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Abstract

This paper presents an approach to optimal design of elastic flywheels using an Injection Island Genetic Algorithm
~iiGA !, summarizing a sequence of results reported in earlier publications. An iiGA in combination with a structural
finite element code is used to search for shape variations and material placement to optimize the Specific Energy
Density ~SED, rotational energy per unit weight! of elastic flywheels while controlling the failure angular velocity.
iiGAs seek solutions simultaneously at different levels of refinement of the problem representation~and correspond-
ingly different definitions of the fitness function! in separate subpopulations~islands!. Solutions are sought first at low
levels of refinement with an axi-symmetric plane stress finite element code for high-speed exploration of the coarse
design space. Next, individuals are injected into populations with a higher level of resolution that use an axi-symmetric
three-dimensional finite element code to “fine-tune” the structures. A greatly simplified design space~containing two
million possible solutions! was enumerated for comparison with various approaches that include: simple GAs, thresh-
old accepting~TA!, iiGAs and hybrid iiGAs. For all approaches compared for this simplified problem, all variations of
the iiGA were found to be the most efficient. This paper will summarize results obtained studying a constrained opti-
mization problem with a huge design space approached with parallel GAs that had various topological structures and
several different types of iiGA, to compare efficiency. For this problem, all variations of the iiGA were found to be
extremely efficient in terms of computational time required to final solution of similar fitness when compared to the
parallel GAs.
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1. INTRODUCTION

New optimization problems arise every day in engineering
practice. Sometimes such problems are easily solved, but
many engineering problems cannot be handled satisfacto-
rily using traditional optimization methods. Engineering in-
volves a wide class of problems and optimization techniques.
Many engineering design approaches, such as “make-it-and-
break-it,” are simply out of date, and have been replaced by
computer simulations that exploit various mathematical
methods such as the finite element method to avoid costly
design iterations. However, even with high-speed supercom-
puters, this design process can still be hindersome, produc-
ing designs that evolve slowly over a long period of time.

The next step in the engineering of systems is the automa-
tion of optimization through computer simulation. If the de-
sired performance factors for the system can be appropriately
captured, then optimization over them is simply engineer-
ing on a grander scale.

Shape optimization of flywheels for the maximization of
specific energy density~SED! is an appealing thought that
has received a fair amount of attention from researchers.
The concept of a flywheel is as old as the axe grinder’s wheel,
but could well hold the key to tomorrow’s problems of ef-
ficient energy storage. A simple example of a flywheel is a
solid, flat rotating disk. The SED of a flat solid disk can be
increased by varying the shape of the disk to redistribute
the inertial forces induced by rotation.

The flywheel is modeled as a series of concentric rings
~see Fig. 1!. The thickness within each ring varies linearly
in the radial direction. A diverse set of material choices is
provided for each ring. Figure 2 shows a typical planar
finite element model used to represent a flywheel, in which
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symmetry about the transverse normal direction and about
the axis of rotation is used to increase computational
efficiency.

For the flywheel problem treated here, the authors use
concurrentlya set of models of various levels of refine-
ment, beginning with a simple axi-symmetric plane stress
finite element model~with a “subfitness” function!, which
quickly finds “building blocks” to inject into a series of ge-
netic algorithms~GA! populations using several more re-
fined, axi-symmetric, three-dimensional finite element
models. The overall fitness function for the genetic algo-
rithm GALOPPS~Goodman, 1996! is the SED of the fly-
wheel, which is defined as:

SED5
1
2
_ Iv2

mass
~1!

wherev is the angular velocity of the flywheel~“subfit-
ness” function!, I is the mass moment of inertia defined by:

I 5E
V

r{r 2dV, ~2!

andr is the density of the material.
This paper begins with a brief literature review in the gen-

eral area of optimization methods as applied to flywheels.
Simulated annealing, threshold accepting, and parallel ge-
netic algorithms are reviewed, and Injection Island GAs

~iiGAs! are described. Two different finite element models
of flywheels are also summarized. Next, results are pre-
sented for a reduced design space that was enumerated to
allow comparison of the efficiency of various GAs and ii-
GAs in finding a known global optimum. Next, an uncon-
strained flywheel optimization problem is defined, containing
a huge number of possible designs. The flywheel optimiza-
tion problem is then constrained and approached with a sim-
ple GA, parallel GAs with various topological structures,
iiGAs and hybrid iiGAs~Eby et al., 1999!.

1.1. Optimization methods

Optimization approaches include hill climbing, stochastic
search, directed stochastic search, and hybrid methods. Hill-
climbing or gradient-based methods are single-point search
methods that have been applied successfully to many shape
optimization problems, for example~Suzuki & Kikuchi,
1990, 1991; Soto & Diaz, 1993!. However, these methods
are severely restricted in their application due to the likeli-
hood of quickly converging to local extrema~Sangren
et al., 1990!. Random search methods simply evaluate ran-
domly sampled designs in the search space, and are there-
fore generally limited to problems that have small search
spaces, if practical search times are required. A directed ran-
dom search method, such as a GA, is a multiple-point, di-
rected stochastic search method that can be an effective
optimization approach to a broad class of problems. The use

Fig. 1. Visual display of flywheel.

Fig. 2. Typical flywheel model.

328 D. Eby et al.

https://doi.org/10.1017/S0890060499135066 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060499135066


of GAs for optimal design requires that a large number of
possible designs be analyzed, even though this number gen-
erally still represents only a minuscule fraction of the total
design space. When each evaluation is computationally in-
tensive, a traditional simple or parallel GA can thus be dif-
ficult to apply. iiGAs, described below, can help reduce the
computational intensity associated with typical GAs by
searching at various levels of resolution within the search
space using multiple analyses that can vary in levels of com-
plexity, accuracy, and computational efficiency.

Structural optimization via GAs is the main topic of this
paper for other examples see Hajela and Lee~1997!, Mares
and Surace~1996!, Chapman and Jakiela~1996!, Rajan
~1995!, Keane~1995!, Nakaishi and Nakagiri~1996!, Queipo
et al. ~1994!, Flynn and Sherman~1995!, and Furuya and
Haftka ~1995!. Recently, GAs have been successfully ap-
plied in the optimization of laminated composite materials
~Kosigo et al., 1993; Le Riche and Haftka, 1993; Punch et al.,
1994, 1995; Todoroki et al., 1995!. The authors of this pa-
per have used an iiGA in the design of laminated composite
structures~Goodman et al., 1998!, and others have applied
the iiGA to other engineering problems@for example, Parmee
and Vekeria~1997!# . Others use different GA approaches
@see Le Riche and Haftka~1993!, Todoroki et al.~1995!# .
Several authors have dealt with the application of GAs to
shape optimization problems. Fabbri~1997! and Foster and
Dulikravich ~1997! used GAs to find optimal shapes based
on various polynomials, while Haslinger and Jedelsky~1996!
use the concept of fictitious domains to generate new shapes.
Wolfersdorf et al.~1997! reduced computational costs as-
sociated with generating meshes for finite element evalua-
tions by a point heat sink approach. Genta and Bassani~1995!
modeled flywheels as a series of concentric rings~see Fig. 1!
using a simple GA measuring fitness with a plane stress fi-
nite difference model. Although Genta and Bassani have al-
ready performed optimization of flywheels using a simple
GA, this paper differs in many respects: Genta and Bassani
seededthe initial population with flywheels that varied lin-
early in thickness from the inner to outer radii, while this
paper allows for ring thickness to berandomlychosen in
the initial population; Genta and Bassani searched for shapes
using only a simple GA, while this paper will present var-
ious optimization approaches such as Threshold Accepting
~TA!, GAs, iiGAs, and hybrid techniques; Genta and Bas-
sani based fitness on asingle objectivein each run while
multiple fitnessdefinitions were usedconcurrentlyin each
iiGA run for this paper; Genta and Bassani measured fit-
ness only with aplane stress evaluationwhile the current
paper presents techniques thatconcurrentlyusemultiple eval-
uationsthat vary in levels of complexity, accuracy, and com-
putational efficiency.

Combining a GA with the finite element method is by
now a familiar approach in the optimization of structures,
but using a GA with multiple evaluation tools and with
different fitness functions is a new approach aimed at de-
creasing computational time while increasing the robust-

ness of a typical GA. Typically, a useful approximation to
the overall response of most structures can be captured with
a computationally efficient, simplified model, but often,
these simplified models cannot capture all complex struc-
tural behaviors. If the model does not accurately capture
the appropriate physics of the problem, then the results of
any optimization technique will be anartifact of the sim-
plified analysis, dooming the solution~s! to be incorrect.
This forces the designer to use a more refined model, which
can be computationally demanding, sometimes leading to
evaluation times too long to be practical for use in a GA
search. These obstacles are nearly always present in inter-
esting structural optimization problems. This paper will
show how an efficient, simplified axi-symmetric plane stress
finite element model, when used to evaluate fitness in an
optimization problem, produces solutions that areartifacts
of the simplified analysis. The paper will also show that
an ordinary parallel GA using the refined axi-symmetric
three-dimensional finite element model requires exces-
sively long search times, in comparison to an iiGA ap-
proach which employs both the axi-symmetric plane stress
and three-dimensional finite element models.

An eventual goal of this effort is to develop tools for mul-
ticriterion optimization of large-scale, three-dimensional
composite structures, using an iiGA that searches at various
levels of resolution and model realism. This technique in-
corporates several simultaneous and interconnected searches,
including some that are faster~but often less accurate!. This
approach is constructed to spend less time evaluating poor
designs with computationally intensive fitness functions~this
is to be done with the efficient, less accurate evaluations!
and to spend more time evaluating potentially good designs
with the computationally intensive fitness evaluation.

1.2. Simulated annealing and threshold accepting

Simulated annealing~SA! methods begin with an initial
solution that is often generated randomly, and try to per-
turb the solution to improve it~Ruthenbar, 1989!. If the
perturbation improves the value of the objective function,
then it is accepted and the process of perturbing continues.
In this manner, SA methods are like iterative methods that
climb hills. As with hill-climbing methods, this process of
earching just for a better solution tends to force the process
to a local optimum. However, SAmethods are different in this
respect: annealing occasionally allows perturbations that de-
crease the value of the objective function to be accepted. This
allows SA methods to “climb out” of local optima to search
foraglobaloptimum. In realphysical systems, jumps tohigher
~“worse”! states of energy actually do occur. Probability of
these jumps is reflected in the current temperature.As the an-
nealing process~cooling! continues, the probability that only
better solutions will be accepted increases. At the beginning
of the annealing process~associated with a high tempera-
ture!, the chance that a worse solution is accepted is greater,
while later in the annealing process~at a lower temperature!,
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thechance thataworsesolution isaccepted issmall.Thisprob-
ability of accepting worse solutions is based on a Boltzmann
distribution:

Pr @Accept# 5 e
2

DE

T ~3!

By successively lowering the temperatureT, the simulation
of material coming into equilibrium at each newly reduced
temperature can effectively simulate physical annealing.

TA is a simplified version of SA. The probability of ac-
cepting a worse solution is governed by the Boltzmann dis-
tribution for SA applications and the TA algorithm, but the
TA algorithm is not dependent upon a specified tempera-
ture. Instead, the TA algorithm rate of cooling is based on a
specified percentage of the current solution fitness~objec-
tive function value!. This percentage decreases over the set
of generations. This causes the TA in earlier generations to
have a higher probability of accepting a worse solution, while
later generations in the process are less likely to accept a
worse solution.

1.3. Parallel genetic algorithms

Two problems associated with GAs are their need for many
fitness evaluations and their propensity to converge pre-
maturely to suboptimal solutions. An approach that amelio-
rates both of these problems is a coarse-grain or island
parallel GA~PGA!, in which the population is divided into
subpopulations and recombination normally occurs only
among individuals in the same subpopulation. This also pro-
duces a more realistic model of nature than a single large
population. PGAs typically decrease processing time to a
given solution quality, even when executed on a single pro-
cessor, and better explore the search space. If they are ex-
ecuted using parallel processors, an additional speedup~in
wall clock time! nearly linear with processor number may
be achieved.

Unlike some specialized sequential GAs, which may pay
a nontrivial computational cost for maintaining a structured
population~demes, etc.! based on similarity comparisons
~niching techniques, etc.!, PGAs operate essentially as in-
dependent, smaller GApopulations that are allowed to evolve
nearly independently. This allows each subpopulation to ex-
plore different parts of the search space, each maintaining
its own high-fitness individuals and each controlling how
mixing occurs with other subpopulations, if at all, in the
infrequentmigrationoperation.

1.4. Injection island GAs

iiGAs represent our extension to the usual notion of paral-
lel GAs ~Lin, Punch, & Goodman, 1994!. An iiGA allows
heterogeneity of problem representation and0or objective
~fitness! function definition among the various subpopula-
tions. Migration of individuals between heterogeneous sub-

populations requires that the user provide a function that
remaps migrants from the donor subpopulation~using one
representation! into the representation of the receiving sub-
population. An iiGA thus continually “injects” solutions
~and hopefully, useful building blocks! from an inexpen-
sive, low-resolution search into subpopulations searching
more accurately~and expensively!, helping to focus their
search on promising regions. In such a case, migration from
higher resolution subpopulations to lower resolution ones
is not usually used, but is not barred, should it be desired.
If the difference among subpopulations is in the types of
models used, and not necessarily in model refinement or
resolution, then “backward” diffusion or circular migra-
tion may prove useful. Of course, subpopulations may sim-
ply be using different models or fitness definitions of similar
levels of complexity, but allowing the exchange of mi-
grants to assist in more robust search~of Pareto surfaces,
for example!.

The remapping of the representation of migrants be-
tween subpopulations with different representations is most
straightforward if the solution space of the donor subpopu-
lation is a subset of the solution space of the recipient
subpopulation—then, the migrating individual may be as-
signed exactly the same structure in the recipient as it had
in the donor subpopulation. For many applications, the mi-
grant will then be assigned the same fitness in the receiving
subpopulation as it had before migrating~provided that the
fitness function yields the same value for an equivalent struc-
ture in both representations!. However, the migration can
also be done by approximating the migrating individual’s
representation with a “similar” one in the representation of
the receiving subpopulation. In that case, care must be taken
that the “good” qualities of the migrant are not lost in this
remapping. The fact that the fitness of the migrant then
changes during migration is also problematic in a mechan-
ical sense—it makes it harder to track real progress in the
search, for example.

The injection occurs while all islands continue to search
simultaneously, although it is also possible to~wholly or
partially! re-initialize or re-assign low-resolution islands once
they have converged. The parallel GA environment in which
the iiGA is run is based on the GALOPPS toolkit developed
by Goodman~1996!. The software can be run on one or mul-
tiple PCs or workstations~a single processor was used for
all runs reported here!. Islands with different levels of res-
olution evaluate fitness using either a simplified analysis
that is computationally cheaper or a refined, computation-
ally expensive analysis~see Fig. 3!. The GA parameters—
rates of crossover, mutation, migration, etc.—can all vary
from island to island. For example, an island can exploit a
simplified evaluation tool that is computationally cheap by
increasing the island’s population size. Also, islands using a
computationally cheap evaluation function can be allowed
to evaluate more generations before injecting their results
into other islands. This will be demonstrated later in the
paper.
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Many engineering problems require satisfying multiple
fitness criteria in some sort of weighted overall fitness func-
tion to find an optimal design, if not actually requiring mul-
ticriterion optimization. Each individual fitness measure may
have its own optimal or suboptimal solutions. In an iiGA, it
may be useful to use each individual criterion as the fitness
function for some subpopulations, allowing them to seek
“good” designs with respect to each individual criterion, as
potential building blocks for the more difficult weighted fit-
ness function, or as useful points for assessment of Pareto
optimality~see Fig. 3!. However, this is not a sufficient con-
dition to guarantee effective search of the Pareto optimal
solutions.

An iiGAtakes advantage of the low communications band-
width required to migrate individuals from island to island.
Often, only the best individual in a population migrates to
allow “good” ideas~building blocks! to be combined with
other “good” ideas to find “better” ideas amongst islands
using different “subfitness” functions. An iiGA using is-
lands of different resolutions has the following characteris-
tics relative to other PGAs~which are often found to be an
advantage for real-world engineering problems!:

1. Building blocks of lower resolution can be directly
found by search at that resolution.After receiving lower
resolution solutions from its parent island~s!, an is-
land of higher resolution can “fine-tune” these solu-
tions, but may also reject those inferior to better
solution regions already located.

2. The search space in islands with lower resolution is
proportionally smaller. This typically results in find-
ing “fit” solutions more quickly, which are injected
into higher resolution islands for refinement.

3. Islands connected in the hierarchy~islands with a
parent–child relationship! share portions of the same
search space because the search space of the parent is
typically contained in the search space of the child.
Fast search at low resolution by the parent can poten-
tially help the child find fitter individuals.

4. iiGAs embody a divide-and-conquer and partitioning
strategy which has been successfully applied to many

problems. In iiGAs, the search space is usually fun-
damentally divided into hierarchical levels with well-
defined overlap~the search space of the parent is
contained in the search space of the child!.

5. In iiGAs, nodes with smaller block size can find the
solutions with higher resolution. Although Dynamic
Parameter Encoding~DPE! ~Schraudolph & Belew,
1991! and ARGOT~Schaefer, 1987! also deal with the
resolution problem, using a zoom or inverse zoom op-
erator, they are different from iiGAs. First, they are
working at the phenotype level and only for real-
valued parameters. iiGAs typically divide the string
into small blocks regardless of the meaning of each
bit. Second, it is difficult to establish a well-founded,
general trigger criterion for zoom or inverse zoom op-
erators in PDE and ARGOT. Furthermore, the sam-
pling error can fool them into prematurely converging
on suboptimal regions. Unlike PDE andARGOT, iiGAs
search different resolution levels in parallel and may
reduce the risk of zooming into the wrong target in-
terval, although there remains, of course, a risk that
search will prematurely converge on a suboptimal
region.

2. FINITE ELEMENT MODELS
OF FLYWHEELS

Two axi-symmetric finite element models were developed
to predict planar and three-dimensional stresses that occur
in flywheels composed of orthotropic materials undergoing
a constant angular velocity. Both finite element models were
developed applying the principle of minimum potential en-
ergy. The finite element model that assumes a plane stress
state is truly a one-dimensional finite element model, and is
accurate when the gradient of the flywheel thickness is small.
The finite element model that yields a three-dimensional
stress state is truly a two-dimensional finite element model,
and is accurate for all shapes. An automated mesh generator
was written to allow for mesh refinement through the trans-
verse normal and the radial directions. Therefore, the finite
element code that predicts three-dimensional stresses can

Fig. 3. An iiGA that searches with multiple fitness definitions at various levels of resolution with evaluations that vary in levels of
complexity, accuracy, and computational efficiency.
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have various levels of refinement.Acoarse mesh with a small
number of degrees of freedom will be less accurate, but more
efficient than a refined mesh that contains more degrees of
freedom. The mesh was also generated to minimize the time
required to solve the set of linear equations created by the
finite element code. By first assuming an initial angular ve-
locity, the stresses and strains were calculated. Next, the ini-
tial angular velocity was scaled to the maximum failure
angular velocity. The maximum stress failure criterion was
used to predict the maximum failure angular velocity in the
analysis of isotropic flywheels, while the maximum strain
criterion was used for composite flywheels.

3. GLOBAL OPTIMUM FOR A SIMPLIFIED
FLYWHEEL

To explore how effective the iiGA search is in finding the
global optimum for this sort of problem, and to compare
the speed of finding it using iiGAs with various enhance-
ments, a simplified flywheel problem was posed. A solid
isotropic flywheel that contains six concentric rings~i.e.,
seven heights! with eight possible values for each height
~see Fig. 9b! created a design space of 87 or about two
million possible designs. Using a coarse~962 DOF!, axi-
symmetric finite element model, it was possible to calcu-
late the fitness based on the SED@Eq. ~1!# of all of these
designs, in about 50 h on a SPARC Ultra processor. With
the global optimum design known from exhaustive search,

other search methods could be judged as to robustness and
efficiency.

The TA algorithm alone was the first optimizer explored,
and began its search with a randomly initiated design. All
hybrid algorithms that incorporated the TA algorithm were
initiated with the best individual of the current generation,
performing at most 10 TA operations, with the resulting so-
lution always replacing the worst in the population. Thelo-
cal searchmethod took the best individual of each generation
and varied the thickness profile of whichever ring the FEA
code found to fail first. The inner and outer thicknesses were
increased and decreased independently, so a total of four
evaluations occurred. When incorporating the local search
method in any algorithm, the worst solution in the popula-
tion was replaced only when a better solution was found by
the local search.All multipoint search methods used the same
total population size, 2200 individuals. Typically, for larger,
computationally expensive problems, each island would be
located on a separate processor, but for this problem, only a
single Sun Sparc Ultra workstation was used.

The motivation for the particular iiGA topology used here
requires some explanation. The search space for the plane
stress finite element model evaluation contains good build-
ing blocks for the iiGA. Also, the plane stress evaluation
~0.001 s per evaluation! is up to 1000 times faster than the
most refined three-dimensional evaluation of stress~for this
analysis!. To make the iiGA search less computationally in-
tensive and more robust, the iiGA shown in Figure 4a was

Fig. 4. Simplified injection island GA topology with coarse flywheel representation.
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designed to exploit these facts. A full cycle in an iiGA con-
sists of evaluating a specified number of generations~which
varies from island to island! in each island. Genetic opera-
tions can also be varied from island to island. Islands 0
through 1 had a 75% rate of crossover, population size of
300, and completed 12 generations per cycle before migrat-
ing 3 individuals in accordance with Figure 4a. Islands 0
and 1 measured fitness with plane stress finite element code,
basing fitness on the subfitness function~angular velocity
alone!. Islands 0 and 1 contained designs with 3 and 6 rings
with 7 and 13 DOF, respectively. A high crossover rate was
chosen to motivate those particular islands to discover new
designs. A large population size and high number of gener-
ations per cycle was used due to the computational effi-
ciency of the plane stress evaluation and to force the islands
to converge quickly to potentially productive regions of the
design space, presumably containing useful building blocks.
Islands 2 and 3 had a crossover rate of 70%, population size
of 200, and completed six generations per cycle before mi-
grating three individuals, evaluating fitness with the three-
dimensional axi-symmetric finite element code basing fitness
on SED~130 DOF!. Islands 4 and 5 had a 65% crossover
rate, population size of 200 and completed four generations
before migrating individuals, measuring fitness with the
three-dimensional axi-symmetric finite element code bas-
ing fitness on SED~430 DOF!. Islands six through eight
had a crossover rate of 60%, population size of 100, and
received migrated individuals every two generations, mea-
suring fitness with the three-dimensional axi-symmetric fi-
nite element code basing fitness on SED~962 DOF!. Islands
six through eight had a lower population size and number
of generations per cycle to explore the space more slowly
and to avoid a large number of costly evaluations. Islands
six through eight should fine tune potentially good designs
~building blocks! received from the islands at a lower res-
olution. Figure 4a also displays a hybrid iiGA design that
groups the islands according to the method by which they
perform their specialized heuristic search~if any! at the end
of each generation.

Of course, many variations on these hybrid iiGA designs
can be custom tailored for specific problems. The authors
believe that the process is not very sensitive to the particu-
lar parameters~such as genetic operator rates and number
of migrants! chosen, and did not find it necessary to tune
the parameters—they were seta priori based on the intu-
itions described above. Of course, the number of genera-
tions per cycle per island could increase overall run time if
this parameter is significantly increased in islands that mea-
sure fitness with a computationally expensive analysis.

4. RESULTS OF GLOBAL OPTIMIZATION
STUDY

Table 1 shows the results of the various methods. Each run
lasted 6000 s on the same processor. In five runs of each

method, the simple GA, with and without TAand local search
heuristics, and the ring topology parallel GA, never found
the global optimum. Figure 5 displays the fitness as a func-
tion of time of a typical run for a TA algorithm, simple GA
and a simple GA that incorporated either a TA algorithm or
a local search method. Elitism was used in all GA runs, so
solutions are only plotted when better solutions are found,
which leads to the appearance of different run lengths.

Other hybrid iiGA topologies were tested that incorpo-
rated either TA or local search methods. Without the local
search or TA heuristics, the iiGA took an average of 768 s to
find the global optimum. The hybrid iiGA that also used
local search found the global optimum in 715 s~average!
while the iiGA that incorporated the TA found the global
solution in 674 s~average!. Figures 6 and 7 display the fit-
ness as a function of time for the iiGA~same topology as
Fig. 4a! and hybrid iiGA ~Fig. 4a, TA0None0Local!, re-
spectively. All figures that display fitness as a function

Table 1. Comparison of optimization approaches

Optimization Technique

Average Time
to Find Global

Solution
~5 Runs!

TA Never found
Simple GA Never found
Simple GA with local search Never found
Simple GA with TA Never found
Ring topology GA Never found
iiGA Always found, 768 s
Hybrid iiGA with local search Always found, 715 s
Hybrid iiGA with TA Always found, 674 s
Hybrid iiGA with local search and TA Always found, 417 s

Fig. 5. Fitness as a function of time on a single processor for a typical run
of a simple GA, GA with TA, and simple GA with local search method.
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of time are reevaluated with the most accurate three-
dimensional finite element model~962 DOF! to ensure that
all solutions are compared with the same “measuring stick”
~the plane stress analysis will predict an overly optimistic
fitness when compared to the more refined analysis!. The
iiGAalone found the global solution in 768 s~average!, while
the hybrid iiGA~Fig. 4a, TA0None0Local! found the glo-
bal optimum in 417 s~average!. The hybrid iiGA that used
the TA algorithm and local search method evaluated less
than 5% of the entire search space, taking less than 0.5% of
the time needed to enumerate the entire search space, mea-
suring more than half of the evaluations with the plane stress
finite element model to find the global optimum. Examina-
tion of Figure 5, shows that the local search and the TA help
the simple GA find better solutions. Also, the TA alone

quickly climbs to a suboptimal solution. Figure 5 shows the
iiGA quickly finding “building blocks” at low levels of res-
olution that are injected into islands of higher resolution.
Figure 6 displays the hybrid iiGA~Fig. 4a, TA0None0
Local! benefiting from the combination of TA and local
search heuristics. Figures 5–7 only display the first 1000 s
because no better solutions were ever found thereafter.

5. SEARCHING LARGER DESIGN SPACES
USING iiGAs AND PGAs

In this section, a much harder flywheel optimization prob-
lem is defined in order to compare results from PGAs~that
have various topological structures!, iiGAs, and hybrid
iiGAs. Two main changes were made to increase the prob-
lem difficulty: various constraints were added and a much
larger search space was defined.

Often it is desirable to have an upper bound on the max-
imum allowable angular velocity of the flywheel design
search space. Another goal would be to reduce “air gap”
growth in annular flywheels~displacement of the inner ra-
dius due to forces induced from rotation!. Constraints on a
maximum allowable angular velocity and air gap growth
will be developed by first considering the unconstrained ver-
sion of the optimization problem with a hybrid iiGA.

A much larger search domain was created to increase the
problem difficulty. A 24-ring flywheel with 1024 heights
per thickness with 32 material choices created a huge de-
sign space. Table 2 lists all isotropic material properties, ma-
terials 1–3 have their Young’s modulus, density and strength
recombined, representing 33 ~27! materials with materials
4–8 representing the final five materials.

5.1. The unconstrained optimization problem

Because no previous numerical information was known about
typical ranges of angular velocities and air gap growth, the
unconstrained problem was first approached with a hybrid
iiGA basing overall fitness on SED@Eq. ~1!# . To make the
GA search less computationally intensive and more robust,

Fig. 6. Fitness as a function of time on a single processor for a typical
iiGA run.

Fig. 7. Fitness as a function of time on a single processor for a typical
hybrid iiGA that incorporated TA and Local search methods.

Table 2. Material properties

Material
Young’s Modulus

~GPa!
Density
~kg0m3!

Strength
~MPa!

Poisson’s
Ratio

1* 10 1.5 100 0.25
2* 75 3.0 250 0.25
3* 200 9.0 400 0.25
4 140 1.5 1500 0.25
5 50 1.5 1600 0.25
6 15 1.5 250 0.25
7 45 1.5 150 0.25
8 3 1.5 85 0.25
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a hybrid iiGA, as shown in Figure 8, was designed. Islands
that use similar special search heuristics~local, TA, or none!
are grouped together. Islands 0 through 2 evaluate fitness
based on angular velocity with a simplified plane stress fi-
nite element model with varying geometric resolutions~3,
6, and 12 rings!. Islands 0 through 2 have 7, 13, and 25
computational degrees of freedom, respectively. Islands 3
through 11 measure fitness based on SED using the three-
dimensional axi-symmetric finite element model. Islands 3
and 4 are low in geometric resolution~3 rings!, but have
104 degrees of freedom. Islands 5 and 6 are medium in geo-
metric resolution~6 rings!, containing 372 df. Islands 7 and
8 are high in geometric resolution~12 rings!, having 2606
df. Islands 9 through 11 are the highest in geometric reso-
lution ~24 rings! with 13,250 df.

A full cycle consists of evaluating a specified number of
generations~which varies from island to island! in the in-
jection island topology. Islands 0 through 2 had a 75% rate
of crossover, population size of 300, and completed 12 gen-
erations per cycle before migrating the island’s best indi-
vidual in accordance with Figure 8. Islands 3 and 4 had a
crossover rate of 70%, population size of 200, and com-
pleted 8 generations per cycle before migrating the island’s
best individual. Islands 5 and 6 had a 65% crossover rate,
population size of 150 and completed 4 generations before
migrating the island’s best individual. Islands 7 and 8 had a
crossover rate of 60%, population size of 120 and the is-
land’s best individual after evaluating 4 generations. Is-
lands 9 through 11 had a crossover rate of 60%, population
size of 86 and received migrated individuals every 3 gen-
erations. Islands 0 through 2 converge much faster to “good”
building blocks when compared to the rest of the islands
due to the simplification of the plane stress evaluation and
the level of resolution. The iiGA topology in Figure 8 uses
this as an advantage because the topology injects building

blocks from the simplified plane stress evaluation based on
angular velocity into two isolated islands that evolve inde-
pendently, searching separate spaces efficiently using the
axi-symmetric three-dimensional finite element model to
evaluate SED.

Figure 9 displays the “best ever” annular composite fly-
wheel at all the levels of geometric resolution for the un-
constrained optimization problem. Also, Figure 9 compares
the three-dimensional to the plane stress axi-symmetric re-
sults. The plane stress results based on angular velocity are
exaggerated shapes that areartifactsof the analysis. How-
ever, the plane stress results cannot be dismissed because

Fig. 8. Hybrid injection island GA topology.

Fig. 9. Best flywheel discovered at each level of resolution with a com-
parison of three-dimensional and plane stress solutions. The plane stress
solutions are exaggerated variations of the three-dimensional counter-
parts.
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they are the building blocks that helped rapidly form the
final “finely tuned” flywheels.

Figure 10 displays the “raw” fitness of each island as a
function of time for the unconstrained problem. The raw
fitness is the actual SED measured by each island’s specific
finite element evaluation. Islands 0–2 measure raw fitness
with an approximate, but efficient evaluation based on an-
gular velocity. The plane stress evaluation predicts fitness
accurately for flywheels that have small gradients in ring
thickness, but predicts excessively optimistic fitness values

for designs that violate the plane stress assumption. Islands
3–8 evaluate fitness with a reduced number of df when com-
pared to the refined evaluation in islands 9–11. Therefore
we can expect discrepancies in the fitness values for islands
3–8 when reevaluating the designs with the most refined
three-dimensional finite element model. Figure 11 displays
the fitness of annular multi-material flywheels as a function
of time ~reevaluated at the highest level of accuracy with
the three-dimensional finite element model containing 13,250
df !. Figure 11 displays an expected response; islands 0–8

Fig. 10. “Raw” fitness of each island as a function of time. Islands 0–2 predict excessively optimistic fitness values for designs that
violate the plane stress evaluation while all other islands have realistic fitness values.

Fig. 11. Reevaluated fitness~with most accurate evaluation! of each island as a function of time. Islands 0–8 display “noise” that
develops from modeling complex structural response with less accurate evaluations.
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initially find good solutions but begin to find worse solu-
tions as time progresses. These solutions contain building
blocks that are used to help evolve islands at higher levels
of resolution through injection and therefore cannot be dis-
carded even though they have a low fitness when evaluated
with the most refined finite element model. We can expect,
but cannot discard what appears to be “noise” in the search.
Noise occurs when the iiGA cannot decipher the differ-
ences between solutions that do or do not violate an assump-
tion of the fitness evaluation~for example a plane stress finite
element evaluation!. If a high fitness is associated with so-
lutions that violate the fitness evaluation, we expect the iiGA
to sooner or later exploit the evaluation’s “Achilles heel” to
improve the existing solutions in the population. This noise
is typically more dominant near the end of a long run, where
the design space is less “exciting” and more sensitive to slight
variations in fitness because there is little more to gain in
the designer’s intended fitness definition. This effect can be
seen in islands 0–8 in Figure 11, where the iiGA instantly
finds good designs with the plane stress evaluation and then
the designs progressively worsen as time progresses, when
evaluated with most accurate finite element evaluation.

5.2. The constrained optimization problem

This section compares a constrained problem~with a huge
search space! using PGAs~with various topological struc-
tures!, iiGAs, and hybrid iiGAs. The constrained optimiza-
tion problem can be defined from numerical information
based on the best design’s maximum SED, angular velocity
and “air gap” growth from the unconstrained problem. There
is no guarantee of discovering the global unconstrained so-
lution with the hybrid iiGA, but rather the information gained
from the unconstrained optimization problem is understood
to be relative~possibly near global! and used as an estimate
on constraint parameters to define a more difficult optimi-
zation problem. Constraints were enforced by the penalty
method to ensure that designs not contained in the feasible

set were still considered~but penalized!. Alternatives to the
penalty method, such as repair of chromosomes violating
feasibility constraints, were not explored extensively, al-
though the local search operator described later might have
been used as part of such a scheme.

The constraint on maximum allowable angular velocity
was enforced through the penalty method. The maximum
values of SED, “air-gap” growth, and angular velocity from
the unconstrained problem were used to normalize the fit-
ness function. The fitness was defined by aggregating the
normalized objectives~maximize SED while minimizing air
gap growth! with the normalized constraint violation~max-
imum allowable angular velocity! in the following manner:

Fitnessnorm 5 C1

SED

SEDmax

2 C2

airgap

airgapmax

2 C3

v

vmax

~4!

C1, C2, andC3 are weighting coefficients and are given in
Table 3. The constraintC3 was set to zero when the angular
velocity of the design was below the maximum allowable
angular velocity~which was chosen to be 75% of the angu-
lar velocity found in the best solution of the unconstrained
problem!. Also, Eq.~4! slightly penalizes flywheels that have
large air gap growths. For this problem, it was not difficult
to determine appropriate weights for the various penalty
terms, although that is sometimes an issue for constrained
optimization problems.

Table 4 contains average~found over five independent
runs! fitness values with computation times for various GA
runs that include: a PGA with a topological “ring” structure
~Fig. 12a!, a PGA with a topological “matrix,” or “toroid”
structure~Fig. 12b, similar numbers connect the structured
migration! and some variations of the heuristic searches

Table 3. Weighting coefficient values

C1 C2 C3

250 40 20

Fig. 12. “Ring” and “Matrix” PGA topologies. All evaluations performed
by the highest level of finite element accuracy and resolution.

Table 4. Average fitness ( five independent runs) for various GA approaches

Ring PGA Matrix PGA iiGA~None! iiGA ~TA! iiGA ~Local! iiGA ~Local0None0TA!

Fitness~Average over 5 runs! 200.8 194.4 206.1 212.3 199.1 205.4
Time ~Days! 10 10 2 2 2 2
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found in the hybrid iiGA depicted in Figure 8. It would be
detrimental to maximize the angular velocity in some is-
lands while constraining the angular velocity in other is-
lands: the posed constrained problem based fitness on Eq.~1!
for all islands in the iiGA~Fig. 8!. All PGAs measured fit-
ness at the highest level of resolution~24 rings! with the
most refined three-dimensional finite element model. All
PGAs migrated the best solution every three generations and
used a 65% crossover rate with 1% mutation with the same
total number of individuals as the iiGA dispersed equally
amongst 12 islands.

Figure 13 compares the fitness as a function of time for a
typical island for the ring PGA, matrix PGA, iiGA, and var-
ious hybrid iiGAs. The PGAs display excessive computa-
tional effort when compared to all forms of the iiGA.

Figure 14 displays typical annular flywheels found by the
iiGA, all hybrid iiGAs, topological ring, and matrix PGAs.
All designs are in the feasible set~satisfied the constraints!.
All designs display an increase in thickness at the end of the
radius, which helps increase the mass moment of inertia in
the SED term@Eq. ~1!# for the normalized fitness definition
@Eq. ~4!# due to the constraint placed on angular velocity.

Fig. 13. Comparison of fitness as a function of time for typical single island for a “ring” PGA, “matrix” PGA, iiGA and various
hybrid iiGAs ran on a single processor. PGA displays excessive computational efforts when compared to all forms of the iiGA.

Fig. 14. Typical designs found by all GA techniques. All iiGA flywheel designs are of similar shape with some variations in material
placement. PGA and iiGA designed flywheels have noticeably different shapes near the inner radius.
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All iiGA designs are similar in shape but have slight vari-
ations in material placement. The PGA designs are not as
refined as the iiGA designs. The iiGA designs in Figure 13
have fitness values that are about 5% higher than the PGA
designs, but the PGA designs required excessive computa-
tional effort.

6. DISCUSSION AND CONCLUSION

The iiGA offers some new tools for approaching difficult
optimization problems. For many problems, the iiGA can
be used to break down a complex fitness function into sub-
fitness functions, which represent good aspects of the over-
all fitness. The iiGA can build solutions in a sequence of
increasingly refined representations, spatially or according
to some other metric. The iiGA can also use differing eval-
uation tools, even with the same representation. A simpli-
fied analysis tool can be used to quickly search for good
building blocks. This, in combination with searching at var-
ious levels of resolution, makes the iiGA efficient and ro-
bust. Mimicking a smart engineer, the iiGA can first quickly
evaluate the overall response of a structure with a coarse
representation of the design and finish the job off by slowly
increasing the levels of refinement until a finely tuned struc-
ture has been evolved. This approach allows the iiGA to
decrease computational time and increase robustness in com-
parison with a typical GA, or even a typical parallel GA.
This was demonstrated with the results for s simple prob-
lem with s known global optimum, in which all variants of
iiGA found the solution unerringly and rapidly, and all vari-
ants of the sGA with local search and threshold accepting
heuristics, and the parallel ring GA, never found the solu-
tion. Of course, finding the global optimum for a problem
with a reduced search space does not guarantee that the iiGA
will find the global optimum for more complex cases, but it
at least lends plausibility to the idea that the iiGA methods
are helpful in searching such spaces relatively efficiently
for near-optimal solutions. This was also demonstrated with
the considerably more difficult constrained optimization
problem where all topological versions of the PGA required
excessive computational effort when compared to all ver-
sions of the iiGA. In many engineering domains in which
each design evaluation may take many minutes~or hours!,
the availability of such a method, parallelizable with mini-
mal communication workload, could make good solutions
attainable for problems not previously addressable.
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