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Abstract

This paper presents an approach to optimal design of elastic flywheels using an Injection Island Genetic Algorithm
(iIGA), summarizing a sequence of results reported in earlier publications. An iiGA in combination with a structural
finite element code is used to search for shape variations and material placement to optimize the Specific Energy
Density (SED, rotational energy per unit weighif elastic flywheels while controlling the failure angular velocity.

iiGAs seek solutions simultaneously at different levels of refinement of the problem represefaatiocorrespond-

ingly different definitions of the fitness functigin separate subpopulatiofislandg. Solutions are sought first at low

levels of refinement with an axi-symmetric plane stress finite element code for high-speed exploration of the coarse
design space. Next, individuals are injected into populations with a higher level of resolution that use an axi-symmetric
three-dimensional finite element code to “fine-tune” the structures. A greatly simplified design(spataning two

million possible solutionswas enumerated for comparison with various approaches that include: simple GAs, thresh-
old accepting TA), iiGAs and hybrid iiGAs. For all approaches compared for this simplified problem, all variations of

the iiGA were found to be the most efficient. This paper will summarize results obtained studying a constrained opti-
mization problem with a huge design space approached with parallel GAs that had various topological structures and
several different types of iiGA, to compare efficiency. For this problem, all variations of the iiGA were found to be
extremely efficient in terms of computational time required to final solution of similar fitness when compared to the
parallel GAs.

Keywords: Optimization; Automated Design; Flywheel; Genetic Algorithm and FEM

1. INTRODUCTION The next step in the engineering of systems is the automa-
tion of optimization through computer simulation. If the de-

New optimization problems arise every day in engineeringsired performance factors for the system can be appropriately
practice. Sometimes such problems are easily solved, buaptured, then optimization over them is simply engineer-
many engineering problems cannot be handled satisfacténg on a grander scale.
rily using traditional optimization methods. Engineering in-  Shape optimization of flywheels for the maximization of
volves a wide class of problems and optimization techniquesspecific energy densit{SED) is an appealing thought that
Many engineering design approaches, such as “make-it-anthas received a fair amount of attention from researchers.
break-it,” are simply out of date, and have been replaced bfhe concept of a flywheel is as old as the axe grinder’s wheel,
computer simulations that exploit various mathematicalbut could well hold the key to tomorrow’s problems of ef-
methods such as the finite element method to avoid costlficient energy storage. A simple example of a flywheel is a
design iterations. However, even with high-speed superconsolid, flat rotating disk. The SED of a flat solid disk can be
puters, this design process can still be hindersome, produgacreased by varying the shape of the disk to redistribute
ing designs that evolve slowly over a long period of time.the inertial forces induced by rotation.

The flywheel is modeled as a series of concentric rings
(see Fig. 1. The thickness within each ring varies linearly

Reprint requests to: Erik D. Goodman, Genetic Algorithms Researchn the radial direction. A diverse set of material choices is
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Fig. 1. Visual display of flywheel.

symmetry about the transverse normal direction and abouiiGAs) are described. Two different finite element models
the axis of rotation is used to increase computationabf flywheels are also summarized. Next, results are pre-
efficiency. sented for a reduced design space that was enumerated to
For the flywheel problem treated here, the authors usallow comparison of the efficiency of various GAs and ii-
concurrentlya set of models of various levels of refine- GAs in finding a known global optimum. Next, an uncon-
ment, beginning with a simple axi-symmetric plane stressstrained flywheel optimization problem is defined, containing
finite element mode({with a “subfitness” functiop which  a huge number of possible designs. The flywheel optimiza-
quickly finds “building blocks” to inject into a series of ge- tion problem is then constrained and approached with a sim-
netic algorithms(GA) populations using several more re- ple GA, parallel GAs with various topological structures,
fined, axi-symmetric, three-dimensional finite elementiiGAs and hybrid iiGAs(Eby et al., 1999
models. The overall fitness function for the genetic algo-
rithm GALOPPS(Goodman, 1996is the SED of the fly-

wheel. which is defined as: 1.1. Optimization methods

Optimization approaches include hill climbing, stochastic
1lw? search, directed stochastic search, and hybrid methods. Hill-
@) climbing or gradient-based methods are single-point search

methods that have been applied successfully to many shape
wherew is the angular velocity of the flywhedtsubfit-  optimization problems, for examplSuzuki & Kikuchi,
ness” function, | is the mass moment of inertia defined by: 1990, 1991; Soto & Diaz, 1993However, these methods
are severely restricted in their application due to the likeli-
) hood of quickly converging to local extrem&angren
I= fvp-r dv, @ etal., 1990. Random search methods simply evaluate ran-
domly sampled designs in the search space, and are there-
andp is the density of the material. fore generally limited to problems that have small search
This paper begins with a brief literature review in the gen-spaces, if practical search times are required. A directed ran-
eral area of optimization methods as applied to flywheelsdom search method, such as a GA, is a multiple-point, di-
Simulated annealing, threshold accepting, and parallel geected stochastic search method that can be an effective
netic algorithms are reviewed, and Injection Island GAsoptimization approach to a broad class of problems. The use
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Fig. 2. Typical flywheel model.
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of GAs for optimal design requires that a large number ofness of a typical GA. Typically, a useful approximation to
possible designs be analyzed, even though this number getire overall response of most structures can be captured with
erally still represents only a minuscule fraction of the totala computationally efficient, simplified model, but often,
design space. When each evaluation is computationally inthese simplified models cannot capture all complex struc-
tensive, a traditional simple or parallel GA can thus be dif-tural behaviors. If the model does not accurately capture
ficult to apply. iiGAs, described below, can help reduce thethe appropriate physics of the problem, then the results of
computational intensity associated with typical GAs byany optimization technique will be aartifact of the sim-
searching at various levels of resolution within the searcliplified analysis, dooming the soluti¢s) to be incorrect.
space using multiple analyses that can vary in levels of comThis forces the designer to use a more refined model, which
plexity, accuracy, and computational efficiency. can be computationally demanding, sometimes leading to
Structural optimization via GAs is the main topic of this evaluation times too long to be practical for use in a GA
paper for other examples see Hajela and (1897), Mares  search. These obstacles are nearly always present in inter-
and Suracg1996), Chapman and Jakiel@d 996, Rajan  esting structural optimization problems. This paper will
(1995, Keang(1995, Nakaishi and Nakagifil996, Queipo  show how an efficient, simplified axi-symmetric plane stress
et al. (1994, Flynn and Shermar1995, and Furuya and finite element model, when used to evaluate fitness in an
Haftka (19995. Recently, GAs have been successfully ap-optimization problem, produces solutions that aréfacts
plied in the optimization of laminated composite materialsof the simplified analysis. The paper will also show that
(Kosigo et al., 1993; Le Riche and Haftka, 1993; Punch etal.an ordinary parallel GA using the refined axi-symmetric
1994, 1995; Todoroki et al., 1995The authors of this pa- three-dimensional finite element model requires exces-
per have used an iiGA in the design of laminated compositsively long search times, in comparison to an iiGA ap-
structuregGoodman et al., 1998and others have applied proach which employs both the axi-symmetric plane stress
the iiGAto other engineering problerffer example, Parmee and three-dimensional finite element models.
and Vekeria(1997)]. Others use different GA approaches An eventual goal of this effort is to develop tools for mul-
[see Le Riche and Haftkd 993, Todoroki et al.(1995)]. ticriterion optimization of large-scale, three-dimensional
Several authors have dealt with the application of GAs tocomposite structures, using an iiGA that searches at various
shape optimization problems. FabktP97) and Foster and levels of resolution and model realism. This technique in-
Dulikravich (1997) used GAs to find optimal shapes based corporates several simultaneous and interconnected searches,
on various polynomials, while Haslinger and Jedelsl896 including some that are fasté@yut often less accurateThis
use the concept of fictitious domains to generate new shapeapproach is constructed to spend less time evaluating poor
Wolfersdorf et al.(1997) reduced computational costs as- designs with computationally intensive fitness functitthss
sociated with generating meshes for finite element evaluais to be done with the efficient, less accurate evaluajions
tions by a point heat sink approach. Genta and Bas$9685 and to spend more time evaluating potentially good designs
modeled flywheels as a series of concentric rifsge Fig. 1~ with the computationally intensive fitness evaluation.
using a simple GA measuring fitness with a plane stress fi-
nite difference model. Although Genta and Bassani have al- : . .
. . ) 1.2. Simulated annealing and threshold accepting
ready performed optimization of flywheels using a simple
GA, this paper differs in many respects: Genta and Bassar8imulated annealingSA) methods begin with an initial
seededhe initial population with flywheels that varied lin- solution that is often generated randomly, and try to per-
early in thickness from the inner to outer radii, while this turb the solution to improve ifRuthenbar, 1989 If the
paper allows for ring thickness to mandomlychosen in  perturbation improves the value of the objective function,
the initial population; Genta and Bassani searched for shapélen it is accepted and the process of perturbing continues.
using only a simple GA, while this paper will present var- In this manner, SA methods are like iterative methods that
ious optimization approaches such as Threshold Acceptinglimb hills. As with hill-climbing methods, this process of
(TA), GAs, iiGAs, and hybrid techniques; Genta and Bas-earching just for a better solution tends to force the process
sani based fitness onsngle objectivan each run while toalocal optimum. However, SAmethods are differentin this
multiple fithesgdefinitions were usedoncurrentlyin each  respect: annealing occasionally allows perturbations that de-
iiGA run for this paper; Genta and Bassani measured fitcrease the value of the objective function to be accepted. This
ness only with glane stress evaluatiowhile the current allows SA methods to “climb out” of local optima to search
paper presents techniques tbanbcurrentlyusemultiple eval- ~ foraglobal optimum. Inreal physical systems, jumps to higher
uationsthat vary in levels of complexity, accuracy, and com- (“worse”) states of energy actually do occur. Probability of
putational efficiency. these jumpsisreflectedinthe currenttemperature. As the an-
Combining a GA with the finite element method is by nealing proces&ooling) continues, the probability that only
now a familiar approach in the optimization of structures,better solutions will be accepted increases. At the beginning
but using a GA with multiple evaluation tools and with of the annealing procedassociated with a high tempera-
different fitness functions is a new approach aimed at deture), the chance that a worse solution is accepted is greater,
creasing computational time while increasing the robustwhile later in the annealing proce a lower temperatuye
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the chance thataworse solutionis accepted is small. This prolpopulations requires that the user provide a function that
ability of accepting worse solutions is based on a Boltzmanmemaps migrants from the donor subpopulatiogsing one

distribution: representationinto the representation of the receiving sub-
population. An iiGA thus continually “injects” solutions
_AE (and hopefully, useful building blockfrom an inexpen-
Pr{Accepi=e ' (3  sive, low-resolution search into subpopulations searching

B velv | ing th Tighe simulati more accuratelyand expensively helping to focus their
y successively lowering the temperatutdhe simulation — go5.0h o promising regions. In such a case, migration from

of material comlngflfnto_eqlwln_)rlu:n at e:ch n?wly redl,ucedhigher resolution subpopulations to lower resolution ones
ter_lr_lggratur.e C?.rf]. ed ect|v_e y S'fmsiat_?hp yswga ba'llr)nea}lng. is not usually used, but is not barred, should it be desired.

IS & Simplied version o - The probability o ac |f the difference among subpopulations is in the types of
cepting a worse solution is governed by the Boltzmann dls'rnodels used, and not necessarily in model refinement or

tribution for SA applications and the TA algorithm, but the resolution, then “backward” diffusion or circular migra-

TA algorithm is not dependent upon a specified temperag may prove useful. Of course, subpopulations may sim-

ture. _'T‘Stead' the TA algorithm rate of coo_lmg 1S bas_ed on %Iy be using different models or fitness definitions of similar
specified percentage of the current solution fitn@dgec- levels of complexity, but allowing the exchange of mi-

tive functlo_n vaIuQ._Thls percentage_decregses over t-he S€rants to assist in more robust seafoh Pareto surfaces,
of generations. This causes the TA in earlier generations t r example
have a higher probability of accepting a worse solution, while The remapping of the representation of migrants be-

later generations in the process are less likely to accept fiveen subpopulations with different representations is most

worse solution. straightforward if the solution space of the donor subpopu-
lation is a subset of the solution space of the recipient
1.3. Parallel genetic algorithms subpopulation—then, the migrating individual may be as-
signed exactly the same structure in the recipient as it had
Two prObIemS associated with GAs are their need for manyn the donor Subpopu|ati0n. For many app“cationsy the mi-
fitness evaluations and their propensity to converge pregrant will then be assigned the same fitness in the receiving
maturely to suboptimal solutions. An approach that ameliosybpopulation as it had before migratiqgovided that the
rates both of these problems is a coarse-grain or islangness function yields the same value for an equivalent struc-
parallel GA(PGA), in which the population is divided into tyre in both representationsHowever, the migration can
subpopulations and recombination normally occurs onlyaiso be done by approximating the migrating individual’s
among individuals in the same subpopulation. This also prorepresentation with a “similar” one in the representation of
duces a more realistic model of nature than a single larggne receiving subpopulation. In that case, care must be taken
population. PGAs typically decrease processing time to ghat the “good” qualities of the migrant are not lost in this
given solution quality, even when executed on a single proremapping. The fact that the fitness of the migrant then
cessor, and better explore the search space. If they are exhanges during migration is also problematic in a mechan-
ecuted using parallel processors, an additional speédup jcal sense—it makes it harder to track real progress in the
wall clock timg nearly linear with processor number may search, for example.
be achieved. The injection occurs while all islands continue to search
Unlike some specialized sequential GAs, which may paysimultaneously, although it is also possible(tgholly or
a nontrivial computational cost for maintaining a structuredpartially) re-initialize or re-assign low-resolution islands once
population(demes, et¢.based on similarity comparisons they have converged. The parallel GA environment in which
(niching techniques, et;.PGAs operate essentially as in- the jiGA s run is based on the GALOPPS toolkit developed
dependent, smaller GA populations that are allowed to evolvgy Goodmar(1996. The software can be run on one or mul-
nearly independently. This allows each subpopulation to extiple PCs or workstation& single processor was used for
plore different parts of the search space, each maintaining| runs reported hejelslands with different levels of res-
its own high-fitness individuals and each controlling how g|ution evaluate fitness using either a simplified analysis
mixing occurs with other subpopulations, if at all, in the that is computationally cheaper or a refined, computation-
infrequentmigration operation. ally expensive analysigee Fig. 3. The GA parameters—
rates of crossover, mutation, migration, etc.—can all vary
from island to island. For example, an island can exploit a
simplified evaluation tool that is computationally cheap by
iiGAs represent our extension to the usual notion of paralincreasing the island’s population size. Also, islands using a
lel GAs (Lin, Punch, & Goodman, 1994An iiGA allows  computationally cheap evaluation function can be allowed
heterogeneity of problem representation mdobjective  to evaluate more generations before injecting their results
(fitness function definition among the various subpopula- into other islands. This will be demonstrated later in the
tions. Migration of individuals between heterogeneous subpaper.

1.4. Injection island GAs

https://doi.org/10.1017/50890060499135066 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060499135066

Optimal design of flywheels

[2

Low Resolution
Efficient Evaluation

Medium Resolution
Less Efficient Evaluation

High Resolution
Demanding Evaluation

331

Sub-Fitness 1

Sub-Fitness 2

Sub-Fitness 3

Overall Fitness

Fig. 3. An iiGA that searches with multiple fitness definitions at various levels of resolution with evaluations that vary in levels of

complexity, accuracy, and computational efficiency.

Many engineering problems require satisfying multiple
fitness criteria in some sort of weighted overall fithess func-
tion to find an optimal design, if not actually requiring mul-
ticriterion optimization. Each individual fithess measure may
have its own optimal or suboptimal solutions. In an iiGA, it
may be useful to use each individual criterion as the fithess
function for some subpopulations, allowing them to seek
“good” designs with respect to each individual criterion, as
potential building blocks for the more difficult weighted fit-
ness function, or as useful points for assessment of Pareto
optimality (see Fig. 3. However, this is not a sufficient con-
dition to guarantee effective search of the Pareto optimal

solutions.

An iiGAtakes advantage of the low communications band-
width required to migrate individuals from island to island.
Often, only the best individual in a population migrates to
allow “good” ideas(building blockg to be combined with
other “good” ideas to find “better” ideas amongst islands
using different “subfitness” functions. An iiGA using is-
lands of different resolutions has the following characteris-
tics relative to other PGA&vhich are often found to be an

advantage for real-world engineering problems

1. Building blocks of lower resolution can be directly
found by search at that resolution. After receiving lower
resolution solutions from its parent islafsl an is-
land of higher resolution can “fine-tune” these solu-
tions, but may also reject those inferior to better

solution regions already located.

problems. In iiGAs, the search space is usually fun-
damentally divided into hierarchical levels with well-
defined overlap(the search space of the parent is
contained in the search space of the child

5. In iiGAs, nodes with smaller block size can find the
solutions with higher resolution. Although Dynamic
Parameter EncodingDPE) (Schraudolph & Belew,
1991) and ARGOT(Schaefer, 1987also deal with the
resolution problem, using a zoom or inverse zoom op-
erator, they are different from iiGAs. First, they are
working at the phenotype level and only for real-
valued parameters. iiGAs typically divide the string
into small blocks regardless of the meaning of each
bit. Second, it is difficult to establish a well-founded,
general trigger criterion for zoom or inverse zoom op-
erators in PDE and ARGOT. Furthermore, the sam-
pling error can fool them into prematurely converging
on suboptimal regions. Unlike PDE and ARGOT, iiGAs
search different resolution levels in parallel and may
reduce the risk of zooming into the wrong target in-
terval, although there remains, of course, a risk that
search will prematurely converge on a suboptimal
region.

2. FINITE ELEMENT MODELS
OF FLYWHEELS

Two axi-symmetric finite element models were developed

2. The search space in islands with lower resolution ido predict planar and three-dimensional stresses that occur

proportionally smaller. This typically results in find-
ing “fit” solutions more quickly, which are injected

into higher resolution islands for refinement.

3. Islands connected in the hierarcliglands with a
parent—child relationshjpshare portions of the same

in flywheels composed of orthotropic materials undergoing
a constant angular velocity. Both finite element models were
developed applying the principle of minimum potential en-
ergy. The finite element model that assumes a plane stress
state is truly a one-dimensional finite element model, and is
accurate when the gradient of the flywheel thickness is small.

search space because the search space of the parenfig, finite element model that yields a three-dimensional
typically contained in the search space of the child.gyress state is truly a two-dimensional finite element model,
Fast search at low resolution by the parent can potensq is accurate for all shapes. An automated mesh generator

tially help the child find fitter individuals.

was written to allow for mesh refinement through the trans-

4. iiGAs embody a divide-and-conquer and partitioningverse normal and the radial directions. Therefore, the finite
strategy which has been successfully applied to manglement code that predicts three-dimensional stresses can
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have various levels of refinement. A coarse mesh with a smalbther search methods could be judged as to robustness and
number of degrees of freedom will be less accurate, but morefficiency.

efficient than a refined mesh that contains more degrees of The TA algorithm alone was the first optimizer explored,
freedom. The mesh was also generated to minimize the timand began its search with a randomly initiated design. All
required to solve the set of linear equations created by thhybrid algorithms that incorporated the TA algorithm were
finite element code. By first assuming an initial angular ve-initiated with the best individual of the current generation,
locity, the stresses and strains were calculated. Next, the inperforming at most 10 TA operations, with the resulting so-
tial angular velocity was scaled to the maximum failure lution always replacing the worst in the population. Toe
angular velocity. The maximum stress failure criterion wascal searchmethod took the best individual of each generation
used to predict the maximum failure angular velocity in theand varied the thickness profile of whichever ring the FEA
analysis of isotropic flywheels, while the maximum strain code found to fail first. The inner and outer thicknesses were
criterion was used for composite flywheels. increased and decreased independently, so a total of four
evaluations occurred. When incorporating the local search
method in any algorithm, the worst solution in the popula-
tion was replaced only when a better solution was found by
the local search. All multipoint search methods used the same
To explore how effective the iiGA search is in finding the total population size, 2200 individuals. Typically, for larger,
global optimum for this sort of problem, and to comparecomputationally expensive problems, each island would be
the speed of finding it using iiGAs with various enhance-located on a separate processor, but for this problem, only a
ments, a simplified flywheel problem was posed. A solidsingle Sun Sparc Ultra workstation was used.

isotropic flywheel that contains six concentric ring<., The motivation for the particular iiGA topology used here
seven heightswith eight possible values for each height requires some explanation. The search space for the plane
(see Fig. 9b created a design space of 8r about two  stress finite element model evaluation contains good build-
million possible designs. Using a coar@62 DOBP, axi- ing blocks for the iiGA. Also, the plane stress evaluation
symmetric finite element model, it was possible to calcu-(0.001 s per evaluations up to 1000 times faster than the
late the fitness based on the SEEq. (1)] of all of these  most refined three-dimensional evaluation of stémsthis
designs, in about 50 h on a SPARC Ultra processor. Witranalysig. To make the iiGA search less computationally in-
the global optimum design known from exhaustive searchtensive and more robust, the iiGA shown in Figure 4a was

3. GLOBAL OPTIMUM FOR A SIMPLIFIED
FLYWHEEL

Low Resolution
(3 Rings, Low Accuracy)

Lt

High Resolution
(6 Rings, Medium Accuracy)

@
(-
o

High Resolution

(6 Rings, Highest Accuracy) ‘ \o
b. Typical coarse flywheel
T 1 ’I\ design (6 rings).
(TA None Local )
a. Simplified iiGA topology.
@ O

Evaluation Tool: 3-DFEM 3-D FEM 3-D FEM Plane Stress FEM
(130 DOF) (430 DOF) (962 DOF) (7, 14 DOF)
Fitness Definition: SED SED SED Angular Velocity

Fig. 4. Simplified injection island GA topology with coarse flywheel representation.
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designed to exploit these facts. A full cycle in an iiGA con- Table 1. Comparison of optimization approaches
sists of evaluating a specified number of generatigrsch
varies from island to islandn each island. Genetic opera- Average Time

tions can also be varied from island to island. Islands 0 to ':Sigﬁjﬁ)'gba'
0 . .
through 1 had a 75% rate of crossover, population size O(prtimization Technique (5 Rung
300, and completed 12 generations per cycle before migrat-
ing 3 individuals in accordance with Figure 4a. Islands 0™ o oA ’\"\le"er f]?””dd
. . - Imple ever roun

and'l mgasured fithness W|th plane stress finite eIemeqt COdéimple GA with local search Never found
basing fitness on the subfitness functi@ngular velocity  simpie G with TA Never found
alone. Islands 0 and 1 contained designs with 3 and 6 ringRing topology GA Never found
with 7 and 13 DOF, respectively. A high crossover rate wagiGA _ Always found, 768 s
chosen to motivate those particular islands to discover ne\)gygr!g !!22 W!:E 'To/sa' search Af""’ay? fougdé;f s

. . . . _y ra i wi ways founaq, S
designs. Alarge population size and high number of generHybrid iIGA with local search and TA Always found, 417 s

ations per cycle was used due to the computational effi-
ciency of the plane stress evaluation and to force the islands
to converge quickly to potentially productive regions of the
design space, presumably containing useful building blocks.
Islands 2 and 3 had a crossover rate of 70%, population sizgéethod, the simple GA, with and without TAand local search
of 200, and completed six generations per cycle before miheuristics, and the ring topology parallel GA, never found
grating three individuals, evaluating fitness with the three-the global optimum. Figure 5 displays the fitness as a func-
dimensional axi-symmetric finite element code basing fitnession of time of a typical run for a TA algorithm, simple GA
on SED(130 DOB. Islands 4 and 5 had a 65% crossoverand a simple GA that incorporated either a TA algorithm or
rate, population size of 200 and completed four generationg local search method. Elitism was used in all GA runs, so
before migrating individuals, measuring fitness with thesolutions are only plotted when better solutions are found,
three-dimensional axi-symmetric finite element code baswhich leads to the appearance of different run lengths.
ing fitness on SED430 DOR. Islands six through eight  Other hybrid iiGA topologies were tested that incorpo-
had a crossover rate of 60%, population size of 100, andated either TA or local search methods. Without the local
received migrated individuals every two generations, measearch or TA heuristics, the iiGA took an average of 768 s to
suring fitness with the three-dimensional axi-symmetric fi-find the global optimum. The hybrid iiGA that also used
nite element code basing fitness on S@B2 DOR. Islands  |ocal search found the global optimum in 71%average
six through eight had a lower population size and numbeivhile the iiGA that incorporated the TA found the global
of generations per cycle to explore the space more slowlgolution in 674 gaverage Figures 6 and 7 display the fit-
and to avoid a large number of costly evaluations. Islandgiess as a function of time for the iiG&ame topology as
six through eight should fine tune potentially good designsrFig. 43 and hybrid iiGA (Fig. 4a, TA/None/Local), re-
(building blocks received from the islands at a lower res- spectively. All figures that display fitness as a function
olution. Figure 4a also displays a hybrid iiGA design that
groups the islands according to the method by which they
perform their specialized heuristic seafdrany) at the end
of each generation. 10
Of course, many variations on these hybrid iiGA designs
can be custom tailored for specific problems. The authors
believe that the process is not very sensitive to the particu-
lar parametergsuch as genetic operator rates and number
of migrants chosen, and did not find it necessary to tune
the parameters—they were sepriori based on the intu-
itions described above. Of course, the number of generag
tions per cycle per island could increase overall run time ifs
this parameter is significantly increased in islands that mea-
sure fithess with a computationally expensive analysis. 06

[VR:]

G—OsGA
G—=H8sCGAand TA
+—+TA

¥— sGA and Local

ized Fitness

4. RESULTS OF GLOBAL OPTIMIZATION 08

STU DY 00 2000 4000 800.0 800.0 10000
Time (seconds)

Table 1 shows the results of the various me_thOdS- Each rugig. s. Fitness as a function of time on a single processor for a typical run
lasted 6000 s on the same processor. In five runs of eaadi a simple GA, GA with TA, and simple GA with local search method.
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10 * quickly climbs to a suboptimal solution. Figure 5 shows the
iiGA quickly finding “building blocks” at low levels of res-
b olution that are injected into islands of higher resolution.
' Figure 6 displays the hybrid iiGAFig. 4a, TA/None/
Local) benefiting from the combination of TA and local
é n.auf;s f’ ' oo Iland 1 1 search heuristics. Figures 5—7 only display the first 1000 s
% b w0 PED G because no better solutions were ever found thereafter.
Sl
2 LA pands 5. SEARCHING LARGER DESIGN SPACES
o Island @ USING iiGAs AND PGAs
0B q
In this section, a much harder flywheel optimization prob-
lem is defined in order to compare results from PGt
05> PR P v — oo have various topological structupesiGAs, and hybrid
Time (seconds) iiGAs. Two main changes were made to increase the prob-

Fig. 6. Fitness as a function of time on a single processor for a typicalIem difficulty: various ConStr"_’“ntS were added and a much
iiGA run. larger search space was defined.

Often it is desirable to have an upper bound on the max-
imum allowable angular velocity of the flywheel design
search space. Another goal would be to reduce “air gap”

of time are reevaluated with the most accurate threegrowth in annular flywheel¢displacement of the inner ra-
dimensional finite element mod&62 DOBP to ensure that dius due to forces induced from rotatjoi€onstraints on a

all solutions are compared with the same “measuring stickimaximum allowable angular velocity and air gap growth
(the plane stress analysis will predict an overly optimisticwill be developed by first considering the unconstrained ver-
fitness when compared to the more refined analydike  sion of the optimization problem with a hybrid iiGA.

iiGA alone found the global solution in 768averageg while A much larger search domain was created to increase the
the hybrid iiGA(Fig. 4a, TA/None/Local) found the glo-  problem difficulty. A 24-ring flywheel with 1024 heights
bal optimum in 417 gaverage The hybrid iiGA that used per thickness with 32 material choices created a huge de-
the TA algorithm and local search method evaluated lessign space. Table 2 lists all isotropic material properties, ma-
than 5% of the entire search space, taking less than 0.5% o&€rials 1-3 have their Young’s modulus, density and strength
the time needed to enumerate the entire search space, meacombined, representing 827) materials with materials
suring more than half of the evaluations with the plane stres4—8 representing the final five materials.

finite element model to find the global optimum. Examina-
tion of Figure 5, shows that the local search and the TA heln5 1. The unconstrained ontimization problem
the simple GA find better solutions. Also, the TA alone =™ P P
Because no previous numerical information was known about
typical ranges of angular velocities and air gap growth, the
unconstrained problem was first approached with a hybrid
iiGA basing overall fithess on SE[E(. (1)]. To make the
GA search less computationally intensive and more robust,

G—=oOlsland 0
E—-=8lsland 1

§ 08 é—>lsland 2 j Table 2. Material properties
T A—A|sland 3
3 V—V Island 4
2 ® Island 5 Young's Modulus ~ Density ~ Strength  Poisson’s
g F—Island & | ) 3 :
So7t +—+Island 7 Material (GPa (kg/m?) (MPa) Ratio
Z *— |sland 8
1* 10 1.5 100 0.25
os | | 2* 75 3.0 250 0.25
3* 200 9.0 400 0.25
4 140 1.5 1500 0.25
) ) ) ) 5 50 1.5 1600 0.25
500 200.0 4000 600.0 800.0 10000 6 15 1.5 250 0.25
Time (seconds) 7 45 1.5 150 0.25
8 3 1.5 85 0.25

Fig. 7. Fitness as a function of time on a single processor for a typical
hybrid iiGA that incorporated TA and Local search methods.
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Key: Evaluation Type  Fitness Definition
Low Resolution
(3 Rings) Q Plane Stress FEM  Angular Velocity
(7, 13, 25 DOF)
Medium Resolution
(6 Rings) 3-D FEM SED
(104 DOF)
High Resolution 3-D FEM SED
(12 Rings) (372 DOF)
3-D FEM SED
Higher Resolution (2,606 DOF)
(24 Rings)
3-D FEM SED
. (13,250 DOF)

Fig. 8. Hybrid injection island GA topology.

a hybrid iiGA, as shown in Figure 8, was designed. Islanddlocks from the simplified plane stress evaluation based on
that use similar special search heurisficgal, TA, ornong¢  angular velocity into two isolated islands that evolve inde-
are grouped together. Islands 0 through 2 evaluate fitnegsendently, searching separate spaces efficiently using the
based on angular velocity with a simplified plane stress fi-axi-symmetric three-dimensional finite element model to
nite element model with varying geometric resolutid@s  evaluate SED.

6, and 12 rings Islands 0 through 2 have 7, 13, and 25 Figure 9 displays the “best ever” annular composite fly-
computational degrees of freedom, respectively. Islands @heel at all the levels of geometric resolution for the un-
through 11 measure fitness based on SED using the threeenstrained optimization problem. Also, Figure 9 compares
dimensional axi-symmetric finite element model. Islands 3the three-dimensional to the plane stress axi-symmetric re-
and 4 are low in geometric resolutidB rings, but have sults. The plane stress results based on angular velocity are
104 degrees of freedom. Islands 5 and 6 are medium in ge@xaggerated shapes that aréfacts of the analysis. How-
metric resolutior(6 rings, containing 372 df. Islands 7 and ever, the plane stress results cannot be dismissed because
8 are high in geometric resolutiqd2 rings, having 2606

df. Islands 9 through 11 are the highest in geometric reso-
lution (24 ring9 with 13,250 df.

A full cycle consists of evaluating a specified number of
generationgwhich varies from island to islandn the in-
jection island topology. Islands 0 through 2 had a 75% rate
of crossover, population size of 300, and completed 12 gen-
erations per cycle before migrating the island’s best indi-
vidual in accordance with Figure 8. Islands 3 and 4 had a
crossover rate of 70%, population size of 200, and com-
pleted 8 generations per cycle before migrating the island’s
best individual. Islands 5 and 6 had a 65% crossover rate,
population size of 150 and completed 4 generations before
migrating the island’s best individual. Islands 7 and 8 had a
crossover rate of 60%, population size of 120 and the is-
land’s best individual after evaluating 4 generations. Is-
lands 9 through 11 had a crossover rate of 60%, population
size of 86 and received migrated individuals every 3 gen-
erations. Islands 0 through 2 converge much faster to “good” 3-D FEM Plane Stress FEM
building blocks when compared to the rest of the islands

due to the simplificati fth I t luati FFig. 9. Best flywheel discovered at each level of resolution with a com-
ue to the simplification o € plane stress evaluation anq)arison of three-dimensional and plane stress solutions. The plane stress

th? level of resolution. The iiGA topology in Figure 8 USES solutions are exaggerated variations of the three-dimensional counter-
this as an advantage because the topology injects buildingprts.
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500

40.0
G—=< Island O
F—1 Island 1 1
s |SlAN 2
SA—A Island 3 7
i Island 4

Island 5
Island 8
< Island 7
« Island &
- |gland 9
— ¢ |sland 10
=~ |gland 11

300

Fitness

200

10.0

UU 1 1 i 1 1
s s ] 30000.0 60000 .0 0000.0 120000.0 150000.0

Time (seconds)

Fig. 10. “Raw” fitness of each island as a function of time. Islands 0—2 predict excessively optimistic fitness values for designs that
violate the plane stress evaluation while all other islands have realistic fithess values.

they are the building blocks that helped rapidly form thefor designs that violate the plane stress assumption. Islands
final “finely tuned” flywheels. 3-8 evaluate fitness with a reduced number of df when com-
Figure 10 displays the “raw” fitness of each island as apared to the refined evaluation in islands 9-11. Therefore
function of time for the unconstrained problem. The rawwe can expect discrepancies in the fithess values for islands
fitness is the actual SED measured by each island’s specifis—8 when reevaluating the designs with the most refined
finite element evaluation. Islands 0—2 measure raw fithesghree-dimensional finite element model. Figure 11 displays
with an approximate, but efficient evaluation based on anthe fitness of annular multi-material flywheels as a function
gular velocity. The plane stress evaluation predicts fitnessf time (reevaluated at the highest level of accuracy with
accurately for flywheels that have small gradients in ringthe three-dimensional finite element model containing 13,250
thickness, but predicts excessively optimistic fithess valuesif). Figure 11 displays an expected response; islands 0—8

o—=island 0
F—&1 Island 1
& < Island 2
Py Island 3
el |s5land 4
fe—i2 |5land B
- Island 8
3 : Island 7
Island &
: Island 8
P 2 |sland 10
= gland 11

Fitness

)] 1 1 i
oo 30000.0 B80000.0 80000.0 1200000 1500000
Time (seconds)

Fig. 11. Reevaluated fitnes@vith most accurate evaluatipof each island as a function of time. Islands 0—8 display “noise” that
develops from modeling complex structural response with less accurate evaluations.
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Table 3. Weighting coefficient values .\‘ )
.,0" o, 1 -
G, G, Cs ‘

2 2
250 40 20
3 3
;K’ " 4 « 4
a. “Ring” PGA topology. b. “Matrix” PGA topology.

initially find good solutions but begin to find worse solu- Fig 12 “Ring” and “Matrix’ PGA topologies. Al evaluations performed
tions as time progresses. These solutions contain buildingy the highest level of finite element accuracy and resolution.

blocks that are used to help evolve islands at higher levels

of resolution through injection and therefore cannot be dis-

carded even though they have a low fithess when evaluated

with the most refined finite element model. We can expectset were still consideredut penalizedl Alternatives to the

but cannot discard what appears to be “noise” in the searclpenalty method, such as repair of chromosomes violating
Noise occurs when the iiGA cannot decipher the differ-feasibility constraints, were not explored extensively, al-
ences between solutions that do or do not violate an assumghough the local search operator described later might have
tion of the fithess evaluatioffior example a plane stress finite been used as part of such a scheme.

element evaluationIf a high fitness is associated with so-  The constraint on maximum allowable angular velocity
lutions that violate the fitness evaluation, we expect the iiGAwas enforced through the penalty method. The maximum
to sooner or later exploit the evaluation’s “Achilles heel” to values of SED, “air-gap” growth, and angular velocity from
improve the existing solutions in the population. This noisethe unconstrained problem were used to normalize the fit-
is typically more dominant near the end of a long run, whereness function. The fitness was defined by aggregating the
the design space is less “exciting” and more sensitive to slightormalized objectiveénaximize SED while minimizing air
variations in fitness because there is little more to gain ingap growth with the normalized constraint violatidmax-

the designer’s intended fitness definition. This effect can bémum allowable angular velociiyn the following manner:
seen in islands 0—8 in Figure 11, where the iiGA instantly

finds good designs with the plane stress evaluationand then SED airgap ®

the designs progressively worsen as time progresses, when Fitn€ssom = Cy SEDy.,
evaluated with most accurate finite element evaluation. >

2 - 3
alrgapnax Wmax

(4)

C,, C,, andC; are weighting coefficients and are given in
Table 3. The constrair@; was set to zero when the angular
velocity of the design was below the maximum allowable
This section compares a constrained problanth a huge  angular velocitywhich was chosen to be 75% of the angu-
search spageausing PGAs(with various topological struc- lar velocity found in the best solution of the unconstrained
ture9, iiGAs, and hybrid iiGAs. The constrained optimiza- problen). Also, Eq.(4) slightly penalizes flywheels that have
tion problem can be defined from numerical information large air gap growths. For this problem, it was not difficult
based on the best design’s maximum SED, angular velocitio determine appropriate weights for the various penalty
and “air gap” growth from the unconstrained problem. Thereterms, although that is sometimes an issue for constrained
is no guarantee of discovering the global unconstrained smptimization problems.

lution with the hybrid iiGA, but rather the information gained  Table 4 contains averagéound over five independent
from the unconstrained optimization problem is understooduns fitness values with computation times for various GA
to be relativeg possibly near globaknd used as an estimate runs that include: a PGA with a topological “ring” structure
on constraint parameters to define a more difficult optimi-(Fig. 128, a PGA with a topological “matrix,” or “toroid”
zation problem. Constraints were enforced by the penaltgtructure(Fig. 12b, similar numbers connect the structured
method to ensure that designs not contained in the feasiblmigration and some variations of the heuristic searches

5.2. The constrained optimization problem

Table 4. Average fitness (five independent runs) for various GA approaches

Ring PGA Matrix PGA iiGA(None iiIGA (TA) iiGA (Local) iiGA (Local/None/TA)
Fitness(Average over 5 runs 200.8 194.4 206.1 212.3 199.1 205.4
Time (Days 10 10 2 2 2 2
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2 B0E+02
2.00E+02
180802 |}
m ——RING PGA
% -z Matrix PGA
y ooeeo2 {f e

-+ Hybrid iIGA (local/none/TA}
—- Hybrid iiGA (TA)
-~z Hybrid iIGA (local)

5.00E+01

a 1 2 2 4 5 B8 7 2 a 1c
Tima (Days)

Fig. 13. Comparison of fitness as a function of time for typical single island for a “ring” PGA, “matrix” PGA, iiGA and various
hybrid iiGAs ran on a single processor. PGA displays excessive computational efforts when compared to all forms of the iiGA.

found in the hybrid iiGA depicted in Figure 8. It would be  Figure 13 compares the fitness as a function of time for a
detrimental to maximize the angular velocity in some is-typical island for the ring PGA, matrix PGA, iiGA, and var-
lands while constraining the angular velocity in other is-ious hybrid iiGAs. The PGAs display excessive computa-
lands: the posed constrained problem based fitness diEq. tional effort when compared to all forms of the iiGA.

for all islands in the iiIGA(Fig. 8). All PGAs measured fit- Figure 14 displays typical annular flywheels found by the
ness at the highest level of resoluti®4 ringg with the  iiGA, all hybrid iiGAs, topological ring, and matrix PGAs.
most refined three-dimensional finite element model. All All designs are in the feasible Seatisfied the constraints
PGAs migrated the best solution every three generations arll designs display an increase in thickness at the end of the
used a 65% crossover rate with 1% mutation with the sameadius, which helps increase the mass moment of inertia in
total number of individuals as the iiGA dispersed equallythe SED termfEq. (1)] for the normalized fitness definition
amongst 12 islands. [Eg. (4)] due to the constraint placed on angular velocity.

Hybrid iiGA (local/none/TA) design, Hybrid iiGA (local) design, Hybrid iiGA (TA) design

1iGA design “Ring” PGA design “Matrix” PGA design

Fig. 14. Typical designs found by all GA techniques. All iiGA flywheel designs are of similar shape with some variations in material
placement. PGA and iiGA designed flywheels have noticeably different shapes near the inner radius.
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All iiGA designs are similar in shape but have slight vari- Flynn, R., & Sherman, R1995. Multi-criteria optimization of aircraft
ations in material placement. The PGA designs are not as p"’l‘lnes'S: Deltgrgg?inggg‘gab'e genetic algorithm configurations.J. In-
. . - . . L tell. Syst, 10, 987-999.
refined as the iiGA designs. The iiGA designs in Figure 13qster, N., & Dulikravich, G(1997. Three-dimensional aerodynamic shape
have fitness values that are about 5% higher than the PGA Optifmizat::)n using genetic and gradient search algorithin&pace-
; ; ; ; craft Rockets 3436—-42.
quIQnS' but the PGA designs required excessive Compunl’guruya, H., & Haftka, R(1995. Placing actuators on space structures by
tional effort. genetic algorithms and effective indic&truc. Optimization 9%69-75.
Genta, G., & Bassani, 01995. Use of genetic algorithms for the design
of rotors.Meccanica 30707-717.
6. DISCUSSION AND CONCLUSION Goodman, E(1996. GALOPPS, The genetic algorithm optimized for por-
. . . tability and parallelism system, user’s guidechnical Report #960801,
The iiGA offers some new tools for approaching difficult  Genetic Algorithms Research and Applications Grd@ARAGe),

optimization problems. For many problems, the iiGA can _ Michigan State University, East Lansing, MI.

. PR Goodman, E., Averill, R., Punch, W., & Eby, 1998. Parallel genetic
be used to break down a complex fitness function into sub algorithms in the optimization of composite structuresSkift Com-

fitness functions, which represent good aspects of the over- puting in Engineering Design and Manufacturiighawdry, P.K., etal.,
all fitness. The iiGA can build solutions in a sequence of Eds), pp. 199-208. Springer Verlag, Berlin.

. . . . . . Hajela P., & Lee, E(1997). Topological optimization of rotorcraft sub-
mcreasmgly refined representations, spatlally or accordlné" floor structures for crashworthiness consideratidbemput. Struct.

to some other metric. The iiGA can also use differing eval- 64, 65-76.
uation tools, even with the same representation. A simpliHaslinger, J., & Jedelsky, 21996. Genetic algorithms and fictitious do-

fied analysis tool can be used to quickly search for good 2mainzbgtsed approaches in shape optimizatruct. Optimizationl2,
57-264.

building blocks. This, in combination with searching at var- Keane, A.(1995. Passive vibration control via unusual geometries: The
ious levels of resolution, makes the iiGA efficient and ro-  application of genetic algorithm optimization to structural design.

L . .. . . Sound Vibration 185441-453.
bust. Mimicking a smart engineer, the iiGA can first quickly Kosigo, N., Watson, L., Gurdal, Z., & Haftka, R1993. Genetic algo-

evaluate the overall response of a structure with a coarse rithms with local improvement for composite laminate desigtiuc-
representation of the design and finish the job off by slowly ture & Controls Optimization, ASME 38.3-28.

. . - . - _Le Riche, T., & Haftka, R(1993. Optimization of laminate stacking se-
increasing the levels of refinement until a finely tuned struc quence for buckling load maximization by genetic algoritAiAA Jour-

ture has been evolved. This approach allows the iiGA t0 nal 31, 951-956.
decrease computational time and increase robustness in col?, S.-C., Punch, W., & Goodman, £1994. Coarse-grain parallel ge-

; ; ; ; netic algorithms: Categorization and new approdtioc. Sixth IEEE
parison with a typical GA, or even a typical parallel GA. -t 52 Hiiel and Distributed Procesg8-37.

This was demonstrated with the results for s simple probmares, C., & Surace, G1996. An application of genetic algorithms to
lem with s known global optimum, in which all variants of identify damage in elastic structurels Sound Vibration 195195-215.

.. . . . : Nakaishi, Y., & Nakagiri, S(1996. Optimization of frame topology using
iIGA found the solution unerringly and rapidly, and all vari boundary cycle and genetic algorithdSME Int. J, 39, 279-285.

ants of the sGA with local search and threshold acceptingarmee, 1., & Vekeria, H1997. Co-operative evolutionary strategies for
heuristics, and the parallel ring GA, never found the solu- single component desigieroc., Seventh Int. Conf. Genetic Algo-

. AT . rithms, pp. 529-536, Morgan Kaufmann, San Francisco, California.
tion. Of course, finding the global optimum for a problem Punch, W., Averill, R., Goodman, E., Lin, S.-C., & Ding, 1995, De-

with a reduced search space does not guarantee that the iiGA sign using genetic algorithms—Some results for laminated composite
will find the global optimum for more complex cases, butit  structureslEEE Expert 1042-49.

o are . - Punch, W, Averill, R., Goodman, E., Lin, S.-C., Ding, Y., & Yip,(£994.
at least lends plausibility to the idea that the iiGA methods Optimal design of laminated composite structures using coarse-grain

are helpful in searching such spaces relatively efficiently parallel genetic algorithm&€omput. Sys. Engs, 414—423.
for near-optimal solutions. This was also demonstrated witiueipo, N., Devarakonda, R., & Humphrey(1994. Genetic algorithms

. . - P . for thermosciences research: Application to the optimized cooling of
the considerably more difficult constrained optimization . i onic componentsat. J. Heat Mass Transf37, 893—908.

problem where all topological versions of the PGA requiredrajan, S(1995. Sizing, shape and topology design optimization of trusses
excessive computational effort when compared to all ver- using genetic algorithms. Struct. Eng.121, 1480-1487.

. .. . . s . 1 Ruthenbar, R(1989. Simulated annealing algorithms: An overviewEE
sions of the iiGA. In many engineering domains in which ™=, "o - Co 2 icas Magazine 59—26.

each design evaluation may take many mintgshours,  sangren, E., Jensen, E., & Welton(1990. Topological design of struc-
the availability of such a method, parallelizable with mini-  tural components using genetic optimization meth&gmisitivity Analy-

: : . sis Optimization with Numerical Methl15 31-43.
mal communication workload, could make gOOd SOIUtlonsSchaefer, C(1987). The ARGOT strategy: Adaptive representation ge-

attainable for problems not previously addressable. netic optimized techniquéroc. Second Int. Conf. Genetic Algorithms
and their Applications (Grefenstette, J., Ed.pp. 50-58. Lawrence
Erlbaum Assoc., Cambridge, Massachusetts.
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