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Abstract It is well known that the standard Lipschitz space in Euclidean space, with exponent
α ∈ (0, 1), can be characterized by means of the inequality |∂Ptf/∂t| � tα−1, where Ptf is the Pois-
son integral of the function f . There are two cases: one can either assume that the functions in the
space are bounded, or one can not make such an assumption. In the setting of the Ornstein–Uhlenbeck
semigroup in R

n, Gatto and Urbina defined a Lipschitz space by means of a similar inequality for the
Ornstein–Uhlenbeck Poisson integral, considering bounded functions. In a preceding paper, the authors
characterized that space by means of a Lipschitz-type continuity condition. The present paper defines a
Lipschitz space in the same setting in a similar way, but now without the boundedness condition. Our
main result says that this space can also be described by a continuity condition. The functions in this
space turn out to have at most logarithmic growth at infinity.
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1. Introduction and main result

Consider the Euclidean space R
n endowed with the Gaussian measure γ, given by

dγ(x) = π−n/2e−|x|2 .

The Gaussian analogue of the Euclidean Laplacian is the Ornstein–Uhlenbeck operator

L = − 1
2Δ + x · ∇,

where ∇ = (∂x1 , . . . , ∂xn). The heat semigroup generated by L and defined in L2(γ) is
the so-called Ornstein–Uhlenbeck semigroup

Tt = e−tL, t � 0.
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The Ornstein–Uhlenbeck Poisson semigroup Pt = e−t
√

L, t � 0, can be defined from
{Tt}t�0 by subordination as

Ptf(x) =
1√
π

∫ ∞

0

e−u

√
u

Tt2/4uf(x) du, x ∈ R
n,

for f ∈ L2(γ). As explained in § 2, Ptf is given by integration against a kernel Pt(x, y).
Via {Pt}t�0, Gatto and Urbina [3] introduced the Gaussian Lipschitz space GLipα for

all α > 0. We will always have α ∈ (0, 1). Then the definition says that a function f in
R

n is in GLipα if it is bounded and satisfies

‖t∂tPtf‖L∞ � Atα, t > 0, (1.1)

for some A > 0.
In [4] the authors characterized GLipα, 0 < α < 1, in terms of a Lipschitz-type

continuity condition. Indeed, Theorem 1.1 of [4] says that f ∈ GLipα if and only if there
exists a positive constant K such that

|f(x) − f(y)| � K min
{

|x − y|α,

(
|x − yx|
1 + |x|

)α/2

+ |y′
x|α

}
, x, y ∈ R

n. (1.2)

Here and in what follows we use a decomposition of y as y = yx +y′
x, where yx is parallel

to x and y′
x is orthogonal to x; however, if x = 0 or n = 1, we let yx = y and y′

x = 0.
As is well known, a condition analogous to (1.1) for the standard Poisson integral

characterizes the ordinary Lipschitz space (see [6, § V.4]). If only bounded functions are
considered, one obtains the inhomogeneous Lipschitz space, and without the boundedness
assumption one obtains the larger, homogeneous Lipschitz space.

In our setting we will see that the condition (1.1) without the boundedness condition
defines a Gaussian analogue of the homogeneous Lipschitz space. Since here no homo-
geneity is involved, we will call it the global Gaussian Lipschitz space.

In (1.1), an a priori assumption is needed to ensure that Ptf exists. Here we apply
a recent result by Garrigós et al . [1]. Clearly, a measurable function f in R

n has a
well-defined Gaussian Poisson integral if∫

Rn

Pt(x, y)|f(y)| dy < ∞

for all x ∈ R
n and t > 0. Theorem 1.1 of [1] says that this is equivalent to the growth

condition ∫
Rn

e−|y|2√
ln(e + |y|)

|f(y)| dy < ∞. (1.3)

Moreover, (1.3) ensures that Ptf(x) → f(x) as t → 0 for almost all x ∈ R
n.

We can now define the global Gaussian Lipschitz space.

Definition 1.1. Let α ∈ (0, 1). A measurable function f defined in R
n and satis-

fying (1.3) belongs to the global Gaussian Lipschitz space GGLipα if (1.1) holds. The
corresponding norm is

‖f‖GGLipα
= inf{A > 0: A satisfies (1.1)}.
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Strictly speaking, this space consists of functions modulo constants. A natural question
is now what continuity condition characterizes this space. To state the answer we start
in one dimension and introduce a distance by

d(x, y) =
∣∣∣∣
∫ y

x

dξ

1 + |ξ|

∣∣∣∣, x, y ∈ R. (1.4)

Then
d(x, y) = |ln(1 + |x|) − sgn xy ln(1 + |y|)|

for all x, y ∈ R, provided we define sgn 0 = 1. In several dimensions, we use this distance
on the line spanned by x, defining

d(x, yx) = |ln(1 + |x|) − sgn〈x, y〉 ln(1 + |yx|)|, x, y ∈ R
n,

with yx as before.
Our result reads as follows.

Theorem 1.2. Let α ∈ (0, 1) and let f be a measurable function in R
n. The following

are equivalent:

(i) f satisfies (1.3) and f ∈ GGLipα;

(ii) there exists a positive constant K such that

|f(x) − f(y)| � K min{|x − y|α, d(x, yx)α/2 + |y′
x|α}, x, y ∈ R

n, (1.5)

after correction of f on a null set.

Moreover,
‖f‖GGLipα


 inf{K : K satisfies (1.5)}. (1.6)

The meaning of the symbol 
 is explained below.

Remark 1.3. Comparing (1.5) and (1.2), one easily verifies that if 〈x, y〉 > 0 and
1
2 < |x|/|yx| < 2, then

d(x, yx) 
 |x − yx|
1 + |x| . (1.7)

Moreover, the space GLipα can be described in terms of the distance function d. Indeed,
since (1.2) implies that f is bounded (see [4, Lemma 2.1]), it is easy to check that (1.2)
holds if and only if there exists a constant K ′ > 0 such that

|f(x) − f(y)| � K ′ min{1, |x − y|α, d(x, yx)α/2 + |y′
x|α}

for all x, y ∈ R
n. This also tells us that for bounded functions, (1.2) is equivalent to (1.5).

But (1.5) implies only that

f(x) = O((ln |x|)α/2) as |x| → ∞.

This condition is sharp, as shown by an example in § 5; observe that it is much stronger
than (1.3).
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Comments

This paragraph and the next contain some general comments on our result. First of
all, like the main result of [4] it answers a very natural question: namely, whether a
space that is called ‘Lipschitz’ can be described by an explicit continuity condition. It
also sheds new light on initial-value problems related to the Gaussian setting and the
Ornstein–Uhlenbeck and other semigroups.

Bessel and Triebel–Lizorkin spaces related to GLipα were introduced and studied in [5]
and [2]. These spaces must have global versions related to GGLipα and corresponding to
homogeneous spaces in the Euclidean setting, which it would be interesting to explore.
Our result also suggests the possibility of characterizing these spaces in terms of integrals
involving differences of the function, as in the standard Euclidean case. Another issue
for further work is the extension to α � 1, which should lead to higher-order derivatives
and differences and, for α = 1, analogues of the Zygmund space.

This paper is organized as follows. Section 2 contains a needed improvement of the
estimate for Pt(x, y) and its derivatives in [4]. Some properties of the Gaussian Poisson
integral are obtained in § 3. Theorem 1.2 is then proved in § 4. Finally, in § 5 we give an
example of a function in GGLipα with logarithmic growth.

Notation

Throughout the paper, we will write C for various positive constants that depend only
on n and α, unless otherwise explicitly stated. Given any two non-negative quantities A

and B, the notation A � B stands for A � CB (we say that A is controlled by B), and
A � B means B � A. If B � A � B, we write A 
 B.

For positive quantities X, we will write exp∗(−X), meaning exp(−cX) for some con-
stant c = c(n, α) > 0.

2. The Ornstein–Uhlenbeck Poisson kernel

It is known that for f ∈ L2(γ),

Ttf(x) =
1

πn/2

∫
Rn

Me−t(x, y)f(y) dy, x ∈ R
n, t > 0,

where Me−t is the Mehler kernel defined by

Mr(x, y) =
exp(−|y − rx|2/(1 − r2))

(1 − r2)n/2 , x, y ∈ R
n, 0 < r < 1.

The Gaussian Poisson integral Ptf is given by an integral kernel called the Ornstein–
Uhlenbeck Poisson kernel and denoted by Pt(x, y); thus

Ptf(x) =
∫

Rn

Pt(x, y)f(y) dy, x ∈ R
n, t > 0.
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Because of the subordination formula, Pt(x, y) is given by

Pt(x, y) =
1

π(n+1)/2

∫ ∞

0

e−u

√
u

Me−t2/4u(x, y) du

=
1

2π(n+1)/2

∫ ∞

0

t

s3/2 e−t2/4s exp(−|y − e−sx|2/(1 − e−2s))
(1 − e−2s)n/2 ds. (2.1)

Here, we inserted the expression for the Mehler kernel and transformed the variable.
The following estimate for Pt and its first derivatives is established in [4, Theorems 1.2

and 1.3].

Proposition 2.1. For all t > 0, x, y ∈ R
n and i ∈ {1, 2, . . . , n}, the kernel Pt satisfies

Pt(x, y) + |t∂tPt(x, y)| + |t∂xiPt(x, y)|
� C[K1(t, x, y) + K2(t, x, y) + K3(t, x, y) + K4(t, x, y)],

where

K1(t, x, y) =
t

(t2 + |x − y|2)(n+1)/2 exp∗(−t(1 + |x|));

K2(t, x, y) =
t

|x|

(
t2 +

|x − yx|
|x| + |y′

x|2
)−(n+2)/2

× exp∗
(

− (t2 + |y′
x|2)|x|

|x − yx|

)
χ{|x|>1, x·y>0, |x|/2�|yx|<|x|};

K3(t, x, y) = min(1, t) exp∗(−|y|2);

K4(t, x, y) =
t

|yx|

(
ln

|x|
|yx|

)−3/2

exp∗
(

− t2

ln(|x|/|yx|)

)
exp∗(−|y′

x|2)χ{x·y>0, 1<|yx|<|x|/2}.

We need a slight sharpening of this lemma. The term K3 will be modified to decay for
large x.

Lemma 2.2. The estimate of Proposition 2.1 remains valid if the kernel K3(t, x, y) is
replaced by

K̃3(t, x, y) = min
{

1,
t

[ln(e + |x|)]1/2

}
exp∗(−|y|2).

Proof. From the proof of [4, Theorem 1.3], we see that |t∂tPt(x, y)| and |t∂xiPt(x, y)|
can be controlled by an integral similar to the right-hand side of (2.1) (only with exp in
(2.1) replaced by exp∗). Thus, we only need to consider Pt(x, y).

When |x| � 4 + 2|y|, we have exp∗(−|y|2) � exp∗(−|y|2) exp∗(−|x|2), and hence
K3(t, x, y) � K̃3(t, x, y).

We therefore assume from now on that |x| > 4+2|y|. We will sharpen a few arguments
in the proof of [4, Proposition 4.1]. By the rotation invariance of Pt(x, y) and K̃3(t, x, y),
we may assume that x = (x1, 0, . . . , 0) with x1 > 0. The decomposition of y will then be
written y = (y1, 0, . . . , 0) + (0, y′), and we will have x1 > 4 and |y1| < x1/2.
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Case 1 (−x1/2 < y1 � 0). Using the notation from the proof of Proposition 4.1 (i)
in [4], we see that we only need to verify that J2 � K̃3. By [4, (4.9)] and the fact that
y1 � 0 < x1, we have

J2 
 exp∗(−|y′|2)
∫ ∞

ln 2

t

s3/2 exp∗
(

− t2

s

)
exp∗(−|y1 − e−sx1|2) ds

� exp∗(−|y|2)
∫ ∞

ln 2

t

s3/2 exp∗
(

− t2

s

)
exp∗(−e−2sx2

1) ds. (2.2)

Note that
∫ ∞

1
2 ln x1

t

s3/2 exp∗
(

− t2

s

)
exp∗(−e−2sx2

1) ds 

∫ ∞

1
2 ln x1

t

s3/2 exp∗
(

− t2

s

)
ds

� min{1, t(lnx1)−1/2}

and

∫ 1
2 ln x1

ln 2

t

s3/2 exp∗
(

− t2

s

)
exp∗(−e−2sx2

1) ds � exp∗(−x1)
∫ 1

2 ln x1

ln 2

t

s3/2 exp∗
(

− t2

s

)
ds

� exp∗(−x1) min{1, t},

from which the required estimate follows.

Case 2 (0 < y1 < x1/2). Considering now the proof of [4, Proposition 4.1 (iii)], we
only need to estimate the terms J

(2)
2,1 and J2,3, and also J2,2 when y1 ∈ (0, 1].

From [4, (4.16)], for y1 ∈ (0, 1] we obtain

J2,2 
 t

(ln(x1/y1))3/2 exp∗
(

− t2

ln(x1/y1)

)
exp∗(−|y′|2)

� min
{

t

(ln(x1/y1))3/2 ,
1

ln(x1/y1)

}
exp∗(−|y|2)

� K̃3(t, x, y),

since here ln(x1/y1) � ln(e + |x|). Furthermore,

J
(2)
2,1 + J2,3 � exp∗(−|y′|2)

∫
t

s3/2 exp∗
(

− t2

s

)
exp∗(−|y1 − e−sx1|2) ds, (2.3)

where the integral is taken over the set {s > ln 2 : |s − ln(x1/y1)| > c0} for some c0 > 0.
Thus the quotient e−sx1/y1 stays away from 1 in this integral, so that |y1 − e−sx1| 

max{e−sx1, y1} 
 e−sx1 + y1. This implies that the right-hand side of (2.3) is controlled
by the expression in (2.2) and thus by K̃3.

Lemma 2.2 is proved. �
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3. Auxiliary lemmas

Lemma 3.1. There exists a constant C > 0 such that for all x, y ∈ R
n and t > 0,

|∂tPt(x, y)| � C
1
t
Pt/2(x, y).

Proof. Differentiating (2.1), we get

∂tPt(x, y) =
1

2π(n+1)/2

1
t

∫ ∞

0

t

s3/2 e−t2/4s

(
1 − t2

2s

)
exp(−|y − e−sx|2/(1 − e−2s))

(1 − e−2s)n/2 ds.

It is now enough to observe that

e−t2/4s

∣∣∣∣1 − t2

2s

∣∣∣∣ � e−(t/2)2/4s

and compare with (2.1). �

Lemma 3.2. Fix i ∈ {1, 2, . . . , n} and let R > 0. Then there exists a constant C > 0,
depending only on n and R, such that for all x, y ∈ R

n with |x| < R,

|∂xi
Pt(x, y)| � C(1 + t−4−n)Pt/2(x, y), t > 0, (3.1)

and
|∂xi

Pt(x, y)| � Ct−1/2e−|y|2 [ln(e + |y|)]−3/4, t > 1. (3.2)

Proof. In this proof all constants denoted by C will depend only on n and R, and
the same applies to the implicit constants in the � and 
 symbols. We let |x| < R, and
we can clearly assume that R > 1.

Differentiating (2.1), we get

∂xi
Pt(x, y) =

1
π(n+1)/2

∫ ∞

0

t

s3/2 e−t2/4s e−s(yi − e−sxi)
1 − e−2s

exp(−|y − e−sx|2/(1 − e−2s))
(1 − e−2s)n/2 ds.

(3.3)
Compared with (2.1), the integral now has an extra factor: e−s(yi − e−sxi)/(1 − e−2s).

With γ > 0, we will repeatedly use the simple inequality

e−t2/4s � Cγ

(
s

t2

)γ

e−(t/2)2/4s (3.4)

for some Cγ > 0, and here we sometimes drop the last factor.
We start with the simple case of bounded y; more precisely, we assume that |y| � e12R.

Then the extra factor is no larger than Ce−s/(1 − e−2s). An application of (3.4) with
γ = 1 + n/2 yields

|∂xi
Pt(x, y)| � t−2−n

∫ ∞

0

t

s3/2 e−(t/2)2/4s e−ss1+n/2

(1 − e−2s)1+n/2 exp
(

−|y − e−sx|2
1 − e−2s

)
ds.
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Comparing this with (2.1), one sees that this estimate implies (3.1). If we choose γ =
2 + n/2 instead, (3.2) will also follow, since y stays bounded.

From now on we assume that |y| > e12R. Then (3.3) implies

|∂xiPt(x, y)| �
∫ ∞

0

t

s3/2 e−t2/4s e−s|y|
1 − e−2s

exp(−|y − e−sx|2/(1 − e−2s))
(1 − e−2s)n/2 ds. (3.5)

First we estimate the exponent

E(s, x, y) = −|y − e−sx|2
1 − e−2s

from (3.5). It satisfies

E(s, x, y) � −|y|2 + 2e−sy · x

1 − e−2s
�

−|y|2 + 1
2e−2s|y|2 + 2|x|2
1 − e−2s

,

where we applied the inequality between the geometric and arithmetic means. If e−s < 1
2 ,

then

E(s, x, y) �
−|y|2 + 1

2e−2s|y|2
1 − e−2s

+ C.

If, instead, e−s � 1
2 , we have 2|x|2 < e−2s|y|2/4 since |y| > e12|x|, and thus

E(s, x, y) �
−|y|2 + 3

4e−2s|y|2
1 − e−2s

.

In both cases,

E(s, x, y) � −|y|2
1 − 3

4e−2s

1 − e−2s
+ C � −|y|2(1 + 1

4e−2s) + C,

and this implies that

eE(s,x,y) � e−|y|2 min
(

1,
e2s

|y|2

)
. (3.6)

We also need a converse inequality, under the assumption that s > ln |y|. Then

E(s, x, y) � −|y|2 − 2e−s|y||x| − e−2s|x|2
1 − e−2s

� −|y|2
1 − |y|−2 − C � −|y|2 − C. (3.7)

Now split the integral in (3.5) as, say,

( ∫ 3

0
+

∫ ln |y|

3
+

∫ ∞

ln |y|

)
t

s3/2 e−t2/4s e−s|y|
1 − e−2s

exp(−|y − e−sx|2/(1 − e−2s))
(1 − e−2s)n/2 ds

= I1 + I2 + I3;

observe that ln |y| > 12. We shall prove that these three integrals satisfy the bounds in
(3.1) and (3.2).
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In I3 we have e−s|y|/(1 − e−2s) � 1. Comparing this with (2.1), we conclude that

I3 � Pt(x, y) � Pt/2(x, y),

which is part of (3.1). Aiming at (3.2), we apply (3.4) with γ = 3
4 and (3.6), where the

minimum is 1, to conclude that

I3 �
∫ ∞

ln |y|
t−1/2s−3/4e−s|y|e−|y|2 ds � t−1/2(ln |y|)−3/4e−|y|2 ,

as desired.
To deal with I2, we apply (3.6), now with the second quantity in the minimum, and

obtain

I2 �
∫ ln |y|

3

t

s3/2 e−t2/4s es

|y|e
−|y|2 ds. (3.8)

Using (3.4), again with γ = 3
4 , we can estimate this integral by

t−1/2e−|y|2
∫ ln |y|

3
s−3/4 es

|y| ds,

which gives the bound in (3.2) for I2. Thinking of (3.1), we write the integral in (3.8) as

te−|y|2 |y|−1
∫ ln |y|

3
φ(s)es/2 ds,

where

φ(s) =
es/2

s3/2 e−t2/4s.

Here, both the factors are increasing functions of s in (3,∞), and so is φ. Thus, for any
η ∈ (0, 1),

sup
(3,ln |y|)

φ(s) � φ(η + ln |y|),

and so

I2 � te−|y|2 |y|−1φ(η + ln |y|)
∫ ln |y|

3
es/2 ds 
 te−|y|2 1

(η + ln |y|)3/2 e−t2/4(η+ln |y|).

Integrating in η we see that

I2 �
∫ 1+ln |y|

ln |y|

t

s3/2 e−t2/4se−|y|2 ds. (3.9)

Because of (3.7), this integral is dominated by the one defining Pt(x, y) in (2.1). Since
Pt(x, y) � Pt/2(x, y), it follows that I2 � Pt/2(x, y).

Finally, we estimate I1 by means of (3.6). Since here 1 − e−2s 
 s, we get

I1 �
∫ 3

0

t

s3/2 e−t2/4s 1
|y|s1+n/2 e−|y|2 ds.
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Using (3.4) with γ = 2 + n/2, we conclude that

I1 � t−3−n

∫ 3

0
s−1/2e−(t/2)2/4s 1

|y|e
−|y|2 ds. (3.10)

This leads immediately to the bound in (3.2). For (3.1), we can estimate the right-hand
side in (3.10) by

t−3−n 1
|y|e

−t2/48e−|y|2 � t−4−n t

(η + ln |y|)3/2 e−t2/4(η+ln |y|)e−|y|2

with η ∈ (0, 1) as before, since ln |y| > 12. As a result, we get a bound for I1 similar to
(3.9) but with an extra factor t−4−n, and thus also the bound in (3.1).

Lemma 3.2 is proved. �

Proposition 3.3. Let f be a measurable function on R
n satisfying (1.3). Then, for

all i ∈ {1, 2, . . . , n} and x ∈ R
n,

∂xi
∂tPs+tf(x) =

∫
Rn

∂xi
Ps(x, y)∂tPtf(y) dy, s, t > 0, (3.11)

and

lim
t→∞

∂xiPtf(x) = 0. (3.12)

Proof. We can assume that |x| < R for some R > 0 and thus apply the estimates
from Lemma 3.2. First we verify the absolute convergence of the integral in (3.11) by
showing that

∫
Rn

∫
Rn

|∂xi
Ps(x, y)| |∂tPt(y, z)| |f(z)| dy dz < ∞.

Lemmas 3.2 and 3.1 imply that this integral is, up to a factor C(n, R), no larger than

1 + s−4−n

t

∫
Rn

∫
Rn

Ps/2(x, y)Pt/2(y, z)|f(z)| dy dz

=
1 + s−4−n

t

∫
Rn

P(s+t)/2(x, z)|f(z)| dz < ∞,

where the equality comes from the semigroup property. The last integral here is finite
because of (1.3); indeed, [1, (6.4)] says that Pt(x, y) is controlled by e−|y|2/

√
ln(e + |y|),

locally uniformly in x and t.
Our next step consists of integrating the right-hand side of (3.11) along intervals in the

variables xi and t. We choose two points x′, x′′ ∈ R
n with |x′|, |x′′| < R that differ only

in the ith coordinate, and also two points t′, t′′ > 0. Fubini’s theorem applies because of
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the above estimates, and we get

∫ x′′
i

x′
i

∫ t′′

t′

( ∫
Rn

∫
Rn

∂xiPs(x, y)∂tpt(y, z)f(z) dy dz

)
dt dxi

=
∫

Rn

∫
Rn

[Ps(x′′, y) − Ps(x′, y)][Pt′′(y, z) − Pt′(y, z)]f(z) dy dz

= Ps+t′′f(x′′) − Ps+t′′f(x′) − Ps+t′f(x′′) + Ps+t′f(x′).

From this, we obtain (3.11) by differentiating with respect to x′′
i and t′′.

Finally, (3.12) is a direct consequence of (3.2) and (1.3). �

Proposition 3.3 now allows us to apply the method of proof of [4, Proposition 3.2] and
obtain the same estimates as there.

Corollary 3.4. Let α ∈ (0, 1) and let f ∈ GGLipα with norm 1.

(i) For all i ∈ {1, 2, . . . , n}, t > 0 and x ∈ R
n,

|∂xi
Ptf(x)| � Ctα−1.

(ii) For all t > 0 and x = (x1, 0, . . . , 0) ∈ R
n with x1 � 0,

|∂x1Ptf(x)| � Ctα−2(1 + x1)−1.

4. Proof of Theorem 1.2

(i) =⇒ (ii) We assume that f satisfies (1.3) and (1.1). According to [1, Theorem 1.1],
Ptf(x) → f(x) as t → 0 for almost all x ∈ R

n, and we can therefore modify f on a null
set so that this convergence holds for all x.

Now fix x, y ∈ R
n. For all t > 0, we write

|f(x) − f(y)| � |f(x) − Ptf(x)| + |Ptf(x) − Ptf(y)| + |Ptf(y) − f(y)|. (4.1)

Using Corollary 3.4 (i) and arguing as in the verification of [4, (3.7)], we get

|f(x) − f(y)| � |x − y|α. (4.2)

To obtain (1.5) it is then enough to prove that

|f(x) − f(y)| � d(x, yx)α/2 + |y′
x|α.

By writing
|f(x) − f(y)| � |f(x) − f(yx)| + |f(yx) − f(y)|

and applying (4.2) to the last term here, we see that we need only verify that

|f(x) − f(yx)| � d(x, yx)α/2.
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Making a rotation, we can assume that x = (x1, 0, . . . , 0) with x1 � 0 and yx =
(y1, 0, . . . , 0).

We estimate |f(x) − f(yx)| as in (4.1). Of the three terms we then get, the first and
third are controlled by tα. We apply Corollary 3.4 (ii) and the one-dimensional integral
expression (1.4) for d to the second term. As a result,

|f(x) − f(yx)| � tα + tα−2d(x, yx),

and here we choose t = d(x, yx)1/2. This leads to (1.5), and the implication (i) =⇒ (ii) is
proved.

(ii) =⇒ (i) Letting y = 0, we see that (1.5) implies that f(x) = O((ln |x|)α/2) as
|x| → ∞ and thus also (1.3). We must verify (1.1).

Using the fact that
∫

Rn ∂tPt(x, y) dy = 0 and Lemma 2.2, we can write

|t∂tPtf(x)| =
∣∣∣∣
∫

Rn

t∂tPt(x, y)[f(y) − f(x)] dy

∣∣∣∣
�

∫
Rn

[K1(t, x, y) + K2(t, x, y) + K̃3(t, x, y) + K4(t, x, y)]|f(y) − f(x)| dy.

We thus get four integrals to bound by tα. For
∫

Rn K1(t, x, y)|f(y) − f(x)| dy, we can
apply the same simple argument as at the end of § 3 in [4], since it uses only the quantity
|x − y|α in (1.5).

The integral involving K2(t, x, y) can also be estimated as in [4], because (1.7) applies
in the support of K2(t, x, y).

For the integral with K̃3(t, x, y), we apply the inequality (a+b)κ � aκ+bκ with a, b > 0
and κ = α/2 ∈ (0, 1) to the expression in (1.5) and get
∫

Rn

K̃3(t, x, y)|f(y) − f(x)| dy

� min
{

1,
t√

ln(e + |x|)

} ∫
Rn

((ln(1 + |x|))α/2 + (ln(1 + |yx|))α/2 + |y′
x|α) exp∗(−|y|2) dy.

The minimum here is no larger than tα/[ln(e + |x|)]α/2, which leads immediately to the
bound tα for the whole expression.

Finally,∫
Rn

K4(t, x, y)|f(y) − f(x)| dy

�
∫

x·y>0
1<|yx|<|x|/2

t

|yx|

(
ln

|x|
|yx|

)−3/2

exp∗
(

− t2

ln(|x|/|yx|)

)

× exp∗(−|y′
x|2)([ln(1 + |x|) − ln(1 + |yx|)]α/2 + |y′

x|α) dy (4.3)

When 1 < |yx| < |x|/2, we have

|ln(1 + |x|) − ln(1 + |yx|)| = ln
1 + |x|
1 + |yx| 
 ln

|x|
|yx| .
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After a rotation we can assume that x = (x1, 0, . . . , 0) with x1 > 0, so that yx =
(y1, 0, . . . , 0) and y′

x = (0, y′) and we have 1 < y1 < x1/2. The right-hand integral in
(4.3) is bounded by a constant times

∫ x1/2

1

∫
Rn−1

t

y1

(
ln

x1

y1

)−3/2

exp∗
(

− t2

ln(x1/y1)

)

× exp∗(−|y′|2)
([

ln
x1

y1

]α/2

+ |y′|α
)

dy′ dy1.

Integrating in y′ and noting that ln(x1/y1) � 1, we can bound this double integral by

∫ x1/2

1

t

y1

(
ln

x1

y1

)α/2−3/2

exp∗
(

− t2

ln(x1/y1)

)
dy1.

The transformation of variable s = t−2(lnx1 − ln y1) now gives the desired bound tα.
Summing up, we have verified (1.1) and (i). The norm equivalence (1.6) also follows,

and this ends the proof of Theorem 1.2.

5. An example of a function in GGLipα

With α ∈ (0, 1) we consider the function

f(x) = [ln(e + |x|)]α/2, x ∈ R
n.

We shall verify that f belongs to GGLipα using Theorem 1.2.
The estimate

|f(x) − f(y)| � |x − y|α (5.1)

is easy and is left to the reader.
To show that

|f(x) − f(y)| � |ln(e + |x|) − sgn〈x, y〉 ln(e + |yx|)|α/2 + |y′
x|α, (5.2)

write

|f(x) − f(y)| � |f(x) − f(yx)| + |f(yx) − f(y)|.

The last term here is controlled by |y′
x|α, because of (5.1). We apply the inequality

|aκ − bκ| � |a − b|κ, a, b > 0, with κ = α/2 ∈ (0, 1), to the first term on the right,
obtaining

|f(x) − f(yx)| = |[ln(e + |x|)]α/2 − [ln(e + |yx|)]α/2| � |ln(e + |x|) − ln(e + |yx|)|α/2.

This implies (5.2), and it follows that f ∈ GGLipα.
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