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Let M(n, A) denote the maximum possible cardinality of a family of binary strings of length

n, such that for every four distinct members of the family there is a coordinate in which

exactly two of them have a 1. We prove that M(n, A) 6 20.78n for all sufficiently large n. Let

M(n, C) denote the maximum possible cardinality of a family of binary strings of length

n, such that for every four distinct members of the family there is a coordinate in which

exactly one of them has a 1. We show that there is an absolute constant c < 1/2 such that

M(n, C) 6 2cn for all sufficiently large n. Some related questions are discussed as well.

1. Introduction

Many problems in extremal set theory can be formulated in terms of finding, for fixed k

and n, the maximum number of binary strings of length n with the property that no k of

them should form a specific ‘forbidden’ configuration. Sperner’s theorem [17] is the answer

in the most fundamental and elementary case (with k = 2). For k = 3 we already have a

wealth of intriguing, well-known and unsolved problems of this kind, most of which have

been studied extensively in different and often applied contexts. These include strong ∆-

systems [4], cancellative families [6], superimposed codes [5] (cf. also [3]) and qualitatively

3-independent bipartitions [7]. Until a few months ago all of these problems had one thing

in common: not even the exponential growth rate of the maximum number of n-strings

with the required property was known. The breakthrough occurred with cancellative set

families when Shearer [15] disproved the corresponding conjecture of Erdős and Katona

[6] and this led the way to Tolhuizen’s beautiful discovery [18] that the Frankl–Füredi

upper bound [6] is tight. The construction in [18] based on cosets of randomly chosen
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382 N. Alon, J. Körner and A. Monti

linear codes gives us the first precise asymptotics for a nontrivial problem in this context.

Some of the above authors, in particular Dyachkov and Rykov [3] and Tolhuizen [18], use

the language of the Shannon Theory of Information; for information-theoretic aspects

and the double life of such problems see the survey [10].

Given the difficulty and the unresolved status of the problems for k = 3 it might seem

odd to look into problems about forbidden configurations of 4 strings. However, as we

shall see, the parity of k does play a role here and things change for this new case. We

restrict our attention to the following setting. Let A ⊆ {0, 1}4 be arbitrary and let M(n, A)

be the maximum cardinality of a set C ⊆ {0, 1}n with the property that, for every ordered

fourtuple (w, x, y, z) of them, there is at least one coordinate i such that (wi, xi, yi, zi) ⊆ A.

If A is the set of all the 6 fourtuples with equal numbers of zeros and ones, then M(n, A)

can be reinterpreted as the maximum number of binary n-strings with the property that,

for every four of them, there is a coordinate representing a bipartition halving the

fourtuple.

Theorem 1.1.
1

3
log

8

5
6 lim sup

n→∞
1

n
logM(n, A) 6 0.773 . . . .

Here and henceforth, all logarithms and exponentials are to the base 2.

Similar results for the case when every fourtuple has to be halved in at least two (three)

different ways were obtained by Simonyi and Körner [11]. In reaction to that paper Vera

T. Sós asked in 1987 whether the above lim sup is strictly less than 1. Our first result gives

a positive answer to her question. If, on the other hand, B is the set of all the 8 fourtuples

with an odd number of ones, then M(n, B) can be reinterpreted as the maximum number

of binary n-strings with the property that any two of them have a different sum modulo

2. For this case Lindström [13] proved the following.

Theorem L. ([13])

lim
n→∞

1

n
logM(n, B) =

1

2
.

The construction part of his result is based on what is called 2-error correcting BCH

codes in algebraic coding theory; once again, information theory is lingering around. In

view of the last theorem it is interesting to know that, if C is the set of all the 4 fourtuples

with a single 1, then we can only construct considerably fewer sequences, and in particular,

we shall show the following.

Theorem 1.2.
1

3
(6− log 37) 6 lim sup

n→∞
1

n
logM(n, C) <

1

2
.

The proof of Theorem 1.1 relies on Sauer’s lemma [14], also known as the Shelah–

Perles theorem [16] and the Vapnik–Chervonenkis lemma [19] (all of whom proved

it independently and about the same time), while the proof of Theorem 1.2 uses the
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bounding technique based on the sub-additivity of graph entropy, introduced in [9]. As is

often the case in these problems, the lower bounds are obtained via simple probabilistic

constructions.

2. Proof of Theorem 1.1

The lower bound follows by a routine random choice argument, using the so-called alter-

ation method (see, e.g., [1, Chapter 3]). Here are the details. Let F be a random family of

N binary strings of length n, where each member of F is chosen, randomly, independently

and uniformly, among all binary strings of length n. The expected number of fourtuples in

F for which there is no coordinate in which exactly two of them have a 1 is
(
N
4

)
(10/16)n.

The expected number of pairs of identical strings in F is
(
N
2

)
(1/2)n. By linearity of expec-

tation, there is a choice of N strings in which the number of such forbidden fourtuples

plus the number of such forbidden pairs is at most
(
N
4

)
(10/16)n +

(
N
2

)
(1/2)n, and by

deleting an arbitrarily chosen string from each such forbidden configuration we conclude

that, for every N,

M(n, A) > N −
(
N

4

)
(10/16)n −

(
N

2

)
(1/2)n.

Substituting N = b(16/10)n/3c, it follows that M(n, A) > c(16/10)n/3 for some absolute

positive constant c, supplying the desired lower bound.

We next prove the upper bound. Let Cn ⊆ {0, 1}n achieve

Cn = M(n, A),

and write

c = lim sup
n→∞

1

n
log |Cn|.

By Sauer’s lemma, there is a set of coordinates Dn ⊆ [n] satisfying

lim
n→∞
|Dn|
n
> h−1(c)

with the property that the projection of Cn onto Dn, that is, the set{
x; x ∈ {0, 1}|Dn|, ∃y ∈ Cn yi = xi, ∀i ∈ Dn},

is the whole {0, 1}|Dn|; here the function h−1 : [0, 1] → [0, 1
2
] is the inverse of the binary

entropy function (which exists when the function h is restricted to the left half of the unit

interval). Our result will immediately follow from the claim that

1− h−1(c) > c. (2.1)

In order to verify this claim suppose to the contrary that

1− h−1(c) < c. (2.2)

Now let m(z) denote, for every z ∈ {0, 1}|Dn|, the number of those elements of Cn whose

projection onto its coordinates in Dn equals z. Obviously,

|Cn| =
∑

z∈{0,1}|Dn |
m(z) 6 exp2 (n− |Dn|) max

z∈{0,1}|Dn |
m(z).
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This together with our hypothesis (2.2) implies, in particular, that, for all sufficiently

large n,

max
z∈{0,1}|Dn |

m(z) > 4.

Let n0 be the threshold above which the last inequality holds, and consider a fixed z with

m(z) > 4. Further, let E′ be the set of those sequences in Cn whose projection onto Dn is

this z. Since E′ has at least 5 elements, for any fixed coordinate j ∈ Dn there must be 3 of

them, w, x and y, say, which are all equal in their jth coordinate. Fix such a coordinate

j, and let w, x and y be the corresponding strings. Finally, consider the binary sequence

a = ai1ai2 . . . ai|Dn | defined by setting, for every i ∈ Dn the coordinate ai equal to the only

value from {0, 1} which occurs twice or never among the ith coordinates of w, x and y.

This guarantees the existence of a sequence v ∈ Cn, different from w, x and y (since its jth

coordinate differs from that of w, x and y), whose projection onto Dn is precisely this a.

But then the 4 sequences of the ‘string quartet’ v, w, x and y do not satisfy the criterion

that both 0 and 1 occur twice in some of their coordinates, since in every coordinate i

belonging to Dn the corresponding value ai appears among the four ith coordinates an odd

number of times, while in all of the remaining coordinates the common value of the three

original sequences appears at least 3 times among the 4 sequences. This contradiction

shows the impossibility of (2.2) and thus we must have (2.1). An easy calculation shows

(2.1) to be equivalent to the relation

c 6 h(1− c).
The largest value for which this holds satisfies the equation

c = h(1− c),
whose solution gives our upper bound.

3. Proof of Theorem 1.2

Once again, the proof of the lower bound is simple, and proceeds as follows. Let F

be a random family of N binary strings of length n, where each member of F is

chosen, independently, by letting each of its coordinates, randomly and independently,

be 1 with probability p and 0 with probability 1 − p, where p will be chosen later.

The expected number of fourtuples in F for which there is no coordinate in which

exactly one of them has a 1 is
(
N
4

)
(1 − 4p(1 − p)3)n. The expected number of pairs of

identical strings in F is
(
N
2

)
(p2 + (1 − p)2)n. Therefore, there is a choice of N strings in

which the number of forbidden fourtuples plus the number of forbidden pairs is at most(
N
4

)
(1 − 4p(1 − p)3)n +

(
N
2

)
(p2 + (1 − p)2)n. By deleting an arbitrarily chosen string from

each such forbidden configuration we conclude that, for every p between 0 and 1 and for

every N,

M(n, C) > N −
(
N

4

)
(1− 4p(1− p)3)n −

(
N

2

)
(p2 + (1− p)2)n.

Choosing p = 1/4 and N = b(64/37)n/3c, it follows that M(n, C) > c(64/37)n/3 for some

absolute positive constant c, supplying the desired lower bound.
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We next give a detailed proof of the upper bound. Suppose first that the set C′n ⊆ {0, 1}n
achieves the maximum in the definition of M(n, C), and let us write

d = lim sup
n→∞

1

n
log |C′n|.

Clearly, then there exists, for every n, a set Cn ⊆ C′n such that all the strings in Cn have

the same number, say np(n), coordinates equal to 1, while we continue to have

d = lim sup
n→∞

1

n
log |Cn|. (3.1)

Without restricting generality we can suppose the existence of the limit

lim
n→∞ p(n) = q. (3.2)

(In order to verify the existence of Cn as above, notice that C′n can be partitioned into at

most n+ 1 subsets with the property that, within each of them, the number of the 1 s in

every string is the same. Choosing Cn as one of these classes with maximum cardinality,

the statement follows.)

Let us fix n and Cn as above and write p = p(n). Further, let us denote by pi = pi(n) the

fraction of those elements of Cn whose ith coordinate equals 1. Clearly, we must have

1

n

n∑
i=1

pi = p. (3.3)

Next we claim that, for every ε and n sufficiently large,

1

n
log

(|Cn|
2

)
6 h(2p(1− p)) + ε. (3.4)

In order to prove this inequality, let us first define, for every i ∈ [n], the function

fi :
(Cn

2

) → {0, 1} by setting fi(A) = 1 if and only if the two binary strings forming A

differ in their ith coordinates and set fi(A) = 0 otherwise.

We claim that, if A 6= B for some A ∈ (|Cn|
2

)
, B ∈ (|Cn|

2

)
, then there exists an i ∈ [n] for

which

fi(A) 6= fi(B). (3.5)

This is perfectly clear if A∩B 6= ∅, and is a consequence of our hypothesis on Cn otherwise.

As a matter of fact, if A and B are disjoint, then their union defines a ‘string quartet’ at

least one of whose coordinates, say, the ith, is in C . But then, necessarily, no matter how

A and B divide the quartet into two couples, we have (3.5).

Let Xn be a random variable uniformly distributed over the unordered pairs of distinct

elements of Cn. We define, for every i ∈ [n], the random variable Zi by setting Zi = fi(X
n).

We have

H(Xn) = log

(|Cn|
2

)
and

H(Zi) = h

(
2pi(1− pi) |Cn||Cn| − 1

)
< h(2pi(1− pi)) + ε.
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Since by its definition Zn = Z1 . . . Zn is a function of Xn , we have H(Zn) 6 H(Xn). On

the other hand (3.5) implies that the function defining Zn from Xn is injective, whence

also Zn determines Xn and thus

H(Xn) = H(Zn).

Comparing this with the above and applying the well-known subadditivity of entropy (see

[2]), we obtain

log

(|Cn|
2

)
= H(Xn) 6

n∑
i=1

H(Zi) =

n∑
i=1

[
h(2pi(1− pi)) + ε] 6 n[h(2p(1− p)) + ε

]
, (3.6)

where the rightmost inequality follows by the easily checkable cap-convexity of the

function h(2x(1− x)) in x, in virtue of (3.3); this establishes (3.4).

We shall use (3.4) in combination with another inequality we now intend to prove. In

fact, we claim that

1

n
log |Cn| <∼ 1

2− q
n∑
i=1

(
1− p2

i

)
h

(
2pi

1 + pi

)
. (3.7)

This is the core of our proof and it will take some time before we complete its

verification. We will use the concept of graph entropy introduced in [8] (see also [9]). Let

the graph G = Gn have vertex set

V (G) =

(Cn
2

)
,

and let the vertices A ∈ (Cn
2

)
, B ∈ (Cn

2

)
be adjacent in G if there is a coordinate i ∈ [n] for

which exactly one of the (3 or 4) sequences in A ∪ B is equal to 1. Further, let P be the

uniform probability distribution on V (G).

We will need appropriate lower and upper bounds on H(G, P ), the entropy of the graph

G with respect to the distribution P . We recall that graph entropy is formally defined as

H(G, P ) = min
X∈Y ∈S(G), PX=P

I(X ∧ Y ),

where S(G) denotes the family of the stable sets of vertices in G. A subset of the vertex

set is called stable if it does not contain any edge. We recall that the mutual information

I(X ∧ Y ) of the random variables X and Y equals H(X) + H(Y ) − H(X,Y ), where, for

instance, H(X,Y ) is the entropy of the random variable (X,Y ). It is immediate from this

definition that, if K is a complete graph and P an arbitrary distribution on its vertex

set, then H(K,P ) = H(P ), and thus graph entropy enriches our possibilities for obtaining

entropy-based bounds.

First let us prove that, for any ε > 0 and sufficiently large n, the graph G just defined

on Cn satisfies

log α(G) 6 q log |Cn|+ nε (3.8)

where, following tradition, we denote by α(G) the cardinality of the largest stable set in

V (G). Now let S ⊆ V (G) be a stable set of G of maximum cardinality. Actually, since, by

our hypothesis, if A ∈ (Cn
2

)
, B ∈ (Cn

2

)
, |A ∪ B| = 4, then there exists an i ∈ [n] such that
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exactly one of the four coordinates of these 4 sequences is equal to 1, such disjoint sets A

and B cannot both belong to S. In other words, we see that the vertices of any stable

set, and thus of S, form an intersecting family in
(Cn

2

)
. Since we want to prove (3.8), we

can suppose |S| > 3. But then there exists an x ∈ Cn such that A ∈ S implies x ∈ A.
Consider

Ŝ = {y; {x, y} ∈ S}
and

D = {i; xi = 1}.
Clearly, if y 6= z for y ∈ Ŝ, z ∈ Ŝ, then these two sequences cannot differ in any

coordinate i ∈ D. This implies that, given any string quartet y, y′, y′′, y′′′ with all its strings

from Ŝ, there cannot be any coordinate i ∈ D in which these 4 strings have just one 1.

But then these 4 strings that are all from Cn must have such a coordinate j ∈ D. Let

C∗n ⊆ {0, 1}|D| denote the set of projections of the strings in Ŝ onto their coordinates in

D. We have, for every ε > 0 and sufficiently large n, by the definition (3.1) of d that

|S| − 1 = |Ŝ| = |C∗n| 6 exp
[
|D|
(
d+

ε

4

)]
6 exp

[
nq
(
d+

ε

4

) ]
6 exp(nε) · |Cn|q. (3.9)

The last inequality yields (3.8), which in turn implies

H(G, P ) > H(P )− log α(G) = log

∣∣∣∣(Cn2
)∣∣∣∣− log α(G) > (2− q) log |Cn| − nε, (3.10)

where the first inequality, an easy consequence of the definition of graph entropy, is

explained more in detail in [9, p. 568].

In order to complete the verification of (3.7) we turn to the proof of our upper bound

on H(G, P ). Given any i ∈ [n], let Gi be the graph having the same vertex set as G and

an edge set E(Gi) ⊆ E(G) defined by making the vertices A ∈ (Cn
2

)
, B ∈ (Cn

2

)
adjacent in

Gi if exactly one of the (3 or 4) sequences in A∪B has its ith coordinate equal to 1. Since

every couple of sets {A,B} must satisfy this for at least one i ∈ [n], we immediately see

that

G ⊆
n⋃
i=1

Gi

(where for two graphs F and G on the same vertex set V F ∪ G denotes the graph on V

with edge set E(F) ∪ E(G)). It follows from the sub-additivity of graph entropy (see [9,

Corollary 1, p. 562]) that

H(G, P ) 6
n∑
i=1

H(Gi, P ). (3.11)

Next we want to check that for every i ∈ [n] we have

H(Gi, P ) 6 (1− p2
i )h

(
2pi

1 + pi

)
. (3.12)

To see this, introduce the graph F with vertex set V (F) = {0, 1, 2} and the single edge

{0, 2}. Observe that the function gi :
(Cn

2

) → {0, 1, 2}, defined by setting gi({x, y}) = 0 if

xi = yi = 0, gi({x, y}) = 1 if xi = yi = 1 and gi({x, y}) = 2 otherwise, acts on the vertices of
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Gi in an edge-preserving manner. Next consider the probability distribution Pi on {0, 1, 2}
defined by

Pi(t) = P (g−1
i (t)) =

∑
A∈(Cn2 ),gi(A)=t

P (A).

Clearly, in the limit of n going to infinity, when the effect of not allowing repetitions can

be neglected, we can suppose that Pi(0) = (1 − pi)2, Pi(1) = p2
i and Pi(2) = 2pi(1 − pi).

Thus, as an easy consequence of the above definition of graph entropy, one sees that

H(Gi, P ) = H(F, Pi) = (1− p2
i )h

(
2pi

1 + pi

)
.

Now, from (3.11) and (3.12) we get

H(G, P ) 6
n∑
i=1

(1− p2
i )h

(
2pi

1 + pi

)
(3.13)

right away. Let the function l : [0, 1]→ [0, 1] be the upper convex envelope of the function

k(t) = (1− t2)h( 2t
1+t

), t ∈ [0, 1]. With this notation, (3.13) and (3.3) imply H(G, P ) 6 nl(p),
whence, in virtue of the definition (3.2) of q, for every ε > 0 and sufficiently large n one

has

H(G, P ) 6 n(l(q) + ε). (3.14)

Comparing this and (3.10) we obtain, for every ε > 0 and sufficiently large n,

1

n
log |Cn| 6 l(q) + ε

2− q + ε. (3.15)

This inequality together with (3.4) gives that, for every ε and sufficiently large n,

1

n
log |Cn| 6 max

q∈[0,1]
min

{
h(2q(1− q))

2
,

l(q) + ε

2− q
}

+ ε,

whereby the definition of d yields

d 6 max
q∈[0,1]

min

{
h(2q(1− q))

2
,

l(q)

2− q
}
. (3.16)

An easy calculation shows that the right-hand side of this is strictly less than 1/2 as

claimed; in fact it suffices to verify that if q 6= 1/2 then h(2q(1−q))
2

< 1/2, while if q = 1/2

we have l(q)
2−q < 1/2.

4. Remarks

The determination of the values of M(n, A) and M(n, C), at least in an asymptotic sense,

seems to be the natural analogue for fourtuples of perhaps one of the most difficult

problems in extremal set theory, namely that of deciding whether the maximum number

F(n, 3) of binary sequences of length n without 3 of them forming a strong ∆-system

satisfies lim supn→∞ 1
n

logF(n, 3) < 1. A recent survey article of Kostochka on ∆-systems

[12] shows how far we still are from answering this question. It is therefore significant

that for ‘string quartets’ much more could be said on analogous questions. One of the
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reasons for this is that by considering quartets as pairs of pairs we can introduce more

structure into our analysis.

Combining our methods here with an additional (simple) argument we can obtain results

concerning some more general analogues of the ∆-system question. For k > m > 0, and n

satisfying 2n−1 > k, let f(n, k, m) denote the maximum possible number of binary strings

of length n such that for any k of them there is a coordinate in which exactly m of them

have a 1. In this notation, Theorem 1.1 supplies bounds for M(n, A) = f(n, 4, 2), whereas

Theorem 1.2 provides bounds for f(n, 4, 1). By exchanging the roles of 0 and 1 it follows

that f(n, k, m) = f(n, k, k − m), and trivially f(n, 1, 0) = f(n, 1, 1) = 2n − 1, f(n, 2, 1) = 2n,

and, for every k > 2, f(n, k, 0) = f(n, k, k) = 2n−1. The ∆-system question is that of

determining if f(n, 3, 1) = f(n, 3, 2) is at most (2 − ε)n for some fixed positive ε. Our

methods here suffice to prove the following.

Theorem 4.1. There exists a positive constant δ such that, for every fixed k > 4 and for

every m satisfying k > m > 0, f(n, k, m) 6 (2− δ)n.

Proof. If m is neither k− 1 nor 1, we can apply the method in the proof of Theorem 1.1

to show that in this case

lim sup
n→∞

1

n
log f(n, k, m) 6 0.773 . . . . (4.1)

Indeed, given a family C of strings of length n, whose cardinality is at least 2cn with

c+ h−1(c) > 1 and n sufficiently large, we split it into two disjoint sub-families C1 and C2

of nearly equal cardinalities, and apply Sauer’s lemma to one of them, say C1, to get a

large set Dn of coordinates on which C1 has all possible projections. Then we apply the

pigeonhole principle to the projections of the strings in C2 on the rest of the coordinates,

to get k − 1 members x1, . . . , xk−1 of C2 having identical projections on the coordinates

not in Dn. Now we can add to these k − 1 strings a string xk from C1 whose projection

on Dn is chosen to ensure that, for each coordinate in Dn, the number of 1 s the strings

x1, . . . , xk have differs from m. The number of 1 s these strings have in each coordinate

not in Dn is clearly either 0 or 1 or k− 1 or k, which are all different from m. This proves

(4.1).

It remains to consider the case m = 1 (which is equivalent to the case m = k − 1, as

f(n, k, 1) = f(n, k, k − 1)). We show that in this case

lim sup
n→∞

1

n
log f(n, k, m) 6

1

2
log 3.

Indeed, recall that k > 4, put t = dk/2e, let C be a family of binary strings of length n,

and suppose that
(|C|

2

)
> (t− 1)3n. Define S = {x + x′ : x, x′ ∈ C, x 6= x′}, where the sum

is the usual sum of vectors (over the integers). By the pigeonhole principle there are t

equal members of S , corresponding to t pairs of strings in C , with equal sums. Trivially

these pairs are disjoint. If k is even, all the strings in these pairs are k strings in which

the number of 1 s in each coordinate is either 0 or t = k/2 or k, which are all different

from m = 1, as needed. If k is odd, then t > 3. In this case simply omit an arbitrarily

chosen string from the 2t strings in these pairs, obtaining a set of k strings in which the
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number of 1 s in each coordinate lies in the set {0, t, t − 1, k}, which does not contain 1.

This completes the proof.

By being more careful we can improve the above general upper bound for f(n, k, m)

in various cases. In particular, we can show that f(n, 2t, t) 6 2ε(t)n, where ε(t) tends to 0

as t tends to infinity. We omit the details, and intend to return to these questions in a

subsequent paper.
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