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Abstract

When programs feature a complex control flow, existing techniques for resource analysis pro-
duce cost relation systems (CRS) whose cost functions retain the complex flow of the program
and, consequently, might not be solvable into closed-form upper bounds. This paper presents a
novel approach to resource analysis that is driven by the result of a termination analysis. The
fundamental idea is that the termination proof encapsulates the flows of the program which
are relevant for the cost computation so that, by driving the generation of the CRS using the
termination proof, we produce a linearly-bounded CRS (LB-CRS). A LB-CRS is composed of
cost functions that are guaranteed to be locally bounded by linear ranking functions and thus
greatly simplify the process of CRS solving. We have built a new resource analysis tool, named
MaxCore, that is guided by the VeryMax termination analyzer and uses CoFloCo and PUBS as
CRS solvers. Our experimental results on the set of benchmarks from the Complexity and Ter-
mination Competition 2019 for C Integer programs show that MaxCore outperforms all other
resource analysis tools.
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1 Motivation and Related Work

The classical approach to resource analysis by Wegbreit consists of two steps: (1) the

generation of a cost relation system (CRS) from the program that defines by means of

recursive cost functions its resource consumption, (2) solving the CRS into a closed-form

expression that bounds its cost. This approach is generic w.r.t. the cost model that

defines the type of resource that is being measured, e.g., it has been applied to estimate

number of execution steps, memory, energy (Liqat et al. 2015; Grech et al. 2015),
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Fig. 1. Motivating example (left). Direct TS (upper-right). Non-solvable CRS (bottom-right)

user-defined cost models (Navas et al. 2007). W.l.o.g., we use the cost model adopted in

the Complexity and Termination competition http://termination-portal.org/wiki/

Termination_Competition_2019 (abbreviated as TermComp) which simply estimates

the asymptotic complexity order (e.g., by accumulating constant values in cost functions).

This classical resource analysis approach has been applied to a wide variety of declarative

and imperative programming languages: earlier work applied it to functional (Wegbreit

1975) and logic languages (Debray and Lin 1993; Debray et al. 1994), later work to

imperative languages such as Java and Java bytecode (Albert et al. 2007), concurrent

programs (Garcia et al. 2015; Albert et al. 2018), LLVM (Grech et al. 2015; Liqat et al.

2015), among others. In most cases, the program written in any imperative/declarative,

source/bytecode language is first transformed into a simpler intermediate representation

(IR) that works only on Integer data, which is the starting point of our work. For this,

a size abstraction is applied on the program to transform all data into their sizes (e.g.,

by using the well-known term-size/term-depth abstractions, or the path-length norm

by Spoto et al. (2010) for heap-allocated data structures, etc). This step is followed

by a size analysis (Cousot and Halbwachs 1978) that infers size relations among the

program variables. Therefore, step (1) above can be conceptually split into two parts:

(1a) the transformation of the program into an Integer IR using a language-specific size

abstraction, and (1b) the generation of a CRS from the IR using the gathered size rela-

tions. The IR we adopt in the paper are Integer Transition Systems (abbreviated as TS)

which are an official input language for TermComp. For the sake of generality, our work

assumes that the input program (written in any language) has been already transformed

into a TS and a language-specific size analysis has been applied, and focuses on (1b).

An important limitation of this classical approach to resource analysis is that CRS

inherit the structure of the input program from which they are generated or, equivalently,

of its IR. When the program features a complex control flow, this might lead to CRS

that cannot be solved in step (2). Our motivating example is aaron3, borrowed from the

set of benchmarks used in TermComp’19. Fig. 1 shows the C implementation for this

program (left) and the TS directly obtained from it (up-right). The TS will be explained
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in further detail later, by now, we only want to emphasize that it comprises the different

paths in the execution flow and that its arrows are labeled with the constraints that

are gathered along each path (undef variables are fresh variables used to represent the

unknown result of function nondet). For instance, the upper arrow from l1 represents

the iteration of the loop that executes the then branch of the first if statement and it

accumulates the constraints gathered from those instructions in τ1 (the guard contains

undef < x+ z instead of undef ≤ x+ z because the condition in line 8 is evaluated after

the 3 assignments, so the variable z refers to the original value minus one). Note that,

regardless of the programming language used to implement aaron3, a similar TS would

be produced. The CRS, written as a CLP (Z) program, that has been obtained by a

standard cost analysis from this TS is shown in the figure (down-right). We can observe

that the structure of the cost functions (i.e., the predicates) corresponds directly to the

flow in the original TS, with one cost function per location in the TS and the constraints

guarding the cost equations (i.e., the clauses). The cost accumulated by each function is

calculated in the last parameter of the predicates. While one could execute this CLP (Z)

program for concrete input values, our purpose is to obtain an upper bound for Co that

is sound for any possible execution, i.e., solve the CRS into a closed-form upper bound.

However, this CRS is not solvable by existing systems (e.g., CoFloCo, PUBS) due to two

reasons: (1) they rely on linear ranking functions to bound the number of iterations that

loops (i.e., the recursive predicates) perform, while cl1 requires the lexicographic ranking

function 〈z, x − y〉, and (2) they cannot find the phases in the execution flow for the

different increase/decrease of variables. Concretely, the loop presents two phases. In the

first phase (when z > 0), at each iteration either z decreases and x takes an arbitrary

value smaller than or equal to x+ z, or y increases by one. In the worst case x increases,

and after every increment of x there may be x − y increments of y followed by a new

update of x. However, these potential increments in x can only happen z times, and

then the loop enters the second phase where z ≤ 0. In this other phase, x decreases or y

increases, therefore reducing the difference x− y at each iteration.

The problem of the non-solvability of the CRS obtained from complex flow programs

was observed in (Flores-Montoya and Hähnle 2014), which proposes to partition all pos-

sible executions of the program into a finite set of execution patterns, named chains, so

that more precise constraints can be inferred for each of the chains, that results in simpler

ranking functions and more upper bounds being found. However, the computation of the

chains is not guided by semantic criteria, rather a full partitioning is carried out, that

might lead to inaccuracy as our example shows. Indeed, CoFloCo (Flores-Montoya 2017)

—implementing the chains— is not able to infer an upper bound: it detects 5 different

chains for the loop in aaron3 but can only infer a bound for 2. One of those detected

chains is the loop formed by the transitions with constraints τ1 and then τ2. This chain is

detected for the precondition x ≥ y, which is not strong enough to obtain a linear rank-

ing function. Since the chain detection was not able to extract the finer phases above

depending on the value of z, CoFloCo cannot find an upper bound. Further related work

based on finding phases includes (Gulwani et al. 2009; Sharma et al. 2011). The former

is based on size-change constraints that are less expressive than the general linear con-

straints used by (Flores-Montoya and Hähnle 2014) and us. The latter computes rather

sophisticated phases but its main target is on proving safety properties, and it is unclear

how effectively it would perform for cost.
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The main idea of our approach that differs from such previous work is to use, as

semantic criterion to guide the CRS generation, the termination proofs inferred by a

powerful termination analyzer as they comprise the actual phases needed to compute

resource bounds. This idea is materialized in our analysis by transforming the TS into

a hierarchically loop-nested TS that witnesses all components in the termination proof

(e.g., the one for aaron3 appears later in Fig. 7). The benefit of hierarchically loop-nested

TS is that they allow us to produce CRS that are Linearly-Bounded (LB), as shown

later in Fig. 8. Cost functions in the LB-CRS are guaranteed to have linear ranking

functions. Thus, the solving process is greatly simplified, e.g., we indeed find an upper

bound of O(n3) for aaron3, where n is the maximum of the parameters x, y, z, and

tx. Interestingly, we rely on a conditional termination analysis (Borralleras et al. 2017)

that, when it cannot prove termination unconditionally, tries to infer preconditions un-

der which termination is guaranteed. Conditional termination proofs allow us to gener-

alize our results to conditional upper bounds. Finally, another work related to ours is

(Sinn et al. 2014). The similarity with our approach is that both can use lexicographic

ranking functions to bound the cost but our technique is more general as it allows more

powerful termination arguments, besides not being limited to difference constraints as

(Sinn et al. 2014). According to our experimental results, the precision of our system

significantly outperforms their system Loopus.

Summary of contributions. Briefly, the main contributions of our work are: (i) We define

the concept of lexicographic phase-level termination proof, Proof , to store information on

the phases which have been considered during the conditional termination proof and un-

fold the TS accordingly. (ii) We present a transformation which takes the unfolded TS to-

gether with the Proof s of its phases and produces a hierarchically loop-nested TSh which

explicitly represents the different components of the termination proof. The CRS gener-

ated from TSh is locally LB, although still needs to be globally bounded in the solving

step. (iii) We propose extensions of the basic framework: to embed the ranking functions

into the CRS; and to embed the preconditions inferred by the termination analysis so that

conditional upper bounds can be generated. (iv) We implement MaxCore (standing for

Max-SMT based termination analyzer + COst Recurrence Equation solver), that makes

use of VeryMax (Borralleras et al. 2017) to generate the conditional termination proofs

from which our implementation produces CRS, and uses both CoFloCo and PUBS as

backend solvers. (v) We prove experimentally on the benchmarks from TermComp’19 for

C Integer programs that MaxCore outperforms all existing resource analyzers in number

of: problems solved, unique problems solved, more accurate solutions, and overall score.

2 Lexicographic Phase-Level Termination Proofs and Unfolded TS

In this section we present an overview of (Borralleras et al. 2017) and propose how

to adapt the results of this analysis to guide the generation of the CRS. Essentially,

Borralleras et al. (2017) describe a template-based method for proving conditional ter-

mination, and then show how to use conditional proofs to advance towards an (uncondi-

tional) termination proof. The key idea is that conditional termination proofs show termi-

nation for a subset of states which can be excluded in the rest of the termination analysis,

i.e., the rest of the proof can concentrate on the complementary states. This way, the

method allows generating not only a termination proof, but also a characterization of the
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execution phases in a program. An execution phase characterizes a subset of states in

which termination follows from a different conditional invariant.

We assume programs are given as (Linear) Integer Transition Systems (TSs). A TS is

a control-flow graph with transitions τ of the form (ls, ρ, lt), where ls and lt are locations

and ρ is a conjunction of linear inequalities describing the transition relation (by abuse of

notation we sometimes use τ to express only its associated ρ). When the input program

contains non-linear instructions that are not handled by our analysis, they are translated

into undefined variables within the inequalities to express the loss of information. For

instance, if the condition in the if statement in line 4 was x*y, this is transformed into a

call to function nondet that has led to the introduction of the undefined variable undef1

(representing the unknown value x*y) in the constraints τ1, τ2 and τ3. The formula ρ can

contain primed variables v′, which represent the value of a variable v after the transition

(equalities v′ = v are omitted). A program component C of a program P is the set of

transitions of a strongly connected component (SCC) of the CFG of P . For example, in

the TS of Fig. 1 there are two trivial (i.e., single node) SCCs; the transitions τ1 and τ2
form a non-trivial program component.

Termination of a program is proven component-by-component, and termination of a

program component is proven iteratively by removing transitions that can only be finitely

executed. A ranking function for a component C and a transition τ = (ls, ρ, lt) ∈ C is a

function R : Zn → Z such that it is bounded from below ρ |= R ≥ 0, it strictly decreases

ρ |= R > R′ and, for every (l̂s, ρ̂, l̂t) ∈ C, it is non-increasing ρ̂ |= R ≥ R′, where R′ is
the version of R using primed variables. The key property of ranking functions is that if

one transition admits one, then it cannot be executed infinitely. In our setting, proving

termination of a component C is based on finding a linear ranking function together

with some supporting invariants that ensure the conditions for being a ranking function.

Invariants are described by a function Q : L (C) → F (V ), where L (C) is the set of

locations of C and F (V ) are conjunctions of linear inequalities over the variables V of the

program. Then, strictly decreasing transitions w.r.t. this ranking function can be removed

and the process is iterated over the remaining SCCs. However, although all supporting

invariants are inductive in (Borralleras et al. 2017), they are not necessarily initiated

in all computations. In this case, those invariants are called conditional invariants as

they yield a precondition for termination, i.e., they prove termination for a subset of

initial states. Therefore, the rest of the proof can be restricted to the remaining states.

This makes the proof method more powerful and, as a by-product, loops with different

execution phases can be handled naturally.

In this paper, we propose to store information on the phases which have been considered

during the termination proof, together with the lexicographic termination proof of each

phase. This information will capture all the possible execution flows in the execution of

the program and will be used for guiding the generation of the CRS.

Definition 1 (lexicographic phase-level termination proof, Proof )

Let C be a component and R a ranking function for C with a supporting conditional

invariant Q. Then C can be split into C> 	 CsubSCC 	 CnoSCC where:

• C> contains the strictly-decreasing transitions in C w.r.t. R assuming Q,

• CsubSCC contains the transitions that belong to an SCC in C \ C>, and

• CnoSCC = C\(C>	CsubSCC ) contains the transitions that after removing the strictly

decreasing transitions do not belong to any SCC.
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We denote by CR the set of transitions C> 	 CnoSCC . A lexicographic phase-level

termination proof for (a phase of) C can be represented by a tree-like structure

Proof (C) = 〈R,Q,CR, 〈Proof (C1), . . . ,Proof (Ck)〉〉 where C1, . . . , Ck are the new SCCs

in CsubSCC .

The information kept for the termination proof of (a phase of) a component in the def-

inition above is (i) the ranking function used; (ii) its supporting conditional invariants;

(iii) the set of transitions removed, either because they strictly decrease wrt. the rank-

ing function or they do not belong to any SCC after removing the strictly decreasing

ones; and, recursively, (iv) the information corresponding to the termination proof of the

remaining SCCs after transition removal.

Example 1

Let us consider the non-trivially terminating component C = {τ1, τ2} of Fig. 1, where

τ1 = (l1, ρ1, l1), τ2 = (l1, ρ2, l1), ρ1 = x ≥ y ∧ undf1 > 0 ∧ undf2 < x + z ∧ x′ =

undf2 ∧ z′ = z − 1 and ρ2 = x ≥ y ∧ undf1 ≤ 0 ∧ y′ = y + 1. In this case a possible

ranking function is x− y, with supporting conditional invariant z ≤ 0. In particular, we

have x − y ≥ 0 both in τ1 and τ2, and x − y strictly decreases in τ2, as well as in τ1
assuming z ≤ 0. Therefore we have C> = {τ1, τ2}, CsubSCC = ∅ and CnoSCC = ∅, giving
us CR = {τ1, τ2} and Proof (C) = 〈x − y,Q, {τ1, τ2}, 〈〉〉 where Q(l1) = z ≤ 0. This is

a conditional termination proof for C with supporting conditional invariant z ≤ 0. To

complete the termination proof, we have to analyze the rest of the states where z ≥ 1.

For this, we will assume an entry transition of the form (l0, z ≥ 1, l1) instead of the

original (l0, true, l1), and a strengthened version of C defined by C ′ = {τ ′1, τ ′2}, with
τ ′1 = (l1, ρ

′
1, l1), τ

′
2 = (l1, ρ

′
2, l1), ρ

′
1 = ρ1 ∧ z ≥ 1 and ρ′2 = ρ2 ∧ z ≥ 1. In this new

phase, z − 1 is a ranking function for C ′ and τ ′1 without the need of any additional

supporting invariant, since z − 1 ≥ 0 in τ ′1, z − 1 strictly decreases in τ ′1 and it is non-

increasing in τ ′2. Therefore, we have C
′> = {τ ′1}, C

′subSCC = {τ ′2} and C
′noSCC = ∅ and

Proof (C ′) = 〈z− 1, Q′, {τ ′1},Proof ({τ ′2})〉, with Q′(l1) = true. Finally, x− y is a ranking

function for τ ′2, giving Proof ({τ ′2}) = 〈x− y,Q′, {τ ′2}, 〈〉〉.

l0

l1

l2

̂l1

τ 0
∧ z

′ ≥
1

τ
0 ∧

z ′≤
0

τ
3

τ
4

τ 3

τ 4

τ1 ∧ z ≥ 1 τ2 ∧ z ≥ 1

τ1 ∧ z ≤ 0 τ2 ∧ z ≤ 0

z≤
0

Fig. 2. Unfolded
TS

Lexicographic phase-level termination proofs can be considered to use

a semantically equivalent unfolded version of the TS. The unfolding

goes as follows. For each transition (ls, ρ, lt) of a component C, on

the one hand (ls, ρ, lt) is strengthened with the negation of the condi-

tional invariant Q for C; more precisely, the transition is replaced by

(ls, ρ ∧ ¬Q(ls), lt), or a set of transitions if ¬Q(ls) has disjunctions.

On the other hand, a transition (̂ls, ρ∧Q(ls), ̂lt) is added between two

fresh locations ̂ls and ̂lt. Transitions strengthened with the negation

of the conditional invariant correspond to a phase for which termina-

tion has not yet been proven, whereas transitions strengthened with

the conditional invariant correspond to a phase for which termina-

tion has already been proven. Under this assumption, the remaining

proof can be restricted to transitions strengthened with the negated invariant. A single

transition (ls, Q(ls), ̂ls) is added to connect the two phases, i.e., to allow switching to

a phase for which termination has already been proven. Finally, to preserve semantic

equivalence of the unfolded transition system, the entry transitions (ls, ρ, lt) of C are
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Fig. 3. First split without h Fig. 4. Final split Fig. 5. Move source of τ7

l′0C′′
0

l′1

l′2

f0

n′
1 = 1 ∧ n′

2 = 1
τ1 ∧ n1 > 0 ∧ n2 > 0

τ2 ∧ n1 > 0 ∧ n2 > 0

τ ′
7 ∧ n′

1 = 0 ∧ n2 > 0

τ3 ∧ n1 > 0

∧ n2 > 0

τ4 ∧ n1 > 0

∧ n2 > 0

τ ′
7 ∧ n′

1 = 0

∧ n2 > 0

τ ′
7 ∧ n1 = 0 ∧ n′

2 = 0

τ5 ∧ n1 > 0

∧ n2 > 0

τ6 ∧ n1 > 0

∧ n2 > 0

τ ′
7 ∧ n1 = 0 ∧ n2 = 0

l0C′
0

l1

l2
τ1 ∧ n1 > 0

τ2 ∧ n1 > 0

τ ′
7 ∧ n′

1 = 0

τ3 ∧ n1 > 0

τ4 ∧ n1 > 0

τ ′
7 ∧ n′

1 = 0

τ5 ∧ n1 > 0

τ6 ∧ n1 > 0

τ7 ∧ n1 = 0 ∧ n′
1 = 1

τ ′
7 ∧ n1 = 0

Fig. 6. Example of complex transformation

unfolded into (ls, ρ∧¬Q(lt)
′, lt) and (ls, ρ∧Q(lt)

′, ̂lt), while exit transitions are unfolded
into (ls, ρ, lt) and (̂ls, ρ, lt). It is worth noticing that this unfolding is equivalent to the

one described in (Borralleras et al. 2017) but in general leads to a simpler TS. In what

follows, we assume the original TS has been unfolded as described above, and denote

it TSu. Fig. 2 shows the unfolded TS corresponding to the termination proof of the

program in Fig. 1 with: τ0 : true; τ1 : x ≥ y, undf1 > 0, undf2 < x + z, x′ = undf2 ,

z′ = z − 1; τ2 : x ≥ y, undf1 ≤ 0, y′ = y + 1; τ3 : x ≥ y, undf1 > 0, undf2 ≥ x + z,

x′ = undf2 , z′ = z − 1; τ4 : x < y. Note that we have also strengthened the transitions

looping in ̂l1 with its conditional invariant z ≤ 0. This graph visualizes the loop phases

in the program, which have been described in Sec. 1.

3 Linearly-Bounded Hierarchically-Loop-Nested Integer Transition Systems

The goal of this section is to soundly transform each phase of an unfolded transition

system TSu, which is given as an SCC C with its corresponding Proof (C) using linear

ranking functions (see Sec. 2) into a TS composed of linearly-bounded hierarchically

loop-nested SCCs as defined below. Let us introduce some notation. By entryT (C), we

denote all entry transitions to C, i.e. with target location in C and source location out

of C, and by exitT (C) we denote all exit transitions from C, i.e. with source location

in C and target location out of C. A location l in C is said to be an entry location if

there is a transition in entryT (C) with l as target. A location l in C is said to be an exit

location if there is a transition in exitT (C) with l as source. In what follows we assume

that when we are given a component C we also have entryT (C) and exitT (C).
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Definition 2 (linearly-bounded hierarchically-loop-nested SCC/TS )

An SCC C is said to be hierarchically loop-nested if (i) it has a single entry and exit

location e; (ii) there is a set of locations l0, . . . , ln with e = l0 s.t. if li is connected (with

one or more transitions) to another lj then j > i or j = 0 and (iii) for all li with i ≥ 0,

either li has no more connections than these or it is the entry location of a sub-SCC

that is also a hierarchically loop-nested TS. A TS is hierarchically loop-nested if all its

subSCCs also are. In addition, it is said to be linearly bounded if the loop (with all

transitions between locations in) l0, . . . , ln is bounded by a linear ranking function and

all sub-SCCs are linearly bounded.

Therefore, from C and Proof (C), we aim at generating a transformed TS that has a

representation of nested loops, where every loop has a single location that is both the

entry and the exit location. W.l.o.g., we assume that the component C has a single entry

location (if there are several we simply clone C for every entry location, by renaming lo-

cations). Every cloned component Ci for the entry location i will have as entries those of

C that have i as target. Regarding exit transitions, it is easy to transform any component

C with exit locations that are different from the entry location into one TS that has only

exits from the entry location. Furthermore, this transformation can be done introducing

only transitions from li to lj if a transition from li to lj already exists. This transfor-

mation, that we call in what follows exitToentry can be, in general, done to change the

source location of a set of transitions from one location to another (and in particular from

one exit to an entry). This more general construction, that we call moveSourceLocation,

takes a component C (including entries), a set of transitions T with the same source

location l and a location e, and introduces a fresh variable to encode the move from l to

the new location e when the transitions in T can be applied, and then changes T to have

e as source. The transition system in Fig. 5 is the result of applying moveSourceLocation

to C0, T = {τ7} and e = l1 in Fig. 4.

Now, we describe how to transform any SCC C and Proof (C) into a LB hierarchically-

loop-nested one. As it is a general transformation procedure for any possible component

C, its formal description is quite involved. However, in practice, in most cases the trans-

formation is not that complex, as we show later in Ex. 2 for our running example. We will

also provide some examples of the application of the more involved steps. We first define

the following auxiliary function split on C which roughly uses Proof (C) to extract a set

of sub-SCCs (maybe including a single location without transitions) which represent the

inner loops and a subset of CR (the removed transitions in the first step of Proof (C))

that are the transitions performed to go from one inner loop to another and that form

the outer loop. It is important to note that if we remove any of these selected transitions,

the only SCCs of the remaining graph are the ones we have extracted. The splitting has

a DAG-like shape of components whose leaves return to the unique initial component

C0, and C0 has the same target location for all returning transitions.

Definition 3

Let C be a terminating SCC with Proof (C). Procedure split(C) extracts subcomponents

C0, . . . , Cn and disjoint non-empty sets of transitions T0, . . . , Tn with n ≥ 0, such that

a. the transitions in C0, . . . , Cn union T0, . . . , Tn coincide with C; when Ci has no

transition, we say it includes the single source location of all transitions in Ti,
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b. every Ci is included in C ′
j1
∪ . . .∪C ′

jm
∪CR for some m ≥ 0, where Proof (C ′

jk
) is a

subproof of Proof (C) for k ∈ {1 . . .m},
c. every Ti is included in CR,

d. C0 includes the entry location,

e. every Ci is an SCC and no location is shared between Ci components,

f. the source location of all transitions in Ti for i ∈ {0 . . . n} belongs to Ci,

g. the target location of every transition in Ti belongs to some Cj with j > i or to C0,

h. all transitions in T0 ∪ . . . ∪ Tn having target location in C0 have the same target

location.

As a simple example, the split of the phase where z ≥ 1 in our running example (see

Fig. 1) has one sub-SCC C0 = {τ2 ∧ z ≥ 1} and T0 = {τ1 ∧ z ≥ 1}. On the other

hand, the split of the phase where z ≤ 0 has C0 as the trivial SCC containing ̂l1 and

T0 = {τ1 ∧ z ≤ 0, τ2 ∧ z ≤ 0}.
Given a terminating SCC C with Proof (C), the result of split(C) can always be built.

As a possible way to obtain split(C), we can make a first selection of C0, . . . , Cn and

T0, . . . , Tn as follows: (i) we take a set of transitions in CR having the same source and

target location and remove them from the SCC; (ii) then we recompute the (maximal)

SCCs of the remaining graph, obtaining C0, . . . , Cn; (iii) transitions that are not in any

of the obtained subSCCs (included those initially removed) must be in T as they could

be removed in the termination proof, and are the selected set of transitions that belong

to the corresponding Ti depending on where is the source location. Fig. 3 shows a first

split if we start removing τ1, as we obtain C0 and C1 and T0 = {τ1} and T1 = {τ2, τ7}.
After this, it is easy to see that we have conditions a–g. However it may happen that

condition h does not hold, as it is the case in the example since τ2 and τ7 have different

target locations in C0. Then, as shown in Fig. 4 we can join some components until the

condition holds again. In this case we join C0 and C1 into a single component C0 and T0

contains only τ7.

In what follows, if C0, . . . , Cn and T0, . . . , Tn is split(C) then we define split-exits(Ci) =

Ti and split-entries(Ci) to all transitions in T0, . . . , Tn with target location in Ci. We call

split-entry locations of Ci to the set of target locations of split-entries(Ci) and split-exit

locations of Ci to the set of source locations of split-exits(Ci). The following recursive

procedure soundly transforms a given component with a termination proof only con-

taining linear ranking functions into a non-cycling set (forming a tree-like structure) of

hierarchically connected loop-nested SCCs (with the same single entry and exit location)

all of them being bounded by a linear ranking function.

Definition 4 (transformation to linearly-bounded hierarchically loop-nested SCCs)

Let C be a terminating SCC with Proof (C) and single entry and exit location e. Pro-

cedure nestedLoopTrans(C) transforms C by first computing C0, . . . , Cn and T0, . . . , Tn

with split(C). If n = 0 and C0 is a single location, then return C. Otherwise we perform

the following steps:

1. Build all Proof (Ci) from Proof (C) following Def. 1 for all non-trivial SCC Ci.

Note that some Ci can include more than one component in Proof (C) and some

transitions in CR.

2. Clone all Ci (and Ti and Proof (Ci)) with i > 0 such that Ci has more than one split-

entry location. After this, all components have a single split-entry location. Then
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applymoveSourceLocation to the resulting components (including the cloned ones)

and to C0 to move all transitions in Ti (maybe cloned) with source different from

the single split-entry location of Ci. After this, we have components C ′
0, . . . , C

′
m

and T ′
0, . . . , T

′
m, with all C ′

i with i ≥ 0 having a single location as both split-entry

and split-exit. Let s be such location of C ′
0, which may be different from e.

3. Let fi be a fresh location if C ′
i is a non-trivial SCC or the single location in C ′

i

otherwise.

4. If C ′
0 is a trivial SCC only including e, add all entries of C to the transformation.

Otherwise clone C ′
0 obtaining C ′′

0 with a mapping μ (from old locations to fresh

locations) and Proof (C ′′
0 ). For every entry transition 〈o, ρ, e〉 in C add an entry

transition 〈o, ρ, μ(e)〉 to C ′′
0 and if e = s a transition 〈o, ρ, f0〉 to the transformation.

Then, for every transition 〈s, ρ, t〉 in T ′
0, add a transition 〈μ(s), ρ′, f0〉 as exit in C ′′

0

and for every exit 〈e, ρ, o〉 of C add as exit in C ′′
0 a transition 〈μ(e), ρ′, f0〉 if e = s and

〈μ(e), ρ, o〉 otherwise (where, in all cases, ρ′ does not include any of the conjuncts

with primed variables of ρ). If e = s then apply exitToentry to the resulting C ′′
0

considering that μ(e) is the entry location. Finally, compute nestedLoopTrans(C ′′
0 ).

5. Replace every transition in T ′
i of the form 〈s, ρ, t〉 by 〈fi, ρ, t〉 and 〈s, ρ′, fi〉, where

ρ′ does not include any of the conjuncts with primed variables. Note that these

transitions are new entries and exits of C ′
0, . . . , C

′
m.

6. Add all exits 〈e, ρ, o〉 of C to C ′
0 as exit transitions. If e = s then apply exitToentry

to the resulting C ′
0. Then, replace every new exit transition 〈s, ρ, o〉 of C ′

0 by

〈s, ρ′, f0〉 and add 〈f0, ρ, o〉 as exit of the transformation of C, where, again, ρ′

is ρ without primed variables.

7. Compute nestedLoopTrans(C ′
i) on the resulting C ′

i for all i ≥ 0, and add the result

to the transformation of C.

Intuitively, the steps of the transformation can be understood as follows. After com-

puting the split(C), step 1 builds the termination proofs associated to the chosen sub-

components and transitions. Then, in step 2 we turn the components into components

with a single split-entry and split-exit location. For instance, Fig. 5 shows the result of

applying this step to the split given in Fig. 4. In this case, we do not need to clone

any component but, as can be seen, we apply moveSourceLocation to C0, {τ7} and the

split-entry location l1 (in Fig. 4) since the split-entry of C0 is l1 and the split-exit of

C0 is l2. After the step the split-entry and the split-exit s of C ′
0 is l1, which is different

from the entry location e which is l0. Note also that moveSourceLocation has changed

the entry transition to C ′
0 adding n′

1 = 1 (which is now the new version of the entry to

C). Fig. 6, shows the result of applying the transformation steps to the C ′
0 and T ′

0 in

Fig. 5 but without applying nestedLoopTrans recursively. In step 3, we define the loca-

tions that are used to express the outer loop (i.e. the loop of all sub-SCCs C ′
i) of the

transformation. This is f0 in Fig. 6. In step 4 we connect the loop with the entries of

the component. This step is crucial as it includes an initial use of the first sub-SCC C ′
0,

before entering the outer loop. The reason for that is that there must be paths in the

original C that run some transitions in C ′
0 before running any of the transitions in T ′

0,

which are used as soon as we enter the main loop. In Fig. 6, we can see the resulting C ′′
0 ,

which is the result of first cloning C ′
0, and then, since l′0 = e = s = l′1, we add a transition

from l′1 to f0 and apply exitToentry to move this transition to l′0. In step 5, we connect

the sub-SCCs using the locations fi to create the outer loop (which is represented by
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Fig. 7. Transformed CRS

the connections of C ′
0 to f0 in the right-hand-side of Fig. 6), and in 6 we introduce the

needed exit transitions. For simplicity, Fig. 6 does not include the exits, but they would

be leaving from l0 = e = s = l1, and hence exitToentry is applied to move them to l1
and then connected to f0. Finally, in the last step we apply the transformation recur-

sively. To further illustrate how the transformation works, the following example shows

the complete application of the transformation to our running example.

Example 2

Let us show how it works starting from the transformed graph in Fig. 2 and with the

termination proofs for each phase given in Ex. 1. The resulting transition system is

shown in Fig. 7. Its key feature is that it is ready to generate a linearly-bounded CRS

in next section. There are two SCCs in Fig. 2. The SCC that cycles in the location ̂l1 is

proved with a single ranking function where all transitions are removed, and hence our

transformation does not change anything, since C0 is the location ̂l1 and T ′
0 = T0 contains

both transitions. The SCC that cycles in location l1, needs a lexicographic combination

of two ranking functions, with each component removing one transition, firstly removing

τ1 ∧ z ≥ 1 and secondly τ2 ∧ z ≥ 1. Then split gives T0 = {τ1 ∧ z ≥ 1} and C0 is the

SCC including location l1 and transition τ2 ∧ z ≥ 1. Therefore, first of all we compute

Proof (C0) according to step 1 of Def. 4. Step 2 does not change anything, since we have

a single component C ′
0 = C0 with a single location. Step 3 delivers a fresh location f0.

Next, since C ′
0 = C0 is a non-trivial SCC, we clone it to C ′′

0 in step 4. This new SCC

corresponds to location l′1 and transition τ ′16 = τ2 ∧ z ≥ 1 in Fig. 7. Transition τ ′3 is

the entry added to C ′′
0 . A transition τ ′2 = z ≥ 1 entering f0 is also added since in this

case e = s. Transitions τ ′12, τ
′
13, τ

′
14 and τ ′15 are the transitions added as exits. Note that

τ ′3 expresses the same transition relation as the entry τ0 ∧ z′ ≥ 1 of l1, since τ0 = true.
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Transition τ ′15 is the same as the transition τ1∧z ≥ 1 in T0 without conjuncts with primed

variables, while τ ′12, τ
′
13 and τ ′14 express the same transition relation as the original exits

of l1 with τ3, τ4 and z ≤ 0, respectively, except for the conjuncts with primed variables

again. In step 5, the only transition in T0 is unfolded into the transitions τ ′7 and τ ′20 of

Fig. 7. Step 6 adds transitions τ ′17, τ
′
18 and τ ′19, corresponding to the exit transitions of

l1 but without conjuncts with primed variables, as well as transitions τ ′4, τ
′
5 and τ ′6 as

exits of the transformation of C. Finally, notice that l1 has been renamed to l′′1 to avoid

confusion with the original location, and τ ′21 corresponds to τ2 ∧ z ≥ 1. Note that all

recursive calls to nestedLoopTrans trivially terminate in this example.

The transformation provided in this section is sound for resource analysis.

Theorem 1 (soundness and linearly-bounded)

Given a component C with Proof (C), then every SCC in nestedLoopTrans(C) is a

linearly-bounded hierarchically loop-nested transition system, and for every path π from

an initial location s to a final location t in C, there is a path π′ from s to t in

nestedLoopTrans(C) with #(π′) ≥ #(π), where #(π) is the number of operations in-

volved in π.

4 Linearly-Bounded Cost Relation Systems

A CRS is a set of cost equations of the form c(x) = 1+c1(x1)+. . .+cn(xn){Ct}, where the
constraints Ct define the applicability conditions for the equation and state size relations

among x, x1, . . . , xn. As stated in Sec. 1, w.l.o.g., we always accumulate a constant unitary

cost. The set of cost equations for c(x) defines the (possibly non-deterministic) cost

function c. Even if the input language from which the CRS are produced is deterministic,

due to the loss of information implicit to static analysis (e.g., when undef variables

appear), the associated CRS will typically be non-deterministic. CRS can be considered

as constraint logic programs over integers that accumulate costs, e.g., the above equation

can be written as the clause c(X,Co) :- Ct , c1(X1, Co1), . . . , cn(Xn, Con), Co #= 1+

Co1 + . . .+ Con (see also the CRS in Fig. 1).

The following definition presents the generation of a CRS from a TS with possible

multiple nested loops. As explained in Sec. 1, we assume that a language-specific size

analysis has been already applied such that entry locations of SCC/sub-SCC in the TS

are annotated with size(l, 〈x〉, 〈x′〉): the size relations between the values of the variables

when reaching (x) and leaving (x′) a location l. For example, for the TS in Fig. 7, the

size analysis of location l′′1 will infer the relations size(l′′1 , 〈x, y, z〉, 〈x′, y′, z′〉) = {x =

x′, y′ ≥ y, z = z′} as any path l′′1 →∗ l′′1 using τ ′21 will not modify x and z, and y can

only increase. Size analyses for various languages can be found e.g. at (Albert et al. 2007;

Serrano et al. 2013; Brockschmidt et al. 2016).

Definition 5 (linearly-bounded CRS )

Given a linearly-bounded hierarchically-loop-nested TS ts , let G be the set of locations

in ts, x be the variables involved in ts and scc(L) the list of the SCCs in ts considering

only the locations in the set L. Let entry loc(L) denote the entry location of a set of

locations L (i.e., the only location receiving transitions from outside L). The LB-CRS for

ts is made up of the cost equations generated by eqs(G) that, for every SCC L ∈ scc(G),

proceeds as follows:
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Fig. 8. Fragment of Linearly-bounded CRS obtained from transformed TS

• If L = {lo}, i.e., the SCC contains only one location lo, then every transition lo
τ→ ld

generates one cost equation clo(x) = 1+ cld(x
′) {τ}. If there are no transitions from

lo, a dummy equation clo(x) = 1{} is generated for uniformity.

• If |L| > 1 and entry loc(L) = lo, as the entry location is part of the principal loop

in L, we remove it to detect and, transitively, translate the remaining components.

Every Di ∈ scc(L\{lo}) is translated by eqsC (Di)—defined below—and every cycle

in the component graph (each SCC Di is condensed into a single vertex di) starting

from lo, i.e., cycles paths of the form lo
τ→ d1 → d2 . . . → dj → lo, generates an

equation (where ni = entry loc(Di)):

clo(x) = 1 + cn1
(x′) + cn2

(x(2)) + . . .+ cnj
(x(j)) + clo(x

(j+1))

{τ} ∪ size(ln1
, 〈x′〉, 〈x(2)〉) ∪ . . . ∪ size(lnj

, 〈x(j)〉, 〈x(j+1)〉)
Every outgoing transition lo

τ→ lk (lk /∈ L) generates an equation clo(x) = 1 +

clk(x
′){τ}.

eqsC proceeds as eqs with one difference: in both cases (L = {lo} and |L| > 1) the

outgoing transitions lo
τ→ lk generate cost equations cl0(x) = 1{τ}, i.e., without any call.

Let us give the intuition behind the above definition. For each location l in the TS,

we produce a corresponding cost function cl that captures its cost, and every transition

produces an equation. The labels of the transitions become the constraints of the CRS.

The equation for the cycle in the component graph collects the costs of all the sequential

components and finishes with a recursive call to express the loop. The size analysis allows

us to track the changes in the variables after every function call in order to express the

cost in terms of the initial parameter values. Note that the constraints of the transitions

di → di+1 and dj → lo are not needed in the equation because they have been already

used when generating the equations for every SCC Di recursively. Finally, as eqsC is

applied to components in an inner loop, the flow represented by these outgoing transitions

is incorporated in the cost equation of the outer loop and no function call is needed.

Example 3

In the transformed TS from Fig. 7 there are 5 SCCs: {l0}, {l2}, {l′1}, {̂l1} and {f0, l′′1}.
The first four are unitary, thus they generate equations directly. For example in l0,

the transitions l0 → f0, l0 → l′1, and l0 → ̂l1 generate equations with calls to the

corresponding cost function (see equations #1–3 in Fig. 8). On the other hand, l2 has

no outgoing transition hence it creates a dummy equation for cl2 (#4). Considering the

non-unitary {f0, l′′1}, the only SCC after removing the entry location f0 is {l′′1}, thus
eqsC ({l′′1}) generates 5 equations for cl′′1 : τ

′
21 creates the recursive equation (#9) and
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τ ′17, τ
′
18, τ

′
19, and τ ′20 generate 4 equations without any call (#10–13). As f0 is the entry

location, its outgoing transitions generate the non-recursive equations of cf0 that invoke

c
̂l1

and cl2 (#6–8). In the component graph l′′1 is condensed into dl′′1 by removing the

transition τ ′22, hence there is only one cycle f0 → dl′′1 → f0 that generates the recursive

equation of cf0 (#5). The size analysis relates the input and output values after invoking

function cl′′1 in this equation (x1 = x2, y2 ≥ y1, z1 = z2), which allows tracking the

changes from the initial values x, y, z to the ones used in the recursive call x2, y2, z2 when

solving the CRS. This CRS is solvable because, thanks to the transformation of the TS,

all cost functions have now a linear ranking function that bounds the number of calls.

The solver can hence use that information to generate the overall cost. Concretely, c
̂l1
,

cl′1 , and cl′′1 are invoked x− y times; cf0 is invoked z times; and cl0 and cl2 are invoked

only once. This contrasts with the original CRS in Fig. 1, where the lexicographic ranking

function 〈z, x− y〉 cannot be used by the backend solvers to compute a loop bound.

The next corollary easily follows from the soundness of the TS transformation in Th. 1.

Corollary 1 (soundness of linearly-bounded CRS )

Let N = nestedLoopTrans(C) be the hierarchically loop-nested transition system ob-

tained from a component C with Proof (C). The CRS obtained from N applying Def. 5

soundly overapproximates the cost of C (for the considered cost model), and all its func-

tions are linearly bounded.

4.1 Embedding the Ranking Functions from Termination Proofs within CRS

CRS solving —step (2) of resource analysis— requires finding ranking functions for all re-

cursive cost functions (i.e. cycles) to bound the number of iterations they might perform.

As the termination analyzer must have already found ranking functions for all cycles, it

is desirable to pass this information to the CRS solver (e.g., the resource analyzer might

implement less powerful algorithms to find ranking functions). However, existing solvers

are not prepared to receive this information. Our proposal does not require implement-

ing any extension to the existing solvers. We can embed the constraints that define the

ranking functions within the CRS as follows.

Definition 6 (CRS with ranking functions)

We assume that every location l in the TS is annotated with the linear ranking function

contained in the termination proof. The main idea is to add a new parameter to the

cost function cl representing the ranking function, which is bound in the initial call and

decreases in every recursive call. Therefore, the generation of the cost equations is as in

Def. 5 with the following differences:

• Cost functions cl (except those for the initial location l0) are extended with one

additional parameter r representing the ranking function: cl(x, r).

• Cost equations invoking a cost function with ranking function rf bound the extra

parameter: {r = rf }.
• Cost equations with recursive calls are extended to express that the extra parameter

containing the ranking function is positive and strictly decreasing: {r ≥ 0, r′ < r}.
Example 4

Let us explain the above definition using our running example. In the transformed TS

of Fig. 7, the termination analyzer detects that f0, l
′′
1 , and l

̂l1
have ranking functions z,
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Table 1. Experimental results on C programs from TermComp’19 complexity

competition

PUBSC MaxCore(P) CoFloCoC MaxCore(C) AProVE CoFloCoC Loopus MaxCore(C)

Solved
158 280 288 311 278 288 239 311

(32.6%) (57.9%) (59.5%) (64.3%) (57.4%) (59.5%) (49.4%) (64.3%)
Only 6 128 21 44 2 5 3 33
Best 20 128 32 47 2 7 9 38
Score 316 546 573 611 1075 1147 946 1228

Time(s) 836.8
gen: 837.5

1175.6
gen: 838.6

2350.9 1175.6 9.38
gen: 838.6

sol: 1574.4 sol: 1272.3 sol: 1272.3

x−y, and x−y resp. Then, the cost equations of l0, f0, and l′′1 will be modified as follows

(we show only a fragment):

1’© cl0 (x, y, z) = 1 + cf0 (x, y, z, r) {z ≥ 1, r = z}
. . .

5’© cf0 (x, y, z, r) = 1 + cl′′1
(x1, y1, z1, r1) + cf0 (x2, y2, z2, r2) {x1 = x2, y2 ≥ y1, z1 = z2, x ≥ y, z ≥ 1,

u1 > 0, u2 < x+ z, x1 = u2, y1 = y, z1 = z − 1, r ≥ 0, r1 = x1 − y1, r2 < r}
6’© cf0 (x, y, z, r) = 1 + c

̂l1
(x, y, z, r′) {z ≤ 1, r′ = x− y}

. . .
9’© cl′′1

(x, y, z, r) = 1 + cl′′1
(x1, y1, z1, r1){x ≥ y, z ≥ 1, u1 ≤ 0, x′ = x, y′ = y + 1, z′ = z, r ≥ 0, r1< r}

13’© cl′′1
(x, y, z, r) = 1 {x ≥ y, z ≥ 1, u1 > 0, u2 < x+ z}

. . .

The remarked constraints in the equations represent the changes. In equations 1′ and
6′ the ranking functions of f0 (z) and l

̂l1
(x − y) are bound. In the recursive equations

5′ and 9′, the extra parameter is set to positive and decreasing. Additionally, in 5′ the
extra parameter r1 of l′′1 is bound to x1 − y1. Finally, cost equations without invocations

(as equation 13′) are not modified. Note that cl0 (equation 1′) is not extended with any

parameter because it is the entry location of the program.

4.2 Extension to Conditional Upper Bounds

The termination analysis we use (Borralleras et al. 2017) is able to infer preconditions

Pre under which the program terminates when it cannot prove termination for all inputs.

Such preconditions Pre may also be valid for the upper bounds. As in Sec. 4.1, the idea is

to embed Pre into the CRS (and enable a flag cond=on) so that an unconditional solver

can be used and, as preconditions are assumed, a conditional upper bound U can now

be found. Then, when reporting the results, if cond=on, we output that U is an upper

bound if preconditions Pre hold.

Definition 7 (conditional CRS )

LetG be the set of locations in the TS and l0 be its entry location. Then the cost equations

of the conditional CRS are eqs(G) plus the additional equation cel0(x) = 1+ cl0(x){Pre}.
In this case, the upper bound obtained for cel0 is the valid upper bound for cl0 under the

conditions in Pre.

5 Implementation and Experimental Evaluation

Our implementation,MaxCore(X) where X instantiates the CRS solver, achieves the coop-

eration of three advanced tools for complexity and termination analysis: VeryMax (winner

of TermComp’19 for C programs) produces the termination proofs, our implementation

generates from them LB-CRS that are fed: (X=C) to CoFloCo (Flores-Montoya 2017) or
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(X=P) to PUBS (Albert et al. 2008) to produce the upper bounds. MaxCore can be used

online from a web interface https://costa.fdi.ucm.es/maxcore, where the bench-

marks used for our experiments can also be found. This section evaluates the effective-

ness and efficiency of MaxCore by analyzing all C programs from the TermComp’19 com-

plexity competition, that in total are 484 benchmarks containing also non-terminating

programs. Experiments have been performed on an Intel Core i7-4790 at 3.6GHz x 8 and

16GB of memory, running Ubuntu 18.04. The row Solved in Table 1 shows the number

of benchmarks that each system is able to bound. The row Only shows the number of

benchmarks that only the corresponding system can solve and no other system can. The

row Best counts the times that a system has obtained the best upper bound, and the

remaining systems have larger bounds. The Score represents the points obtained by the

systems following the competition rules http://cbr.uibk.ac.at/competition/rules.

php. Finally, we show the overall time in seconds in the row Time(s). As in TermComp’19,

systems only have 300 seconds to analyze every program. For MaxCore’s instantiations

we show 2 values: the time needed to generate the CRS (gen) and the time required to

obtain a closed upper bound (sol). Detailed results for every system and benchmark can

be found at https://costa.fdi.ucm.es/maxcore/benchmarks/.

The left part of Table 1 compares PUBSC andMaxCore(P). PUBS and CoFloCo are CRS

solvers. To avoid confusion, we use PUBSC and CoFloCoC for the systems that translate C

programs to CRS using clang (http://clang.llvm.org/) and llvm2KITTeL (https://

github.com/s-falke/llvm2kittel), and then use the respective CRS solver to obtain

an upper bound. Unlike CoFloCo, PUBS only works with linear size relations, but it is

able to obtain logarithmic upper bounds. As TermComp’19 only supports polynomial

bounds, in the comparisons we have considered O(nk × logp(n)) equal to O(nk+1) in

Best and Score. Since PUBS is a solver that does not perform any additional analysis on

the CRS (unlike CoFloCo, which tries to detect chains), this comparison plainly shows

the large improvement that can be only attributed to the proposed generation of our

LB-CRS. Concretely, MaxCore(P) almost doubles the number of programs solved (280

vs. 158), and there are 128 programs that MaxCore(P) solves that PUBSC cannot, while

only 6 programs are uniquely solved by PUBSC . Regarding time, MaxCore(P) is about

three times slower than PUBSC but the gains clearly justify the additional analysis time.

The central part of Table 1 shows the comparison between CoFloCoC and MaxCore(C).

Here the difference is not as large as with PUBS, but it is still important: MaxCore(C)

solves 23 programs more than CoFloCoC (311 vs. 288), 44 of them that CoFloCoC can-

not handle. However, CoFloCoC solves 21 programs that MaxCore(C) cannot and obtains

better upper bounds in 32 programs. Since MaxCore(C) uses VeryMax to build the termi-

nation proof that guides the generation of the LB-CRS, the system returns ∞ if VeryMax

cannot find that proof. This happens in 6 of these 21 unsolved programs. Moreover, other

5 programs are not solved because their termination proof presents some features not

yet integrated in the system, but are planned to be integrated soon. For the remaining

10 unsolved programs, the termination proofs found by VeryMax are too involved, thus

leading to (unnecessarily) more complex CRS that CoFloCo cannot handle. Note that

VeryMax can find different proofs for a program, and currently we simply use the first

one. In the future, we plan to investigate on finding the best suited proofs for the solv-

ing step. MaxCore(C) has a running time 1.8 larger than CoFloCoC , so the difference is

smaller than with PUBS, and clearly it pays off as well. Comparing MaxCore(P) and Max-
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Core(C), the latter is about 300 seconds faster and obtains better results in all metrics.

Indeed, all programs that can be bound with MaxCore(P) can be bound with equal or

smaller bounds by MaxCore(C) except for one program. Therefore, we have selected Max-

Core(C) to compare to the two systems participating in TermComp’19: CoFloCoC , winner

of TermComp’19 for complexity of ITS and C programs, and AProVE (Giesl et al. 2004),

a system that implements an alternative approach which alternates between finding run-

time bounds and finding size bounds (Brockschmidt et al. 2016). Additionally, we have

also considered the Loopus system (Sinn et al. 2014) described in Sec. 1. The results of

this comparison appear in the right part of Table 1, where it can be seen that MaxCore(C)

outperforms the other systems in all metrics: besides number of problems solved, more

importantly MaxCore(C) solves 33 programs that no other system can bound, generates

better bounds in 38 programs, and obtains 81 more points than CoFloCoC , 153 more than

AProVE, and 282 more than Loopus. Moreover, it is slightly faster than AProVE, requiring

0.9 times its running time. Finally, note that Loopus is extremely fast compared to the

rest of systems (it requires 0.008 times the running time of CoFloCoC , the second fastest

system). The reason is that Loopus relies on difference logic, a more limited domain for

obtaining bounds than the linear integer arithmetic used in the rest of systems, for which

very efficient algorithms exist.

6 Conclusions

This paper brings the important advances achieved in the field of termination analysis,

where programs featuring complex control flow can be automatically proven to terminate,

to the field of resource analysis, where there is more limited support for such kind of

complex-flow programs. The success of our approach is the use of termination proofs

as semantic guidance to generate linearly-bounded CRS that can be fed to an off-the-

shelf CRS solver. Our experimental results on the TermComp’19 benchmarks show that

our tool, MaxCore, outperforms the standalone resource analyzers CoFloCo, AProVE, and

Loopus significantly both in accuracy, number of problems solved, and uniquely solved.

As future work, we plan to apply precondition inference techniques (Kafle et al. 2018) to

improve the precision of the termination proof when assertions are provided.
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