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Abstract

The classical model for studying one-phase Hele-Shaw flows is based on a highly
nonlinear moving boundary problem with the fluid velocity related to pressure gradients
via a Darcy-type law. In a standard configuration with the Hele-Shaw cell made up
of two flat stationary plates, the pressure is harmonic. Therefore, conformal mapping
techniques and boundary integral methods can be readily applied to study the key
interfacial dynamics, including the Saffman–Taylor instability and viscous fingering
patterns. As well as providing a brief review of these key issues, we present a flexible
numerical scheme for studying both the standard and nonstandard Hele-Shaw flows.
Our method consists of using a modified finite-difference stencil in conjunction with the
level-set method to solve the governing equation for pressure on complicated domains
and track the location of the moving boundary. Simulations show that our method is
capable of reproducing the distinctive morphological features of the Saffman–Taylor
instability on a uniform computational grid. By making straightforward adjustments, we
show how our scheme can easily be adapted to solve for a wide variety of nonstandard
configurations, including cases where the gap between the plates is linearly tapered, the
plates are separated in time, and the entire Hele-Shaw cell is rotated at a given angular
velocity.
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1. Introduction

Viscous fingering patterns that develop in a Hele-Shaw flow are very well studied
in fluid dynamics. These patterns, which arise due to the Saffman–Taylor instability
[118], occur when a viscous fluid that fills a gap between two narrowly separated
parallel plates is displaced by a less viscous fluid, which is injected into (or withdrawn
from) the cell. Provided these two fluids are immiscible, an interface forms that
is usually unstable, and develops visually striking patterns characterised by their
branching morphology. As the governing equation for the velocity of the viscous fluid
is the same as Darcy’s law, Hele-Shaw flow can be interpreted as a two-dimensional
paradigm for flow through a homogeneous porous medium. Further, the Hele-Shaw
framework has also been used to model interfacial instabilities appearing in other
scenarios including bacterial colony growth [13], crystal solidification [80], random
walk simulations [82], and the flow of electrolytes [50, 95]. We refer the reader to the
papers [18, 63, 88, 136] for a historical summary and comprehensive overview of the
broad applicability of the Hele-Shaw model.

If we assume that the viscosity of the less viscous fluid (air, say) can be neglected
entirely, then the classical model for flow in the more viscous fluid, Ω(t), is the
one-phase moving boundary problem

v = − b2

12μ
∇p, ∇ · v = 0, x ∈ Ω(t), (1.1)

where v is the fluid velocity (averaged across the distance b between the parallel
Hele-Shaw plates), p is the fluid pressure and μ is the constant viscosity, together with
the boundary conditions

p = −γκ + constant, vn = −
b2

12μ
∂p
∂n

, x ∈ ∂Ω(t), (1.2)

where γ is the surface tension, κ is the signed curvature of ∂Ω, defined to be positive
if the interface is convex from the side of the more viscous fluid, and vn is the normal
speed of the interface. Typically the flow is driven by injection or withdrawal of
fluid through a point or at infinity. This original model for two immiscible fluids was
described by Saffman and Taylor [118] in 1958, except that for the most part they do
not neglect the flow details of the less viscous fluid.

The one-phase Hele-Shaw model that we are concerned with has been applied to
three main configurations, namely an expanding bubble of air into an infinite body
of fluid, a contracting finite blob of fluid, and the displacement of viscous fluid in a
Hele-Shaw channel. In each of these three scenarios, the fluid boundary is unstable (the
Saffman–Taylor instability), and a typical outcome involves portions of the interface
propagating increasingly faster than other portions, in some cases leading to a striking
fingering pattern at the boundary. For the special zero-surface-tension case (also
known as Laplacian growth), a host of mathematical studies based mostly on con-
formal mapping, conserved moments and the Baiocchi transform have highlighted the

https://doi.org/10.1017/S144618112100033X Published online by Cambridge University Press

https://doi.org/10.1017/S144618112100033X


[3] One-phase Hele-Shaw flows 271

possible scenarios for this ill-posed model, including exact solutions and finite-time
blow-up [29–31, 34, 43, 61, 62, 69–71, 77, 92, 93]. For the more physically realistic
nonzero-surface-tension case (which is well posed), the broader strategies to study this
problem include stability analysis [94, 107], small-surface-tension asymptotics [19,
128], employing harmonic moments and conserved quantities [78] and fully numerical
methods mostly with boundary integral methods [20, 33, 67, 68, 75, 101] but also the
level-set formulation [66]. While we devote much of our attention in this paper to
certain nonstandard variations of (1.1)–(1.2), we do not provide any commentary on
how the boundary conditions (1.2) may be altered by considering additional physical
effects on the boundary apart from surface tension, including the effects of a dynamic
contact angle, thin wetting films and the related issue of kinetic undercooling [6, 8, 9,
22, 35, 36, 41, 106, 112, 117, 138, 139]. Similarly, we do not review non-Newtonian
flows, which themselves are well studied [10, 45, 47, 76, 90, 116]. Finally, our
focus is on time-dependent problems, and so we are not intending to review the
extensive literature on travelling wave problems involving a steadily propagating finger
[21, 27, 51, 52, 65, 91, 117, 123, 126, 132] or bubble [59, 64, 87, 125, 127, 129,
134, 135].

In recent years, there has been increased interest in studying how variations to the
classic Hele-Shaw model influence the development of viscous fingering patterns.
Many of these studies consider the effect of imposing a time-dependent injection
rate, specifically to control or reduce the growth of fingers [11, 12, 28, 38–40, 57,
79]. Further, much attention has been devoted to manipulating the geometry of the
Hele-Shaw cell. One of the earliest examples of this approach is by Zhao et al. [140],
who considered the classic Saffman–Taylor experiment [118] and linearly tapered
the gap between the plates in the direction of the fluid flow. Since this experiment,
numerous studies have been performed to generate further insight into how the taper
angle influences viscous fingering [2, 3, 14, 73, 86, 99]. Other popular physical
alterations to the Hele-Shaw cell include uniformly separating the plates in time [43,
44, 83, 100, 122, 133, 143], rotating the entire Hele-Shaw cell at a given angular
velocity [5, 17, 43, 119], or replacing one of the plates with an elastic membrane [1, 32,
48, 85, 89, 108–111]. All of these configurations have been shown to produce patterns
distinct from traditional Saffman–Taylor fingering.

One of the most commonly used analytical tools for studying both standard and
nonstandard Hele-Shaw flow is linear stability analysis. For the standard configuration,
Paterson [107] showed that modes of perturbation to the circular solution become
successively unstable as the bubble expands, predicting the most unstable wave
number for a given bubble radius. Further, linear stability analysis has also been
used to derive injection rates to control [81] or minimise [38] the development of
viscous fingering. For nonstandard Hele-Shaw flow, linear stability analysis provides
insight into how manipulating the geometry of the cell influences the development
of viscous fingers, including when the plates are tapered [2, 3], rotating [17], or are
being separated [122]. While linear stability analysis is a flexible tool that leads to
analytic predictions [40, 56, 79], it only leads to an accurate description of solutions
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for small time. As such, this restriction increases the need for flexible and accurate
numerical methods that can be used to understand the full nonlinear behaviour of these
problems.

Computing numerical solutions to Hele-Shaw flow (and related moving boundary
problems) can be a challenging task, as interfacial patterns develop, which requires
solving the governing equations in complicated moving domains. Such approaches
can be classified as either front tracking, where the interface is solved for explicitly, or
front capturing, where the interface is represented implicitly. For the classic Hele-Shaw
problem, as the pressure of the viscous fluid satisfies Laplace’s equation, the most
popular choice is the boundary integral method (also known as the boundary element
method), which is classified as a front tracking method. In particular, the boundary
integral method has been used to solve the classic one-phase Hele-Shaw problem
[33, 81, 79], as well as two-phase flow [74, 114], problems for which the plates are
uniformly separated in a time-dependent fashion [122, 141, 142], and Hele-Shaw flow
in channel geometry [37]. However, for nonstandard Hele-Shaw configurations, the
pressure may no longer be harmonic and the boundary integral method becomes a less
suitable tool. Another disadvantage of front tracking methods is that the mesh may
need to be regenerated as the interface evolves, in which case care must be taken to
avoid mesh distortion effects.

A popular alternative to the boundary integral method is the level-set method,
which represents the interface implicitly as the zero level set of a higher-dimensional
hypersurface [104]. A commonly cited advantage of the level-set method is that it
can easily handle complicated interfacial behaviour such as the merging and splitting
of interfaces. Another, more pertinent, advantage of the level-set method is that it
can describe the formation of complicated interfacial patterns (such as those that
occur in Hele-Shaw flow) on a uniform grid, eliminating the need to re-mesh as the
interface evolves. One of the most significant drawbacks of the level-set method is
that it can suffer from mass loss/gain in regions where the mesh is underresolved.
However, this issue can be mitigated by using the particle level-set method [42], which
uses massless marker particles to correct the location of the interface when mass is
lost/gained. The level-set method is a popular tool for studying moving boundary
problems in fluid dynamics, and has been used to investigate interfacial instabilities
that occur in Stefan problems [25, 54] and Hele-Shaw flow [66, 84]. Also, we have
applied this method to these applications, in particular to conduction-limited melting
of crystal dendrites [98], bubbles shrinking and breaking up in a porous medium [97],
and bubbles expanding in various Hele-Shaw configurations [99]. We refer to [55,
103, 121] for more information about the level-set method, including details regarding
implementation and applications.

While the level-set method is used to implicitly represent the location of the
interface, to numerically simulate Hele-Shaw flow we are also required to determine
the pressure within the viscous fluid, which involves solving a partial differential
equation in a complicated domain that changes in time. When applying the boundary
integral method for the classic Hele-Shaw problem, the solution to Laplace’s equation
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can be expressed in terms of Green’s functions. As such, the problem is reformulated
as an integro-differential equation, and nodes need only be placed on the fluid–fluid
interface. An alternative choice is to solve for the pressure using the finite-difference
method, which can be modified to solve problems on complicated domains when
coupled with level-set functions that describe the location of the interface [26, 53]. An
advantage of this approach is that the finite-difference method can be easily adapted
to wide classes of partial differential equations. Further, while the boundary integral
method can easily handle nontrivial far-field boundary conditions, their inclusion into
the finite-difference stencil is not so straightforward. One solution to overcome this
difficulty is to use a very large computational domain, but this in turn results in
significantly longer computational times. Another, more elegant, solution is to use
a Dirichlet-to-Neumann map [58], which has been shown to accurately capture the
far-field boundary condition even when the interface is relatively close to the curve on
which the Dirichlet-to-Neumann map is applied [97–99].

In this work, we provide a brief review of the one-phase Hele-Shaw model, touching
on the use of complex variable and conformal mapping techniques as well as the
mathematical consequences of including or excluding surface tension in the model. We
focus on the three well-studied scenarios, namely an expanding bubble, a contracting
blob and displacement of fluid in a linear channel. Our approach is to write down
a generalised model that allows for a number variations of the standard approach,
including a time-dependent flow rate, a spatially and/or time-dependent gap between
the plate, or rotating plates. We then present a flexible numerical framework for
solving this generalised model [97–99]. Our scheme is based on the work of Chen
[24] and Hou et al. [66], and uses a level-set-based approach to track the location of
the liquid–air interface. There are several novel aspects of our numerical framework.
The first is that our scheme overcomes the limitations of the boundary integral
method in that it can easily solve Hele-Shaw flow in nonhomogeneous media, that
is, where the plates are not parallel. Second, by representing the interface implicitly
by a higher-dimensional level-set function, we are able represent the complicated
interfacial patterns easily on a uniform mesh. By performing a series of simulations,
we show that our numerical solutions are able to reproduce the morphological
features of viscous fingering in a Hele-Shaw cell. Further, by making straightforward
adjustments, we show that our scheme can easily be modified for a wide range
of nonstandard Hele-Shaw configurations, including where the plates are linearly
tapered, uniformly separated in time, or rotated. For all the configurations considered,
our numerical solutions are shown to compare well with previous simulations and
experiments.

2. Review of one-phase Hele-Shaw model

2.1. Generalised Hele-Shaw model We consider a generalised one-phase model
of Hele-Shaw flow where the gap between the plates is either spatially or temporally
dependent such that b→ b(x, t) and the Hele-Shaw plates can rotate with angular
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velocity ω̄. We suppose an inviscid bubble is injected into the viscous fluid at rate Q(t),
and denote the domain occupied by the inviscid fluid by Ω(t). The interface separating
the inviscid bubble and the viscous fluid is denoted by ∂Ω(t). As is commonplace
with Hele-Shaw flows, we consider a depth-averaged model that comes about from
averaging Stokes flow over the gap between the plates, which itself is assumed to be
small.

Denoting the pressure, viscosity and density of the viscous fluid by P, μ and
ρ respectively, and denoting the angular velocity of the Hele-Shaw cell by ω̄, the
governing equations for the velocity of the viscous fluid are

v = − b2

12μ
(∇P − ω̄2ρrer), x ∈ R2\Ω(t), (2.1)

∇ · (bv) = −∂b
∂t

, x ∈ R2\Ω(t), (2.2)

where r = |x|. Equation (2.1) is Darcy’s law modified to include the rotational effects
of the Hele-Shaw cell, while (2.2) ensures that the mass of the fluid is conserved.
Defining a reduced pressure according to p = P − ω̄ρr2/2 and then substituting (2.1)
into (2.2) generates the governing equation for pressure,

∇ ·
( b3

12μ
∇p
)
=
∂b
∂t

, x ∈ R2\Ω(t). (2.3)

When the gap between the plates is both spatially and temporally uniform, (2.3)
reduces to Laplace’s equation ∇2p = 0. We have two boundary conditions on the
fluid–fluid interface given by

p = −γ
(
κ +

2
b

)
− ρω̄

2r2

2
, x ∈ ∂Ω(t), (2.4)

vn = −
b2

12μ
∂p
∂n

, x ∈ ∂Ω(t), (2.5)

where γ is the surface tension, κ is the signed curvature of ∂Ω, ρ is the density of
the viscous fluid, and vn is the normal speed of the interface. The dynamic boundary
condition (2.4) incorporates both the effects of surface tension and the rotation of
the Hele-Shaw plates. The kinematic boundary condition (2.5) relates the velocity of
the viscous fluid with the normal velocity of the interface. We also have the far-field
boundary condition

b3

12μ
∂p
∂r
∼ − Q

2πr
+

1
2

r
∂b
∂t

, r → ∞, (2.6)

which acts as a source/sink term at infinity. For Q > 0 (Q < 0), this condition
corresponds to the bubble area expanding (contracting) at rate Q. The inclusion of
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the ∂b/∂t in (2.6) comes about from the nonhomogeneous term in (2.3), and ensures
the change of rate of volume of the bubble is Q.

To nondimensionalise (2.3)-(2.6), we introduce r0 as the average initial radius of
the bubble and Q0 as the average injection rate over the duration of a simulation, and
b0 = b(0, 0). Then space, time, gap width, pressure and velocity are scaled according
to

x̂ =
x
r0

, t̂ =
t
T

, b̂ =
b
b0

, p̂ =
b2

0T

12μr2
0

p, v̂ =
T
r0

v, (2.7)

respectively, where T is a representative time-scale. Dropping the hats and retaining
our original variable names, (2.3)–(2.6) become

∇ · (b3∇p) =
∂b
∂t

, x ∈ R2\Ω(t), (2.8)

p = −σ
(
κ +

2R0

b

)
− ω2r2, x ∈ ∂Ω(t), (2.9)

vn = −b2 ∂p
∂n

, x ∈ ∂Ω(t), (2.10)

b3 ∂p
∂r
∼ − Q

2πr
+

1
2

r
∂b
∂t

r → ∞, (2.11)

where σ = b2
0Tγ/12μr3

0, R0 = r0/b0, and ω2 = ρb2
0Tω̄2/24μ. For this configuration, an

appropriate time-scale could be T = r2
0b0/Q0, in which case the dimensionless average

injection rate would become Q0 = 1.
In addition to this expanding bubble problem, we shall be concerned with two

other scenarios, namely the blob geometry, where viscous fluid occupies Ω(t) and is
withdrawn from a point or the cell rotates around a perpendicular axis, and the channel
geometry, where viscous fluid occupies a long rectangular channel and is displaced by
the inviscid fluid that is injected at one end. For these two scenarios, modifications to
(2.8)–(2.11) will be made as appropriate.

2.2. Complex variable formulation Before outlining our numerical scheme in
Section 3, we take some time to illustrate some of the mathematical properties
of the Hele-Shaw problem, especially in the special case of zero surface tension.
This mathematical exploration, which relies heavily on complex variable theory
and conformal mapping, is based on many previous studies in this spirit [29–31,
34, 61, 62, 69–71, 92, 93]. To keep the discussion contained and to connect with
numerical simulations described later in this paper, we restrict ourselves to examples
of three geometries (the expanding bubble problem, the blob problem and the channel
geometry).
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n(ζ) = ζ

ζ

z = f(ζ, t)

n(z) = ζfζ/|fζ |

z

Auxiliary ζ-plane Physical z-plane

FIGURE 1. A schematic diagram indicating the time-dependent complex mapping f (ζ, t) from the
auxiliary ζ plane to the physical z(= x + iy) plane. The interface δΩ(t) is the image of the unit circle |ζ | = 1,
and the complex representation of the unit normal vector can be expressed in terms of the derivative of f.

In the standard set-up in which b = 1 (parallel, stationary plates) and ω = 0 (no
rotation), equations 2.8–2.11 respectively reduce to

∇2p = 0, x ∈ R2\Ω(t), (2.12)

p = −σκ, x ∈ ∂Ω(t), (2.13)

vn = −
∂p
∂n

, x ∈ ∂Ω(t), (2.14)

∂p
∂r
∼ − Q

2πr
, r → ∞. (2.15)

It is instructive to reformulate this problem using complex variable methods as follows.
Given the fluid pressure p satisfies Laplace’s equation (2.12), it can be interpreted as
the negative real part of an analytic function W(z, t) = −p(x, y, t) + iψ(x, y, t) of the
complex variable z = x + iy. Here, W is acting as a complex potential, while ψ is a
streamfunction.

Further, there exists a time-dependent conformal map z = f (ζ, t) from the unit disc
in the plane of an auxiliary variable ζ to the fluid region in the z-plane (that is, R2\Ω(t))
and the unit circle |ζ | = 1 to the fluid interface ∂Ω(t), as depicted schematically in
Figure 1. The map will be univalent (that is, one-to-one) and analytic in the unit disc
except for at a single point, which we choose to be ζ = 0, that represents z→ ∞. In
the limit ζ → 0, we have f ∼ a(t)/ζ. By fixing a rotational degree of freedom we force
a(t) to be real. Now the complex potential W(z, t) is also an analytic function of ζ and
so we write w(ζ, t) = W(f (ζ, t), t). Given the far-field condition (2.15), which implies
W ∼ (Q/2π) log z as |z| → ∞, we now have the local behaviour w ∼ −(Q/2π) log ζ as
ζ → 0.

To formulate the kinematic condition (2.14) in terms of the map f, it is useful to
introduce some complex variable equivalents of standard concepts from vector algebra.
Firstly, a complex number can be used to represent a vector (with components given
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by the real and imaginary parts), such as the normal to an interface. The unit normal
to the unit circle |ζ | = 1 is n(ζ) = ζ, and given the interface ∂Ω is the image of the
unit circle under z = f (ζ, t), the normal n(z) in the z-plane is found by rotating n(ζ)

by the argument of fζ , thus n(z) = ζfζ/|ζfζ | (see Figure 1). Secondly, the equivalent of
the dot product between two complex numbers a and b is �{ab}. The time derivative
of the map ft at a point on the unit disc gives a velocity vector of a point on the
interface ∂Ω. Therefore the normal velocity vn of the interface δΩ as a function of ζ is
given by�{ftζfζ}/|ζfζ |, while the normal derivative ∂p/∂n is given by −�{ζWzfζ}/|fζ | =
�{ζwζ}/|fζ |. This calculation allows the kinematic condition to be represented as

�{ftζfζ} = �{ζwζ}, |ζ | = 1.

Now to reformulate the dynamic condition (2.13) we note the curvature on the fluid
boundary can be written as �{ζ(ζfζ)ζζfζ}/|ζfζ |3 on the unit circle. Given (2.13) and
the logarithmic behaviour of w as ζ → 0, we can write w = −(Q/2π) log ζ − σK(ζ, t),
where K(ζ, t) is an analytic function of ζ in the unit disc whose real part on the unit
circle |ζ | = 1 is given by the curvature κ. Combining these ideas, we arrive at the single
governing equation

�{ftζfζ} = −
Q
2π
− σ�{ζKζ}, |ζ | = 1. (2.16)

This equation is often referred to as the Polubarinova–Galin equation, especially when
surface tension is ignored [60].

We shall briefly outline five illustrative examples, chosen to demonstrate the key
features for the special case in which surface tension is ignored. We shall later refer
back to these examples when we implement our numerical scheme with surface tension
included. First, we shall consider the mapping f = a(t)/ζ + b(t)ζN , N ≥ 2 [69]. By
substituting into (2.16) withσ = 0, we find that a and b must satisfy the coupled system
of ordinary differential equations (ODEs) aȧ − Nbḃ = Q/2π, Nȧb − aḃ = 0. Say, for
definiteness, a(0) = 1 and b(0) = ε, then the second of these equations gives b = εaN ,
while the first equation integrates to give the time-dependence

t =
π

Q
(a2 − 1 − ε2N(a2N − 1)).

Thus we have an exact solution, as shown by the red dashed curves in the top panel of
Figure 2(a). The innermost curve is the initial bubble boundary. Here we have chosen
N = 5, Q = 2π and ε = 0.01, so this inner curve is a circle with a sixfold perturbation.
As time increases, the bubble expands and starts to develop six small fingers.

It is of interest to track the critical points, ζ = ζ∗, which are the points at which
fζ = 0. For this example, ζ∗ = (1/εNaN−1)1/(N+1). Clearly there are N + 1 critical points
that are equally spaced along a circle that is outside the unit circle in the ζ-plane. As
time evolves, each of these critical points moves in a straight line towards the origin
and intersects the unit circle when |ζ∗| = 1, that is, a = 1/(εN)1/(N−1). We can compute
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FIGURE 2. Solutions with and without surface tension. The red dashed curves in (a)–(e) are
zero-surface-tension solutions described by the five examples in Section 2.2. The solid blue curves are
numerical solutions, including surface tension, for the same initial conditions. For the examples in (a),
(c) and (d), the zero-surface-tension solutions involve a form of finite-time blow-up characterised by
cusps forming on the interface; the inclusion of surface tension regularises these singularities, allowing
the full solution to continue past these blow-up times. For the examples in (b) and (e), blow-up in the
zero-surface-tension solution is prevented by the presence of a logarithmic singularity; here the numerical
solution with small surface tension remains close to the zero-surface-tension solution for small time and
then deviates away so that the long-time behaviour is different. Each case includes a sketch of the ζ-plane
with the unit circle and critical points and logarithmic singularities indicated by solid red dots and black
diamonds, respectively. Note that in (b) we do not plot the critical points at t = 0 as they are outside the
field of view here. For (a)–(e), as time increases, the critical points and logarithmic singularities move
towards the unit circle (colour available online).
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the exact time when this occurs, namely,

t∗ =
π

Q

( N − 1
N(εN)2/(N−1)

− 1 + ε2N
)

.

For the case in Figure 2(a), for which N = 5, we can see the six critical points (red
dots) in the bottom panel moving towards the unit circle. At t = t∗, there is finite-time
blow-up, characterised by six cusps of order 3/2 along the bubble boundary, which
we can see in the top panel of Figure 2(a) (a cusp of order 3/2 is characterised by
a curvature singularity that appears locally like two branches of y2 = x3 meeting at a
cusp, suitably scaled and rotated). The solution cannot be continued past t = t∗ as the
conformal mapping ceases to be univalent.

The second zero-surface-tension example we consider is for the map
f = a(t)/ζ + log(ζ − d(t)) − log(ζ + d(t)) [69]. Again, the geometry is an expanding
bubble, but this time the behaviour is qualitatively different. By substituting this map
for f into (2.16) with σ = 0, we find that a and d satisfy the coupled system

ȧ =
Q
2π

ad4 − a + 4d
a2d4 − (2d − a)2 , ḋ = − Q

2π
d(d4 − 1)

a2d4 − (2d − a)2 .

For initial conditions, we choose both a(0) > d(0) > 1 so the denominators are initially
positive, which means that ȧ > 0 and ḋ < 0 for small time. To determine the precise
time-dependent behaviour, one option is to integrate this system numerically, which
demonstrates that a(t) continues to increase while d(t) decreases towards d = 1 as t
increases. To make progress analytically, by dividing one equation by the other, we
can also derive a first-order ODE with exact solution

a =
1
d

[
ln
( (d(0)2 − 1)(d2 + 1)
(d(0)2 + 1)(d2 − 1)

)
+ a(0)d(0)

]
,

which shows that a ∼ − ln(d − 1) as d → 1+. Clearly the map has logarithmic sin-
gularities at ζs = ±d and critical points where ζ∗ = ±d

√
a/
√

a − 2d. For sufficiently
large time, we have a − 2d > 0 and so both ζs and ζ∗ lie on the real ζ-axis and move
towards the unit circle as t → ∞. Since |ζ∗| ∼ d + d2/a as a→ ∞, we see the critical
points ζ∗ are further away from the unit circle than the logarithmic singularities ζs,
and therefore finite-time blow-up is avoided (each logarithmic singularity asymptotes
to the unit circle, but does not cross it; see Howison et al. [72], and the discussion on
the channel problem at the end of this section).

This second example is illustrated in Figure 2(b) using a(0) = 4, d(0) = 10/3 and
Q = 2π. In the top panel, the exact solution is denoted by the dashed red curves.
Initially the bubble boundary looks oval in shape on this scale. As time increases
the interface expands, leaving two fjords behind, centred both on the positive and
negative x-axes. In the bottom panel, both the critical points (red dots) and logarithmic
singularities (black dots) are indicated in the ζ-plane. As just described, even though
the critical points move towards the unit circle, they are further away than the
logarithmic singularities; therefore, the logarithmic singularities have the effect of
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shielding the critical points and preventing blow-up. An interesting observation is
that each of the two fjords appears to take the shape of a classical Saffman–Taylor
finger [118]. To see this, note that on the unit circle near ζ = 1 we can derive a
local analysis by setting ζ = 1 + iη, so that f ∼ a + log(1 − d + iη). Taking real and
imaginary parts and then eliminating η gives x = constant − ln(cos y), which is the
famous Saffman–Taylor finger shape with width π.

The third example is probably the best-known example of an exact solution in
Hele-Shaw flow. Here suppose the geometry is such that there is a blob of fluid in
the Hele-Shaw cell, occupying a region Ω(t), surrounded by inviscid fluid. If the fluid
is withdrawn from a point in space (the origin, say), then the blob boundary contracts
and we have the less viscous fluid displacing the more viscous fluid. The governing
equations (2.12)–(2.14) apply in Ω(t), while (2.12) is replaced by ∂p/∂r ∼ Q/2πr
as r → 0. The map we have in mind here for this example is the quadratic map
f = a(t)ζ + b(t)ζ2, where the initial conditions a(0) = 1, b(0) = ε � 1 correspond to
an initial blob boundary that is a perturbed circle [113]. Substituting this map into the
Polubarinova–Galin equation with σ = 0 leads to a coupled system of integrable odes
with the exact solution

a2b = ε, t =
π

Q
(1 − a2 + 2(ε2 − b2)).

There is one critical point ζ∗ = −a3/2ε, which is initially located in the ζ-plane at
−1/2ε and moves towards the origin as time evolves and a decreases. At t = t∗ this
critical point hits the unit circle, where

t∗ =
π

Q

(
1 + 2ε2 − 9

8
(2ε)2/3

)
,

causing a cusp of order 3/2 to form on the blob boundary. This behaviour is
illustrated in Figure 2(c) for ε = 0.1 and Q = 2π. in the left panel, the blob boundary
is represented by the dashed red curves. Initially, this curve appears circular, as the
perturbation is very small. For intermediate times, the left portion of the boundary
begins contracting faster than the remainder of the boundary until the cusp forms,
corresponding to finite-time blow-up. On the right panel of Figure 2(c) the location
of the fixed point in the ζ-plane is represented (red dots) for the same three times
that the boundary is drawn for in the left panel. Here we see that the critical point
touches the unit circle at the precise time that finite-time blow-up occurs. Note that
for polynomial maps like the one in this example, it has been proven that a cusp will
always form before the interface reaches the sink [61]; other explicit solutions exist
whose boundary evolves to the location of the sink before or at the same time as cusp
formation (see [115], for example). The time reversibility of the system (2.12)–(2.15)
in the absence of surface tension (σ = 0) implies that the only initial condition that
will lead to the removal of all fluid is a disc centred on the sink, that is, f (ζ, t) = a(t)ζ.

For completeness we include two more examples, providing only the key details.
These examples are for the geometry of flow in a Hele-Shaw channel, which we fix
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to be 2π units wide. For the fourth example, the map takes f = − log ζ + a(t) + b(t)ζ,
with initial conditions a(0) = 0, b(0) = ε � 1, corresponding to a slightly perturbed
flat interface [72]. This case is analogous to the first and third examples above. The
functions a and b satisfy the coupled system of odes with an exact solution

a − ln b = − ln ε, t =
π

Q
(2a − b2 + ε2).

There are critical points at ζ∗ = 1/b that move towards the origin as b increases and
ultimately intersect the unit circle at t∗ = π(2 ln(1/ε) − 1 + ε2)/Q, at which time a 3/2
cusp forms on the interface. This example is illustrated in Figure 2(d), where the
interface profiles are shown in the top panel as red dashed curves. In the bottom panel
the critical points are indicated (red dots). Here ε = 0.1 and so the critical point is
initially at ζ∗ = 10 and ultimately hits the unit circle at t = t∗.

Finally, the fifth example is for f = − log ζ + a(t) + α log(ζ + d(t)) with initial
conditions a(0) = 0, d(0) = 1/ε � 1 [72], which is analogous to the second example
above. There is a critical point at ζ∗ = d/(α − 1) and a logarithmic singularity at
ζs = −d. We shall not include the details here, but it is possible to derive a coupled
system of odes for a(t) and d(t) that can be solved numerically or reduced further
analytically by dividing one by the other. For 0 < α < 2 the singularity ζs is always
smaller in magnitude, and therefore closer to the unit circle, than ζ∗. As a result, it
turns out that d is a decreasing function and that ḋ → 0+ as d → 1+. Therefore, ζ∗

and ζs do not intersect the unit circle but in fact approach it asymptotically as t → ∞.
As such, there is no cusp formation, and instead the proximity of ζs to the unit circle
results in the interface forming a long finger, whose width is (2 − α)π. In Figure 2(e)
we present an example with ε = 0.2, α = 1.2. The interface in the top panel, given by
the dashed red curves, clearly approaches a finger in shape. The bottom panel shows
the critical point (red dots) moving towards the unit circle, but always further away
than the logarithmic singularity (black dots).

In each of Figure 2(a) (top panel), (b) (top panel), (c) (left panel), (d) (top panel)
and (e) (top panel), we have included numerical solutions drawn as solid blue curves
that are computed using the same initial conditions but with a nonzero value of surface
tension. While we discuss these (more physically realistic) solutions at various points
later in the paper, it is worth repeating here that nonzero surface tension is required
in the model in order to relate to the real physics of a Hele-Shaw experiment. The
historical interest in complex singularities and finite-time blow-up is therefore mostly
of a mathematical nature.

3. Numerical scheme

3.1. The level-set method To numerically solve (2.8)–(2.11), following the method-
ology of Osher and Sethian [104], we construct a level-set function φ such that the
fluid–fluid interface ∂Ω is the zero level set of φ or

∂Ω(t) = {x | φ(x, t) = 0}.
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If the interface has the normal speed vn, then we wish to construct a speed function, F,
such that vn = F on x ∈ ∂Ω(t) and is continuous over the entire computational domain.
Thus φ satisfies the level-set equation

∂φ

∂t
+ F|∇φ| = 0. (3.1)

We discuss how F is computed in Section 3.2. To solve (3.1), we approximate the
spatial derivatives using a second-order essentially nonoscillatory scheme (see the
papers by Osher and Fedkiw [102, Ch. 3] and Sethian [120, Ch. 6] for details), and
integrate in time using second-order total variation diminishing Runge–Kutta, which
is performed by taking two forward Euler steps

φ̃(n+1) = φ(n) − ΔtF(n)|∇φ(n)|,
φ(n+2) = φ̃(n+1) − ΔtF(n+1)|∇φ̃(n+1)|,

and then taking an averaging step φ(n+1) = (φ(n) + φ(n+2))/2. We note that the inclusion
of the second-order curvature term, κ, in the dynamic boundary condition (2.4) would
typically require Δt ∼ Δx2. However, we find that for the results presented in this work,
the surface tension parameter is sufficiently small such that we can maintain numerical
stability by choosing Δt = Δx/(4 max |F|).

The level-set function φ is initialised as a signed distance function satisfying

φ =

⎧⎪⎪⎨⎪⎪⎩
d if x ∈ R2\Ω(t),
−d if x ∈ Ω(t),

(3.2)

where d is the minimum distance between x and ∂Ω, via the method of crossing
times [102, Ch. 7]. That is, we advect φ in the normal direction to the interface by
solving (3.1) with F = 1 and determine the point in time where each value of φ crosses
from positive to negative. This process is repeated for F = −1. To reduce numerical
error, which can result when the gradient of φ becomes excessively small or large,
we periodically perform reinitialisation in order to keep φ approximately equal to a
signed distance function, which satisfies |∇φ| = 1, over the duration of a simulation.
Reinitialisation is performed by solving

∂φ

∂τ
+ S(φ)(|∇φ| − 1) = 0, (3.3)

where

S(φ) =
φ√

φ2 + Δx2
,

to steady state. Here τ is a pseudo-time variable where Δτ = Δx/5. We find that
performing reinitialisation every five time steps is sufficiently frequent.

While the level-set method has successfully been used as a framework for studying
a variety of moving boundary problems, a limitation of the method is that it can suffer
from volume loss or gain in regions where the mesh is underresolved. In an effort
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to alleviate this problem, Enright et al. [42] proposed the particle level-set method,
which combines the Eulerian based level-set method with a marker-particle-based
Lagrangian approach. We briefly describe the algorithm here, and refer the reader
to Enright et al. [42] for a more comprehensive description, as well as examples
illustrating the effectiveness of the particle level-set method.

The method works by placing massless particles in the regions where φ > 0 and
φ < 0, that is, on both sides of the interface, which are referred to positive and negative
particles, respectively. We denote rp as the minimum distance between the interface
and the particles’ location. The marker particles are advected according to

dxp

dt
= Fn, (3.4)

where xp is the location of the particle and n = ∇φ/|∇φ| is a unit vector that reduces
to the outward-facing normal on the interface. If a particle crosses the interface,
this indicates that mass has been lost (or gained). We mitigate this error by locally
rebuilding the interface by constructing a local level-set function from the four adjacent
nodes to the particle defined as φp(x) = sp(rp − |x − xp|), where sp = 1 and −1 for
positive and negative particles, respectively. Using φp, φ is corrected using

φ =

⎧⎪⎪⎨⎪⎪⎩
φ+ if |φ+| ≤ |φ−|,
φ− if |φ+| > |φ−|,

where φ+ = max(φp, φ+) and φ− = min(φp, φ−). This procedure is performed both
when the level-set equation (3.1) is solved and when reinitialisation is performed.

3.2. Solving for F From the kinematic boundary condition (2.10), we have the
expression for the speed function

F = −b2∇p · n, x ∈ R2\Ω(t), (3.5)

recalling that F is required to solve the level-set equation (3.1) and n = ∇φ/|∇φ|
reduces to the outward-facing normal on the interface. Thus by solving (3.5), we find
that F = vn on x ∈ ∂Ω(t), recalling that vn is the normal speed of the interface. Further,
(3.5) provides a continuous expression for F in the viscous fluid region. The derivatives
in (3.5) are evaluated using central differencing. However, to solve (3.1) we require an
expression for F over the entire computational domain. It was proposed by Moroney
et al. [96] that the speed function be extended into the inviscid fluid region by solving
the biharmonic equation

∇4F = 0, x ∈ Ω(t). (3.6)

This ensures that F = vn is satisfied on the interface and gives a continuous expression
for F away from the interface. For the purpose of discretisation, the sign of φ is used to
determine nodes inside the interface that need to be included in the biharmonic stencil.
This discretisation results in a symmetric system of linear equations that is solved using
LU decomposition. As such, the location of the interface does not need to be known
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FIGURE 3. An illustration of the velocity extension process used to extend F to be defined over the entire
computational domain. (a) shows an example function that is undefined where x ∈ Ω. (b) shows this
regions being “filled in’ by solving the biharmonic equation (3.6). This gives us a differentiable extension
of F over the entire domain (colour available online).

explicitly, similar to the level-set method itself. This velocity extension process is a
variant of a thin plate spline in two dimensions [15]. To illustrate the velocity extension
process, we consider an example F defined in the region Ω(t), shown in Figure 3(a).
The red line represents the fluid–fluid interface ∂Ω(t). Figure 3(b) shows F after the
biharmonic equation (3.6) is solved. We see that this velocity extension process gives
a differentiable expression for F over the entire computational domain, which can be
used to solve (3.1).

3.3. Solving for pressure To evaluate the speed function F, we must first compute
the pressure field. We consider (2.8)–(2.11) in polar coordinates with p = p(r, θ, t), and
the location of the interface is given by r = s(θ, t). Thus (2.8) becomes

1
r
∂

∂r

(
rb3 ∂p

∂r

)
+

1
r2

∂

∂θ

(
b3 ∂p
∂θ

)
=
∂b
∂t

, r > s(θ, t). (3.7)

For nodes away from the interface, the derivatives in (3.7) are discretised using a stan-
dard five-point stencil, illustrated in Figure 4(a). Denoting β = rb3, the r-derivatives in
(3.7) are approximated via

1
r
∂

∂r

(
β
∂p
∂r

)
→ 1

ri,jΔr

(
βi+1/2,j

pi+1,j − pi,j

Δr
− βi−1/2,j

pi,j − pi−1,j

Δr

)
, (3.8)

where βi+1/2,j = (βi+1,j + βi,j)/2 and βi−1/2,j = (βi−1,j + βi,j)/2. The derivatives in the
θ-direction are discretised in a similar fashion.

As illustrated in Figure 4(b), special care must be taken when solving for nodes
adjacent to the interface. Suppose that the interface is located at r = rI with ri−1,j <
rI < ri,j, where the nodes ri−1,j and ri,j are in the inviscid and viscous fluid regions,
respectively. When discretising (3.7), we can no longer incorporate pi−1,j into our
finite-difference stencil as it is not in the domain x ∈ R2\Ω(t). Instead, we define a
ghost node at rI (denoted by the red dots in Figure 4(b)) whose value is pI . By noting
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FIGURE 4. An illustration of how the pressure of the viscous fluid is solved for using the finite-difference
method. (a) For nodes away from the interface, we solve for pressure (3.7) using a standard five-point
finite-difference stencil (3.8). (b) However, this stencil cannot be used for nodes adjacent to the interface,
as in this case the southern node is not in the domain x ∈ R2\Ω(t), and thus cannot be used in our stencil.
Instead we impose a ghost node, denoted by the red dots, on the interface whose location corresponds to
the point where φ = 0. The value at this ghost node is determined from the dynamic boundary condition
(2.9). This leads to the nonstandard finite-difference stencil (3.9) (colour available online).

that φ is a signed distance function, the distance between ri,j and rI is computed via

h = Δr
∣∣∣∣∣ φi,j

φi−1,j − φi,j

∣∣∣∣∣.
As per Chen et al. [25], our finite-difference stencil becomes

1
r
∂

∂r

(
β
∂p
∂r

)
≈ 2

ri,j(Δr + h)

(
βi+1/2,j

pi+1,j − pi,j

Δr
− β̂i−1/2,j

pi,j

h

)

+
2

ri,jh(Δr + h)
β̂i−1/2,jpI . (3.9)

Here β̂i−1/2,j = (βi,j + βI)/2 where βI is the value of β on the interface. When the
node and interface are sufficiently close together such that h < Δr2, we set pi,j = pI .
A similar procedure is applied if the interface lies between ri,j < rI < ri+1,j and in the
azimuthal direction.

The value of pI is computed from the dynamic boundary condition (2.9). To
determine the value of pI , we first compute the curvature of φ via κ = ∇ · n over
the entire computational domain, recalling that n = ∇φ/|∇φ|. The value of κ on the
interface is computed via linear interpolation using κi,j and κi−1,j, leading to

pI = −σ
(
κi,j −

h(κi,j − κi−1,j)

Δr
+

2
b(rI , θj)

)
− ω2r2

I .

For more information about solving both elliptic and parabolic problems in irregular
domains using the finite-difference method in conjunction with level-set functions,
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we refer the reader to Coco and Russo [26] and Gibou et al. [53] (and the references
therein). Once the finite-difference stencil has been formed, the resulting system of
linear equations is solved using the LU decomposition.

3.3.1. Far-field boundary condition. To incorporate the far-field boundary condi-
tion (2.11) into our finite-difference stencil, we utilise a Dirichlet-to-Neumann map.
This map is implemented by imposing an artificial circular boundary at r = R such
that R > s(θ, t). By only considering the region s(θ, t) ≤ r ≤ R, we seek a solution to
(2.8) of the form

p̂(r, θ, t) = A0 −
Q
2π

log r +
r2

4
∂b
∂t
+

∞∑
n=1

r−n(An cos nθ + Bn sin nθ), (3.10)

where A0, An, and Bn are unknown, and p̂ = b3p. The expansion (3.10) assumes that
b is spatially uniform in r ≥ R so that p̂ satisfies the appropriate Poisson equation.
Considering the value of pressure on the artificial boundary, suppose that p̂(R, θ, t) can
be represented as a Fourier series

p̂(R, θ, t) = a0 +

∞∑
n=1

an cos nθ + bn sin nθ, (3.11)

where

a0 =
1

2π

∫ 2π

0
p̂(R, θ, t) dθ, an =

1
π

∫ 2π

0
p̂(R, θ, t) cos nθ dθ,

bn =
1
π

∫ 2π

0
p̂(R, θ, t) sin nθ dθ.

By equating (3.11) with (3.10) evaluated at r = R, we find that

A0 = a0 + (Q/2π) log R − ḃR2/4, An = Rnan and Bn = Rnbn.

To incorporate our expression for p̂ into our finite-difference stencil, we differentiate
(3.11) with respect to r and evaluate it at r = R to give

∂

∂r
p̂(R, θj) = −

Q
2πR
+

R
2
∂b
∂t
−
∞∑

n=1

n
R

(an cos nθj + bn sin nθj).

By approximating the integrals in our expressions for an and bn as

an ≈
Δθ

π

m∑
k=1

p̂(R, θk) cos nθk and bn ≈
Δθ

π

m∑
k=1

p̂(R, θk) sin nθk,

we have

∂

∂r
p̂(R, θj) ≈ −

Q
2πR
+

R
2
∂b
∂t
− Δθ

Rπ

m∑
k=1

vjkp̂(R, θk),
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where

vjk =

∞∑
n=1

n cos(n(θk − θj)).

Defining I as the outermost index at which r = R, then our expression for ∂p/∂r is
incorporated into our finite-difference stencil,

1
r
∂

∂r

(
β
∂p
∂r

)
→ 2

RΔr

[
− βI−1/2,j

pI,j − pI−1,j

Δr
+ R
{
− Q

2πR
+

R
2
∂b
∂t
− b3Δθ

Rπ

m∑
k=1

wjkpI,k

}]
,

recalling that β = rb3.
As an aside, we note this procedure can be adapted to model a Dirichlet boundary

condition of the form p ∼ p∞ as r → ∞ where p∞ is prescribed. This type of boundary
condition would be more appropriate for the model of a Stefan problem [98], where
now p would represent temperature that is prescribed in the far field. Assuming that b
is constant, then (3.10) becomes

p = p∞ + A0 ln r +
∞∑

n=1

r−n(An cos nθ + Bn sin nθ).

By following the same steps outlined above, we have

∂

∂r
p(R, θj) =

a0 − p∞
R ln R

−
∞∑

n=1

n
R

(an cos nθj + bn sin nθj).

This expression is then incorporated into our finite-difference stencil as per usual.

3.4. General algorithm We summarise our numerical algorithm as follows.

Step 1 For a given initial interface s(θ, 0), initialise φ as a signed distanced function
such that it satisfies (3.2) using the method of crossing times.

Step 2 Place marker particles around the interface, noting which side of the interface
they are on, as well as their minimum distance from the interface.

Step 3 Solve for pressure in the domain x ∈ R2\Ω using the procedure described in
Section 3.3.

Step 4 Compute F according to (3.5), and then extend F into the region x ∈ Ω by
solving the biharmonic equation (3.6).

Step 5 Using F, update both φ and the marker particles by solving (3.1) and (3.4),
respectively.

Step 6 Correct φ (if necessary) using the marker particles.
Step 7 Reinitialise the level-set function by solving (3.3), and then correct φ using

the marker particles.
Step 8 Repeat steps 2–7 until t = tf .
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4. Numerical results

In this section we present a selection of results demonstrating the capabilities of
the numerical scheme presented in Section 3. We show how our framework can be
modified to solve for a wide range of different configurations of the Hele-Shaw cell,
and provide examples illustrating that simulations are capable of producing solutions
consistent with previous experimental and numerical results.

4.1. Expanding bubble problem We first consider the standard Hele-Shaw prob-
lem in which the inviscid bubble is injected into the viscous fluid, while the plates are
parallel and stationary such that b = 1 and ω = 0.

4.1.1. Numerical validation. As a preliminary test for our scheme, we demonstrate
that numerical solutions converge for a sufficiently refined grid. To do so, we perform
simulations with the initial condition

s(θ, 0) = 1 + ε cos mθ, (4.1)

where ε = 0.1, m = 6, on the computational domain 0 ≤ r ≤ 7.5 and 0 ≤ θ < 2π,
performed using an increasingly refined mesh. These simulations, shown in Figure 5,
indicate that the interfacial profiles are converging as the mesh is refined, and that grid
independence is achieved, at this scale, using 750 × 628 equally spaced nodes. Further,
our solutions appear to maintain sixfold symmetry over the duration of the simulation.

We also demonstrate that our use of the Dirichlet-to-Neumann map, described in
Section 3.3.1, results in the bubble’s volume changing at rate Q. To do so, we consider
three different injection rates. The first is the constant injection rate Q = 1, the second
is the sinusoidal injection rate,

Q = 1 + 0.2 sin(4πt/tf ),

and the third is the piecewise rate

Q =

⎧⎪⎪⎨⎪⎪⎩
0.8 t ≤ tf /2,
1.2 t > tf /2.

We find that the rate of change of volume computed from the numerical simulations
compares well with the corresponding exact rate of expansion, shown in Figure 6(a).
The relative error, shown in Figure 6(b), suggests that over the duration of a simulation,
we experience mass loss of only approximately 0.1%. This result suggests that the
Dirichlet-to-Neumann map correctly ensures that the bubble expands at the correct
rate for both constant and time-dependent Q.

4.1.2. Effect of surface tension. Surface tension, modelled via the inclusion of the
signed curvature term in the dynamic boundary condition (2.9), acts to regularise
the Hele-Shaw model. As shown in Section 2.2, in the absence of surface tension,
exact solutions exist that exhibit very different behaviour (finite-time cusp formation
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FIGURE 5. Convergence test of numerical scheme for the evolution of a bubble with initial condition
(4.1), where solutions are computed using (a) 350 × 293, (b) 550 × 461, (c) 750 × 628, and (d) 850 × 712
equally spaced nodes. Additionally, Q = 1, σ = 5 × 10−4, ω = 0 and tf = 100. Simulations are performed
on the domain 0 ≤ r ≤ 7.5 and 0 ≤ θ < 2π. Solutions are plotted in time intervals of t = 10.

or finger formation) despite initial conditions that are arbitrarily close; hence the
zero-surface-tension problem is ill-posed. Adding surface tension removes the possi-
bility of cusp formation; in Figure 2, we have included solutions for small but nonzero
surface tension, computed using the method described in Section 3, for each of the
cases described in Section 2.2. With nonzero surface tension, the interface remains
smooth and solutions exist for all time, or, in the case of the finite blob (Figure 2)(c),
until the interface intersects the point at which fluid is being withdrawn.

Linear stability analysis [107] indicates that increasing the surface tension param-
eter σ acts to make the interface less unstable, and nonlinear numerical simulations
and experiments [24, 33, 66] show that increasing the injection rate, which is
mathematically equivalent to decreasing the dimensionless surface tension σ, results
in an increase in the number of fingers that develop. We perform numerical simulations
for Q = 1 with values of surface tension varying over several orders of magnitude with
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FIGURE 6. (a) The rate of change of volume, V̇ , of numerical solution with constant (red), periodic (blue)
and piecewise (yellow) injection rates. Dotted black lines denote the corresponding exact rate of change
of volume. (b) Corresponding relative error. Simulations are performed on the domain 0 ≤ r ≤ 7.5 and
0 ≤ θ < 2π using 750 × 628 equally spaces nodes with the initial condition (4.1). The surface tension
parameter is σ = 5 × 10−4 and the final time of simulations is t = 100 (colour available online).

the initial condition

s(θ, 0) = 1 + ε(cos mθ + sin nθ), (4.2)

where ε = 0.1, m = 3 and n = 2. These numerical simulations, shown in Figure 7, are
able to reproduce the key morphological features of the Saffman–Taylor instability. For
each value of σ considered, the interface is unstable, and the sinusoidal perturbations
in the initial condition (4.2) grow and evolve into viscous fingers. As σ is decreased,
the interface becomes more unstable and the number of fingers that develop over the
duration of a simulation increases due to tip-splitting occurring (see (1) in Figure 7(b),
for example). Additionally, our simulations are able to produce so called “shielding”
behaviour, where neighbouring fingers can block one another off, which in turn results
in fingers retracting (denoted by (2) in Figure 7(c)). This behaviour is known to occur
experimentally (see [107] for example). Finally, when surface tension is sufficiently
small, “feathering” can occur, when a finger does not strictly tip-split, but instead
develops ripples along one of its sides as it expands (denoted by (3) in Figure 7(d)).
Again this behaviour has been observed in the experiments (see [24]).

4.2. Tapered plates One of the more popular modifications to the Hele-Shaw cell
(particularly in recent years) is to consider that the plates of the Hele-Shaw cell are
no longer parallel but instead linearly tapered (either converging or diverging) in the
direction of the flow. The concept was first introduced by Zhao et al. [140], who
considered tapered plates in a channel geometry, discussed further in Section 4.4.
Imposing tapered plates in radial geometry has been studied using linear stability
analysis [3], weakly-nonlinear stability analysis [7], experimentally [3, 14] and by
numerical simulations [73]. Results indicate that tapering the gap between the plates
such that they either converge or diverge can have a stabilising or destabilising effect
on the interface, depending on the injection rate. The numerical scheme presented in
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FIGURE 7. The numerical solution to (2.8)–(2.11) with Q = 1 for values of surface tension parameter σ
equal to (a) 1.5 × 10−3, (b) 5 × 10−4, (c) 1.75 × 10−4 and (d) 6.25 × 10−5 with initial condition (4.2). Our
numerical scheme captures different morphological behaviour including (1) tip-splitting, (2) shielding
and (3) feathering, all of which have been observed experimentally. Simulations are performed on the
domain 0 ≤ r ≤ 10 and 0 ≤ θ < 2π using 1000 × 628 equally spaced nodes. Solutions are plotted in time
intervals of t = 5 up to tf = 55.

Section 3 was used by us in Morrow et al. [99] to study how tapering the plates while
injecting at either a constant or time-dependent injection rate can be used to reduce the
development of viscous fingering patterns.

Here we perform numerical simulations where the gap between the plates is linearly
tapered according to

b(r) =

⎧⎪⎪⎨⎪⎪⎩
b∞ + α(r − rB) if r ≤ rB,
b∞ if r > rB,

(4.3)

where α is the gradient of the taper (α = 0 being the unmodified Hele-Shaw cell).
Experiments were recently performed by Bongrand and Tsai [14], who considered
a Hele-Shaw cell, where the plate gap is (4.3) with α > 0 for different injection
rates. Bongrand and Tsai showed that if the injection rate is sufficiently small,
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FIGURE 8. Numerical simulations where the gap between the plates linearly tapered according to (4.3)
with Q = 1, b∞ = 1/15, R0 = 8/3, rB = 7 and α = 2/15, with surface tension σ equal to (a) 6 and (b)
1. Simulations are performed on the domain 0 ≤ r ≤ 7.5 and 0 ≤ θ < 2π using 750 × 628 equally spaced
nodes. Solutions are plotted in time intervals of 5.6. up to tf = 44.8.

the interface is completely stabilised over the duration of the experiment. In our
nondimensionalisation, for which the time-scale is set by the injection rate, a smaller
(dimensional) injection rate corresponds to a larger (dimensionless) surface tension
value σ. To confirm that our numerical scheme produces solutions consistent with
these experiments, we perform simulations with two different values of σ, shown in
Figure 8, to model two different (dimensional) injection rates. The initial condition
of these simulations is (4.2), where 0 ≤ θ < 2π, ε = 5 × 10−3, m = 5 and n = 4. For
a larger σ (Figure 8(a)), we indeed find that the interface is stabilised, and remains
circular over the duration of the simulation. For a smaller σ (Figure 8(b)), we find that
the interface is unstable; in particular, these fingers appear distinct from traditional
Saffman–Taylor fingers (see Figure 7, for example). This behaviour is consistent with
the results of Bongrand and Tsai [14], who described the interface as becoming “wavy”
as it expanded. These results suggest that our numerical simulations are producing the
correct behaviour when the plates are of the form of (4.3).

4.3. Blob problem In this subsection we now consider the complementary problem
to (2.8)–(2.11), for which a blob of viscous fluid now occupies the region Ω(t) and
the inviscid fluid is in R2\Ω(t). This problem is typically studied by considering the
withdrawal of the viscous fluid, which in turn causes fingers to develop inward (as
in Figure 2(c), for example). However, popular modifications, including considering
the gap between the plates to be time-dependent or rotating the entire Hele-Shaw cell,
have also received interest. In this subsection we explain how the numerical scheme
presented in Section 3 is modified to solve for these variations, and show that our
simulations are consistent with previous experimental and numerical results.

For the case in which the inviscid bubble is injected into the viscous fluid (Sections
4.1–4.2, say), the velocity of the fluid is driven by a sink term in the far field given
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by (2.11). For the blob problem considered here, the withdrawal of the viscous fluid
is incorporated into the model via a sink at the origin. To include this sink into our
numerical model, we follow Hou et al. [66] and introduce a smoothed Dirac delta
function in (2.8) such that

∇ · (b3∇p) =
∂b
∂t
+ S, (4.4)

where

S =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Q

br̄2
0

(
1 + cos

πr
r̄0

)
if r ≤ r̄0,

0 if r > r̄0.
(4.5)

As shown by Hou et al. [66], this choice of source term ensures that the rate of change
of volume of the viscous fluid is Q. For all results in this subsection, we use r̄0 = 0.05.
We note that it is straightforward to extend (4.5) to include multiple sink/source points.

When solving for the governing equation for pressure (2.8) for the case where
an inviscid fluid is injected into a viscous one (Sections 4.1-4.2), we consider the
model in polar coordinates as it is simpler to incorporate the far-field boundary
condition (2.11) via the Dirichlet-to-Neuman map (Section 3.3.1) on a circle. However,
when the inviscid region surrounds the viscous fluid, we no longer have a far-field
boundary condition and, as such, it is more convenient to solve for pressure in
Cartesian coordinates, although of course either coordinate system could be used. The
discretisation of the spatial derivatives (4.4) is performed as was described in Section
3.3. That is, we use central finite differences for nodes away from the interfaces, and
incorporating a ghost value of p for nodes adjacent to the interface. We refer to the
papers by Chen et al. [25] and Gibou et al. [53, 54] for more details on implementing
this stencil in Cartesian coordinates.

In a similar way to that described in Section 3.2, once we have computed F via
(3.5), we extend it into the region x ∈ R2\Ω(t) by solving the biharmonic equation
(3.6). When solving (2.8)–(2.11), the speed function was known outside the interface
and was extended in. We now have an expression for F inside the interface that
needs to be extended outward. This means we require boundary conditions on
each of the four computational boundaries. When forming our biharmonic stencil,
we apply homogeneous Neumann boundary conditions on each of the boundaries.
We illustrate this process in Figure 9, which shows an example F before (Figure
9(a)) and after (Figure 9(b)) the velocity extension process. Again we see that by
solving the biharmonic equation we obtain a smooth expression for F over the entire
computational domain.

4.3.1. Withdrawal of viscous fluid. We consider the case where the viscous fluid
is withdrawn such that as the interface contracts, viscous fingers form inward. As
described in Section 2.2, exact solutions in the absence of surface tension (σ = 0)
are ill-posed, and unphysical cusps can form before the interface reaches the sink
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FIGURE 9. An illustration of the velocity extension process where the viscous fluid is surrounded by
the inviscid bubble. As discussed in Section 3.2, this is done by solving the biharmonic equation in the
region where x ∈ Ω(t), where now we apply homogeneous Neumann boundary conditions on the edge of
the computational domain (colour available online).

FIGURE 10. Numerical simulation where the viscous fluid is withdrawn at a point located at the origin
where Q = 1. For (a), initial condition is a circle of radius unity centred at (0.1, 0) where σ = 8 × 10−4 and
tf = 1.88. For (b), initial condition is (4.6) where σ = 1.6 × 10−6 and tf = 1.45. A black dot denotes the
region where r ≤ 0.05. Simulations are performed on the domain −1.15 ≤ x ≤ 1.15 and −1.15 ≤ y ≤ 1.15
using 400 × 400 equally spaced nodes.

(the point at which liquid is withdrawn). Numerical simulations performed using
the boundary integral method have investigated the regularising effects of surface
tension preventing these cusps from forming [20, 75]. Experimental results [107, 130]
show that the fingers that form exhibit morphological features distinct from traditional
Saffman–Taylor fingers, in that these fingers do not appear to undergo tip-splitting but
instead appear to be in competition to “race” towards the sink.

As well as the comparison with the zero-surface-tension solution made in Figure
2(c), we perform two further different simulations for this configuration. The first is
with an initially circular interface centred at (0,−0.1) shown in Figure 10(a). This
simulation shows that as the interface contracts, it becomes nonconvex until a single
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finger develops that tends towards the origin. This behaviour compares well with
previous numerical simulations performed using the boundary integral method [75].
For the second simulation, shown in Figure 10(b), we consider a perturbed circle
centred at the origin of the form

s(θ, 0) = 1 + ε(cos 3θ + sin 7θ + cos 15θ + sin 25θ), (4.6)

where ε = 5 × 10−3. We find that the interface initially develops numerous short
fingers. These fingers do not appear to exhibit the same morphological features as
the case in which the inviscid bubble is injected such as tip-splitting and feathering
(see Figure 7, for example), but instead the number of fingers remains constant. Due
to the pressure differential between the sink and the boundary of the bubble, the
velocity of one of the fingers rapidly increases, and the simulation is stopped when this
finger reaches the origin. We note that this behaviour compares well with experimental
results (see [130] for example), as well as numerical simulations in [23].

4.3.2. Lifting plates. A popular modification to the blob problem is to consider the
case where the upper plate is uniformly lifted in time such that b→ b(t). The volume
of viscous fluid remains constant (Q = 0) so that when the plates are separated, viscous
fingers developing inward. For this problem, the Hele-Shaw approximation itself can
only remain valid for as long as the gap b(t) is sufficiently small. For example, in
dimensional terms, we must be very careful about using the model when the gap width
is of the same order as the important length scales in the lateral direction.

For this lifting-plates configuration, the governing equation for pressure (4.4)
becomes Poisson’s equation. However, pressure can be reduced via P = p −
ḃ|x|2/(4b3), essentially moving the nonhomogeneous term to the dynamic boundary
condition (2.9). This transformation reduces (2.8) to Laplace’s equation, meaning
this configuration can also be solved numerically with the boundary integral method
[141, 142].

The lifting-plates problem was first considered mathematically by Shelley et al.
[122]. In the absence of surface tension (σ = 0), they [122] argued that the generic
behaviour is that a cusp will develop in a finite time. When surface tension is included,
numerical simulations suggested a relationship between the number of fingers that
develop and the surface tension parameter. In particular, it was shown that the number
of fingers is a monotonically decreasing function of time. This behaviour was later
shown to be consistent with experimental results [83, 100]. As a point of comparison,
for the traditional Hele-Shaw configuration, discussed in Section 4.1, the number of
fingers typically increases with time due to tip-splitting. We note that the case in which
the inviscid bubble is injected into the viscous fluid while the plates are separated has
also received attention [99, 133, 143].

We perform a simulation using the linearly increasing gap between the plates
b = 1 + t for different values of σ. Note that this time-dependence with ḃ = 1
effectively chooses the appropriate time-scale T in (2.7). When σ = 10−4 (top row of
Figure 11), we find that the interface quickly destabilises and approximately 15 fingers
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σ = 10−4

σ = 5 × 10−5

FIGURE 11. Time evolution of viscous fluid where plates are separated according to b = 1 + t with initial
condition (4.6). Solutions are plotted at times (left to right) t = 0, 1, 1.8, 2.8, and 4. Simulations are
performed on the domain −1.1 ≤ x ≤ 1.1 and −1.1 ≤ y ≤ 1.1 using 400 × 400 equally spaced nodes.

develop by t = 1. As time increases further, neighbouring fingers begin to merge with
each other and the overall number of fingers significantly decreases, and we find only
around five fingers remain by the conclusion of the simulation. For the lower value of
surface tension σ = 5 × 10−5 (bottom row of Figure 11), we find the number of fingers
that initially develop has increased compared to when σ = 10−4, about 25 at t = 1.
However as the interface contracts, again fingers begin to merge and only eight fingers
remain at t = 4. We perform these simulations over a longer time period (not shown),
which reveals that the interface will become circular when the gap between the plates
is sufficiently large. This behaviour is consistent both with previous experimental and
numerical results [83, 100, 122].

4.3.3. Rotating plates. While Saffman–Taylor fingers traditionally form due to the
injection/withdrawal of one immiscible fluid into another, it is known that these fingers
can also be triggered by body forces. The two most commonly studied body forces are
gravity and centrifugal forces. For the latter, when the entire Hele-Shaw cell is rotated,
this rotation results in the dense viscous fluid being propelled outward, which in turn
leads to finger formation [119]. Experimental [17] and numerical [4, 46, 105] studies
reveal that the interface patterns are distinct from the traditional Saffman–Taylor
instability. That is, fingers appear more “stretched-out” and generally do not undergo
tip-splitting. We note that our model (2.8)–(4.4) ignores the effect of Coriolis forces,
however several studies have investigated its effect on interfacial dynamics [4, 119,
137]. Further, we consider the case where the inviscid bubble is injected into the
viscous fluid while the plates are rotated in Morrow et al. [99], where we show that the
angular velocity has a stabilising effect on the interface.
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FIGURE 12. Numerical simulation of a rotating Hele-Shaw cell with ω = 1, Q = 0, and σ equal to (a)
10−2, (b) 5 × 10−3, (c) 2.5 × 10−3, and (d) 10−3. Corresponding final time of simulations is t = 0.61, 0.55,
0.425, and 0.36. Initial condition for each simulation is (4.6). Simulations are performed on the domain
−2 ≤ x ≤ 2 and −2 ≤ y ≤ 2 using 500 × 500 equally spaced nodes.

The incorporation of the centrifugal term is straightforward. While body forces
appear in the governing equation for the velocity of the viscous fluid (2.1), scaling
pressure means that the angular velocity term can be moved to the dynamic boundary
condition (2.9) (this can be done for any conservative body force f satisfying
∇ × f = 0). The rotating Hele-Shaw cell has previously been studied numerically using
boundary integral [119] and diffusive interface [23, 105] techniques. We perform
simulations where the volume of viscous fluid between the plates is constant (Q = 0)
and the Hele-Shaw plates are rotated with ω = 1 for different values of σ, shown in
Figure 12. Note that this choice of ω effectively fixes the appropriate time-scale T
in (2.7).

For each value of σ considered in Figure 12, we find that the interface is unstable,
and the fingers that develop are distinct from traditional Saffman–Taylor fingers.
In particular, the fingers that develop do not appear to tip-split but instead remain
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constant. Additionally, the number of fingers that develop increases as the surface
tension parameter is decreased such that when σ = 10−2 (Figure 12(a)), seven fingers
form, while for σ = 10−3 (Figure 12(d)), the number of fingers is approximately 21.
These results are consistent with experimental results [17] and numerical simulations
[4, 105].

4.4. Channel geometry In Sections 4.1–4.3, we considered Hele-Shaw flow in
radial geometry, where the bubble–fluid interface is completely immersed by an
infinite amount of viscous or inviscid fluid. In this subsection we focus on another
well-studied version of the Hele-Shaw cell in channel (or rectangular) geometry, where
the shape of the cell is a narrow rectangle of infinite length and width L. As discussed
in Section 2.2, for the zero-surface-tension case, exact solutions are known to exist,
which may involve a type of blow-up in finite time with a cusp forming on the boundary
(as in Figure 2(d)).

This channel problem dates back to the work of Saffman and Taylor [118], who
showed that when an inviscid bubble is injected into the channel filled with a viscous
fluid, typically a single finger develops that propagates through the channel (see the
numerical solution in Figure 2(e)). Since the work of Saffman and Taylor, extensive
research has been carried out determining how the parameters of the model influence
the width (relative to L) and speed of this finger. In particular, for a fixed injection
rate, as the surface tension parameter is increased, it is established that the width
and speed of the finger increase and decrease, respectively. We refer to the papers by
Homsy [63] and Saffman [117] (and references therein) for a comprehensive overview
of the problem. In this subsection (and Section 2.2) we restrict ourselves to the classic
configuration where b is constant, but we note that, similar to the radial problem, our
scheme can easily be used to study nonstandard cases, such as those in the papers [3,
49, 131, 140].

As with the blob problem discussed in Section 4.3, it is more convenient to consider
this problem in Cartesian coordinates such that p→ p(x, y, t) and the interface is given
by x = f (y, t). Similar to the radial case (see (2.15), for example), the velocity of the
fluid is driven by the sink term in the far field

b3 ∂p
∂x
∼ Q

L
as x→ ±∞. (4.7)

Equation (4.7) is incorporated into our finite-difference stencil using a Dirichlet-to-
Neumann map. We do not provide full details, but note that the procedure is similar to
that described in Section 3.3.1, where we impose an artificial boundary at x = X, and
seek a solution to (2.8) of the form

p̂(x, y, t) =
Q
L

x +
∞∑

n=0

Ane−λny cos λnx,

where λn = 2πn/L and An is to be determined. Additionally, we impose ∂p/∂y = 0 on
y = ±L/2.
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FIGURE 13. Numerical simulations in channel geometry with values of the surface tension parameter
(top to bottom) σ = 2 × 10−4, 5 × 10−4, 7 × 10−3, and 2 × 10−2. The initial condition for all simulations
is f (x, 0) = 0.05 + cos(2πy). Simulations are performed on the domain −0.5 ≤ x ≤ 0.5 and −0.5 ≤ y ≤ 6
using 100 × 650 equally spaced nodes. Solutions are plotted in time intervals of t = 0.5 up to tf = 3.

We perform a series of simulations using the same parameters as those of
DeGregoria and Schwartz [37], who studied this problem using a boundary-integral
approach, to demonstrate that our solutions are consistent with the expected behaviour.
We choose the initial condition

f (y, 0) = ε cos 2πy,

where ε = 0.05, and perform simulations over a range of values of σ, shown in
Figure 13. In this figure L = 1, which sets the length scale r0 in (2.7), while Q = 1
fixes T in these equations. For low σ (first row of Figure 13), we find that as the
bubble expands, a finger grows, which is unstable and split into two. This is consistent
with the results of DeGregoria and Schwartz [37], and this behaviour is also observed
experimentally by Tabeling et al. [124] when the injection rate is sufficiently large. For
larger values ofσ (second to fourth rows of Figure 13), a single stable finger propagates
through the channel whose speed and width decrease and increase as σ increases.
Again, this behaviour is consistent with previous experimental and numerical results
[37, 124].

5. Conclusion

In this paper we have reviewed a suite of Hele-Shaw configurations with two
immiscible fluids separated by a sharp interface. Our focus is on one-phase models,
which arise by assuming one fluid is much less viscous than the other (indeed,
we assume the less viscous fluid is inviscid and ignore its contribution). For the
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standard Hele-Shaw configuration with parallel stationary plates, we have summarised
how complex variable and conformal mapping techniques can be applied to the
zero-surface-tension model to deduce a variety of exact analytical results. The three
geometries we have focused on involve a bubble expanding into a body of viscous
fluid, a blob of fluid withdrawn from a point, or viscous fluid displaced by an inviscid
fluid in a Hele-Shaw channel. Despite the drawbacks of Hele-Shaw models without
surface tension in terms of physical applicability, these complex variable approaches
are very well studied by applied mathematicians and have motivated numerous papers
on moving boundary problems in general.

We have also reviewed a series of alterations to the standard one-phase Hele-Shaw
model. For these alterations applied in various combinations with the three geometries,
we have presented a flexible numerical scheme based on the level-set method. We
have shown that our scheme is capable of reproducing the complicated interfacial
patterns that form in Hele-Shaw flow while using a uniform computational grid.
By making straightforward, appropriate adjustments to the scheme, we have been
able to solve for a wide range of configurations. We have presented a selection of
some of the better-studied configurations, including the expanding bubble problem,
linearly tapered plates, the withdrawal of fluid from a viscous blob, time-dependent
plate gap, rotating Hele-Shaw cell, and flow in a channel geometry. For all of these
configurations, we have demonstrated that our simulations compare well with previous
experimental and numerical results.

While we have considered a range of different Hele-Shaw configurations in this
paper, this is by no means an exhaustive list. Using our numerical scheme, oppor-
tunities exist to study configurations that have not previously been considered either
experimentally and numerically. For example, while the linearly tapered configuration,
discussed in Section 4.2, has received significant attention [2, 7, 14, 73], including our
own study in Morrow et al. [99], an open question is to determine the effect of tapering
the plates for the corresponding blob problem. Our scheme could be used to gain
insight into the effect of the taper angle on viscous finger development when the fluid
is withdrawn compared to the parallel plate case discussed in Section 4.3. Further,
additional physical effects on the interface between fluids could be easily included,
such as kinetic undercooling [6, 35] or dynamic wetting effects [16, 106]. Further
adjustments could be made to apply the scheme to study controlling instabilities in
Hele-Shaw cells with an elastic membrane [108, 110, 111] or with an external electrical
field [50, 95] and much more.
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