷ 0,

depending on whether ρ ≷ δ.

Proof. Under the above parameter constraints, taking the limit of (A.12), we find that,
in the long run, any of the multiple equilibrium trajectories for Q evolve transitionally,
approaching their associated balanced growth path:

Q̄I = Q0

[1 + �]
β

γ−β

exp

{
ρ − δ

γ − β
t

}
. (A.14)

Along these asymptotic paths, Q is positive and grows at a constant rate, which is positive
or negative according to ρ ≷ δ.

PROPOSITION 6. If γ < β and δ(1 + γ − β) − ρ < 0, then associated with the unique
equilibrium trajectory for Q starting from Q0, transitional dynamics do not exist at all,
and the natural capital stock grows forever along such a positive balanced growth path at
a constant rate ḡII

Q = (δ − ρ)/(β − γ ) ≷ 0, depending on whether δ ≷ ρ.
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Proof. Under the constraint of a weak externality γ < β and δ(1 + γ − β) − ρ < 0, and
by Proposition 3, � = 0. Then, substituting in (A.12), we directly get the balanced growth
path

Q = Q̄II = Q0 exp

{
δ − ρ

β − γ
t

}
, (A.15)

along which Q is positive and grows without transition at a constant rate, which is positive
or negative according to δ ≷ ρ.

PROPOSITION 7. Under the competitive equilibrium conditions:

(I) If γ > β and δ(1+γ −β)−ρ > 0, then there exists a continuum of equilibrium paths
for θ1 starting from θ1(0). These paths may be characterized by the indeterminate
value of parameter �.

(II) If γ < β and δ(1 + γ − β) − ρ < 0, and hence � = 0, then there exists a unique
equilibrium path for θ1 starting from θ1(0).

Otherwise, no equilibrium path exists for θ1 starting from θ1(0).

Proof. Substituting (A.12) and (A.13) into (16), we get

θ̇1 = ρθ1 − ψ2θ
1
β

1 , (A.16)

where

ψ2 = ξ


 1

1 + �

(
γ − β

β

)
(1 − β)ξ σ

ρ

δ(1 + γ − β)− ρ




β−1 [
1 + � − � exp

{
− δ(1 + γ − β)− ρ

β
t

}] −γ
γ−β

× Q
1+γ−β

0 exp

{
δ − ρ

β − γ
(1 + γ − β)t

}
.

Equation (A.16) may be solved as before, applying Bernoulli’s method, which leads to the
solution

θ1 =
[(

ρ

β
K0

)1−β

+ C0
�Q

1+γ−β

0 I�(t)

] −β
1−β

exp {ρt} , (A.17)

where

C0
� =

(
1 − β

β

)
ξ

(1 + �)
β(1+γ−β)

γ−β

((
γ − β

β

)
(1 − β)ξ σ

ρ

δ(1 + γ − β)− ρ

)1−β

is an indeterminate constant, which depends on the value of parameter �, and I�(t)

represents the following definite integral, which also depends on �:

I�(t) =
∫ t

0

exp
{
− δβ(1 + γ −β) − γρ

(γ −β)β
s
}

[
1 − �

1 + �
exp
{
− δ(1 + γ − β) − ρ

β
s
}] γ

γ−β

ds. (A.18)

Equation (A.17) gives a continuum of solution trajectories for θ1 depending on the indeter-
minate value of � as well as on the value of the remaining structural parameters. Hence,
we study this expression under the two sets of parameter constraints.
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First, consider γ > β and δ(1 + γ − β) − ρ > 0. Then, the transversality condition
(A.5), which imposes limt→∞ θ

−(1−β)/β

1 exp{−ρt} = 0, given (A.17) may be simplified
to limt→∞ I�(t) exp{−(ρ/β)t} = 0. Under the above parameter constraints, the inte-
grand function in (A.18) converges in the long run to the pure exponential function
exp{− δβ(1 + γ − β) − γρ

(γ − β)β
s}. This suggest a bound to the function I�(t) as

Ib(t) =
∫ t

0
exp

{
− δβ(1 + γ − β) − γρ

(γ − β)β
s

}
ds

=
(γ − β)β

(
1 − exp

{
− δβ(1 + γ − β) − γρ

(γ −β)β
t
})

δβ(1 + γ − β) − γρ
.

Then, if we take the transversality condition in the limit as t tends to infinity, we can
rewrite the previous necessary condition in terms of the bounding function just introduced:
limt→∞ Ib(t) exp{−(ρ/β)t} = 0. It is easy to see that, under the prevailing set of parameter
constraints, this condition always holds and no other parameter constraint is needed.

Second, consider γ < β, δ(1 + γ − β)− ρ < 0 and � = 0. In this case (A.17) simplifies
to

θ1 =
[(

ρ

β
K0

)1−β

+ C0
0Q

1+γ−β

0 I0(t)

] −β
1−β

exp {ρt} ,

where

C0
0 =

(
1 −β

β

)
ξ((

γ − β
β

)
(1 −β)ξ σ

ρ

δ(1 + γ − β) − ρ

)1−β
> 0

is the value for the constant C0
� when � = 0, and

I0(t) =
(γ − β)β

(
1 − exp

{
− δβ(1 + γ − β) − γρ

(γ −β)β
t
})

δβ(1 + γ − β) − γρ

represents the solution to the integral function I�(t) under � = 0. After some substitutions
and rearranging terms, we get

θ1 =
[{(

ρ

β
K0

)1−β

− (β − γ )βC0
0Q

1+γ−β

0

δβ(1 + γ − β) − γρ

}
exp

{
− (1 − β)ρ

β
t

}

+ (β − γ )βC0
0Q

1+γ−β

0

δβ(1 + γ − β) − γρ
exp

{
(δ − ρ)(1 + γ − β)

(β − γ )
t

}] −β
1−β

. (A.19)

Therefore, given (A.19) and the prevailing set of parameter constraints, the transversality
condition (A.5) will always be met with no additional constraint on the parameters. In this
case, there exists a unique equilibrium path for θ1 starting from θ1(0).

PROPOSITION 8. Under the competitive equilibrium conditions:

(I) If γ > β and δ(1 + γ − β) − ρ > 0, then there exists a continuum of equilibrium
paths for K starting from K0. These paths may be characterized by the indeterminate
value of parameter �.
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(II) If γ < β and δ(1 + γ − β) − ρ < 0, hence � = 0, then there exists a unique equili-
brium path for K starting from K0.

Otherwise, no equilibrium path exists for K starting from K0.

Proof. Given (A.2), Proposition 2, and (A.17), we get

K = β

ρ
θ

− 1
β

1 = β

ρ

[(
ρ

β
K0

)1−β

+ C0
�Q

1+γ−β

0 I�(t)

] 1
1−β

exp

{
−ρ

β
t

}
, (A.20)

which, associated with the parameter constraints γ > β and δ(1 + γ − β) − ρ > 0, shows
a continuum of solution trajectories for K depending on the indeterminate value of �.
Instead, when the prevailing set of parameter constraints is γ < β, δ(1 + γ − β) − ρ < 0,
and � = 0, the expression simplifies to

K = β

ρ

[{(
ρ

β
K0

)1−β

− (β − γ )βC0
0Q

1+γ−β

0

δβ(1 + γ − β) − γρ

}
exp

{
− (1 − β)ρ

β
t

}

+ (β − γ )βC0
0Q

1+γ−β

0

δβ(1 + γ − β) − γρ
exp

{
(δ − ρ)(1 + γ − β)

(β − γ )
t

}] 1
1−β

. (A.21)

In this case, there exists a unique equilibrium path for K starting from K0. Given the direct
relationship between K and θ1, the different cases in Proposition 8 are the counterpart of
such displayed in Proposition 7.

COROLLARY 2. In the case where γ > β and δ(1 + γ − β) − ρ > 0, if � > − 1, and
δβ(1+γ −β)−γρ < 0, then the multiple equilibrium paths for θ1 and K take only positive
values.

Proof. Looking at (A.17) and (A.20), if C0
� and I�(t) are always positive, then we get

always positive, values for θ1 and K . Given the signs of the parameter constraints, both C0
�

and I (t) are always positive if � > − 1 and δβ(1 + γ − β) − γρ < 0.

COROLLARY 3. In the case where γ < β and δ(1+γ −β)−ρ < 0, and hence � = 0,

if δβ(1+γ −β)−γρ > 0, then the unique equilibrium paths for θ1 and K take only positive
values.

Proof. This result is immediate from (A.19) and (A.21).

PROPOSITION 9. If γ > β, δ(1 + γ − β) − ρ > 0, δβ(1 + γ − β) − γρ < 0, and
� > − 1, then any of the multiple equilibrium trajectories for K starting from K0, while
describing transitional dynamics, approaches asymptotically to an undetermined positive
balanced growth path where the physical capital stock grows permanently at a constant
rate ḡI

K = [(1 + γ − β)/(1 − β)][(ρ − δ)/(γ − β)] ≷ 0, depending on whether ρ ≷ δ.

Proof. Under the above parameter constraints, taking the limit of (A.17), we find that,
in the long run, any of the multiple-equilibrium trajectories for θ1 evolve transitionally,
approaching its associated balanced growth path

θ̄1I =
(

− δβ (1 + γ − β) − γρ

(γ − β)βC0
�Q

1+γ−β

0

) β
1−β

exp

{−β(1 + γ − β)

1 − β

(
ρ − δ

γ − β

)
t

}
. (A.22)
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Then, given definition (A.2) and Proposition 2, in the long run, any of the multiple-
equilibrium trajectories for K evolve transitionally, approaching its associated balanced
growth path

K̄I = β

ρ

(
− (γ − β) βC0

�Q
1+γ−β

0

δβ(1 + γ − β) − γρ

) 1
1−β

exp

{
1 + γ − β

1 − β

(
ρ − δ

γ − β

)
t

}
. (A.23)

Along these asymptotic paths, K and θ1 are both positive and grow at a constant rate. It is
easy to see that these variables evolve in opposite directions: K increases (decreases) while
θ1 decreases (increases), depending on whether ρ ≷ δ.

PROPOSITION 10. If γ < β, δ(1 + γ − β) − ρ < 0 and δβ(1 + γ − β) − γρ > 0, then
the unique equilibrium trajectory for K starting from K0, while describing transitional
dynamics, approaches asymptotically to the unique positive balanced growth path where
the physical capital stock grows permanently at a constant rate ḡII

K = [(1 + γ − β)/(1 −
β)][(δ − ρ)/(β − γ )] ≷ 0, depending on whether δ ≷ ρ.

Proof. Under the constraint of a weak externality γ < β and δ(1 + γ − β) − ρ < 0, but
also � = 0. Therefore, taking the limit of (A.21), we find that in the long run, the unique
equilibrium trajectory for K evolves transitionally, approaching the unique balanced growth
path

K̄II = β

ρ

(
(β − γ )βC0

0Q
1+γ−β

0

δβ(1 + γ − β) − γρ

) 1
1−β

exp

{
1 + γ − β

1 − β

(
δ − ρ

β − γ

)
t

}
. (A.24)

Along this path, K is positive and grows at a constant rate, which is positive or negative
depending on whether δ ≷ ρ.

Moreover, to have a complete description of prices, we use definition (A.2) and Propo-
sition 2 to see that in the long run, the unique equilibrium trajectory for θ1 evolves transi-
tionally, approaching the unique balanced growth path

θ̄1II =
(

δβ (1 + γ − β) − γρ

(β − γ )βC0
0Q

1+γ−β

0

) β
1−β

exp

{−β(1 + γ − β)

1 − β

(
δ − ρ

β − γ

)
t

}
. (A.25)

Along this path, θ1 is positive and its constant rate of growth shows, with respect to K , the
opposite sign.

PROPOSITION 11. Under the competitive equilibrium conditions:

(I) If γ > β, δ(1 + γ − β)− ρ > 0, δβ(1 + γ − β)− γρ < 0, and � > − 1, then there
exists a continuum of equilibrium paths for c starting from c(0)= (ρ/β)K0.
Along each equilibrium path, which may be characterized by the indetermi-
nate value of parameter �, consumption per capita takes only positive values.
Moreover, while describing transitional dynamics, every equilibrium trajectory ap-
proaches asymptotically to an undetermined balanced growth path, along which
c is positive and grows permanently at a positive or negative constant rate,
ḡI

c = [(1 + γ − β)/(1 − β)][(ρ − δ)/(γ − β)] ≷ 0, depending on whether ρ ≷ δ.
(II) If γ < β, δ(1 + γ − β) − ρ < 0 and δβ(1 + γ − β) − γρ > 0, then there exists a

unique equilibrium path for c starting from c(0) = (ρ/β)K0. Along this equilibrium
path, consumption per capita takes only positive values. Moreover, while describing
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transitional dynamics, it approaches asymptotically the unique balanced growth
path, along which c is positive and grows permanently at a positive or negative
constant rate, ḡII

c = (1 + γ − β)/(1 − β)[(δ − ρ)/(β − γ )] ≷ 0, depending on
whether δ ≷ ρ.

Proof. Given (14), (A.2), and Proposition 2, we get

c = ρ

β
K. (A.26)

Consequently, all the statements in this proposition have been indirectly proved in the
proofs of previous propositions concerning variable K .

PROPOSITION 12. Under the competitive equilibrium conditions:

(a) If γ > β and δ(1 + γ − β) − ρ > 0, then there exists a continuum of equilibrium
paths for z. These paths may be characterized by the multiplicity of initial values

z(0) = (1 + �)

(
δ(1 + γ − β) − ρ

(1 + δ)(γ − β)

)
,

where � ≷ 0 is indeterminate. Moreover, any of the multiple-equilibrium trajectories
asymptotically approaches the same constant value, which represents the unique
balanced growth path.

(b) If γ < β and δ(1 + γ − β)− ρ < 0, hence � = 0, then there exists a unique equilib-
rium path for z. This unique path for which there are no transitional dynamics, may
be characterized by the initial value z(0) = −[δ(1 + γ − β) − ρ]/[(1 + δ)(β − γ )],
which also represents the unique balanced growth path.

Otherwise, no equilibrium path exists for z.

Proof. Given Proposition 2, (A.12), and (A.13), the control function (15) may be reduced
to

z = 1[
1 − �

1 +�
exp
{
− δ(1 + γ − β) − ρ

β
t
}] δ(1 + γ − β) − ρ

(1 + δ)(γ − β)
. (A.27)

When γ > β and δ(1 + γ − β) − ρ > 0, (A.27) gives a continuum of solution trajectories
for z because of the indeterminate value of �. Moreover, in the long run, any of the
multiple-equilibrium trajectories for z evolve transitionally, approaching the same constant
path

z̄I = δ(1 + γ − β) − ρ

(1 + δ)(γ − β)
. (A.28)

When γ < β and δ(1 + γ − β) − ρ < 0, given � = 0, the indeterminacy disappears and
we find a unique and constant equilibrium trajectory

z = z̄I I = − δ(1 + γ − β) − ρ

(1 + δ)(β − γ )
. (A.29)

In this case, there are no transitional dynamics for z.

PROPOSITION 13. Under the competitive equilibrium conditions:

(a) when γ > β and δ(1 + γ − β) − ρ > 0, z satisfies the constraint 1 > z > 0, if and
only if γ − β + ρ − δ > 0 and (γ − β + ρ − δ)/[δ(1 + γ − β) − ρ] > � > − 1;
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(b) when γ < β and δ(1 + γ − β) − ρ < 0, along with � = 0, z satisfies the constraint
1 > z > 0, if and only if γ − β + ρ − δ < 0.

Proof. From the proof of the preceding proposition, in case (a), any of the multiple-
equilibrium trajectories for z starting from the indeterminate value

z(0) = (1 + �)

(
δ(1 + γ − β) − ρ

(1 + δ)(γ − β)

)
, (A.30)

approaches monotonically to z̄I , as given in (A.28). It is easy to prove that 1 > z(0) > 0 if
and only if (γ − β + ρ − δ)/[δ(1 + γ − β) − ρ] > � >−1, but also that 1 > z̄I > 0 if and
only if γ − β + ρ − δ > 0. In case (b), variable z follows a constant trajectory associated
with the initial value

z = z̄I I = z(0) = − δ(1 + γ − β) − ρ

(1 + δ)(β − γ )
. (A.31)

In this case, constraint 1 > z > 0 holds if and only if γ − β + ρ − δ < 0.
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