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Granular column collapse involves complicated granular flow bridging initial and final
solid-like states, with intermediate multi-regime spatial and temporal flow patterns and
transitions, which include large free-surface variation. In this study, a non-local mesh-free
numerical method is proposed to model these flows and capture the entire process from
flowing to arresting. Free surface evolution is tracked by the mesh-free method while
the non-local theory of peridynamics is used to capture the arresting for the flow. The
constitutive relation to calculate the effective viscosity and stress is based on the μ(I)
rheology. The non-local mesh-free method is validated to simulate a granular column
collapse in which effects from the peridynamic horizon and particle distance are both
examined. Non-local modelling is then used to simulate more types of granular column
collapses, by comparison with other numerical results and experimental observations in
terms of the free surface and velocity variations in both the fluid-like and solid-like states.
The collision between two adjacent collapsing granular columns is also simulated, and
the interface variations between material from each collapsing column are compared with
experimental observations. The non-local modelling is shown to reflect the internal flow
characteristics in the granular flow. Throughout these simulations, the non-local mesh-free
method is able to calculate the free surface, velocity and interface variation in the granular
flows.

Key words: granular media, computational methods, particle/fluid flow

1. Introduction

The movement of dry cohesionless granular material is an emerging issue that occurs
in various applicable fields, such as landslide analysis in geotechnical engineering
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and powder blending in the pharmaceutical industry. The behaviour of the material
is complicated by the transition between the solid-like and fluid-like states. In some
configurations, the fluid-like and solid-like regions can co-exist, such as granular column
collapse which is a typical granular flow phenomenon in this research area.

To study granular column collapse, the granular material is initially confined by plates
which are removed rapidly to trigger the flow. In the granular flow, there are two
distinguishable regions, the quasi-static region in the centre surrounded by the flowing
region. When the flow is in the dense regime, inertia and deformation can both contribute
to the behaviours of the material. With energy being dissipated throughout the motion, the
granular material transitions from the fluid-like to solid-like state. The flow characteristics
in granular column collapse have been extensively studied experimentally. Lube et al.
(2004, 2005) conducted experiments on the axisymmetric granular column collapse by
using different materials such as sand, salt, couscous, sugar and rice. They found that three
flow patterns can be distinguished by different aspect ratios, and a piecewise relationship
between the aspect ratio and runout distance is obtained. Lajeunesse, Mangeney-Castelnau
& Vilotte (2004) studied the spreading of glass beads over a horizontal plane by varying
the initial aspect ratio, property of the underlying substrate and diameter of the granular
material. Their research demonstrated that the deposit morphology is mainly affected by
the initial aspect ratio regardless of substrate properties and size of the glass beads. They
further investigated the granular column collapse caused by glass beads on a horizontal
surface in the rectangular channel and semicircular tube, with a focus on the internal
flow structure. Their study indicated that the velocity is in a linear relationship with the
depth of the flowing layer and exponentially decreases with depth in the quasi-static layer
(Lajeunesse, Monnier & Homsy 2005). Siavoshi & Kudrolli (2005) investigated the failure
of a granular step composed of steel beads and found that the final shape of the surface
is almost linear regardless of the grain size. Balmforth & Kerswell (2005) conducted an
experimental investigation for the granular column collapse inside rectangular channels
with different widths. In their study, the final height and runout distance of the deposit
were related to the initial aspect ratio but described with different power laws for different
widths of the channel. Lube et al. (2007) conducted experiments of granular column
collapse in a wide rectangular channel to study the variation of the interface between static
and flowing regions, and found that interface variation is a function of the initial aspect
ratio.

Granular column collapse can be modelled by the discrete element method (DEM), in
which the grains are treated as solid elements with translational and angular movements.
Staron & Hinch (2005) employed the two-dimensional (2-D) contact dynamics method
to simulate the granular column collapse, in which the power law between the aspect
ratio and runout distance is reproduced. Girolami et al. (2012) used DEM to simulate
the three-dimensional (3-D) granular column collapse with different aspect ratios along a
rough horizontal surface. In their simulations, the flow characteristics, which include the
runout distance, temporal flow evolution, deposit morphology and internal flow structure,
were quantitatively reproduced.

However, DEM handles each grain individually resulting in a high computational cost.
In contrast, the granular flow can be modelled at the continuum level by using a continuum
approach, in which each computational element can contain several physical grains. Thus,
computational efficiency can be improved, especially for large-scale simulations. In the
continuum approach, the method of computational fluid dynamics can be employed to
calculate the granular flow. Crosta, Imposimato & Roddeman (2009) simulated the 2-D
granular column collapse over the erodible and non-erodible surface by using the finite
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2D continuum modelling granular column collapse

element method (FEM) with the Mohr–Coulomb yield rule and non-associate flow rule.
Their numerical study reproduced the final deposit profiles for collapse with various aspect
ratios. Lacaze & Kerswell (2009) modelled the 3-D cylinder granular column collapse
for the first time by using the μ(I) rheology, in which the flow regimes and scaling laws for
the final deposit are reproduced. The granular column collapse was simulated to validate
the μ(I) rheology by solving the 2-D Navier–Stokes equations through the finite volume
method (FVM) with the volume of fluid (VOF) tracking the free surface (Lagrée, Staron
& Popinet 2011).

The method of FEM or FVM requires generating meshes in the entire computational
domain, in which the quality of the meshes can directly affect the accuracy of the
numerical results. Moreover, the free surface in granular column collapse is difficult to
replicate using these mesh-based methods and extra numerical techniques, such as VOF,
need to be implemented to calculate the free surface (Lagrée et al. 2011). In contrast, the
Lagrangian or coupled Eulerian–Lagrangian method can easily identify the free surface
without additional numerical techniques. Mast et al. (2015) analysed the 2-D sand column
collapse by using the material point method (MPM) with the Matsuoka–Nakai constitutive
model, in which the net deformation, stress and base contact/reaction forces are examined.
Peng et al. (2016) coupled the hypoplastic model and Bagnold-type relation into the
mesh-free method of smoothed particle hydrodynamics (SPH) to account for the frictional
contact and collision, which was validated by simulating the collapse of a granular pile.

In these simulations, the rheology is required to calculate the varied viscosity and
stress in the flow when treating the material as a non-Newtonian fluid. The μ(I)
rheology is developed by summarizing a series of experimental measurements in various
configurations. It can reflect two time scales for the granular flow in the intermediate
dense regime as the inertial and deformation time scales (MiDi 2004; Jop, Forterre
& Pouliquen 2006). The rheology has also been coupled into the mesh-free method
to model granular column collapse. The granular-column-collapse problem as a flow
configuration is simulated by incorporating the μ(I) rheology into MPM and the
power-law scaling for the runout distance is recovered (Dunatunga & Kamrin 2015).
Franci & Cremonesi (2019) modelled the 3-D granular column collapse with a regularized
μ(I) rheology in the particle finite element method (PFEM). Their numerical results
showed a good agreement with experimental measurements along with the results from
other numerical methods. Minatti & Paris (2015) developed an SPH-based model with
the μ(I) rheology, which was validated by modelling the granular column collapse.
Xu & Jin (2016b) proposed a mesh-free method by incorporating the μ(I) rheology into
the weakly-compressible moving particle semi-implicit method (WC-MPS) to simulate
the granular column collapse. They also compared the free-surface profile and velocity
distributions with the experimental observations and provided an in-depth discussion on
the stress distribution in the flow (Xu et al. 2017). The intermediate dense regime in the
collapse could be reflected in their simulations. Their model was then used to simulate the
collision of two adjacent collapsing granular columns, by comparison with experimental
results in terms of free surface and velocity distribution. They also analysed the energy
variation in the granular flow (Xu, Jin & Tai 2019). Their method was shown to simulate
the granular flow on an inclined plate by Rufai, Jin & Tai (2019).

However, the μ(I) rheology is a local model in which the stress is merely determined by
the local shear deformation. Although it can describe flow behaviours in the intermediate
dense regime, it is difficult to reflect the phase transition from the fluid-like to solid-like
state. In the solid-like state, inertia becomes weaker, and the formation of intra-networks
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among grains increases. This involves intermittent flow and hysteretic phenomenon, and
the μ(I) rheology is difficult to reflect the solid-like state in the granular flow (Jop et al.
2006). By using the μ(I) rheology in MPM, Dunatunga & Kamrin (2015) observed that it
can take a long time for the material at the free surface to stop in the true continuum limit.
In their simulation, a thin slow-moving layer of particles occurred at the free surface even
when the displacement appeared to be small. Pouliquen & Forterre (2009) also pointed
out that the μ(I) rheology is not sufficiently capable of capturing flow properties when the
material is quasi-static. In the simulations by the mesh-free method of WC-MPS (Xu &
Jin 2016; Xu et al. 2019), there are obvious discrepancies for the free surface comparison
in the final stage when the flow becomes quasi-static. The simulated free surface profiles
were demonstrated to be much flatter owing to the non-negligible unphysical motion for
the flow in the solid-like state.

Modelling the entire granular flow process from the fluid-like to solid-like state is
a challenge while developing a constitutive law to handle phase transition in granular
flow is still ongoing. Peridynamics is a non-local theory in solid mechanics, in which
the long-range force and force exchange are adopted to model the interaction between
continuous bodies and discrete grains (Silling & Askari 2005; Silling et al. 2007). It has
been widely used to simulate crack initiation and propagation as a non-local modelling
technique, such as dynamic crack growth around a still inclusion (Agwai, Guven &
Madenci 2011), rupture phenomena in bio-membranes (Taylor et al. 2016) and failure
in a Brazilian disk (Gu & Wu 2016). Peridynamics has been incorporated into the MPS
method to calculate the dam-break flow (Wang & Zhang 2018). Ren et al. (2015) coupled
peridynamics into SPH to simulate soil fragmentation by buried explosions. They found
that the coupled model can simulate the complex fragmentation process of soil. Bessa et al.
(2014) established a link between peridynamics and the moving least-squares reproducing
kernel particle method (RKPM).

In the granular flow, when the material is in the solid-like state, the stress not only
depends on the local shear rate but also the stress of the neighbouring grains in the distance
to the surface and bottom (Staron et al. 2010). Shear motion in the material can trigger
shear motion at different locations by stress fluctuation. To address this, Pouliquen &
Forterre (2009) proposed a constitutive equation in the integral form over the entire flow.
Peridynamics is regarded as a non-local simulation method which solves the integrated
equation of motion in the peridynamic horizon. In the method, the force state is used
by considering all the bonds between the local element and the neighbouring elements.
Thus, the force used in peridynamics is a long-range force that can affect the force of
other elements in the entire flow by the force exchange layer by layer. In this manner, the
interaction between grains in the stress calculation can be reflected by peridynamics.

This study aims to incorporate the non-local theory of peridynamics into the mesh-free
method WC-MPS with a detailed examination of its ability to calculate the entire process
in granular column collapse from the fluid-like to the solid-like state. The free surface
can be automatically tracked by the mesh-free method (Koshizuka, Nobe & Oka 1998;
Shakibaeinia & Jin 2010). The pressure field is determined by an equation of state based
on the particle number density (Shakibaeinia & Jin 2010; Xu & Jin 2016a). The μ(I)
rheology is applied to calculate the effective viscosity and stress in the granular flow. In the
simulations, the free surface evolution in the granular column collapse is compared with
the experimental observations, with the focus on the free surface and velocity variations
in the solid-like state. The simulation is also compared with the previous local modelling
without incorporation of peridynamics (Xu et al. 2017; Xu et al. 2019). This illustrates that
peridynamics in the mesh-free method can reproduce the free surface and internal motion

917 A51-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

32
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.320


2D continuum modelling granular column collapse

in both the fluid-like and solid-like states in the granular flow. The collision of two adjacent
collapsing columns is then modelled, in which the interface between materials from each
collapsing column can be identified owing to the Lagrangian nature of the method. This
validates the incorporation of peridynamics in the mesh-free method to reflect the internal
flow characteristics in the flow. The plane Couette granular flow in the presence of gravity
is further modelled by the non-local mesh-free method to examine the velocity distribution
in the sheared granular flow.

The study is organized as follows. Section 2 presents the governing equations and
mesh-free discretization. In § 3, the peridynamic theory with the constitutive law for
the granular flow is introduced. Section 4 examines the peridynamic horizon and
particle distance effect by simulating a granular column collapse. Numerical examples of
granular column collapse and collision of two adjacent collapsing columns are illustrated
respectively in §§ 5 and 6 with comparison of the numerical results with those from
experimental measurements, local modelling and FEM modelling. Finally, in § 7 we
present the conclusions by incorporating peridynamics in the mesh-free method to
simulate the granular flows.

2. Governing equations and mesh-free discretization

This section presents the governing equations in the Lagrangian framework and the
mesh-free discretization. We use the term ‘particle or Lagrangian particle’ to represent the
discretized material point or the computational element in the mesh-free method, indexed
by i and j. The physical particles are termed as ‘grain’ to represent the individual granular
material. The vector and tensor are denoted in bold while the scalar in italic.

2.1. The governing equations
The granular material is treated as the bulk fluid with the bulk density defined asρ =ϕρs,
whereϕ is the volume fraction and ρs is the density of the grains. In granular column
collapse, the volume fraction has a small variation in the range 0.59–0.65 (Lajeunesse et al.
2004; Lajeunesse et al. 2005), so ϕ is assumed to be constant as ϕ = 0.62, which results
in a constant bulk density. Thus, the bulk fluid for the granular material is modelled as an
incompressible fluid, with the governing equations in the Lagrangian framework expressed
as (Minatti & Paris 2015; Xu et al. 2019)

∇ · u = 0, (2.1)

ρ
Du
Dt

= −∇p + ∇ · τ + ρg, (2.2)

where t is the time, u is the velocity vector, p is the pressure, τ is the deviatoric shear
stress τ = ηγ (γ is the strain rate tensor), g is the external force such as gravity and
D/Dt indicates the Lagrangian derivative operator. To calculate the continuity condition,
an equation of state is used, and the incompressible fluid is assumed to be weakly
compressible with a compressibility of less than 1 %.

2.2. Mesh-free discretization
The spatial operators are adopted in the framework of the MPS (Koshizuka et al. 1998;
Gotoh & Khayyer 2016; Xu & Jin 2016a). By using the mesh-free method, the granular
material is represented by a set of Lagrangian particles with the same initial distance �l,
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being the continuum-level markers. Similarly, the solid boundary to confine the granular
material is also discretized into the particles with the same distance �l. The interaction
between these Lagrangian particles is realized by using a weighting function and the
weighting function wij used in this study is expressed as (Shakibaeinia & Jin 2010)

wij = w(rij, re) =

⎧⎪⎨
⎪⎩
(

1 − rij

re

)3

rij ≤ re

0 rij > re

. (2.3)

The weighting function constitutes the interaction radius re and the distance rij between
two Lagrangian particles indexed by i and j. The interaction radius re determines the
interaction circle in two dimensions, which marks the neighbouring particles j for the
target particle i according to the distance rij. For the neighbouring particles j at rij > re,
their interaction to particle i is assumed to be negligible. This enables an avoidance of
the calculation of all the Lagrangian particles in the whole domain when calculating the
information of the target particle i. The interaction radius re is usually related to the
discretized particle distance �l, so that the number of neighbouring particles j can be
effectively and efficiently identified. The spatial operators in the method, such as the
gradient, divergence and Laplacian models, were developed by counting contributions
from the neighbouring particles with the weighting function. A large re can involve a
large number of neighbouring particles j, which can improve the accuracy for the spatial
operator calculation but reduce the computing efficiency. For a small re, the number
of neighbouring particles and computational cost can be reduced but the accuracy is
eliminated. To balance between accuracy and efficiency, the interaction radius is usually
set to be re = (3.0–4.0)�l in the previous studies (Monaghan 1994; Koshizuka et al. 1998;
Lee et al. 2011; Gotoh & Khayyer 2016; Violeau & Rogers 2016; Xu & Jin 2016a).

In the MPS method, the particle number density is defined as the summation of the
weighting function as (Koshizuka et al. 1998)

Ni =
∑
j /= i

wij. (2.4)

The number of particles in a unit volume ρn can be approximated by the particle number
density as (Koshizuka et al. 1998)

ρn = Ni∫
w dV

, (2.5)

where the integration at the right-hand side for the weighting function is over the entire
domain and the integration is constant for a fixed interaction radius re. Thus, the fluid
density can be expressed as

ρi = mρn = mNi∫
w dV

, (2.6)

where m represents the mass that a particle takes. Equation (2.6) indicates that the fluid
density is proportional to the particle number density Ni, which can be used in the equation
of state to calculate the pressure field.

When the interaction circle for the weighting function is full of Lagrangian particles
with the same distance �l, the particle number density is referred to as the initial particle
number density N0. It is constant throughout the calculation.
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The spatial operator to calculate the gradient is written as (Koshizuka et al. 1998)

〈∇φi〉 = Dm

N0

∑
j /= i

φj − φi

r2
ij

rijwij, (2.7)

where φ is a scalar, Dm is the dimension of space and rij is the vector from particle i to
particle j. This gradient model is used to calculate the shear rate and the velocity gradient
in the proposed numerical scheme, and the interaction radius is defined as re = 4.0�l to
ensure its accuracy.

To calculate the pressure, an equation of state is employed, and the granular flow is
assumed to be weakly compressible. The equation of state based on the particle number
density is expressed as (Shakibaeinia & Jin 2010; Xu & Jin 2016a)

pi = ρc2
0
λ

((
Ni

N0

)λ
− 1

)
, (2.8)

where λ= 7, according to the previous studies (Monaghan 1994; Shakibaeinia & Jin 2010;
González-Cao et al. 2019), and c0 is the artificial speed of sound. The value of c0 sets
a requirement for the time step in the simulation. A much larger c0 means that a much
smaller time step should be implemented by using the equation of state. Here, c0 also
determines the compressibility when modelling the incompressible fluid flow. To balance
between the time step and the compressibility for modelling the incompressible fluid, c0
is defined as 10 times the maximum velocity in the problem (Monaghan 1994; Violeau
& Rogers 2016; González-Cao et al. 2019). This can limit the compressibility for the
modelled incompressible fluid to within 1 % with an acceptable time step (Monaghan
1994). Velocity in the solid-like state for the granular flow is very small and defining c0 10
times the maximum velocity is sufficient to ensure the incompressibility for the flow. In
this study, the time step satisfies the Courant–Friedrichs–Lewy condition (Shadloo et al.
2012).

The mesh-free method is based on the Lagrangian approach, which updates the positions
of the Lagrangian particles in each time step. However, during the movement of particles,
some particles can approach each other making their distance much shorter than the initial
distance �l. If there is no numerical technique to prevent further joining, clustering of
particles can occur, which results in an instability for the calculation. To solve this problem,
a collision model is proposed to keep particles from clustering in the simulation (Lee
et al. 2011). When the distance between two particles rij is shorter than a threshold, the
collision is activated to maintain the particle distance. The threshold is defined as the
collision distance, which is equal to dcoll = (0.85–0.95)�l according to the previous studies
(Lee et al. 2011; Shakibaeinia & Jin 2012), and dcoll = 0.9�l is selected in this study. The
collision model is expressed as (Shakibaeinia & Jin 2012)⎧⎨

⎩
unew

i = ui − 1
2 u//

ij eij

unew
j = uj − 1

2 u//
ij eij

rij < 0.9�l, (2.9)

where u//
ij is the approaching velocity between particles i and j, and eij is the unit vector to

project the approaching velocity u//
ij to the vectors ui and uj.

917 A51-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

32
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.320


T. Xu and Y.-C. Jin

The positions of the two particles i and j are updated according to the collision velocity
as ⎧⎨

⎩
rnew

i = ri − 1
2 u//

ij eij�t

rnew
j = rj − 1

2 u//
ij eij�t

rij < 0.9�l. (2.10)

The free surface is recognized by the particle number density. When Ni is less than N0,
particle i is regarded as a free surface particle with zero pressure prescribed. The solid
boundary is discretized into a set of particles with the same distance �l. However, when
using the spatial operator of the gradient model to calculate the shear rate and velocity
gradient for a 2-D problem, the local interaction circle in the vicinity of the solid boundary
is partially filled with particles. The area for the interaction circle beyond the solid
boundary is empty. This can result in an inaccuracy when calculating the spatial operator.
The problem also occurs when calculating the particle number density using (2.4). To
offset the deficiency of the particles for the interaction circle close to the boundary, several
layers of ghost particles are set-up beyond the solid boundary. The number of layers for
the ghost particles is dependent on the interaction radius re, for example, for re = 4.0�l,
four layers of ghost particles are required to make the interaction circle full of particles.
The flow properties of these ghost particles, such as velocity and pressure, are set to be the
same as their solid particles. This solid boundary treatment has been implemented in many
applications by the mesh-free method with good numerical results achieved (Koshizuka
et al. 1998; Ye et al. 2019).

3. Peridynamic implementation

The peridynamic theory is applied to solve the equation of motion in which the rheological
law is used to determine the effective viscosity and stress.

3.1. The rheological law
In the mesh-free method, a set of Lagrangian particles are used to represent the granular
material, which carry the properties of density, velocity, stress, viscosity and so forth. The
viscosity for the granular flow is not constant, which has a large variation in space and
time (Da Cruz et al. 2005). In this study, the μ(I) rheology, developed by MiDi (2004) and
generalized into a tensorial version by Jop et al. (2006), is used to calculate the effective
viscosity and stress in the granular flow. In the model, the friction μ is expressed as (MiDi
2004; Da Cruz et al. 2005)

μ(I) = μs + μ2 − μs

I0/I + 1
, (3.1)

where I0 is a constant, μ is an increasing function with the dimensionless parameter I,
bounded by µs at I = 0 and μ2 at high I. For glass beads, the parameters are µs = tan21°,
μ2 = tan32° and I0 = 0.3 in the rheology (Jop 2015).

The shear rate is calculated as

γαβ = 1
2

(
∂uα

∂xβ

+ ∂uβ

∂xα

)
, (3.2)

|γ | = √
0.5γαβγαβ, (3.3)

where α and β denote the coordinate components, and |γ | is the second invariant for the
strain rate tensor.
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The inertial number I is defined according to the simulation by Ionescu et al. (2015),
which is modified from the definition by MiDi (2004) and Jop et al. (2006) owing to the
shear rate calculation in (3.2)

I = 2d|γ |√
p/ρs

, (3.4)

where d is the diameter of the grains.
The effective viscosity can be obtained by the friction, confining pressure and shear rate

as (Jop et al. 2006)

η = μ(I)p
|γ | . (3.5)

A regularization technique is applied to calculate the viscosity in (3.5) based on the inertial
number I in (3.4) and friction μ in (3.1) as (Chauchat & Médale 2014)

ηr =
(

μs + 2(μ2 − μs)|γ |
I0
√

p/(ρsd2) + 2|γ |

)
p√

|γ |2 + δ2
, (3.6)

where δ is a very small value. This regularization technique for the μ(I) rheology is
proposed by Chauchat & Médale (2014) to avoid the infinite value for the viscosity in
(3.5) when |γ | is approaching zero for p > 0.0. In their study (Chauchat & Médale 2014),
the parameter is tested in the range 10−6 < δ < 10−4 to simulate the vertical-chute flow
and good numerical results are obtained. In simulating granular column collapse, we
found the free surface and velocity show limited difference for 10−6 <δ < 10−4, and thus
δ = 10−6 s−1 is chosen in this study.

The rheological law expressed in (3.6) is a local model and its shortcoming includes
the limitations in capturing the transition between the fluid-like and solid-like state (Jop
et al. 2006). As pointed out by Pouliquen & Forterre (2009), the quasi-static regime
cannot be sufficiently reflected by the local model. However, to calculate the entire process
for the collapse, the transition from the fluid-like to the solid-like state needs to be
taken into consideration. Although many studies have been dedicated to developing the
non-local rheological law (Pouliquen & Forterre 2009; Bouzid et al. 2013, 2015; Henann
& Kamrin 2013), reflecting the phase transition in the granular flow is still a challenge.
However, peridynamics is a non-local theory which provides an approach to account for
the interaction between grains.

3.2. Peridynamics
Peridynamics, as a generalization of the standard theory in solid mechanics, handles the
mechanics with continuous bodies and discrete grains by including the long-range force
(Silling & Askari 2005; Silling et al. 2007; Silling & Lehoucq 2008; Mengesha & Du
2014; Ren et al. 2015).

The integrated equation of motion in peridynamics is expressed as

ρ r̈ =
∫

Hx

F (x, x′, t) dVx′ + ρg, (3.7)

where Hx is a neighbourhood of x, x′ is the displacement vector and F is a pairwise force.

F (x, x′, t) = T (x, x′ − x, t) − T (x′, x − x′, t), (3.8)

where T is the force state.
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The equation of motion in the discretized form for the target particle i with neighbouring
particles j in peridynamics can be expressed as (Silling & Lehoucq 2008; Ren et al. 2015)

ρ
Dui

Dt
=
∑
j∈Ωi

(T i − T j) + ρg, (3.9)

where i is the peridynamic horizon for the target particle i, which is related to the particle
distance �l.

In peridynamics, based on the Lagrangian particles indexed by i and j, the force state
T i acting on the bond rij = rj − ri (the vector from particle i to particle j) is defined as
(Silling & Lehoucq 2008; Ren et al. 2015)

T i = T (rij) = wijσ i · rij · K−1
ij , (3.10)

where σ is the stress and K is the shape tensor. The force state T j from particle j to particle
i acting on the bond rji = rj − ri can be obtained similarly according to (3.10).

The shape tensor K ij is defined as

K ij =
∑
j∈Ωi

wijrij ⊗ rij. (3.11)

The stress σ i is calculated as
σ i = −piE + 2ηrγ i, (3.12)

where E is the unit symmetric tensor.
The position of particle i is updated according to the following equation

Dri

Dt
= ui. (3.13)

Incorporating peridynamics in the mesh-free method is advantageous to simulate granular
column collapse. The free surface in the flow can be tracked automatically by the
mesh-free method while peridynamics includes the long-range force and force exchange
to describe behaviours between continuous bodies and discretized grains. One concern is
how peridynamics accounts for the transition from the fluid-like to solid-like state and the
subsequent solid-like state. In the solid-like state, the local stress not only depends on the
local shear rate but also the stress of the neighbouring particles with in a distance. Hence,
Pouliquen & Forterre (2009) proposed the self-activated model to include stress from the
neighbouring particles over the entire flow. For peridynamics, the force state is calculated
by (3.10), in which stress σ i is related to the neighbouring particles by using the bond rij
and the shape tensor K ij within the peridynamic horizon. Moreover, peridynamics solves
the integrated equation of motion in which the force interaction is implemented in (3.9).
Hence, the forces of both the local force σ i and the force from the neighbouring particles σ j
can contribute to the motion of the particles. Another concern is how peridynamics reflects
the contribution of particles beyond the peridynamic horizon in the stress calculation,
because (3.10) and integrated equation (3.9) are both merely conducted in the peridynamic
horizon. This is critically important for the continuum approach in modelling granular flow
because the peridynamic horizon can be varied by the particle distance �l rather than a
constant, which affects the force exchange in peridynamics. Although peridynamics only
considers the long-range force state and its contribution to the motion of particles in the
horizon, the force exchange can be realized in (3.9) through the horizon by the horizon.
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2D continuum modelling granular column collapse

This makes the force from all the particles in the entire flow contribute to the motion of
the target particle i. In this manner, peridynamics counts the stress contribution for the
particles beyond the peridynamic horizon by incorporating the long-range force and force
exchange.

To solve the governing equations, the predictor-and-corrector time splitting scheme is
used in the method. In the predictor, the external force of gravity is solved to obtain
the intermediate information, which includes the intermediate velocity u*, intermediate
position r* and intermediate particle number density N*.

In the predictor, the equation of motion is solved as

u∗
i = uk

i + g�t, (3.14)

r∗
i = rk

i + u∗
i �t, (3.15)

where �t is the time step and k denotes the previous time step.
With the intermediate velocity and position fields, the pressure field can be obtained

by the equation of state (2.8) according to the intermediate particle number density N*.
By using the rheological law, the stress of (3.12) is calculated to obtain the force state for
particle i and j as T i and T j. Subsequently, in the corrector, the velocity is solved by using
peridynamics and the position of the particles is updated according to the new velocity

uk+1
i = u∗

i + �t
ρ

∑
j∈Ωi

(T i − T j), (3.16)

rk+1
i = rk

i + uk+1
i �t, (3.17)

where k + 1 is the next time step.
The flow chart with peridynamics in the mesh-free method is shown in figure 1. In the

following, the proposed numerical scheme is referred to as the non-local mesh-free method
or non-local modelling. It employs a global variable of the pairwise force in solving
the equation of motion by using peridynamics so that the non-local mesh-free method
can account for the interaction between continuous bodies and discrete elements. The
interaction is significant in the phase transition from the fluid-like state to the solid-like
state in granular column collapse, which can be reflected by the method.

4. Parameter analysis by the granular column collapse

The non-local mesh-free method was used to simulate the granular column collapse, in
which both the peridynamic horizon and numerical convergence/particle distance were
examined. The numerical results were compared with the experimental measurements.

4.1. Numerical set-up
The simulated granular column collapse is illustrated in figure 2. The granular column was
composed of glass beads with diameter d = 2 mm, ρs = 2500 kg m−3 and volume fraction
ϕ = 0.62. A column with the height H and length L was initially confined by two plates in a
rectangular channel, shown in figure 2(a). The plates were removed quickly at t = 0.0 s, and
figure 2(b) shows the movement of the bottom of the two plates with time. The aspect ratio
a is defined as a = H/0.5L, which plays an important role in the spreading behaviour of
the granular material. In the simulation, the two plates were treated as the solid boundary
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Initial condition u, p

Calculation of the viscosity and stress tensor:

Predictor: ui
* = ui

k + �t g, ri*
 = ri

k + �t ui
*

Calculation of the force state Ti
 = wi jσj . ri j . K–1

   

Update positions: ri
k+1 = ri

k + �t ui
k+1

Collision model

End

                                           �t
Corrector by Peridynamics: uk+1 = u* + ––�  (Ti – Tj)
                                                                                     

ρ        jεΩi                   

                ρc0
2       Ni

*

Calculation of pressure field: pi
 = ––– (( –––) 

λ

– 1)                  λ        N0 

                     2(μ2 – μs)|γ|                    p
ηr

 = (μs + –––––––––––––––) –––––––––                      –––––––                 –––––––––, σi = –piE + 2ηr
γ

i
                I0�p/(ρsd

2) + 2|γ|   �|γ|2 + δ2 

ui
k, ri

k, pi
k

i j

Figure 1. Flow chart to calculate the granular flow with peridynamics in the mesh-free method. The
predictor-and-corrector time splitting scheme is used to solve the governing equations. In the predictor, the
external force of gravity is solved to obtain intermediate information. With the intermediate particle number
density, the pressure field is calculated by the equation of state. In the corrector, the force state is calculated,
and the intermediate velocity is corrected by solving the stress tensor term in the governing equations in the
framework of peridynamics.

with the prescription of the lifting velocity to model the slip boundary condition according
to figure 2(b). In the μ(I) rheology, the parameters µs = tan21°, μ2 = tan32° and I0 = 0.3
were used (Jop et al. 2006; Jop 2015) and the simulation was conducted in two dimensions.

4.2. Peridynamic horizon
Maintaining the interaction radius re = 4.0�l constant, the peridynamic horizon was
varied as i = 2.2�l, 3.0�l and 4.0�l to simulate the granular column collapse with the
aspect ratio a = 1.25 (H = 0.05 m and L = 0.08 m in figure 2). Figure 3 illustrates the free
surface profiles at t = 0.12 s, 0.22 s and 0.42 s, calculated by using different peridynamic
horizons, which were compared with the experimental measurements (Xu et al. 2017).
Generally, the free surface profiles using different peridynamic horizons were close to
each other, and in good agreement with the experimental results. We observed that there
were some discrepancies in the free-surface profiles occurring around the peak value.
At t = 0.42 s, by using i = 4.0�l, the peak value for the free surface was y/L = 0.508
with a relative error of 8.8 % when compared with the experimental results. When using
i = 2.2�l, it was equal to y/L = 0.474 with 1.5 % error at t = 0.42 s. Although the
peak value with i = 2.2�l was closer to the experimental measurements at t = 0.42 s,
it showed a continuously decreasing trend, as shown in figure 4, from t = 1.0 s to 3.0
s. At t = 1.0 s, the granular material behaved as the solid-like state and the peak value
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Figure 2. Numerical set-up for the granular column collapse: (a) diagram for the granular column collapse
and (b) bottom position of the two plates when lifting them by using a weight according to the experiments (Xu
et al. 2017).

(a) (b) (c)

y/L

x/L x/L x/L
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Figure 3. Free surface profiles simulated by using different peridynamic horizons for the granular column
collapse with the aspect ratio a = 1.25: (a) at t = 0.12 s, (b) t = 0.22 s and (c) t = 0.42 s. The experimental free
surface profiles are from Xu et al. (2017).

for the free surface should maintain a constant value. However, using i = 2.2�l, the
peak value for the free surface reduced from y/L = 0.429 at t = 1.0 s to y/L = 0.391 at
t = 2.0 s and even to y/L = 0.380 at t = 3.0 s, as shown in figure 4. This was because
the force could not be sufficiently exchanged through the horizon by the horizon when
using smaller peridynamic horizons such as i = 2.2�l. In contrast, the free surface with
i = 4.0�l showed limited variation from t = 1.0 s to t = 3.0 s in the solid-like state. This
was consistent with observation for the granular column collapse in the final stage of the
collapse.

By using i = 4.0�l in the non-local mesh-free method, the free surface variation
in the granular column collapse especially in the solid-like state could be reproduced.
To demonstrate the velocity calculation by the horizon i = 4.0�l in the granular flow,
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Figure 4. Free surface variation in the solid-like state for the granular column collapse a = 1.25 by using
different peridynamic horizons: (a) i = 4.0�l and (b) i = 2.2�l.
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Figure 5. Velocity profiles at different time steps and sections calculated by the peridynamic horizon
i = 4.0�l for the granular column collapse a = 1.25: (a) t = 0.129 s across the section y/L = 0.125, (b)
t = 0.129 s across the section y/L = 0.375, (c) t = 0.189 s across the section y/L = 0.125 and (d) t = 0.189 s
across the section y/L = 0.375. The experimental results are from Xu et al. (2017).

figure 5 shows the horizontal velocity profiles u/(gd)0.5 at t = 0.129 s and 0.189 s across
the sections of y/L = 0.125 and 0.375, by comparison with the experimental measurements
(Xu et al. 2017). From the comparison, the velocity profiles in the granular flow were also
reproduced by using the horizon in the numerical method. The velocity distributions in
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Figure 6. Free surface simulated by using different particle distances of L/�l = 128, 64, 32 and 16 at
different time steps for the granular column collapse a = 1.25: (a) t = 0.12 s, (b) t = 0.22 s and (c) t = 0.42 s.

the simulation were in good agreement with the experimental results. Thus, the following
simulations were conducted by using the peridynamic horizon i = 4.0�l in the non-local
mesh-free method.

4.3. Particle distance effect
The effect of the particle distance for the non-local mesh-free method was examined by
using different particle distances as L/�l = 16, 32, 64 and 128 to simulate the granular
column collapse a = 1.25. Figure 6 shows the free surface profiles simulated by using
different particle distances, which were compared with the experimental measurements
by Xu et al. (2017). The four particle distances implemented in the simulations calculated
similar free surface profiles, especially on both sides of the collapsing column. As shown
in figure 6(b,c), the main difference occurred on the top of the collapsing column in the
range of −0.25 < x/L < 0.25, while the whole horizontal length for the column was larger
than x/L > 2.0. The free surface using the larger particle distances, such as L/�l = 16 and
32, agreed with the experimental results better for the value at the top of the column. The
smaller particle distances, such as L/�l = 64 and 128, overestimated the peak value for
the free surface shown in figure 6(c) at t = 0.42 s. This was because the smaller particle
distance merely represents a fraction of the grain in the simulation. Thus, one particle
sliding down from the top of the column only indicates a small fraction of the grain
movement, consequently resulting in an overestimation of the free surface. However, when
refining the particle distance from L/�l = 64 to 128, there was a limited change in the peak
value for the free surface, as shown in figure 6(b,c). The peak value using L/�l = 64 was
y/L = 0.558, while it was y/L = 0.577 for L/�l = 128 at t = 0.42 s.

To further show the numerical convergence for the method, figure 7 illustrates the
horizontal velocity profiles u/(gd)0.5 calculated by the different particle distances across
the section y/L = 0.125 at t = 0.129 s and 0.189 s, by comparison with the experimental
measurements. By using different particle distances �l, the velocity profiles were
generally close with each other in good agreement with the experimental measurements.
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Figure 7. Velocity distribution across the section y/L = 0.125 simulated by different particle distances for the
granular column collapse a = 1.25 compared with the experimental measurements by Xu et al. (2017): (a) at
t = 0.129 s and (b) t = 0.189 s.

By using the larger particle distance L/�l = 16, the velocity profiles showed some
fluctuations, but the fluctuations were still around the velocity profiles calculate by the
smaller particle distances such as L/�l = 128. Therefore, we can still conclude that the
non-local mesh-free method exhibits a good numerical convergence.

5. Granular column collapse

In this section, two types of granular column collapse are numerically analysed. One type
is the collapse at both sides simultaneously (figure 2) and the second type is the collapse
occurring only at one side with the other side confined by a wall. The numerical results
by the non-local mesh-free method are compared with those from the local modelling
and FEM. The local modelling does not incorporate peridynamics but still uses spatial
discretization of the MPS method. The comparison between local and non-local modelling
aims to show the role of peridynamics in calculating the entire collapse process including
the solid-like state.

5.1. Comparison with the local modelling
Two aspect ratios, a = 5.0 (H = 0.20 m and L = 0.08 m) and 1.25 (H = 0.05 m and L = 0.08
m) were modelled for the simultaneous collapse on both sides of the column, as illustrated
in figure 2. In the simulations, L/�l = 32. The numerical results by the non-local mesh-free
method were compared with those from the local modelling (Xu & Jin 2016b; Xu
et al. 2017). The local modelling did not apply peridynamics to solve the equation of
motion, while the spatial discretization was still based on the MPS method (Xu & Jin
2016; Xu et al. 2017; Xu et al. 2019). The governing equations were solved with the
predictor-and-corrector time splitting scheme. In the predictor, the external force term and
stress tensor term were solved to obtain the intermediate velocity u∗

i , intermediate particle
position r∗

i and intermediate particle number density N∗
i for all the particles. The pressure

was obtained according to the intermediate flow information by using the equation of
state. In the corrector, the pressure gradient term was solved to update the velocity and
position of the particles. The method for the local modelling can be found in previous
studies (Xu & Jin 2016b; Xu et al. 2017; Rufai et al. 2019; Xu et al. 2019). One difference
between the local and non-local modelling in the time splitting scheme was that the local
modelling solved two terms, which were the viscous term and external force term, to obtain
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Figure 8. Comparison of the free surface profiles among non-local modelling, local modelling and
experimental measurements by Xu et al. (2017) for the granular column collapse a = 1.25: (a) at t = 0.12 s,
(b) t = 0.22 s and (c) t = 0.42 s.

the intermediate information in the predictor. In contrast, the non-local modelling only
calculated the external force term. Another difference was that the non-local modelling
employed peridynamics to update the information in the corrector. The two methods
adopted the same parameters to simulate the granular column collapses a = 1.25 and 5.0.

Figure 8 illustrates the free surface profiles from the non-local modelling, local
modelling and experimental measurements (Xu et al. 2017) for the collapse a = 1.25.
The non-local modelling showed a good agreement with the experimental measurements.
However, the local modelling calculated much flatter free surface profiles resulting in a
big difference on the top of the collapsing column, which was evident at t = 0.22 s and
0.42 s. Figure 9 further shows the comparison of the free surface profiles among the
non-local modelling, local modelling and experimental results at t = 0.20 s, 0.36 s and
0.67 s for the granular column collapse a = 5.0. Similar results to the collapse a = 1.25
were observed. The non-local modelling could reproduce more accurate free surface
profiles in the collapse, especially in the solid-like state at t = 0.67 s. The local modelling
underestimated the free surface on the top of the column, as shown in figure 9(c).

The particles in the local modelling showed further significant deformation when the
granular material was in the solid-like state, which resulted in an underestimation of the top
free surface for the final deposit in the granular column collapse. The velocity distribution
can reveal the unphysical motion in the solid-like state because the velocity should be very
small. Figure 10 shows the velocity distribution |u|/(gd)0.5 across the section y/L = 0.25
calculated by the local modelling and non-local modelling for the collapse a = 5.0 at
t = 1.0 s when the material is in the solid-like state. The velocity in the local modelling
was much larger than that in the non-local modelling, which was generally almost 4 times
the velocity in the non-local modelling. Thus, the remaining significant velocity in the
local modelling consequently made the particles unphysically move in the solid-like state,
which underestimated the free surface. In contrast, the remaining velocity in the non-local
modelling was negligible in the solid-like state and the calculated free surface agreed with
the experimental results better, which has been shown in figures 8 and 9.
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Figure 9. Comparison of the free surface profiles among non-local modelling, local modelling and
experimental measurements by Xu et al. (2017) for the granular column collapse a = 5.0: (a) at t = 0.20 s,
(b) t = 0.36 s and (c) t = 0.67 s.

0 1.0 2.0–1.0–2.0
0

0.04

0.03

0.02

0.01

x/L

|u|
/(

gd
)0

.5

Non-local modeling Local modeling

Figure 10. Horizontal velocity comparison between local and non-local modelling at t = 1.0 s across the
section y/L = 0.25 in the granular column collapse a = 5.0.

The final deposits for the granular column collapses for a = 1.25 and 5.0 from the
non-local and local modelling are shown in figure 11. Applying peridynamics in the
mesh-free method as the non-local modelling resulted in a final deposit that was similar
to the experimental observation for the two collapses. In comparison with the non-local
modelling, the local modelling obtained a very flat deposit which was different from the
experimental observation. This comparison showed that incorporation of peridynamics in
the mesh-free method was able to reproduce the final deposit because it could reflect the
transition from the fluid-like to the solid-like state. However, there was some pressure noise
in the figure. In the simulation, the equation of state was used to calculate the pressure
field and the fluid of the granular material was treated to be weakly compressible. To limit
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Figure 11. Snapshots of the final deposit for the granular column collapses (the dashed line represents the
original shape for the column): (a) the non-local modelling for the granular column collapse a = 1.25, (b) the
local modelling for the granular column collapse a = 1.25, (c) the non-local modelling for the granular column
collapse a = 5.0 and (d) the local modelling for the granular column collapse a = 5.0.

the incompressibility to within 1 %, the artificial speed of sound was implemented. From
previous studies, by using the equation of state, noise in the pressure field can be produced
in the simulation (Violeau & Rogers 2016), which was also observed in figure 11 in the
present study. There have been some techniques proposed to eliminate the pressure noise
when modelling the water flow by using the weakly compressible scheme, such as the
particle shifting technique (Khayyer, Gotoh & Shimizu 2017) or velocity correction (Oger
et al. 2016; Xu & Jin 2016a). However, there are concerns about energy and momentum
conservation when using these techniques (Khayyer et al. 2017). As a result of this reason,
these techniques in eliminating the pressure noise were not used in the non-local mesh-free
method and some noisy pressure values were consequently observed.

5.2. Comparison with numerical results from the finite element method (FEM)
The granular column collapse occurring on one side was also simulated by the non-local
mesh-free method and the numerical results were compared with those from FEM, in
which the μ(I) rheology was reformulated in the framework of Drucker–Prager plasticity
with the yield stress to calculate the viscosity and stress (Ionescu et al. 2015). The
laboratory experiment results by Mangeney et al. (2010) are presented for comparison.
The initial set-up for the granular column was the height H = 0.20 m and length L = 0.14 m
shown in figure 12. The column was composed of glass beads with the diameter d = 0.7
mm and a bulk density of 1550 kg m−3. To simulate the granular flow by the non-local
mesh-free method, the particle distance was �l = 0.0025 m and the parameters in the
rheology for the glass beads were µs = tan21°, μ2 = tan32° and I0 = 0.3.

The free-surface profiles at t = 0.18 s, 0.30 s, 0.42 s and 1.02 s are shown in figure 13.
The numerical results were compared with those from FEM (Ionescu et al. 2015) and the
experimental measurements (Mangeney et al. 2010). The numerical results obtained by the
non-local mesh-free method agreed well with the experimental measurements at t = 0.18
s, 0.30 s and 0.42 s. During the collapse, the material close to the left wall showed very
limited motion and the free surface was almost constant at the initial height H = 0.14 m
during the entire collapsing process (Mangeney et al. 2010). The non-local mesh-free
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Figure 12. Diagram for the granular column collapse occurring on one side.
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Figure 13. Free surface comparison for the granular column collapse on one side among non-local modelling,
FEM and the experimental measurements by Mangeney et al. (2010): (a) at t = 0.18 s, (b) t = 0.30 s, (c) t = 0.42
s and (d) t = 1.02 s.

method could reproduce the movement of the granular material close to the left wall and
the free surface remained almost constant in the collapse. Even at t = 1.02 s, when the flow
was in the solid-like state, the height of the free surface close to the left wall simulated
by the non-local mesh-free method was 0.138 m. Meanwhile, some discrepancies were
observed in the vicinity of the wavefront in the granular flow when compared with
the experimental measurements. In the mesh-free method, the granular material was
discretized into a set of particles and there was a limited number of particles involved
in the vicinity of the wavefront. This was observed in the free surface profiles shown in
figure 13. Thus, the wavefront in the non-local modelling was shallower compared with
the experimental results while FEM calculated a deeper wavefront in the granular flow.

6. Collision of two adjacent collapsing granular columns

Two adjacent collapsing granular columns can cause the granular material to collide and
coalesce with each other. In this study, the collision of two adjacent collapsing granular
columns with different aspect ratios was simulated by the non-local mesh-free method. To
examine the role of peridynamics in the simulation, the numerical results from the local
modelling were compared with those from the non-local modelling in the granular flow.
The granular columns were composed of glass beads with the diameter d = 2 mm and bulk
density ρ = 1550 kg m−3. The rheology parameters were the same as the material used in
the above simulations, which were µs = tan21°, μ2 = tan32° and I0 = 0.3.
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Figure 14. Numerical set-up for the collision of two adjacent collapsing columns: (a) diagram for the
granular flow and (b) bottom position of the four plates when lifting the plates according to the experimental
measurements by Xu et al. (2019).

6.1. Numerical set-up
The numerical set-up for the collision of two adjacent collapsing granular columns
is shown in figure 14(a). There were two granular columns with the left aspect ratio
al = Hl/0.5Ll and the right aspect ratio ar = Hr/0.5Lr. The initial distance between the
two columns is denoted as Ld. The two granular columns were initially confined by four
plates. Instantaneous collapse occurred by lifting the plates, and the lifting velocity was
prescribed according to the experimental measurements, as shown in figure 14(b). This
granular flow has been simulated with the local modelling using the μ(I) rheology by
Xu et al. (2019) without incorporation of peridynamics. Peridynamics was used in the
mesh-free method as the non-local modelling in this study. Two cases for the collision with
different aspect ratios were simulated. Case I had the following geometrical parameters:
al = Hl/Ll = 3.9 (Hl = 0.156 m and Ll = 0.08 m), ar = Hr/Lr = 1.35 (Hr = 0.054 m and
Lr = 0.08 m) and Ld = 0.04 m. Case II had the following geometrical parameters: al = 7.6
(Hl = 0.152 m and Ll = 0.04 m), ar = 3.8(Hr = 0.152 m and Lr = 0.08 m) and Ld = 0.04
m. For Case I, the free surface variation during the flow was examined whereas Case II
focused on the interface evolution between each of the collapsing granular columns. For
the experiment in Case II, two different colours of glass beads were used: white glass beads
for the left column and black beads for the right column to distinguish the interface. Owing
to the Lagrangian nature of the method in the simulation, the interface was easily identified
in both the non-local and local modelling. We used the same parameters re = 4.0�l and
�l = 0.002 m in the local and non-local modelling for the two cases.

6.2. Flow pattern and free surface
For Case I, the non-local mesh-free method was applied to examine the detailed flow
patterns and free surface variation in the granular flow. Figure 15 illustrates snapshots
from the simulation by the non-local mesh-free method for Case I. The two columns
collided and coalesced with each other, which resulted in an extended deposit. Before
t = 0.25 s, consolidation of the two collapsing columns occurred and the free surface
showed a large variation. In the simulation, the mesh-free method played an important role
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Figure 15. Snapshots at different time steps for the collision of two adjacent granular columns simulated by
the non-local mesh-free method for Case I (The dashed line represents the original shape for the two granular
columns): (a) t = 0.15 s, (b) t = 0.25 s, (c) t = 0.5 s, (d) t = 0.8 s, (e) t = 1.25 s and ( f ) t = 1.61 s.

in capturing the free surface variation. From t = 0.50 s to t = 1.61 s, the flow was in the
solid-like state because the shape for the coalesced column showed a limited change after
t = 0.25 s. Peridynamics in the non-local mesh-free method captured the characteristics in
the solid-like state, which showed a well-developed final deposit.

Figure 16 shows the free surface profiles from the non-local and local modelling by
comparison with the experimental measurements for Case I. In the intermediate dense
regime for the granular flow, the two numerical results from the local and non-local
modelling both showed similar free surface profiles and were in good agreement with
the experimental measurements, such as at t = 0.1 s and 0.2 s. This was because the two
methods both used the μ(I) rheology in the simulation. Subsequently, the flow transitioned
into the solid-like state, and the non-local modelling accurately captured the free surface
in good agreement with the experimental observation. However, large discrepancies were
evident on the free surface from the local modelling compared with the experimental
measurements, such as at t = 0.3 s and 0.4 s. Figure 17 illustrates the final deposit for the
granular flow of Case I by the local modelling and non-local modelling. It was evident that
incorporation of peridynamics as the non-local modelling can simulate a well-developed
final deposit. In contrast, the local modelling resulted in a much flatter unphysical deposit.

6.3. Interface evolution
Owing to the Lagrangian nature for both the non-local and local modelling, the interface
between the two collapsing columns can be easily identified. We compared the interface
evolution from the non-local and local modelling with the experimental observations for
the granular flow of Case II. In the experiment, different colours of glass beads were used
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Figure 16. Free surface profiles at different time steps from the non-local modelling and local modelling
compared with the experimental measurements by Xu et al. (2019) for Case I (The dashed line represents
the original shape for the two granular columns): (a) t = 0.1 s, (b) t = 0.2 s, (c) t = 0.3 s and (d) t = 0.4 s.
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(a)

(b)

Figure 17. Final deposit for the collision of two adjacent granular columns of Case I (the dashed line represents
the original shape for the two granular columns): (a) final deposit by the non-local modelling and (b) final
deposit by the local modelling.

to capture the interface between each collapsing column by using a high-speed CMOS
digital camera (IDT Corp, X-Stream) (Xu et al. 2017; Xu et al. 2019).

The interface variation indicates the internal particle behaviour within the granular
flow. Thus, it can indicate whether the solid-like state is reflected in the simulation.
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(a) (b)

(c) (d )

Figure 18. Interface variation during the collision of two adjacent granular columns simulated by the non-local
mesh-free method for Case II (The dashed line represents the original shape for the two granular columns): (a)
t = 0.1 s, (b) t = 0.3 s, (c) t = 0.5 s and (d) t = 1.5 s.

Figure 18 illustrates the evolution of the interface at several time steps from the non-local
modelling. During the collision, the particles could be identified from each collapsing
column with a distinguishable interface. The interface developed to a constant height
at t = 0.3 s. From the non-local modelling, less variation for the interface after t = 0.3
s was observed because the consolidated column was in the solid-like state. To clearly
illustrate the interface variation, figure 19 shows the interface at different time steps for the
granular flow of Case II by the local and non-local modelling, which are compared with
the experimental measurements by Xu et al. (2019). The non-local modelling accurately
reproduced the interface variation, which was in good agreement with the experimental
results. However, the interface in the local modelling was severely deformed at t = 0.40 s
and 0.60 s when the flow was in the solid-like state. The results from the local modelling
had a big discrepancy compared with the experimental measurements. This arose from the
significant unphysical internal motion of the particles in the solid-like state in the local
modelling. In contrast, in the non-local modelling, the internal motion of the particles in
the solid-like state was greatly eliminated by using peridynamics. Thus, in the non-local
modelling, the interfaces at t = 0.40 s and 0.60 s appeared to be almost a vertical line,
except for the particles in the vicinity of the free surface.

Figure 20 illustrates snapshots from the experiment, non-local and local modelling for
the granular flow of Case II at t = 0.6 s. The interfaces obtained from the experimental
measurement and non-local modelling were similar. The angle of the interface to the y-axes
α was calculated without counting the particles in the vicinity of the free surface. This
interface angle for the experiment was α = 5.3°, while α = 9.06° was calculated in the
non-local modelling. There was a discrepancy in the interface angle between the non-local
modelling and experimental measurements. This was proposed to arise from wall effects.
The non-local modelling was conducted in two dimensionsr while the experiments for
the flow occurred in a transparent Plexiglas channel in three dimensions. The flow in the
experiment could be affected by the side-confined Plexiglas wall and the previous studies
indicate that the wall can show a significant effect on the movement of the grains (Jop,
Forterre & Pouliquen 2005). The side wall can pose a drag force to the granular material
so that the velocity of the grains close to the side wall could be affected. Without side-wall
confinement, the interface in the experiment could be more curved, which would result in a
larger angle that could be close to that obtained in the non-local modelling. The angle from
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Figure 19. Interface variation at different time steps from the non-local modelling and local modelling for
the collision of two adjacent granular columns (Case II) compared with the experimental results by Xu et al.
(2019): (a) t = 0.15 s, (b) t = 0.20 s, (c) t = 0.40 s and (d) t = 0.60 s.

the local modelling was much larger as α = 27.7°. In the local modelling, failure to capture
the solid-like state plays a more important role in the interface angle in the comparison.

7. Conclusions

In this study, a non-local mesh-free method is proposed to simulate granular column
collapses. The free surface evolution can be conveniently handled by the mesh-free method
while peridynamics can capture the entire collapse process from the fluid-like to solid-like
state. The stress tensor in the granular flow is determined by the μ(I) rheology.

In the numerical method, the peridynamic horizon, which is linked to the particle
distance, is examined by simulating the granular column collapse with the aspect ratio
a = 1.25. Larger peridynamic horizons, such as i = 3.0�l and 4.0�l, can calculate
the representative free surface variation in good agreement with the experimental
measurements. However, using smaller horizons, such as i = 2.2�l, does not sufficiently
account for the phase transition from the fluid-like to solid-like state, which results in a
significant motion for the particles and underestimation of the free surface. Increasing the
horizon to i = 4.0�l can greatly eliminate the unphysical motion of the particles in the
solid-like state, and thus the free surface has a good agreement with the experimental
observations. The numerical convergence or particle distance effect is also examined for
the method by modelling the granular column collapse a = 1.25. The free surface profiles
by using different particle distances are close to each other. The main discrepancy for the
simulated free surface occurs on the top of the column. Using a finer particle distance,
the peak value of the free surface in the flow can be increased. However, when further
refining the numerical resolution from L/�l = 64 to 128, the difference in the peak value
shows a limited change. The numerical results by using larger particle distances agree
with the experimental results better. To further examine the numerical convergence, the
velocity profiles are examined in the flow. The velocity profiles by using all the particle
distances are close to each other, which agrees with the experimental results well. Thus, it
can be concluded that the numerical convergence is good for the numerical method, and

917 A51-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

32
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.320


T. Xu and Y.-C. Jin

(a)

(b)
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α = 5.3°

α = 9.06°
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Figure 20. The interface in the collision of two adjacent collapsing columns for Case II at t = 0.60 s (The
dashed line represents the original shape for the two granular columns): (a) the experimental measurement, (b)
the non-local modelling and (c) the local modeling.

larger particle distances than the physical grain size can be implemented in the non-local
mesh-free method to reduce the computing load because it is the continuum approach.

The non-local mesh-free method is used to simulate two types of granular column
collapse. The first type is the collapse at both sides, and two aspect ratios a = 1.25 and
5.0 are numerically investigated. The numerical results are compared with those from the
local modelling with the same set of parameters. Both the non-local and local modelling
can calculate accurate free surface profiles in the intermediate dense regime. However, the
non-local modelling with peridynamics can calculate the transition from the fluid-like to
solid-like state with more accurate free surface profiles when compared with experimental
measurements. The local modelling is unable to simulate the solid-like state in which
the velocity can cause unphysical motion of the particles. Thus, an unphysical flat final
deposit can be observed in the local modelling. The granular column collapse occurring
on one side, as the second type of granular column collapse, is simulated by the non-local
mesh-free method and the numerical results are compared with those from FEM and
the experiment. The non-local mesh-free method can accurately capture the quasi-static
region in the collapse close to the left wall by reproducing the free surface profiles in good
agreement with the experimental results.
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The collision for two adjacent collapsing granular columns is also simulated by the
non-local mesh-free method. The free surface profiles in the non-local modelling are in
good agreement with the experimental results, while the local modelling is unable to
capture the free surface in the solid-like state. Owing to its Lagrangian nature, the interface
between each collapsing column can be identified. The interface comparison between the
local modelling, non-local modelling and experimental measurements is made. Both
the local and non-local modelling can accurately represent the interface variation in
the intermediate dense regime when compared with the experimental measurements.
However, when the material is in the solid-like state, the interface variation in the
local modelling exhibits a larger discrepancy when compared with the experimental
measurements. This is because the internal unphysical motion of the particles in the local
modelling is evident. In the non-local modelling, the unphysical motion of the particles
in the solid-like state is greatly eliminated, which enables the method to calculate more
accurately the interface variation in the flow. There is still a discrepancy in the interface
angle with the y-axes between non-local modelling and the experiments. This could be
caused by the side-confined wall effects in three dimensions, which are not accounted for
in the 2-D simulation by using the non-local mesh-free method.

The simulations for the granular flows suggest that the non-local mesh-free method
can describe the granular behaviours both in the fluid-like and solid-like states. The
phase transition and internal flow structures in the granular flows can be captured
by the numerical method owing to the incorporation of peridynamics. However, the
non-local mesh-free method is the Lagrangian method, which traces the movement of
each Lagrangian particle. To improve computational efficiency, more advanced computing
techniques, such as parallel computing, can be implemented.
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Appendix. Plane Couette granular flow in the presence of gravity

The non-local mesh-free method is used to simulate the plane Couette granular flow in the
presence of gravity to show the ability in capturing the exponential velocity distribution
in the sheared granular flow. We assume the volume of fraction for the material during
the shearing is constant as ϕ = 0.62 by neglecting its variation. The simulated diagram
for the flow is shown in figure 21(a). The flow is triggered by dragging the upper plate
with a constant velocity Uwall. Meanwhile, a pressure Pwall is imposed on the upper plate
while the bottom plate is fixed. Between the two plates, the granular material is the glass
beads with a diameter d = 1 mm, and the distance for the two plates is H = 10d. In the
2-D simulation, Pwall = 102.3 Pa and φρsgd/Pwall = 0.1457. We simulated two cases with
different dragging velocities respectively as Uwall = 0.0003 m s−1 and 0.0013 m s−1. The
parameters µs = tan21°, μ2 = tan32° and I0 = 0.3 are used in the rheology to calculate
the viscosity and stress. The upper plate is discretized into solid particles with four
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Figure 21. Simulation of the plane Couette granular flow in the presence of gravity by the non-local mesh-free
method: (a) diagram of the granular shearing flow, (b) the averaged velocity profile for the flow by the dragging
velocity Uwall = 0.0003 m s−1 and (c) the averaged velocity profile for the flow by the dragging velocity
Uwall = 0.0013 m s−1. The imposed pressure for the upper plate is Pwall = 102.3 Pa and the bottom plate is
fixed.

layers of ghost particles all by prescribing the slip velocity Uwall. The particle distance
�l = 0.0005 m is implemented. The material is treated to be weakly compressible and
the artificial speed of sound in the equation of state to calculate the pressure field is set
to be c0 = 10 m s−1, which is sufficiently larger than the maximum velocity in the flow.
To plot the velocity profiles, the averaged velocity for two adjacent discretized particles
in the y direction is conducted, shown in figure 21(b,c). The experimental measurements
of the velocity conducted by Siavoshi, Orpe & Kudrolli (2006) are included in the figure.
Henann & Kamrin (2013) proposed a continuum constitutive theory for the well-developed
dense granular flow by introducing granular fluidity. They simulated this granular Couette
shearing flow with the upper plate velocity Uwall = 0.0003 m s−1 and their calculated
velocity is also shown in figure 21(b). The exponential shape for the velocity distribution
is reproduced by the non-local modelling for both the dragging velocities. Under the upper
plate, there is a shearing layer with the depth of several grains showing a significant
velocity. However, the velocity becomes very small with the increase in the distance
away from the upper plate. Compared with the experimental measurements by Siavoshi
et al. (2006) and the results by Henann & Kamrin (2013) for the shearing flow with
Uwall = 0.0003 m s−1, the velocity is very small but not exactly close to zero for y/d ≥ 5 in
the non-local modelling. However, by increasing the dragging velocity to Uwall = 0.0013 m
s−1, the velocity for y/d > 5 is almost zero, as shown in figure 21(c).
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