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For multi-Global Navigation Satellite System (GNSS) constellations, the Geometric Dilution
of Precision (GDOP) is an important parameter utilised for the selection of satellites.
This paper has derived new formulae to describe the change of GDOP. The result shows
that, for GNSS single point positioning solutions, if one more satellite belonging to the
existing tracked multi-GNSS constellation used in the single point positioning solution is
added, the GDOP always decreases with the number of the added satellites. On the other
hand, when the constellation of the added satellite is not from the tracked existing
constellations, the different numbers of the added satellites have different influences on the
change of GDOP. Generally, adding one satellite from another constellation into the existing
multi-GNSS constellations will increase the GDOP, but adding two satellites will decrease
the GDOP compared with adding one from another constellation. Additionally, the GDOP
also increases in the cases of adding two satellites from two different constellations into the
tracked existing constellations.
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1. INTRODUCTION. Global Navigation Satellite System (GNSS) is a gen-
eral term used for a satellite navigation system that provides global coverage. GNSS
receivers greatly benefit from the modernisation of the existing GNSS constellations
such as the Global Positioning System (GPS) and Globalnaya Navigatsionnaya
Sputnikovaya Sistema (GLONASS) as well as from the launch of new ones such as
Galileo and BeiDou (BDS or Compass). Combining these GNSS constellations
(effectively as multi-GNSS constellations) can significantly improve positioning per-
formance in urban canyons and heavily shadowed areas. For instance, to improve the
positioning performance, BeiDou, GLONASS and Galileo constellations can be
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utilised to augment GPS receivers by offering more useful satellites (Liu et al., 2006;
Ong et al., 2009; Wang et al., 2011). They can also be introduced into GPS receivers
to improve the performance of Receiver Autonomous Integrity Monitoring
(RAIM) (Hewitson and Wang, 2006; Liu et al., 2007; Wang and Ober, 2009; Teng
and Shi, 2012).
In multi-GNSS constellations, the positioning accuracy is mainly affected by the

ranging errors and the satellite geometry. The geometry is referred to as the Geometric
Dilution of Precision (GDOP), which is frequently thought of as a number signifying
the effect of satellite geometry on the positioning accuracy (Zhao et al., 2005; Wu
et al., 2011; Yang et al., 2011b). In addition, GDOP can also be widely utilized for
selecting the satellites for positioning calculation (Zhang et al., 2008; Blanco-Delgado
and Nunes, 2010a). Among the metrics of GDOP, the change of GDOP is of great
importance.
In a single constellation, Yarlagadda et al. (2000) discussed the change of GDOP.

The results show that adding one satellite into the existing constellation decreases
GDOP. Actually, in multi-GNSS constellations, when one or more satellites are added
into the existing constellations, the added satellites may or may not belong to the
tracked existing constellations. This will make the changes of GDOPs more com-
plicated. It is important to look into some new characteristics of the GDOPs for multi-
GNSS scenarios. Our studies have identified such new characteristics.
The remaining parts of this paper are organized as follows. Section 2 briefly reviews

the calculation method of GDOP in multi-GNSS constellations. Section 3 discusses
the changes of GDOP with the constellations of the added satellites in multi-GNSS
constellations. Numerical experiments are given in Section 4, and the paper is
concluded in Section 5.

2. GDOP CALCULATION IN MULTI-GNSS CONSTELLA-
TIONS. In multi-GNSS constellations, the incompatibility of different constella-
tions, mainly referring to the coordinate and time system errors between them, should
be taken into account. The difference between the International Terrestrial Reference
Framework (ITRF) and the coordinate reference framework of GPS, Galileo and
BeiDou (respectively, WGS-84, CTRF, and CGCS 2000) is only a few centimetres.
Their difference can be ignored for navigation (Hofmann-Wellenhof et al., 2008;
Yang, 2009). The PZ-90 coordinate system of GLONASS is a little different from
ITRF. Yang et al. (2011a) analysed the difference of the coordinate system errors
between these different constellations, and concluded that the difference of coordinate
system has no influence on the calculation of GDOP.
On the other hand, there are generally two ways to deal with the differences

in the time systems (Kaplan and Hegarty, 2006; Hofmann-Wellenhof et al., 2008).
One is broadcasting the time difference between different constellations in the
broadcast ephemeris and the other is adding one unknown time system error para-
meter in the process of positioning calculation. In our studies, the latter is considered.
Thus, the GDOP in the single point positioning with multi-GNSS constellations is
defined as:

GDOP =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr HT

n QnHn
� �−1
h ir

(1)
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where Hn is called the geometric matrix, and Qn is the weight matrix related to the
measurement noise with the multi-GNSS constellations. They are given by:

Hn =
HA 1A 0A 0A . . .

HB 0B 1B 0B . . .

HC 0C 0C 1C . . .
. . . . . . . . . . . . . . .

2
664

3
775, Qn =

QA
QB

QC
. . .

2
664

3
775 (2)

In Equation (2), the subscripts γ=A, B, C, . . . denote the different constellations
(such as GPS, GLONASS, Galileo and BeiDou). Correspondingly, Hγ and Qγ are the
geometric matrix and the weight matrix in γ. Defining nγ as the number of tracked
satellites in γ, and then n=nA+ nB+nC+ . . . denotes the total number of satellites. The
ones vectors (1γ) and the zeros vectors (0γ) are located in different columns in order to
get each receiver clock bias, because the biases for different constellations are different
(Choi et al., 2011; Wang et al., 2011).
Moreover, Qn is a block diagonal matrix and Qγ are diagonal matrices. The weight

matrix Qn is introduced in Equation (1) as the GDOP calculation with the multi-
GNSS constellations requires proper weighting of individual satellites’ range
measurement. In addition, Qn also permits the quantification of the non-geometric
effect of some factors. More details about it and the impact of different measurement
errors are discussed in Blanco-Delgado and Nunes (2010b).
Supposing hi denotes the direction cosine vector between the receiver and the

corresponding satellite, and then the matrix Hγ in Equation (2) is expressed as:

HA =
h1
. . .
hnA

2
4

3
5, HB =

hnA+1

. . .
hnA+nB

2
4

3
5, HC =

hnA+nB+1

. . .

hnA+nB+nC

2
4

3
5, . . . (3)

In Equation (3), the direction cosine vector hi can be calculated by the approximate
position of the receiver and the position of the corresponding satellite.

3. CHANGE OF GDOP IN MULTI-GNSS CONSTELLATIONS. In
multi-GNSS constellations, adding satellites has influences on the geometric matrix,
and changes the GDOP consequently. In this section, we take multi-GNSS
constellations including two single constellations (A and B) as an example, and then
add satellites to show the change of GDOP. For the convenience of discussion, the
multi-GNSS constellations including A and B can be written as A/B for short.
From the point of the constellation of the added satellites, three different cases will

be taken into consideration. They are listed in Table 1.
3.1. Adding satellites from the existing constellations (Case 1). When one

satellite from the initial set of satellites is added (in this section, one satellite from

Table 1. Three different cases of adding satellites.

Case Description Example in this paper

1 Added satellites from the existing constellations Adding A or B into A/B
2 Added satellites from a third constellation Adding C or D into A/B
3 Added satellites from two different constellations Adding C and D into A/B
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B is added into A/B), the geometric matrix and the weight matrix in Equation (2) can
be described as:

H (n+1) =
HA 1A 0A
HB 0B 1B
hB 0 1

2
4

3
5, Q(n+1) =

QA
QB

q(n+1)

2
4

3
5 (4)

where hB denotes the direction cosine vector, and q(n+1) is the weight value relative to
the added satellite. Assuming h=[hB 1 0], then Equation (4) can be written as:

H (n+1) = Hn

h

� �
, Q(n+1) = Qn

q(n+1)

� �
(5)

From Equation (5), we can obtain:

HT
(n+1)Q(n+1)H (n+1) = HT

n QnHn + q(n+1)hTh (6)
According to the expression of GDOP in Equation (1), we have:

GDOP2
(n+1) = tr HT

(n+1)Q(n+1)H (n+1)
� �−1

� �
= tr HT

n QnHn + q(n+1)hTh
� �−1
h i

(7)

Let

HT
n QnHn = UΛUT (8)

where U is an orthogonal matrix, and Λ = diag λ1, · · · , λ5[ ] is a diagonal matrix. As
HT

n QnHn is a symmetric and positive definite matrix, then its diagonal elements are
positive (Horn and Johnson, 2010). Taking the inverse of both sides of Equation (8)
results in:

HT
n QnHn

� �−1= UΛUT
� �−1= UΛ−1UT (9)

Substituting Equations (8) into (7), then the latter can be transformed as

tr HT
n+1( )Q n+1( )H n+1( )

� �−1
� �

= tr HT
n QnHn + q n+1( )hTh

� �−1
h i

= tr U Λ+ q n+1( )UThThU
� �

UT� 	−1
n o

= tr U Λ+ αTα
� �−1

UT
h i (10)

In Equation (10), α can be given by

α = ffiffiffiffiffiffiffiffiffiffiffi
q n+1( )

√
hU = α1 α2 α3 α4 α5[ ] (11)

Applying the Sherman-Morrison formula (Sherman and Morrison, 1949; 1950), we
can obtain:

Λ+ αTα
� �−1= Λ−1 − Λ−1αTαΛ−1

1+ αΛ−1αT
= Λ−1 − β α∗( )T α∗( ) (12)

where

α∗ = αΛ−1, β = 1
1+ γ

(13)
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In Equation (13), γ can be calculated by

γ =
X5
i=1

α2i
λi

(14)

The substitution of Equations (12) into (10) leads to

tr HT
(n+1)Q(n+1)H (n+1)

� �−1
� �

= tr UΛ−1UT
� �− β · tr U α∗( )T α∗( )UT

� 	
= tr HT

n QnHn
� �−1
h i

− β · tr α∗( )T α∗( )� 	 (15)

Combining Equations (15) with (7) gives

GDOP2
(n+1) = GDOP2

n − β · tr α∗( )T α∗( )� 	 = GDOP2
n − p (16)

where

p = β · tr α∗( )T α∗( )� 	 = 1
1+ γ

X5
i=1

αi
λi


 �2
" #

. 0 (17)

Accordingly,

GDOP(n+1) , GDOPn (18)

The inequality in Equation (18) shows that adding one satellite from B into A/B, the
GDOP value always decreases. Similarly, the same conclusion is also obtained when
one satellite from A is added into A/B. Accordingly, in the multi-GNSS constellations,
if the added satellite is from the existing constellations within the current solution,
increasing the number of satellites always reduces the GDOP.

3.2. Adding satellites from one different constellation (Case 2). Adding a satellite
from a different constellation, i.e., adding one satellite from C into A/B, the change of
GDOP will be discussed in this section. Similar to Equation (2), the geometric matrix
and the weight matrix in those circumstances are given by:

�H (n+1) =
HA 1A 0A 0A
HB 0B 1B 0B
hC 0 0 1

2
4

3
5, �Q(n+1) =

QA
QB

�q(n+1)

2
4

3
5 (19)

where hC denotes the direction cosine vector, and �q(n+1) is the weight value relative to
the added satellite. Defining �h = hC 0 0

� 	
, and then we can partition the unitary

matrix and the weight matrix described in Equation (19) as

�H (n+1) =
Hn 0A+B

�h 1

� �
, �Q(n+1) =

Qn

�q(n+1)

� �
(20)

Therefore,

�H
T
(n+1) �Q(n+1) �H (n+1) = HT

n QnHn + �q(n+1)�h
T�h �q(n+1)�h

T

�q(n+1)�h �q(n+1)

" #
(21)
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According to Hotelling (1943a) and (1943b), taking the inverse of both sides of
Equation (21) results in

�H
T
(n+1) �Q(n+1) �H (n+1)

� �−1

=
HT

n QnHn
� �−1

. . .

. . . �q(n+1) − �q(n+1)�h HT
n QnHn + �q(n+1)�h

T�h
� �−1

�q(n+1)�h
T


 �−1

2
64

3
75 (22)

Therefore,

tr �H
T
(n+1) �Q(n+1) �H (n+1)

� �−1
� �

= tr HT
n QnHn

� �−1
h i

+ tr �q(n+1) − �q(n+1)�h HT
n QnHn + �q(n+1)�h

T�h
� �−1

�q(n+1)�h
T


 �−1
" #

(23)
Based on the expression of GDOP, Equation (23) can be simplified as

GDOP
�����2

(n+1) = GDOP2
n + q (24)

where

q = tr �q(n+1) − �q(n+1)�h HT
n QnHn + �q(n+1)�h

T�h
� �−1

�q(n+1)�h
T


 �−1
" #

. 0 (25)

From Equation (25), as detailed in the Appendix, we can obtain

GDOP
�����

(n+1) . GDOPn (26)

This is different from the change of GDOP in Section 3.1, and Equation (26)
demonstrates that adding one satellite from a third constellation causes the increase of
the GDOP.
However, if we continually add a second satellite (from C ) into A/B, the geometric

matrix and the weight matrix in Equation (19) can be written as

�H (n+2) =
�H (n+1)

h′C 0 0 1

" #
=

�H (n+1)
h′

" #
, �Q(n+2) =

�Q(n+1)
�q(n+2)

" #
(27)

where h′C denotes the direction cosine vector, and �q(n+2) is the weight value relative to
the added satellite. Then the GDOP is calculated by

GDOP
�����

(n+2) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr �H

T
(n+2) �Q(n+2) �H (n+2)

� �−1
� �s

(28)

It is clear to see that the structures of �H (n+2) and �Q(n+2) in Equation (27) and H (n+1)
and Q(n+1) in Equation (5) are similar. Thus, the steps of comparing GDOP

�����
(n+2) with
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GDOP
�����

(n+1) are the same as those of comparing GDOP(n+1) to GDOPn. That is,

GDOP
�����

(n+2) , GDOP
�����

(n+1) (29)
Combining Equations (26) and (29) leads to

GDOP
�����

(n+1) . GDOPn

GDOP
�����

(n+2) , GDOP
�����

(n+1)

8<
: (30)

The inequalities in Equation (30) show that adding one satellite from a third
constellation into the existing constellations causes the increase of the GDOP.
Continually adding additional satellites, however, causes the decrease of the GDOP.
However, whether GDOP

�����
(n+2) is larger than GDOPn or not is unknown. Thus, it is

worth mentioning that in this case the simultaneous addition of two satellites from a
third constellation may result in a decrease or increase of GDOP depending on the
relative positions of the added satellites.

3.3. Adding satellites from two different constellations (Case 3). If the two
satellites which are from another two different constellations (C and D) are simul-
taneously added into A/B, the geometric matrix and the weight matrix in this case are
given by

H
�

(n+2) =
HA 1A 0A 0A 0A
HB 0B 1B 0B 0B
hC 0 0 1 0

hD 0 0 0 1

2
664

3
775, Q

�
(n+2) =

QA

QB

�q(n+1)

q
�

(n+2)

2
6664

3
7775 (31)

where hC and hD denote the direction cosine vectors relative to the added satellites
belonging to the C and D constellations, and �q(n+1) and q

�
(n+2) are the weight values

relative to the two satellites, respectively. Let h
�
= [hD 0 0 0], then we partition H

�
(n+2)

and Q
�

(n+2) in Equation (31) as

H
�

(n+2) =
�H (n+1) 0A+B+1

h
�

1

" #
, Q

�
(n+2) =

�Q(n+1)
q
�

(n+2)

" #
(32)

where H
�

(n+1) and Q
�

(n+1)
are defined in Equation (19).

Therefore,

H
�T

(n+2)Q
�

(n+2)H
�

(n+2) =
�H

T
(n+1) �Q(n+1) �H (n+1) + q

�
(n+2) h

�T

h
�

q
�

(n+2) h
�T

q
�

(n+2) h
�

q
�

(n+2)

2
4

3
5 (33)

From Section 3.2, it is clear to see that the form of Equation (33) is similar to that of
Equation (21). Thus, the inequality in Equation (34) can be obtained by means of the
same steps as listed in Section 3.2.

tr H
�T

(n+2)Q
�

(n+2)H
�

(n+2)


 �−1
" #

. tr �H
T
(n+1) �Q(n+1) �H (n+1)

� �−1
� �

(34)
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According to the expression of GDOP, then we have

GDOP
�����

(n+2) . GDOP
�����

(n+1) (35)
Combining Equations (35) and (26), Equation (36) can be obtained.

GDOP
�����

(n+2) . GDOPn (36)
Equation (36) indicates that GDOP increases when two satellites from two different

constellations are simultaneously added to the existing constellations.
3.4. Further Discussion on the Change of GDOP. From Section 3.1 to 3.3, we

take the multi-GNSS constellations (A/B) as an example, and discuss the change of
GDOP. Actually, if the multi-GNSS constellations are composed of three different
single constellations (i.e., A/B/C for short), the change of GDOP is similar.
Compared to A/B, the structures of the geometric matrix and the weight matrix in

A/B/C are similar. Only the dimensions are different. Consequently, the change of
GDOP can also be derived by means of similar procedures. That is, if the added
satellite is from A, B, or C, the GDOP always decreases. However, if it is from other
constellations, different numbers of added satellites have different impacts on the
change of GDOP. When one satellite is added, the GDOP increases, while adding a
second one decreases the GDOP.

4. NUMERICAL EXPERIMENTS. In this section, we also take A/B as an
example to verify the change of GDOP through numerical experiments. For
convenience of discussion, we assume that the weight matrix is an identity one.

4.1. Data collection and description. The experimental data are obtained from
Lundberg (2001), and they are presented in metres. Table 2 illustrates the three-
dimensional coordinates and pseudo-ranges of the eight satellites. The multi-GNSS
constellations (A/B) consist of the first six satellites (S1–S6), and the other
two satellites (S7, S8) are added into A/B for analysing the change of GDOP.
Additionally, the first three (S1–S3) and the other three satellites (S4–S6) in A/B
belong to A and B, respectively.

4.2. Change of GDOP. Using the coordinates and pseudo-ranges of the eight
satellites in Table 2, the GDOP values are shown in Table 3. In this table, GDOPA,
GDOPB and GDOP

�����
C denote the GDOP for the case of adding satellites from A, B

Table 2. Coordinates and pseudo-ranges of eight satellites.

Satellites

Three-dimensional coordinates (m)

Pseudo-ranges (m)x y z

S1 16414028·668 660383·618 20932036·907 24658975·31743
S2 16896800·648 −18784061·365 −7418318·856 22964286·41228
S3 9339639·616 −14514964·658 20305107·161 21338550·64536
S4 −18335582·591 −11640868·305 15028599·071 23606547·29359
S5 −2077142·705 −20987755·987 −15879741·196 24263298·50401
S6 −4957166·885 −23306741·039 12039027·096 20758264·10823
S7 17977519·820 −13089823·312 14331151·065 21847468·81689
S8 9682727·508 −24060519·485 3985404·530 20352077·19349
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and C, respectively. Additionally, when two satellites (from C and D) are added, the

GDOP is denoted as GDOP
�����

CD.
Based on the GDOP values shown in Table 3, it is clear to see that:

(1) Adding satellites which belong to the existing constellations always reduces the
GDOP. Taking GDOPA as an example, when S7 is added, the GDOP decreases
from 3·795 to 3·566. The change of GDOP in conditions of adding one satellite
from B into A/B is the same.

(2) When the added satellite is from the existing constellations, the first difference
of the GDOP values in Table 3, namely, the extent of decrease in the GDOP,
does not always increase or reduce. This is different from the change of GDOP
itself. For instance, ΔGDOPA (the abbreviation of the first difference of
GDOPA) are 0·229 and 0·492, respectively. That is, the differences are on the
increase. However, ΔGDOPB (the abbreviation of the first difference of
GDOPB) are 1·488 and 0·148, respectively. Compared to the former, the latter
becomes smaller.

(3) In contrast to the change of GDOP in Case 1, the GDOP in Case 2 does not
always decrease. Namely, the different number of the added satellites has
different influences on the change of GDOP. For instance, when S7 is added,
the GDOP value (GDOP

�����
C ) increases from 3·795 to 4·530. While continually

adding a second one (S8) causes the decrease of the GDOP, and it decreases
from 4·530 to 3·665.

(4) Moreover, when the two added satellites are from two different constellations,
the GDOP is on the increase. In Table 3, if S7 (from C ) and S8 (from D) are
added into A/B, the GDOP increases from 3·795 to 4·909.

5. CONCLUSIONS. The influences of the constellation of the added satellites
on the change of GDOP in the existing single point positioning for multi-GNSS
constellations have been derived theoretically in this paper. The results demonstrate
that when the added satellites belong to the existing constellations, the GDOP always
decreases with the number of satellites. However, if the added satellites are from
different constellations, the different numbers of the added satellites lead to different
changes of GDOP. Such new characteristics have provided more knowledge and
deeper insights into the GDOPs, which is very important in the selection of satellites
for various positioning, navigation, and timing applications.

Table 3. GDOP values of three cases.

Added satellite(s)

Case 1 Case 2 Case 3

GDOPA GDOPB GDOP
�����

C GDOP
�����

CD

— 3·795 3·795 3·795 3·795
S7 3·566 2·307 4·530 4·530
S7, S8 3·074 2·159 3·665 4·909
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Besides the GDOP, the Position Dilution of Precision (PDOP), the Horizontal
Dilution of Precision (HDOP) and the Vertical Dilution of Precision (VDOP) are
several other important parameters with multi-GNSS constellations. Further research
is underway to theoretically analyse their performance.
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APPENDIX: TO DETERMINE THE PARAMETER SIGN. The proof
of Equation (25) is given in this section. Using Equation (8), then

HT
n QnHn + �q(n+1)�h

T�h = UΛUT + �q(n+1)�h
T�h (A1)

Taking the inverse of both sides of Equation (A1) leads to

HT
n QnHn + �q(n+1)�h

T�h
� �−1

= UΛUT + �q(n+1)�h
T�h

� �−1

= U Λ+ �q(n+1)UT�h
T�hU

� �
UT

h i−1

= U Λ+ υTυ
� �−1

UT

(A2)

where the vector υ = ffiffiffiffiffiffiffiffiffiffiffi
�q(n+1)

p
�hU with the elements υi(i = 1, · · · , 5). Based on

Equation (A2), then we have

�q(n+1)�h (HT
n QnHn + �q(n+1)�h

T�h)−1 �q(n+1)�h
T= �q(n+1)υ(Λ+υTυ)−1υT (A3)

By means of the Sherman-Morrison formula, we can write

Λ+υTυ
� �−1= Λ−1 − Λ−1υTυΛ−1

1+ υΛ−1υT
= Λ−1 − 1

1+ �γ
Λ−1υTυΛ−1� � (A4)

where

�γ = υΛ−1υT =
X5
i=1

υ2i
λi


 �
(A5)

The substitution of Equations (A4) and (A5) into (A3) leads to

�q(n+1)�h (HT
n QnHn + �q(n+1)�h

T�h)−1 �q(n+1)�h
T=�q(n+1)

�γ

1+ �γ
(A6)

Therefore,

�q(n+1)−�q(n+1)�h (HT
n QnHn + �q(n+1)�h

T�h)−1 �q(n+1)�h
T=�q(n+1)

1+ �γ
(A7)

Furthermore,

q = tr �q(n+1)−�q(n+1)�h HT
n QnHn + �q(n+1)�h

T�h
� �−1

�q(n+1)�h
T


 �−1
" #

=1+ �γ
�q(n+1)

. 0 (A8)
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