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ABSTRACT

We analyze different types of guaranteed withdrawal benefi ts for life, the latest 
guarantee feature within variable annuities. Besides an analysis of the impact of 
different product features on the clients’ payoff profi le, we focus on pricing and 
hedging of the guarantees. In particular, we investigate the impact of stochastic 
equity volatility on pricing and hedging. We consider different dynamic hedging 
strategies for delta and vega risks and compare their performance. We also 
examine the effects if the hedging model (with deterministic volatility) differs 
from the data-generating model (with stochastic volatility). This is an indication 
for the model risk an insurer takes by assuming constant equity volatilities for 
risk management purposes, whereas in the real world volatilities are stochastic.
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1. INTRODUCTION 

Variable annuities are fund-linked annuities where typically the policyholder 
pays a single premium, which is then invested in one or several mutual funds. 
Usually the policyholder may choose from a variety of different mutual funds. 
Such products were introduced in the 1970s in the United States. Two decades 
later, in the 1990s, insurers started to offer certain guarantee riders on top of 
the basic structure of variable annuity policies, leading to a signifi cant increase 
in popularity and success of this type of annuity. Variable annuities including 
such guarantee riders were also successfully introduced in several Asian markets, 
and fi nally made their way to Europe. In the course of the recent fi nancial crisis, 
however, the guarantees within Variable Annuities caused serious problems to 
some providers, forcing many insurers to redesign their products and some 
even to completely withdraw their offerings from certain markets.
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There are several types of guarantee riders that come with variable annui-
ties, including so-called guaranteed minimum death benefi ts (GMDB) as well 
as guaranteed minimum living benefi ts, which can be categorized in three main 
subcategories: guaranteed minimum accumulation benefi ts (GMAB), guaran-
teed minimum income benefi ts (GMIB) and guaranteed minimum withdrawal 
benefi ts (GMWB). A GMAB guarantee provides the policyholder with some 
guaranteed value at the maturity of the contract, while the GMIB guarantee 
provides a guaranteed annuity benefi t, starting after a certain deferment period. 
However, the currently most popular type of  guaranteed minimum living 
 benefi ts is the GMWB rider. Under certain conditions, the policyholders
may withdraw money from their account, even if  the value of the account has 
dropped to zero. Such withdrawals are guaranteed as long as both, the amount 
that is withdrawn within each policy year and the total amount that is with-
drawn over the term of the policy, stay within certain limits.

Recently, insurers started to include additional features in GMWB products. 
The most prominent is called “GMWB for Life” (also known as guaranteed 
lifetime withdrawal benefi ts, GLWB). With this guarantee type, the total amount 
of withdrawals is unlimited. However, the annual amount that may be with-
drawn while the insured is still alive may not exceed some maximum value; 
otherwise the guarantee will be affected. The withdrawals made by the policy-
holders are deducted from their account value, as long as this value is positive. 
Afterwards, the insurer has to provide the guaranteed withdrawals for the rest 
of the insured’s life. In return for this guarantee, the insurer receives guarantee 
charges, which are usually deducted as a fi xed annual percentage from the poli-
cyholder’s account value (as long as this value is positive). In contrast to a 
conventional annuity, in which the assets covering the liabilities are owned by 
the pool of  insured, in a GLWB policy, the fund units of  the contract are 
owned by the individual policyholder and remain accessible to the policyholder 
even in the payout phase. The policyholder may access the remaining fund 
assets at any time by (partially) surrendering the contract. In case of death of 
the insured, any remaining fund value is paid out to the insured’s benefi ciary.

Therefore, from an insurer’s point of view, these products contain a com-
bination of several risks resulting from policyholder behavior (e.g. surrender 
and withdrawal), fi nancial markets, and longevity, which makes these guarantees 
diffi cult to hedge. Moreover, in practice, the insurer faces a variety of addi-
tional risks including operational risk, reputational risk, basis risk, etc., which 
are not in the focus of this paper.

To deal with the signifi cant fi nancial risks resulting from the guarantees, in 
general risk management strategies such as dynamic hedging are applied. 
However, during the recent fi nancial crisis, insurers suffered from ineffi cient 
hedging strategies1. Among other effects, the fi nancial crisis led to a signifi cant 

1 Cf. e.g. different articles and papers in “Life and Pensions”: “A challenging environment” (June 2008), 
“Variable Annuities – Flawed product design costs Old Mutual £150m” (September 2008), “Variable 
annuities – Milliman denies culpability for clients’ hedging losses” (October 2008), “Variable 
 Annuities – Axa injects $3bn into US arm” (January 2009).
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increase in actual and implied equity volatility, and thus to a tremendous 
increase in the value of most standard and non-standard equity-linked options, 
including the value of typical variable annuity guarantees. Insurers who chose 
not to hedge certain risks or used insuffi cient hedging programs (in particular 
with respect to increasing volatility levels) suffered from losses due to the 
increase in the option’s economic value.

There already exists some literature on the pricing of different guaranteed 
minimum benefi ts and in particular on the pricing of GMWB rider options: 
Valuation methods have been proposed by e.g., Milevsky and Posner (2001) 
for the GMDB option, Milevsky and Salisbury (2006) for the GMWB option, 
Bacinello et al. (2009) for life insurance contracts with surrender guarantees, 
and Holz et al. (2008) for GMWB for Life riders.

Bauer et al. (2008) introduced a general model framework that allows for 
the simultaneous and consistent pricing and analysis of  different variable 
annuity guarantees. They also give a comprehensive analysis over non-pricing 
related literature on variable annuities. To our knowledge, there exists little lit-
erature on the performance of different strategies for hedging the market risk 
within variable annuity guarantees. Coleman et al. (2006 and 2007) provide 
such analyses for death benefi t guarantees under different hedging and data-
generating models. However, to our knowledge, the performance of different 
hedging strategies for GLWB contracts under stochastic equity volatility has 
not yet been analyzed. The present paper fi lls this gap.

The remainder of  this paper is organized as follows. First, we give a 
 high-level description of the guaranteed lifetime withdrawal benefi ts (GLWB) 
rider options and explain their general functionality in Section 2, where we 
also present the GLWB product designs that we will analyze in the numerical 
section of  this paper. We also describe the model framework for insurance 
liabilities that is used for our analyses, which follows Bauer et al. (2008). 

In Section 3, we provide the framework for the numerical analyses, starting 
with a description of the fi nancial market models used within our analyses
for pricing and hedging of insurance liabilities. For the sake of comparison, 
we use the well-known Black-Scholes (1973) model (with deterministic equity 
volatility) as a reference and the Heston (1993) model as a model that allows 
for stochastic equity volatility. We also describe the fi nancial instruments 
involved in the hedging strategies considered in the numerical part of  this 
paper, and show how we determine the fair values of these instruments under 
both fi nancial market models and how we compute these values’ sensitivity to 
certain model parameters.

The numerical results of our contract analyses are provided in Section 4, 
starting with the determination of the fair guaranteed withdrawal rate in Sec-
tion 4.1 for different product designs of the GLWB rider and under different 
model assumptions regarding the fi nancial market and policyholder behavior. 
We show that product design, policyholder behavior and market parameters like 
long-term volatility and interest rates have a signifi cant impact on the pricing 
results of the considered GLWB riders. However, the choice of the fi nancial 
model (Black-Scholes or Heston) does not. We proceed with an analysis of the 
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distribution of guaranteed withdrawal amounts in Section 4.2 and the GLWB 
rider’s “trigger time”, i.e. the specifi c point in time, when, for the fi rst time, guar-
anteed payments from the insurer to the policyholder are due, in Section 4.3.
We fi nd vast differences between the considered product designs from both, 
the client’s and the insurer’s perspectives. Finally we calculate the distribution 
over time of the so-called Greeks of the GLWB options in Section 4.4, analyz-
ing the different sensitivities of the considered product designs with regard to 
changes in the underlying’s spot price, the underlying’s volatility and interest 
rates. 

In Section 5, we analyze the hedge effi ciency of different hedging strategies 
that may be applied by the insurance company in order to reduce the fi nancial 
risk that originates from selling GLWB riders. We fi rst describe the different 
dynamic hedging strategies that we consider within our analyses. We then ana-
lyze and compare their performance under both considered fi nancial market 
models and show that the risk arising from using a model with constant equity 
volatility for risk management purposes can be substantial if  actual volatility 
is stochastic. 

2. MODEL FRAMEWORK

In Bauer et al. (2008), a general framework for modeling and valuation of 
variable annuity contracts was introduced. Within this framework, any contract 
with one or several living benefi t guarantees and/or a guaranteed minimum 
death benefi t can be represented. In their numerical analysis however, only 
contracts with a rather short fi nite time horizon were considered. Within the 
same framework, Holz et al. (2008) describe how GMWB for Life products 
can be included in this model. In what follows, we introduce this model focusing 
on the peculiarities of the contracts considered within our numerical analyses. 
We refer to Bauer et al. (2008) as well as Holz et al. (2008) for the explanation 
of other types of guarantees and more details on the model.

2.1. High-Level Description of the considered Insurance Contracts

Variable annuities are fund-linked products. The single premium P is invested 
in one or several mutual funds. We call the value of the insured’s individual 
portfolio the account value and denote its value at time t by AVt. All charges 
are taken from the account value by cancellation of fund units. Furthermore, 
the insured has the possibility to surrender the contract or to withdraw a portion 
of the account value. 

Products with a GMWB option give the policyholder the possibility of 
guaranteed withdrawals. In this paper, we focus on the case where such with-
drawals are guaranteed lifelong (“GMWB for Life” or “Guaranteed Lifetime 
Withdrawal Benefi ts”, GLWB). The initially guaranteed withdrawal amount 
is usually a certain percentage xWL of  the single premium P. Any remaining 
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account value at the time of death is paid to the benefi ciary as death benefi t2. 
If, however, the account value of the policy drops to zero while the insured is 
still alive, the policyholder can still continue to withdraw the guaranteed 
amount each year until death. The insurer charges a fee for this guarantee, 
which is usually a pre-specifi ed annual percentage of the account value.

Often, GLWB products contain certain features that lead to an increase
of the guaranteed withdrawal amount if  the underlying funds perform well. 
Typically, on every policy anniversary, the current account value is compared 
to a certain reference value, which is referred to as withdrawal benefi t base. 
Whenever the account value exceeds that withdrawal benefi t base either the 
guaranteed annual withdrawal amount is increased (step-up or ratchet) or
(a part of) the difference is paid out to the client (surplus distribution). In our 
numerical analyses in Sections 4 and 5, we have a closer look on four different 
product designs that can be observed in the market:

• No Ratchet: The fi rst and simplest alternative is one where no ratchets or 
surplus exist at all. In this case, the guaranteed annual withdrawal amount 
is constant and does not depend on market movements. 

• Lookback Ratchet: The second alternative is a ratchet mechanism where
a withdrawal benefi t base at outset is given by the single premium paid. 
During the contract term, on each policy anniversary date the withdrawal 
benefi t base is increased to the account value, if  the account value exceeds 
the previous withdrawal benefi t base. The guaranteed annual withdrawal is 
increased accordingly to xWL multiplied by the new withdrawal benefi t base. 
This effectively means that the fund performance needs to compensate for 
policy charges and annual withdrawals in order to cause an increase of the 
guaranteed annual withdrawals. With this product design, increases in the 
guaranteed withdrawal amount are permanent, i.e. over time, the guaranteed 
withdrawal amount may only increase, never decrease.

• Remaining WBB Ratchet: With the third ratchet mechanism, the with-
drawal benefi t base at outset is also given by the single premium paid.
The withdrawal benefi t base is however reduced by every guaranteed with-
drawal. On each policy anniversary where the current account value exceeds 
the current withdrawal benefi t base, the withdrawal benefi t base is increased 
to the account value. The guaranteed annual withdrawal is increased by 
xWL multiplied by the difference between the account value and the previ-
ous withdrawal benefi t base. This effectively means that, in order to cause 
an increase of  guaranteed annual withdrawals, the fund performance
needs to compensate for policy charges, but not for annual withdrawals. 
This ratchet mechanism is therefore c.p. somewhat “richer” than the Look-
back Ratchet. Therefore, typically the initially guaranteed withdrawal 
amount should c.p. be lower than with a product offering a Lookback Ratchet. 

2 Some products also contain guaranteed minimum death benefi ts. However, we do not consider this 
feature in this paper.
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As with the Lookback Ratchet design, increases in the guaranteed amount 
are permanent.

• Performance Bonus: In this version of the product, the withdrawal benefi t 
base is defi ned similarly as in the Remaining WBB ratchet, but with the 
difference that in this design the withdrawal benefi t base is never increased. 
Instead of permanently increasing the guaranteed withdrawal amount, on each 
policy anniversary date where the account value exceeds the withdrawal 
benefi t base, 50% of the difference is added to this year’s guaranteed amount 
as a “performance bonus”. In contrast to the previous two designs, the guar-
anteed withdrawal amounts remain unchanged in the Performance Bonus 
design. For the calculation of the withdrawal benefi t base only guaranteed 
annual withdrawals are deducted from the benefi t base, not the performance 
bonus payments.

2.2. Liability Model 

Throughout the paper, we assume that administration charges and guarantee 
charges are deducted at the end of each policy year as a percentage fadm and 
fguar of the account value. Additionally, we allow for upfront acquisition charges 
facq as a percentage of the single premium P. This leads to AV0  = P  ·  (1  –  facq). 

We denote the guaranteed withdrawal amount at time t by Wt
guar and the 

withdrawal benefi t base by WBBt. At inception, for each of the considered 
products, the initial guaranteed withdrawal amount is given by W0

guar = xWL · 
WBB0 = xWL · P. The amount actually withdrawn by the client is denoted by 
Wt

3. Thus, the state vector yt = (AVt, WBBt, Wt , Wt
guar) at time t contains all 

information about the contract at that point in time.
Since we restrict our analyses to single premium contracts, policyholder 

actions during the life of the contract are limited to withdrawals, (partial) sur-
render and death. 

During the year, all processes are subject to capital market movements. For 
the sake of simplicity, we allow for withdrawals at policy anniversaries only. 
Also, we assume that death benefi ts are paid out at policy anniversaries if  the 
insured person has died during the previous year. Thus, at each policy anni-
versary t  =  1, 2, …, T, we have to distinguish between the value of a variable 
in the state vector (·)t

– immediately before and the value (·)t
+  after withdrawals, 

(partial) surrender, and death benefi t payments.
In what follows, we fi rst describe the development between two policy anni-

versaries and then the transition at policy anniversaries for different contract 
designs. From these, we are fi nally able to determine all benefi ts for any given 
policy holder strategy and any capital market path. This allows for an analysis 
of such contracts in a Monte-Carlo framework.

3 Note that the client can chose to withdraw less than the guaranteed amount, thereby increasing the 
probability of future ratchets/bonuses. If  the client wants to withdraw more than the guaranteed 
amount, any exceeding withdrawal would be considered a partial surrender.
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2.2.1. Development between two Policy Anniversaries 

We assume that the annual fees fadm and fguar are deducted from the policy-
holder’s account value at the end of each policy year. Thus, the development 
of the account value between two policy anniversaries is given by the develop-
ment of the value St of  the variable annuity’s underlying (typically a fund or 
a basket of mutual funds) after deduction of the guarantee fee, i.e.

 1t + t= 1 exp
t

t + f f .V V S
S adm guar$ $ - -A A +-

` j  (1)

At the end of each year, the different ratchet mechanisms or the performance 
bonus are applied after charges are deducted and before any other actions are 
taken. Thus Wt

guar develops as follows:

• No Ratchet: 1t t+BB BB P= =- +W W   and  1t t+ $WL .x P= =W Wguar guar- +

• Lookback Ratchet: 1}t +BB ,W1t t+ {maxBB = +-W VA -

 and 1t +1 .t t+ $WL WL1 }t + { ,maxx BB= =-W W W -guar guar- + x V$ A  

• Remaining WBB Ratchet: Since withdrawals are only possible on policy 
anniversaries, the withdrawal benefi t base during the year develops like in 
the Lookback Ratchet case. Thus, we have 1t +1t t+BB- + }W =

-BB ,W{max VA  
and 1t + ,1 BBW-t t+ WL 0t{ }maxx V$= + +W W A -guar guar- + . 

• Performance Bonus: For this alternative a withdrawal benefi t base is defi ned, 
which is similar to the one in the Remaining WBB ratchet, but is not 
increased at policy anniversaries, i.e. 1t t+BB BB=- +W W . Additionally to the 
constant guaranteed withdrawal amount WL $ ,x P  50% of  the difference 
between the account value and the withdrawal benefi t base is added to this 
year’s guaranteed amount as a “performance bonus”. Thus, we have 1t + =W guar-

1t + ,BBW-WL 1t +0.5 .x P$ + - 0{$ V }max A -  Note that in this case, the state 
variable 1t +W guar- can be decreasing in t.

2.2.2. Transition at a Policy Anniversary t

At the policy anniversaries, we have to distinguish the following four cases:

a) The insured has died within the previous year (t  –  1, t ] 

If  the insured has died within the previous policy year, the account value is 
paid out as death benefi t. With the payment of the death benefi t, the insurance 
contract matures. Thus, t t t =t0, 0, 0, and 0.V = = =+ WA BB W+ +W guar+

b)  The insured has survived the previous policy year and does not withdraw any 
money from the account at time t

If  no death benefi t is paid out to the policyholder and no withdrawals are 
made from the contract, i.e. t ,W 0=+  we get ttV V=A A+ -, t tBB BB=+ -W W , 
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and t t .=W Wguar guar+ -  In the Performance Bonus product, the guaranteed 
annual withdrawal amount is reset to its original level since tW guar- might
have contained performance bonus payments. Thus, for this alternative we 
have t WL $ .x PW =guar+

c)  The insured has survived the previous policy year and at the policy anniversary 
withdraws an amount within the limits of the withdrawal guarantee

If  the insured has survived the past year, no death benefi ts are paid. Any 
withdrawal Wt below the guaranteed annual withdrawal amount tW guar- reduces 
the account value by the withdrawn amount. Of course, we do not allow for 
negative policyholder account values and thus get tt = { }V Wt-max 0,A V+ A - . 

For the alternatives “No Ratchet” and “Lookback Ratchet”, the withdrawal 
benefi t base and the guaranteed annual withdrawal amount remain unchanged, 
i.e. t t ,BB BB=+ -W W  and t t .=W Wguar guar+ -  For the alternative “Remaining 
WBB Ratchet”, the withdrawal benefi t base is reduced by the withdrawal 
taken, i.e. tt t }BB+ -W {= W0,max BB -W  and the guaranteed annual with-
drawal amount remains unchanged, i.e. t t .=W Wguar guar+ -  For the “Perfor-
mance Bonus”, the withdrawal benefi t base is at a maximum reduced by
the initially guaranteed withdrawal amount (without performance bonus),
i.e. ,t WLWt t{ }BB x $=+ -W { P-0, }max minBBW  and the guaranteed annual 
withdrawal amount is set back to its original level, i.e. t WL $ .x P=W guar+

d)  The insured has survived the previous policy year and at the policy anniversary 
withdraws an amount exceeding the limits of the withdrawal guarantee

In this case again, no death benefi ts are paid. For the sake of  brevity, we
only give the formulae for the case of full surrender, since partial surrender
is not analyzed in what follows4. In case of  full surrender, the complete 
account value is withdrawn, we then set tV 0=A + , tBB 0=+W , ttW V= A+ -, 
and t 0=W guar+  and the contract terminates. 

2.3. Contract Valuation

The valuation framework in this section follows in some parts the one used
in Bacinello et al. (2009) and in others Bauer et al. (2008). We take as given
a fi ltered probability space (W, S, F, P), in which P is the real-world (or physi-
cal) probability measure and (F t t 0$

0 F )  is a fi ltration with ,{ }WF0 Q=  and
t 0.F tS1 $6  We assume that trading takes place continuously over time and 

without any transaction costs or spreads. Furthermore, we assume that the 
price processes of the traded assets in the market are adapted and of bounded 
variation. Assuming the absence of  arbitrage opportunities in the fi nancial 
market, there exists a probability measure Q that is equivalent to P and under 
which the gain from holding a traded asset is a Q-martingale after discounting 

4 For details on partial surrender, we refer the reader to Bauer et al. (2008).
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with the chosen numéraire process, in our case the money-market account.
Q is called equivalent martingale measure (EMM). Details on the derivation 
and existence of an EMM, subject to the used fi nancial market model, are 
given in section 3.2.1. Assuming independence between fi nancial markets, 
policyholder behavior and mortality, as well as risk-neutrality of the insurer 
with respect to mortality and behavioral risk, we are able to use the product 
measure of  Q and the measures for mortality and policyholder behavior.
In what follows, we denote this product measure by Q and use the enlargement 
(W, S, F, P) of the fi ltered probability space (W, S, F, P), with F ( t t 0$

0 F )  being 
the enlargement of the fi ltration F in order to include the fi ltrations associated 
to the mortality and the behavior processes.

As already mentioned, for the contracts considered within our analysis, 
policyholder actions are limited to withdrawals and (partial) surrender. In our 
numerical analyses in sections 4 and 5, we do not consider partial surrender. 
To keep notation simple, we only give formulae for the considered cases (cf. 
Bauer et al. (2008) for formulae for the other cases). Additionally, we only 
consider annual policy calculation dates and assume that surrender is only 
possible at these annual dates.

We denote by x0 the insured’s age at the start of the contract, 
0xt p  the prob-

ability under Q for a x0-year old to survive the next t years, 
0

qx t+  the probability 
under Q for a (x0  +  t)-year old to die within the next year, and let w be the 
limiting age of the mortality table, i.e. the age beyond which survival is impos-
sible. The probability under Q that an insured aged x0 at inception passes away 
in the year (t, t  +  1] is thus given by $ t+00x qt xp . The limiting age w allows for 
a fi nite time horizon T = w –  x0  + 1. We denote by ,D { ,1 2! T }t ...,  the policy 
anniversary date following the death of the insured.

Further, we denote by ,S { , T1 2! ..., }t  the point in time at which the poli-
cyholder surrenders the contract. Since it is only possible to surrender the 
contract while the insured is still alive, we will interpret any value S D$t t  as 
if  the policyholder does not surrender during the contract’s lifetime; the
same applies for S Tt = . For any given value of St  and Dt , all contractual
cash fl ows and thus all guarantee payments (i.e. payments made by the insurer 
after the account value has dropped to zero) at times ,{ , ..., }i T1 2! , denoted 
by D S,i ( )G t tP , and all guarantee fee payments D S,i ( )GF t t , again at times 

,{ , ..., }i T1 2! , are specifi ed for each capital market scenario. For given St  and 
Dt , the time-t value t D S)V t,(tG  of  the GLWB rider (from the policyholder’s 

perspective) is given by the expected present value of  all future guarantee
payments D S,i ( )G t tP , ,{ , ..., }i T1 2! , minus future guarantee fees D S,i ( )G t tF , 

,{ , ..., }i T1 2! :

 t D D D tS S S

D
r-E (

t

, ,i i F) ( ) ( ) .V e G GQ
)i t

i t 1
t t t t t= --

= +

,( P FtG ` j> H/  (2)

Thus, the time-t value of  the option for a given time of  surrender St , using 
the mortality probabilities as defi ned above, is given by
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 t tt+S Sx1 ) .V p q V uu t
u t

T

x u
1

1$ $ t- -
= +

+ -0 0
,(( )t =G G/  (3)

Finally, we consider the case that the policyholder surrenders the contract at 
each anniversary t with a certain (state-independent) probability tpS , condi-
tional to the insured being alive, the contract being still in force and an account 
value exceeding zero. The time-t probability that the policyholder surrenders
at time S t>t  is therefore given by ti

S
S

p-
t ( .p1i t 1

1
= +

- SS )a k%  We denote this prob-
ability by t,t S

pS . Then, the time-t value of the GLWB rider is given by

 t t,t sp .V V
s t

T

1= +

S $ ( )s=G G/  (4)

Note that this approach assumes policyholders to behave completely path-
independently, i.e. after inception of the contract, policyholders are assumed 
to disregard the actual option value of  the GLWB rider and any market 
parameters when deciding whether or not to surrender their contract. Risks 
arising from rational policyholder behavior or, in general, any path-dependent 
behavior are not considered within this modeling approach and are not part 
of the analyses undertaken in this paper.

3. NUMERICAL ANALYSIS FRAMEWORK

3.1. Models of the Financial Market

In all of the following, we take as given the same fi ltered probability space and 
assumptions that were introduced in section 2.3. For our analyses we assume 
two primary tradable assets: the underlying fund (or basket of funds5), whose 
spot price we will denote by S (·), and the money-market account, denoted by 
B (·). The focus of our analyses lies on the risk arising if  the stochasticity of 
equity volatility is ignored. In order to separate the volatility-related effects 
from other infl uences, like e.g. stochastic interest rates, we limit the considered 
market models and only allow for interest rates that are deterministic and
constant. Furthermore, we assume the interest spread to be zero and the money-
market account to evolve at a constant risk-free rate of interest r:

 
( ) ( )

( ) ( ) (exp

dB rB dt

B B 0&

=

=

t t

t )rt
 (5)

5 In this case, the modeled volatility (or volatility process) of the underlying can be interpreted as the 
resulting volatility of the whole basket, which may not only vary if  the volatility of a specifi c asset 
changes, but also if  the basket’s composition is changed.

94838_Astin41-2_09_Kling.indd   52094838_Astin41-2_09_Kling.indd   520 2/12/11   08:322/12/11   08:32

https://doi.org/10.2143/AST.41.2.2136987 Published online by Cambridge University Press

https://doi.org/10.2143/AST.41.2.2136987


 WITHDRAWAL BENEFIT GUARANTEES IN VARIABLE ANNUITIES 521

For the dynamics of S(·), we will use two different models: fi rst we will assume 
the equity volatility to be deterministic and constant over time, and hence use 
the Black-Scholes model for our simulations. To allow for a more realistic 
equity volatility model, we will also use the Heston model, in which both, the 
underlying and its (instantaneous) variance, are modeled by stochastic pro-
cesses. There are many approaches to volatility modeling, including approaches 
that use the assumption of volatility to be uncertain – instead of being either 
deterministic or stochastic as in the two models that we consider. For an over-
view of volatility modeling, we refer the reader to Wilmott (2006).

3.1.1. Black-Scholes Model

In the Black-Scholes (1973) model, the underlying’s spot price S(·) follows a 
geometric Brownian motion whose dynamics under the real-world measure P 
are given by the following stochastic differential equation (SDE)

 BS( ( ( ( ( )dS t S t dt S t t 0 0$m=) ) ) S) , ,dW+ s  (6)

where m is the (constant) drift of  the underlying, sBS its constant volatility
and W(·) denotes a P-Brownian motion. By Ito’s lemma, S(·) has the solution 
(cf. eg. Bingham and Kiesel (2004))

 BS
BS( )S 0 -( ( , ( ) .expS t W t S2 0 0

2

$
s

= t s+) )mef o p  (7)

3.1.2. Heston Model

There are various extensions to the Black-Scholes model that allow for a more 
realistic modeling of  the underlying’s volatility. We use the Heston (1993) 
model in our analyses where the instantaneous (or local) volatility of the asset 
is stochastic. Under the Heston model, the market is assumed to be driven by 
two stochastic processes: the underlying’s price S(·), and its instantaneous 
variance V(·), which is assumed to follow a one-factor square-root process 
identical to the one used in the Cox-Ingersoll-Ross (1985) interest rate model. 
The dynamics of the two processes under the real-world measure P are given 
by the following system of stochastic differential equations:

     ( ((t ttm( ) ( ) )) ( ) ( )dS t S dt V t S t S1 0 01 2 $r r= + + - 2) ,dW dW` j  (8)

     ( ( ( (t t t t) ) ) ), ( )d V Vdt V 0 01 $k s= + nV ,dWq-_ i  (9)

where m again is the drift of the underlying, V(t) is the local variance at time t, 
k is the speed of mean reversion, q is the long-term average variance, sv is the 
so-called “vol of vol”, or (more precisely) the volatility of the variance process, 
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r denotes the correlation between the underlying and the variance process, and 
W1/2 are P-Wiener processes. The condition v2 s$

2kq  ensures that the variance 
process will remain strictly positive almost surely (cf. Cox et al. (1985)).

There is no analytical solution for S(·) available, thus numerical methods 
must be used for simulation. For our analyses, we use the quadratic exponential 
discretization scheme proposed by Andersen (2007).

3.2. Valuation

3.2.1. Equivalent Martingale Measure

In this section, we explain how the equivalent martingale measure Q that was 
introduced in section 2.3 is derived. Within our model, in order to determine the 
fair values of the assets used in the hedging strategies and of the guarantees 
to be hedged, we have to transform the real-world measure P into an equiva-
lent (local) martingale measure Q, i.e. into a measure under which the process 
of the discounted spot price of the underlying is a (local) martingale. While 
– under the usual assumptions – the transformation to such a measure is unique 
under the Black-Scholes model (cf. e.g. Bingham and Kiesel (2004)), it is not 
under the Heston model. In the Heston model, since there are two sources of 
risk, there are also two market-price-of-risk processes, denoted by g1 and g2 
(corresponding to W1 and W2). Heston (1993) proposed the following restric-
tion on the market-price-of-volatility-risk process, assuming it to be linear in 
volatility, 

 ( (t tl1 ) ) .Vg =  (10)

Provided both measures, P and Q, exist, the Q-dynamics of  S(t) and V(t), 
again under the assumption that no dividends are paid, are then given by

   1 2( ( ( ( ( (t t t t t t) ) ) ) ) ) ( )dS rS dt V WS dW S1 0 02
$r r= + + -d ,Q Q

` j  (11)

   1v(( ( (t t t t) ) ) ), ( )dV V V dW 0 0$k q s= - +** dt VQ
` j  (12)

where W1
Q(·) and W2

Q(·) are two independent Q-Wiener processes and where 

 v
v

l l( ) ( ),* *k kqq= + =
+

s sk k  (13)

are the risk-neutral counterparts to k and q (cf., for instance, Wong and Heyde 
(2006)).

Wong and Heyde (2006) also show that the equivalent local martingale 
measure that corresponds to the market price of volatility risk, (t) ,Vl  exists 
if  the inequality k v 31# l- /s  is fulfi lled. They further show that, if  an 
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equivalent local martingale measure Q exists and v vl ,$ r+ s sk  the discounted 
stock price (

(
B t
S t

)
)  is a Q-martingale.

3.2.2. Valuation of the GLWB Rider

For both equity models, we use Monte-Carlo simulations to compute the value 
of  the GLWB rider Vt

G defi ned in Section 2.3, i.e. the difference between 
expected future guarantee payments made by the insurer and expected future 
guarantee fees deducted from the policyholders’ fund assets. At inception, we 
call the contract “fair” (in an actuarial sense), if  V0

G  =  0. 

3.2.3. Standard Option Valuation

In some of the hedging strategies considered in Section 5, European standard 
(or “plain vanilla”) put and call options are used. Under the Black-Scholes 
model, closed form solutions for the price of European call and put options 
exist (cf. Black (1976)). For the Heston stochastic volatility model, Heston (1993) 
found a semi-analytical solution for pricing European call and put options 
using Fourier inversion techniques. In our analyses, we use the numerical 
scheme proposed by Kahl and Jäckel (2006).

3.3. Computation of Sensitivities (Greeks)

Where no analytical solutions for the sensitivity of the options’ or guarantees’ 
values to changes in model parameters (the so-called Greeks, cf. e.g. Hull (2008)) 
exist, we use Monte-Carlo methods to compute the respective sensitivities 
numerically. We use fi nite differences (cf. Glasserman (2003)) as approximations 
of the partial derivatives, where the direction of the shift is chosen accordingly 
to the direction of the risk, i.e. for delta we shift the stock downwards in order 
to compute the backward fi nite difference, and shift the volatility upwards for 
vega, this time to compute a forward fi nite difference.

4. CONTRACT ANALYSIS 

4.1. Determination of the Fair Guaranteed Withdrawal Rate

In this section, we fi rst calculate the guaranteed withdrawal rate xWL that 
makes a contract fair at inception, all other parameters given. In order to 
calculate xWL, we perform a root search with xWL as argument and the value 
of the option as function value. For all of the analyses we use the fee structure 
given in Table 1.

We further assume the policy holder to be a 65 years old male. For pricing 
purposes, we use best-estimate mortality probabilities given in the DAV 2004R 
table published by the German Actuarial Society (DAV).
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4.1.1. Results for the Black-Scholes model

Table 3 displays the fair guaranteed withdrawal rates for different ratchet 
mechanisms, different volatilities, different interest rate levels, and different 
policyholder behavior assumptions: We assume that – as long as their contracts 
are still in force – policyholders withdraw each year exactly the guaranteed 
withdrawal amount6. Further, we look at the scenarios no surrender (‘no surr’), 
surrender according to Table 2 (‘surr 1’) and surrender with twice the proba-
bilities as given in Table 2 (‘surr 2’).

TABLE 1

ASSUMED FEE STRUCTURE FOR ALL REGARDED CONTRACTS. 

Acquisition charges 4.00% of lump sum

Management charges 1.50% p.a. of NAV

Guarantee charges 1.50% p.a. of NAV

6 Especially for younger insured, the right to not withdraw money in order to potentially increase 
future withdrawal guarantees can be of value for the policyholder. Since the main focus of this 
paper is on the analysis of the risk resulting from stochastic volatility, we ignore this effect.

TABLE 2

ASSUMED DETERMINISTIC SURRENDER RATES.

Year Surrender rate pt
S

1 6%

2 5%

3 4%

4 3%

5 2%

≥ 6 1%

A comparison of the different product designs shows that, obviously, the high-
est annual guarantee can be provided if  no ratchet or performance bonus is 
provided at all. If  no surrender and a volatility of 20% is assumed, the guar-
antee is almost 5%. Including a Lookback Ratchet would require a reduction 
of the initial annual guarantee by 66 basis points to 4.32%. If  a richer ratchet 
mechanism is provided such as the Remaining WBB Ratchet, the guarantee 
needs to be reduced to 4.01%. About the same annual guarantee (4.00%) can 
be provided if  no ratchet is provided but a performance bonus is paid out 
annually.
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Throughout our analyses, the Remaining WBB Ratchet and the Perfor-
mance Bonus designs allow for about the same initial annual guarantee. How-
ever, for lower volatilities, the Remaining WBB Ratchet seems to be less valu-
able than the Performance Bonus and therefore allows for higher guarantees 
while for higher volatilities the Performance Bonus allows for higher guaran-
tees. Thus, the relative impact of  volatility on the price of  a GLWB depends 
on the chosen product design and appears to be particularly high for ratchet 
type products (II and III). This can also be observed comparing the No Ratchet 
case with the Lookback Ratchet. Whereas – if  volatility is increased from 15% 
to 25% – for the No Ratchet case, the fair guaranteed withdrawal decreases by 
just over half  a percentage point from 5.26% to 4.7%, it decreases by almost 
a full percentage point from 4.8% to 3.85% in the Lookback Ratchet case
(if  no surrender is assumed). The reason for this is that for the products with 
ratchet, high volatility leads to a possible lock-in of  high positive returns in 
some years and thus is a rather valuable feature if  volatilities are high.

TABLE 3

FAIR GUARANTEED WITHDRAWAL RATES FOR DIFFERENT RATCHET MECHANISMS, DIFFERENT POLICYHOLDER 
BEHAVIOR ASSUMPTIONS, DIFFERENT VOLATILITIES, AND DIFFERENT INTEREST RATE LEVELS.

 Ratchet
mechanism

  Volatility         Surrender

I
(No Ratchet)

II
(Lookback 

Ratchet)

III
(Remaining 

WBB Ratchet)

IV
(Performance 

Bonus)

sBS  =  15%
r  =  4%

No surr 5.26% 4.80% 4.43% 4.37%

Surr 1 5.45% 5.00% 4.62% 4.57%

Surr 2 5.66% 5.22% 4.83% 4.79%

sBS  =  20%
r  =  4%

No surr 4.98% 4.32% 4.01% 4.00%

Surr 1 5.16% 4.50% 4.18% 4.19%

Surr 2 5.35% 4.71% 4.38% 4.40%

sBS  =  22%
r  =  4%

No surr 4.87% 4.13% 3.85% 3.85%

Surr 1 5.04% 4.30% 4.01% 4.03%

Surr 2 5.23% 4.50% 4.20% 4.24%

sBS  =  25%
r  =  4%

No surr 4.70% 3.85% 3.61% 3.62%

Surr 1 4.86% 4.01% 3.76% 3.81%

Surr 2 5.04% 4.20% 3.94% 4.01%

sBS  =  22%
r  =  3%

No surr 4.51% 3.88% 3.66% 3.67%

Surr 1 4.68% 4.06% 3.83% 3.86%

Surr 2 4.88% 4.26% 4.02% 4.07%

sBS  =  22%
r  =  5%

No surr 5.29% 4.41% 4.06% 4.04%

Surr 1 5.45% 4.59% 4.22% 4.22%

Surr 2 5.63% 4.78% 4.41% 4.44%
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As expected, the fair guaranteed withdrawal rate is decreasing with decreas-
ing interest rates since with lower interest rates, the value of the corresponding 
guarantee is increasing. For a volatility of 22% and a scenario where no surren-
der is assumed, e.g., the fair withdrawal rate in the No Ratchet case decreases 
from 4.87% to 4.51% (increases from 4.87% to 5.29%) if  the interest rate is 
reduced to 3% (increased to 5%). Thus, there is quite a signifi cant impact of 
a change in interest rates on the fair withdrawal rate. 

If  the insurance company assumes deterministic surrender probabilities, the 
guaranteed rates always increase. The increase of the annual guarantee is rather 
similar over all product types and volatilities. The annual guarantee increases 
by around 15-20 basis points if  the surrender assumption from Table 2 is used 
and increases by about another 20 basis points if  this surrender assumption is 
doubled.

4.12.2. Results for the Heston model

We use the model parameters given in Table 4, where the Heston parameters 
are those derived by Eraker (2004), and stated in annualized form for instance 
by Ewald et al. (2009).

TABLE 4

BENCHMARK PARAMETERS FOR THE HESTON MODEL.

Parameter Numerical value

q 0.2202

k 4.75

sv 0.55

r – 0.569

V (0) q

TABLE 5

Q-PARAMETERS FOR DIFFERENT CHOICES OF THE MARKET PRICE OF VOLATILITY RISK FACTOR. 

Market price of 
volatility risk

Speed of mean 
reversion k*

Long-run local 
variance q*

l = 3 6.40 0.1902

l = 2 5.85 0.1982

l = 1 5.30 0.2082

l = 0 4.75 0.2202

l = – 1 4.20 0.2342

l = – 2 3.65 0.2512

l = – 3 3.10 0.2722
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One of  the key parameters in the Heston model is the market price of 
volatility risk l. Since absolute l-values are hard to interpret, in Table 5 we 
show the values of the long-run local variance and the speed of mean rever-
sion for different values of l. 

Higher values of  l correspond to a lower volatility and a higher mean-
reversion speed, while lower (and negative) values of  l correspond to high 
volatilities and lower speed of mean reversion. l = 2 implies a long-term vol-
atility of 19.8% and l = – 2 implies a long-term volatility of 25.1%.

In the following table, we show the fair annual guaranteed withdrawal rate 
under the Heston model for all different product designs, different interest
rate levels, the same assumptions regarding policyholder behavior as for the 
Black-Scholes model, and values of l between – 2 and 2.

TABLE 6

FAIR GUARANTEED WITHDRAWAL RATES UNDER THE HESTON MODEL FOR DIFFERENT RATCHET MECHANISMS, 
DIFFERENT ASSUMPTIONS REGARDING POLICYHOLDER BEHAVIOR, DIFFERENT VALUES OF THE MARKET PRICE 

OF VOLATILITY RISK PARAMETER l, AND DIFFERENT INTEREST RATE LEVELS.

Ratchet
mechanism

Market price
of volatility
risk                  Surrender

I
(No Ratchet)

II
(Lookback 

Ratchet)

III
(Remaining 

WBB Ratchet)

IV
(Performance 

Bonus)

l  =  2
r  =  4%

No surr 4.99% 4.36% 4.03% 4.00%

Surr 1 5.18% 4.56% 4.21% 4.22%

Surr 2 5.38% 4.76% 4.40% 4.43%

l  =  1
r  =  4%

No surr 4.93% 4.27% 3.95% 3.93%

Surr 1 5.12% 4.46% 4.13% 4.14%

Surr 2 5.31% 4.66% 4.32% 4.35%

l  =  0
r  =  4%

No surr 4.87% 4.17% 3.86% 3.84%

Surr 1 5.05% 4.35% 4.03% 4.06%

Surr 2 5.24% 4.55% 4.22% 4.27%

l  =  –1
r  =  4%

No surr 4.79% 4.05% 3.75% 3.74%

Surr 1 4.97% 4.23% 3.92% 3.95%

Surr 2 5.16% 4.42% 4.10% 4.16%

l  =  – 2
r  =  4%

No surr 4.70% 3.90% 3.62% 3.62%

Surr 1 4.87% 4.08% 3.79% 3.82%

Surr 2 5.05% 4.26% 3.97% 4.04%

l  =  0
r  =  3%

No surr 4.52% 3.93% 3.68% 3.68%

Surr 1 4.69% 4.10% 3.85% 3.86%

Surr 2 4.89% 4.30% 4.03% 4.07%

l  =  0
r  =  5%

No surr 5.31% 4.46% 4.06% 4.02%

Surr 1 5.46% 4.63% 4.23% 4.20%

Surr 2 5.64% 4.82% 4.41% 4.41%
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Under the Heston model, the fair annual guaranteed withdrawal is very 
similar as under the Black-Scholes model with a comparable constant volatility. 
E.g. for l = 0, which corresponds to a long-term volatility of 22%, the fair 
annual guaranteed withdrawal rate for a contract without ratchet is given by 
4.87%, exactly the same number as under the Black-Scholes model. In the 
Lookback Ratchet case, the Heston model leads to a fair guaranteed with-
drawal rate of 4.17%, the Black-Scholes model of 4.13%. For the other two 
product designs, again, both asset models almost exactly lead to the same 
withdrawal rates. This also holds for different interest rate levels. Hence, interest 
rate sensitivities under the Heston model lead to the same effects as observed 
under the Black-Scholes model.

Thus, for the pricing (as opposed to hedging, see Section 5) of the GLWB 
riders considered in our numerical analyses, the long-term volatility assumption 
is much more crucial than the question whether volatility should be modeled 
stochastic or deterministic.

4.2. Distribution of Withdrawals

In this subsection, we compare the (real-world) distributions of the guaranteed 
withdrawal benefi ts (given the policyholder is still alive, has not surrendered 
the contract yet and has always withdrawn exactly the guaranteed amount)
for each policy year and for all four different ratchet mechanisms that were 
presented in Section 2.

For the analyses in this subsection and the following subsections 4.3 and 
4.4, we use the Black-Scholes model assuming a constant risk-free rate of 
interest r = 4%, an underlying’s drift m = 7% and a constant equity volatility 
of sBS = 22%. For all four ratchet types, we use the guaranteed withdrawal 
rates derived in Section 4.1.1 (assuming no surrender). In Figure 1, for each 
product design we show the development of arithmetic average (diamonds), 
median (dashs), 10th-90th percentile (outlined area), and 25th-75th percentile 
(solid black area) of  the guaranteed annual withdrawal amount over time.
If two percentiles coincide, this means that the corresponding probability mass 
is concentrated on one point. In the case of no ratchet, the guaranteed with-
drawal amount is deterministic and thus all percentiles coincide. 

Obviously, the different considered product designs lead to signifi cantly 
different risk/return-profi les for the policyholder. While the No Ratchet case 
provides deterministic cash fl ows over time, the payoffs under the other prod-
uct designs are uncertain with distributions that differ quite considerably. Both 
ratchet products have potentially increasing benefi ts. For the Lookback 
Ratchet, however, the 25th percentile (lower end of the solid black area; in this 
case coinciding with the 10th percentile) remains constant at the level of the fi rst 
withdrawal amount. Thus, the probability that a ratchet never happens exceeds 
25%. The median increases for the fi rst 10 years and then reaches some con-
stant level implying that with a probability of  more than 50% no withdrawal 
increments will take place thereafter.
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Product III (Remaining WBB Ratchet) provides more potential for increas-
ing withdrawals: For this product, the 25th percentile increases over the fi rst few 
years and the median is increasing for around 20 years. In the 90th percentile, 
the guaranteed annual withdrawal amount reaches 1,500 after slightly more 
than 25 years while the Lookback Ratchet hardly reaches 1,200. On average, 
the annual guaranteed withdrawal amount more than doubles over time while 
the Lookback Ratchet doesn’t; of course this is only possible since the guar-
anteed withdrawal at t  =  0 is lower. 

A completely different profi le is achieved by the fourth product design,
the product with Performance Bonus. Here, annual withdrawal amounts are 
rather high in the fi rst years and are decreasing later. After 15 years, with a 
75% probability no more performance bonus is paid, after 25 years, with a 
probability of 90% no more performance bonus is paid. 

For all three product designs with some kind of bonus, the probability dis-
tribution of the annual withdrawal amount is rather skewed: the arithmetic aver-
age is signifi cantly above the median. For the product with Performance Bonus, 
the median exceeds the guarantee only in the fi rst year. Thus, the probability 

I (No Ratchet)

III (Remaining WBB Ratchet) IV (Performance Bonus)

II (Lookback Ratchet)

FIGURE 1: Development of percentiles, median and mean of the guaranteed withdrawal amount over 
policy years 0 to 30 for each ratchet type.
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of receiving a performance bonus in later years is less than 50%. The expected 
value, however, is more than twice as high.

4.3. Distribution of Trigger Times

In Figure 2, for each of the products, we show the probability distribution of 
trigger times, i.e. the distribution of the point in time when the account value 
drops to zero and the guarantee is triggered, given the insured is still alive
at this point in time. Any probability mass at t  =  57 (the limiting age of the 
 mortality table used is 121), refers to scenarios where the guarantee is not 
triggered.

For the No Ratchet product, trigger times vary from 7 to over 55 years. 
With a probability of 17%, there is still some account value available at the end 
of the simulation period, when the limiting age is reached. For this product, 
on the one hand, the insurance company’s uncertainty with respect to if  and 
when guarantee payments have to be paid is very high; on the other hand, 
there is a signifi cant chance that the guarantee is not triggered at all.

I (No Ratchet)

III (Remaining WBB Ratchet) IV (Performance Bonus)

II (Lookback Ratchet)

FIGURE 2: Distribution of trigger times for each of the product designs.
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For the products with ratchet features, very late or even no triggering of 
the guarantee appears to be less likely. The more upside potential a ratchet mech-
anism provides for the client, the earlier the guarantee tends to be triggered. 
While for the Lookback Ratchet still 2% of the contracts do not trigger at all, 
the Remaining WBB Ratchet almost certainly triggers within the fi rst 40 years. 
However, the mode of the trigger time is around 20 years, which is rather late.

The least uncertainty in the trigger time appears to be in the product with 
Performance Bonus. While the probability distribution looks very similar to 
that of the Remaining WBB Ratchet for the fi rst 15 years, trigger probabilities 
then increase rapidly and reach a maximum at t  =  25 and 26 years. Later trig-
gers did not occur at all within our simulation. The reason for this is quite 
obvious: The Performance Bonus is given by 50% of the difference between 
the current account value and the remaining withdrawal benefi t base. However, 
this benefi t base is annually reduced by the initially guaranteed withdrawal 
amount and therefore reaches 0 after 26 years (1 / 3.85%). Thus, after around 
20 years, almost half  of the account value is paid out as bonus every year. 
This, of  course, leads to a tremendously decreasing account value in later 
years. Therefore, there is less uncertainty with respect to the trigger time on 
the insurance company’s side. 

Whenever the guarantee is triggered, the insurance company must pay an 
annual lifelong annuity equal to the guaranteed annual withdrawal amount. 
This is the guarantee that needs to be hedged by the insurer. Thus, in the 
 following section, we have a closer look on the so-called “Greeks” of  the 
guarantees of the different product designs.

4.4. Greeks of the GLWB Rider

Within our Monte-Carlo simulation, we can calculate different sensitivities of 
the option value as defi ned in Section 2.3 with respect to changes in model 
parameters. These so-called Greeks (cf. Hull (2008)) of the option value are 
calculated for a pool of identical policies with a total single premium volume 
of US$ 100m under certain assumptions of future mortality and future sur-
render. All the results shown in this section are calculated under the same 
mortality assumptions as in Section 4.1 and the assumption that the policy-
holders do not surrender. 

In Figure 3, we show different percentiles (10th, 25th, 75th and 90th, solid lines) 
as well as the arithmetic average (dotted line) and the median (dashed line) of 
the so-called delta, i.e. the sensitivity of the option value with respect to changes 
in the price of the underlying. 

Similarly, Figure 4 and Figure 5 show the same percentiles as well as the 
arithmetic average of the so-called rho, i.e. the sensitivity of the option value 
with respect to changes in the interest rate, and vega, i.e. the sensitivity of the 
option value with respect to changes in the volatility parameter.

For the sake of comparability, at each t in each simulation path, we multi-
plied the delta with the then-current spot price of the underlying.
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Once the guarantee is triggered, no more account value is available, thus 
the GLWB rider is independent of  the underlying and therefore, from this 
point on, its delta and vega are zero. 

It is evident that (until the guarantee is triggered) all products have negative 
deltas, negative rhos and positive vegas at any point in time. The negative 
deltas (and rhos) result from the fact that the value of the guarantee increases 
with falling stock markets (or interest rates, resp.) and vice versa. At the same 
time, the value of the guarantee increases with increasing volatility leading to 
a positive vega. 

In what follows, we call the greeks “large” whenever their absolute value is 
large.

At outset, the product without any ratchet or bonus has the largest delta 
and thus the highest sensitivity with respect to changes in the underlying’s 
price. The reason for this is mainly the fact that the guarantee is not adjusted 
when fund prices rise. In this case, the value of the guarantee decreases much 
stronger than with any product where either a ratchet leads to an increasing 
guarantee or a performance bonus leads to a reduction of the account value. 

I (No Ratchet)

III (Remaining WBB Ratchet) IV (Performance Bonus)

II (Lookback Ratchet)

FIGURE 3: Development over time of the percentiles of the GLWB rider’s delta for a pool of policies 
multiplied by the current spot price of the underlying.
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On the other hand, if  fund prices decrease, the fi rst product is deeper in the 
money since it does have the highest initial guaranteed withdrawal amount. 
Over time, all percentiles of the delta in the No Ratchet case are decreasing.

For product designs II and III, the guarantee can never be far out of the 
money due to the ratchet feature. Thus delta increases in the fi rst few years. 
All percentiles reach a maximum after ten years and tend to be decreasing 
from then on.

For the product with Performance Bonus, delta and rho exposure is by far 
the lowest. This is in line with our results of the previous subsection, where 
we concluded that the uncertainty for the insurance company is the lowest in 
the Performance Bonus case. 

Observations of the rho risk for all product types are quite similar to those 
of the delta risk. The No Ratchet product shows the highest rho risk at outset 
of the contract. Over time, the level of interest rate risk (with the exception of 
a few tail scenarios in the fi rst few years) is decreasing steadily over time. Com-
paring the different product designs, the product without ratchet and the two 
products with ratchet mechanism show a rather similar level of interest rate risk. 

I (No Ratchet)

III (Remaining WBB Ratchet) IV (Performance Bonus)

II (Lookback Ratchet)

FIGURE 4: Development over time of the percentiles of the GLWB rider’s rho for a pool of policies.
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Considering vega risk, the products behave differently: Vega exposure for 
the products including a ratchet mechanism is distinctively higher since ratch-
ets (and also the Performance Bonus) gain in value if  volatility is increased. 
On the other hand, the product without ratchet is the one that is the least 
sensitive to changes in volatilities, while the Performance Bonus leads to a vega 
that is similar in shape but higher. Throughout, the two product designs with 
ratchets face roughly twice the volatility risk of the product without ratchet.

5. ANALYSIS OF HEDGE EFFICIENCY

In this section, we analyze the performance of different (dynamic) hedging 
strategies, which can be applied by the insurer in order to reduce exposure to 
fi nancial risk – and thereby the required economic capital – caused by selling 
GLWB guarantees. First, we describe the analyzed hedging strategies; we then 
defi ne the risk measures that we use to compare the (simulated) hedge effi ciency 
of the analyzed strategies, before we fi nally present the simulation results in the 
last part of this section. 

I (No Ratchet)

III (Remaining WBB Ratchet) IV (Performance Bonus)

II (Lookback Ratchet)

FIGURE 5: Development over time of the percentiles of the GLWB rider’s vega for a pool of policies.
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5.1. Hedge Portfolio

We assume that the insurer has sold a pool of policies with GLWB guarantees. 
We denote by C(·) the option value for that pool, i.e. the sum of the option 
values VG defi ned in Section 2.3 of each policy. We assume that the insurer 
cannot infl uence the value of  C(·) by changing the underlying fund (e.g. 
changing the fund’s exposure to risky assets or forcing the policyholder to 
switch to a different, e.g. less volatile, fund). We further assume that the insurer 
invests the guarantee fees in a hedge portfolio PHedge(·) and applies some hedg-
ing strategy within this portfolio. In case the guarantee of a policy is triggered, 
the guaranteed payments due are deducted from this portfolio. Thus, 

 ( ( (t t tC-) : ) )HedgeP = + P  (14)

is the insurer’s cumulative profi t/loss (in what follows sometimes just denoted 
as insurer’s profi t) at time t stemming from the guarantee and the correspond-
ing hedging strategy. 

The following hedging strategies aim at reducing the insurer’s risk by imple-
menting certain investment strategies within the hedge portfolio PHedge(·). 
Note that the value C(·) of the pool of policies at time t does not only depend 
on the number and size of contracts and the underlying fund’s current level, 
but also on several retrospective factors, such as the historical prices of the 
fund at previous withdrawal dates, and on model and parameter assumptions.

The insurer’s choice of  model and parameters can also have a signifi cant 
impact on the hedging strategies. Therefore, we will differentiate in the fol-
lowing between the hedging model that is chosen and used by the insurer,
and the data-generating model that we use to simulate the development of 
the underlying and the market prices of  European call and put options. This 
allows us, e.g., to analyze the model risk faced by an insurer basing pricing and 
hedging on a simple Black-Scholes model (hedging model) with deterministic 
volatility, whereas in reality (data-generating model) volatility is stochastic.
We assume the value of the guarantee to be marked-to-model, where the same 
model the insurer uses for hedging is used for the valuation of C(·). All other 
assets in the insurer’s portfolio are marked-to-market, which within our anal-
ysis means that their prices are determined by the (external) data-generating 
model. 

We assume that, in addition to the underlying S(·) and the money-market 
account B(·), a market for European “plain vanilla” options on the underlying 
exists. However, we assume that only options with limited time to maturity are 
liquidly traded. As well as the underlying and the money-market account, we 
assume the option prices (i.e. the implied volatilities) to be driven by the data-
generating model, and presume risk-neutrality with respect to volatility risk, 
i.e. the market price of volatility is set to zero in case the Heston model is used 
as data-generating model. Additionally, we assume the spread between bid and 
ask prices/volatilities to be zero.
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For all considered hedging strategies we assume the hedging portfolio to 
consist of  three assets, whose quantities are rebalanced at the beginning of 
each hedging period: a position of quantity ΔS(·) in the underlying, a position 
of quantity ΔB (·) in the money-market account and a position of ΔX (·) in a 
1-year ATMF straddle (i.e. an option consisting of one call and one put, both 
with one year maturity and at the money with respect to the maturity’s for-
ward). We assume the insurer to hold the position in the straddle for one 
hedging period, then sell the options at then-current prices, and set up a new 
position in a then 1-year ATMF straddle. For each hedging period, the new 
straddle is denoted by X (·). We assume that the portion of the hedge portfolio 
that was not invested in either S (·) or X (·) is invested in (or borrowed from) 
the money market. Thus, the hedge portfolio at time t has the form

 ( ( ( ( ( ( (t t t t t t tHedge ) ) ) ) ) ) ),S B XS B XP D D D= + +  (15)

where

 
(

( (
( ( ( (

t t
t t t t t

) : )
) ) ) ) )

.B
S X

B

Hedge
S XD

P D D
=

- -
 (16)

5.2. Dynamic Hedging Strategies

For both considered hedging models, Black-Scholes and Heston, we analyze 
three different types of (dynamic) hedging strategies. 

No Hedge (NH)

The fi rst strategy simply invests all guarantee fees in the money-market account. 
The strategy is obviously identical for both models. 

Delta Hedge (D)

The second type of hedging strategy uses a position in the underlying in order 
to immunize the portfolio against small changes in the underlying’s level. 
Within the Black-Scholes framework, assuming continuous trading and no 
transaction costs, such a position is suffi cient to perform a perfect hedge.
In reality however, time-discrete trading and transaction costs cause imperfec-
tions.

Using the Black-Scholes model as hedging model, in order to immunize 
the portfolio against small changes in the underlying’s price (i.e. to attain 
delta-neutrality), ΔS is chosen as the delta of C(·), i.e. the partial derivative of 
C(·) with respect to the underlying’s spot price S(·).

While delta hedging under the Black-Scholes model (given the usual 
assumptions), constitutes a theoretically perfect hedge, it does not under the 
Heston model. This leads to (locally) risk minimizing strategies that aim at 
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minimizing the variance of the portfolio’s instantaneous changes. Under the 
Heston model7, the problem

 R( ( (t t tvar ) , ) , )min S X" D Dd !P 0/_ i  (17)

has the solution (see e.g. Ewald et al. (2009)) 

 
(

(
(t

t
tv( (

( , (
(

( , (
t t

t t
t

t t)
)

)r
) )

), )
)

), )
.S

S V
S

S V
VS

Heston Heston

D
C C

2
2

2
2

= +
s

 (18)

To keep notation simple, this (locally) risk minimizing strategy using the Heston 
model is also referred to as delta hedge.

Delta and Vega (DV)

The third type of hedging strategies incorporates the use of the straddle option 
X(·), exploiting its sensitivity to changes in volatility for the sake of neutral-
izing the portfolio’s exposure to changes in volatility.

Under the Black-Scholes model, volatility is assumed to be constant; there-
fore using it to hedge against a changing volatility appears rather counterin-
tuitive. Nevertheless, following Taleb (1997), we analyze some kind of ad-hoc 
vega hedge in our simulations, which aims at compensating the defi ciencies of 
the Black-Scholes model: For the vega hedge, we do not compute the Black-
Scholes vega of the guarantee’s value C(·) and compare it to the corresponding 
Black-Scholes vega of the option’s value X(·), but, instead, we use the so-called 
modifi ed vega of  C(·) for comparison. Since all maturities cannot be expected 
to react the same way to changes in today’s volatility, the modifi ed vega applies 
a different weighting to the respective vega of each maturity. We use the inverse 
of square root of time as simple weighting method and use the maturity of 
the hedging instrument X(·), i.e. one year, as benchmark maturity. The modi-
fi ed vega of C(·) at a policy calculation date t then has the form 

 ntt( )ModVega t
1

t

T

1 t-t= +

,= /  (19)

where nt denotes the respective Black-Scholes vega of the expected discounted 
cash fl ow at time t of the pool of policies. The ratio between the modifi ed vega 
and the vega of the straddle option determines the quantity of straddle options 
in the hedge position of the portfolio.

7 Note that a (time-continuously) delta-hedged portfolio under the Black-Scholes model is already risk-
free. Therefore for the Black-Scholes model, the delta-hedging strategy coincides with the locally risk 
minimizing strategy.
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Under the Heston model, we compare the two derivatives of C(·) and X(·) 
with respect to the current local variance V(·) and then analogously determine 
the straddle option position of the hedge portfolio.

Of course, under both hedging models, the position in the underlying must 
be adjusted for the delta of the straddle position ΔX X(·).

The hedge ratios for all three strategies used in our simulations are sum-
marized in Table 7 for the Black-Scholes model, and in Table 8 for the Heston 
model.

Additionally, for all dynamic hedging strategies (Delta and Delta-Vega), 
we assume that the hedger buys 1-year European put options at each policy 
anniversary, such that the possible guarantee payments for the next policy 
anniversary are fully hedged by the put options (assuming surrender and mor-
tality rates are deterministic and known). This strategy aims at avoiding having 
to hedge an option with short time to maturity and hence having to deal with 
a potentially rapidly alternating delta (high gamma) if  the option is near the 
strike. This is possible for all four ratchet mechanisms, since the guaranteed 
withdrawal amount is known one year in advance.

TABLE 7

HEDGE RATIOS FOR ALL THREE STRATEGIES IF THE BLACK-SCHOLES MODEL IS USED AS HEDGING MODEL.
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TABLE 8

HEDGE RATIOS FOR ALL THREE STRATEGIES IF THE HESTON MODEL IS USED AS HEDGING MODEL.
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For all considered hedging strategies we assume that the hedge portfolio is 
rebalanced on a monthly basis.

5.3. Simulation Results

We use the following three ratios to compare the different hedging strategies, 
all of which will be normalized as a percentage of the sum of the premiums 
paid to the insurer at t  =  0:

• P ,E rT
TP-e7 A  the expectation of the discounted fi nal value of the insurer’s 

profi t under the real-world measure P. This is a measure for the insurer’s 
expected profi t and constitutes the “performance” ratio in our context.
A value of 1 means that, in expectation, for a single premium of 100 paid 
by the client, the insurance company’s discounted profi t is 1.

• aR( (Va- a) ) ,CTE EP1 x x x x= - - $6 @  the conditional tail expectation of 
the random variable x, where x is defi ned as the minimum of  the dis-
counted values of the insurer’s profi t/loss at all policy calculation dates, i.e. 

rt- , ,min t T0tx P= = ...,e# -  and VaR denotes the Value at Risk. This is a 
measure for the corresponding insurer’s risk to a certain hedging strategy: 
it can be interpreted as the additional amount of  money that would be 
necessary at outset such that the insurer’s portfolio would never become 
negative over the life of the contract, even if  the market develops according 
to the average of the a (e.g. 10%) worst scenarios in the stochastic model. 
Thus a value of 1 means that, in expectation over the a worst scenarios, for 
a single premium of 100 paid by the client, the insurance company would 
need to hold 1 additional unit of capital upfront.

• aRVP P PrT rT rT- - -
P a ,CTE Ea T

rT
T T T1 $P --

-=e e ee^ ^h h7 A  the  conditional 
tail expectation of the discounted profi t/loss’ fi nal value. This is also a risk 
measure which, however, focuses on the value of the profi t/loss at time T, 
i.e. after all liabilities have been met, and does not care about negative port-
folio values over time. Thus a value of 1 in the above table means that, in 
expectation over the a worst scenarios, for a premium of 100 paid by the 
client, the insurance company’s expected discounted loss is 1. By defi nition, 
of course, (a a- -) .CTE CTE rT

T1 1$x P-e^ h

In the numerical analyses below, we set a  =  10% for both risk measures and 
assume a pool of identical policies with parameters as given in Section 4 and 
assuming that the policyholders do not surrender. We assume that mortality 
within the population of insured happens exactly according to the best-estimate 
probabilities given in the DAV 2004R table. Our analysis focuses on model risk 
rather than parameter risk. Therefore, we use the same parameters for the 
capital market models for both, the hedging and the data-generating model.

We start our analyses using Black-Scholes as data-generating model with 
a risk-free rate of interest r = 4%, an underlying’s drift m = 7%, and constant 
equity volatilities of sBS = 22% and sBS = 25%, respectively. Table 9 gives the 
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results for different hedging strategies and both volatility parameters as a per-
centage of the single premium paid by the client.

If  no hedging is in place, the insurance company has a long position in the 
underlying and thus faces a rather high expected return combined with high 
risk. No hedging effectively means that the insurance company, on average 
over the worst ten percent of  the scenarios, would need additional capital 
between 15 and 28 percent of the premium volume paid by the clients in order 
to avoid a negative hedge portfolio over time. The CTE1 – a (e–rT Pt) are around 
23-25 for product I (No Ratchet) and around 13-14 for product IV (Performance 
Bonus) under both volatility parameter assumptions. The corresponding val-
ues for the products with ratchet lie in between. 

If  the insurance company sets up a delta-hedging strategy based on the 
Black-Scholes model, risk is signifi cantly reduced for all products and both 
volatility parameter assumptions. Whereas without hedging, the No Ratchet 
product appeared to be the riskiest, with delta hedging the products with a 
ratchet (Lookback Ratchet and Remaining WBB Ratchet) now are the riskiest. 
The reason for this is that delta is rather “volatile” for the products with ratchet, 
cf. Figure 3 in Section 4. Since fast changes in the delta lead to potential losses 
due to hedging errors, this increases the riskiness of the ratchet type products. 
This basically shows the effect of a high gamma (second order derivative of the 
option value with respect to the underlying’s spot price). The higher the gamma, 
the higher are discretization errors and thus the risk of a delta-only hedge. 

Comparing the left and right hand part of  Table 9, we fi nd that higher 
volatility values lead to larger hedging errors, which in turn results in a higher 
risk for the insurer. However, the hedging results show only very little sensitivity 
with respect to the volatility parameter, i.e. only a slight increase in risk and 

TABLE 9

RESULTS FOR THE TWO HEDGING STRATEGIES (NH) AND (D-BS) USING THE BLACK-SCHOLES MODEL AS 
DATA-GENERATING MODEL WITH r = 4%, m = 7%, AND VOLATILITY PARAMETERS sBS  =  22% AND sBS  =  25%.

RESULTS ARE EXPRESSED AS A PERCENTAGE OF THE SINGLE PREMIUM PAID BY THE CLIENT. 

Data-Generating model

Black-Scholes (sBS  =  22%) Black-Scholes (sBS  =  25%)

Product Product

I II III IV I II III IV

No hedge
(NH)

PE rT
TP-e7 A 10.4 7.9 6.8 4.1 10.2 7.5 6.6 4.1

(a- )CTE1 x 25.9 20.3 17.8 15.6 27.3 21.2 19.1 16.4

CTE a1
rT

TP-
-e^ h 23.2 17.8 15.3 13.0 25.1 18.9 16.8 14.1

Delta hedge 
Black-Scholes

(D-BS)

PE rT
TP-e7 A 0.4 0.3 0.3 0.2 0.6 0.4 0.4 0.3

(a- )CTE1 x 1.5 2.7 2.4 1.7 1.6 2.8 2.6 1.8

CTE a1
rT

TP-
-e^ h 1.3 2.3 2.1 1.5 1.4 2.4 2.3 1.6
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return of the insurer. Overall, delta hedging seems to be effective in this set-
ting, with risk being reduced to less than six percent when compared to the 
No hedge strategy in case of product I and to around 11 to 14 percent for the 
other three designs. This goes hand in hand with a reduction of the expected 
profi t of the insurer.

We now describe how the results of the Black-Scholes Delta hedge change 
and how other hedging strategies perform if  the Heston model with stochastic 
equity volatility is used as data-generating model instead of the Black-Scholes 
model. This gives an indication on the model risk that arises from neglecting 
stochastic equity volatility in the risk management process while, in the real 
world, volatility is stochastic. 

The following Table 10 gives the results for all considered hedging strategies 
using the Heston model as data-generating model with r = 4%, m = 7% and 
volatility parameters as stated in Table 4 as the base case. As “stressed” volatility 
parameters we use the values for mean reversion and long-term volatility that 

TABLE 10

RESULTS FOR ALL CONSIDERED HEDGING STRATEGIES USING THE HESTON MODEL AS DATA-GENERATING MODEL, 
WITH r = 4%, m = 7%, VOLATILITY PARAMETERS AS STATED IN TABLE 4 AND WITH STRESSED VOLATILITY 

PARAMETERS THAT CORRESPOND TO THE Q-PARAMETERS WITH l = – 2 AS GIVEN IN TABLE 5.
RESULTS ARE EXPRESSED AS A PERCENTAGE OF THE SINGLE PREMIUM PAID BY THE CLIENT.

Data-Generating model

Heston (base case) Heston (stressed parameters)

Product Product

I II III IV I II III IV

No hedge
(NH)

PE rT
TP-e7 A 10.3 7.5 6.5 3.8 10.3 7.2 6.5 3.7

(a- )CTE1 x 28.0 23.4 20.8 17.5 29.4 24.4 22.2 18.5

CTE a1
rT

TP-
-e^ h 25.4 20.9 18.4 15.1 27.2 22.2 20.1 16.4

Delta hedge 
Black-Scholes

(D-BS)

PE rT
TP-e7 A 0.4 0.2 0.1 0.1 0.6 0.3 0.3 0.2

(a- )CTE1 x 2.7 4.8 4.5 3.3 2.9 5.3 5.0 3.7

CTE a1
rT

TP-
-e^ h 2.4 4.3 4.1 3.0 2.6 4.8 4.6 3.4

Delta hedge 
Heston
(D-H)

PE rT
TP-e7 A 0.2 -0.2 -0.2 0.0 0.4 0.0 0.0 0.1

(a- )CTE1 x 2.6 4.8 4.5 3.3 2.9 5.3 5.0 3.7

CTE a1
rT

TP-
-e^ h 2.4 4.2 4.0 3.0 2.6 4.7 4.5 3.4

Delta-Vega
hedge 

Black-Scholes
(DV-BS)

PE rT
TP-e7 A 0.7 0.8 0.9 0.5 1.0 1.1 1.1 0.6

(a- )CTE1 x 1.6 2.1 2.5 1.8 1.6 2.4 2.9 1.9

CTE a1
rT

TP-
-e^ h 1.3 1.7 2.0 1.4 1.3 1.9 2.2 1.6

Delta-Vega
hedge Heston

(DV-H)

PE rT
TP-e7 A 0.5 0.4 0.4 0.3 0.7 0.6 0.6 0.4

(a- )CTE1 x 1.2 1.3 1.3 1.2 1.2 1.3 1.3 1.2

CTE a1
rT

TP-
-e^ h 1.0 1.1 1.1 1.0 1.0 1.1 1.1 1.1
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correspond to the Q-parameters for l = – 2 (cf. Table 5). As in Table 9, results 
are stated as a percentage of the single premium paid by the client.

The risk for the No hedge strategy increases by around 10 to 20 percent in 
comparison to the results where the Black-Scholes model is used as a data-
generating model.

For the Black-Scholes Delta hedge, by introducing stochastic volatility to the 
capital market, the insurance company’s expected profi t hardly changes. How-
ever, the insurer’s risk is increased by roughly 80 to 100 percent throughout all 
product types and for both volatility parameter assumptions. In contrast, if the 
calculation of the hedge position of the Delta hedge is performed within the 
Heston model (D-H), risk (and the expected profi t) is only reduced by a small 
amount. Thus, we can conclude that the data-generating model has a huge 
impact on the insurer’s risk (since risk hugely differs if the world behaves accord-
ing to the Heston model instead of the Black-Scholes model), whereas for a given 
data-generating model, the choice of the hedging model8 is of lesser importance.

We now analyze the two strategies in which volatility risk is also hedged. The 
DV-BS hedge reduces risk signifi cantly compared to the two delta-only hedges, 
even though the hedge is set up under a model with deterministic volatility. 
Risk is reduced by around 50% and some of the results are even better than 
a D-BS hedge under the Black-Scholes data-generating model, which is not 
surprising, as the hedge instrument used for vega hedging – a straddle option – 
also introduces a partial hedge of the gamma of the insurer’s liability. 

If  the vega hedge is set up within the Heston model, results improve even 
further, reducing risk by around 55 to 75 percent compared to the delta-only 
hedge. Especially the two designs with ratchets (II and III) seem to benefi t, as their 
risk now is only slightly higher than that of the products without ratchet mecha-
nism. Also, with this hedging strategy, sensitivity with regard to the volatility 
parameters seems to be lower than with the other strategies. Market risk within 
our model is now below 2% of the initial single premium paid by the client.

We would like to close this section with some comments on vega hedging: 
First, we would like to stress that – since on the one side there are different 
types of volatility (e.g. actual vs. implied), which can change with respect to 
their level, skew, slope, convexity, etc., and on the other side there is a great 
variety of hedging instruments in the market that exhibit some kind of sensi-
tivity to changes in volatility – a unique vega hedging strategy does not exist. 
Second, we would like to point out the shortcomings of a somewhat intuitive 
and straightforward (but unfortunately ill-advised) way of setting up a vega 
hedge portfolio within the Black-Scholes model: One could simply calculate the 
fi rst order derivate of the option value with respect to the volatility parameter 
and use this number to set up a vega hedge portfolio. However, in our model 
framework (and potentially in a real-world scenario, too) this would result in 
a rather bad hedge performance due to the following reasons: A change in 

8 Note that we here refer to the hedging model (i.e. Black-Scholes or Heston) and not the hedging 
strategy (e.g. Delta, Delta-Vega).
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TABLE 11

RESULTS OF THE BLACK-SCHOLES DELTA-VEGA HEDGE USING THE UNMODIFIED VEGA.

Data-Generating model

Heston (base case) Heston (stressed parameters)

Product Product

I II III IV I II III IV

PE rT
TP-e7 A 1.4 2.4 2.5 1.5 1.8 2.8 2.9 1.6

(a- )CTE1 x 7.4 15.6 17.5 9.6 8.3 19.4 21.1 10.7

CTE a1
rT

TP-
-e^ h 6.0 12.7 14.2 8.0 6.8 15.6 17.0 9.0

current asset volatility under the Heston model would mean a change in short-
term volatility and a much smaller change in long-term volatility. Since volatility 
(and therefore also the change in volatility) in the Black-Scholes model is 
assumed to be constant over time, the change in a long-term option’s value 
due to changes in volatility would be signifi cantly overestimated. The resulting 
hedge portfolio may lead to an increase in risk, foiling the very idea of hedging. 
To illustrate this effect, we calculated above risk measures for this “unmodifi ed 
vega” hedge using the Heston model for data generation. The results are dis-
played in Table 11 and show that risk increases (in comparison to the values of 
the Black-Scholes Delta hedge shown in Table 10) due to the “over-hedging”.

6. CONCLUSION

In the present paper, we have analyzed different types of  guaranteed with-
drawal benefi ts for life, the latest guarantee feature within variable annuities, 
both, from a client’s perspective and from an insurer’s perspective. We found 
that different ratchet and bonus features can lead to signifi cantly different 
cash-fl ows to the insured. Both, the probability that guaranteed payments have 
to be paid and their amount vary signifi cantly for the different products, even 
if  they all come at the same fair guarantee fee.

The development over time of delta, rho and vega – i.e. the sensitivity of 
the value of the guarantees with respect to changes in the underlying’s price, 
the interest rate level and the volatility, respectively – is also signifi cantly dif-
ferent, depending on the selected product features. Thus both, the constitution 
of a hedging portfolio (following a certain hedging strategy) and the insurer’s 
risk after hedging, differ signifi cantly for the different products.

We found that the fair prices of the guarantees hardly change, when stochas-
tic volatility is introduced. The insurer’s risk however changes dramatically.
We analyzed different hedging strategies (no hedging, delta only, delta and vega) 
to deal with that risk and analyzed the distribution of the insurer’s cumulative 
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profi t/loss and certain risk measures hereof. We found that the insurer’s risk 
can be reduced signifi cantly by implementing suitable hedging strategies.

We then quantifi ed the model risk by using different capital market models 
for data generation and calculation of the hedge positions. This is an indica-
tion for the model risk an insurer faces by assuming a certain model whereas 
in the real world, capital markets display different properties. In this paper, we 
focused on the risk an insurer takes by assuming constant equity volatilities in 
the risk management model whilst, in the real world, volatilities are stochastic 
and showed that this risk can be substantial. While the benefi ts of using the 
“correct” model for hedging seem not to be very distinctive (at least for delta-
only strategies), the differences between the considered data-generating models 
and the considered strategies (No hedge, delta only or delta and vega) are vast.

We were also able to show that a hedging strategy based on a modifi ed 
version of vega can lead to a signifi cant reduction of volatility risk even if  a 
hedging model is used that only allows for deterministic equity volatility.
On the other hand, a somewhat more intuitive and straightforward attempt to 
hedge against volatility risk, based on the unmodifi ed vega, can lead to results 
inferior to the case with no vega hedging at all.

Our results – in particular with respect to model risk – should be of inter-
est to both, insurers and regulators. The latter are in danger of systematically 
neglecting model risk if  hedge effi ciency is analyzed with the same model that 
the insurer uses as a hedging model.

Further research could aim at extending our fi ndings to other products or 
other capital market models (e.g. with equity jumps, stochastic interest rates 
and/or other approaches to the stochasticity or uncertainty of  actual and 
implied equity volatility). Also, a systematic analysis of parameter risk and 
robustness of  the hedging strategies against policyholder behavior appears 
worthwhile.

Finally, it would be interesting to analyze how the insurer can reduce risk by 
product design, e.g. by offering funds as an underlying that are managed to meet 
some volatility target or by reserving the right to switch the insured’s assets to 
less risky funds (e.g. bond or money market funds) if market volatilities increase. 
Such product features can already be observed in some insurance markets.
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