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Abstract

Prostate cancer (PC) presents great challenges in early diagnosis and often leads to unneces-
sary invasive procedures as well as over diagnosis and treatment, thus highlighting the need
for promising early diagnostic biomarkers. The aim of this review is to provide an up-to-date
summary of chronologically existing metabolomics PC biomarkers, their potential to improve
clinical PC diagnosis and to reduce the proliferation and monitoring of PC. The systematic
research was conducted on PubMed in accordance with PRISMA guidelines to report PC bio-
markers. The majority of the studies distinguished malignant from benign prostate and few
explored the biomarkers associated with the progression of PC. The present review summarises
the primary outcomes of most significant studies to extend our knowledge of PC metabolomics
biomarkers. We observed divergent inter-laboratory technical procedures employing different
statistical approaches produced abundant information regarding PC metabolites perturbation.
Since PC metabolomics is still in its early phase, it is vital that we dig out the most specific,
sensitive and accurate metabolic signatures and conduct more studies with milestone findings
with comparable sample sizes to validate and corroborate the findings.

Introduction

Prostate cancer (PC) is the most prominent cancer among males; by 2022 it might encompass
27% of total cancer cases in men (Ref. 1). PC is the second leading cause of cancer deaths in
men globally (Ref. 2). Worldwide, nearly 1.41 million new cases of PC were reported in 2020
(Ref. 3). The risk associated with the onslaught of PC is noted and is affected by its demographic
components. The evidence indicates that overtreatment of indolent tumours and under-
treatment of patients with high-risk tumours of PC lead to additional encumbrance and impede
the quality of life (Ref. 4). By ameliorating the rate of diagnosis and clinical management of PC,
we could improve patient outcomes and reduce the burden on clinicians as well as the financial
burdens on the healthcare system. To accomplish this, specific and sensitive diagnosis is required
as it plays a pivotal role in onset, progression, treatment and post-treatment monitoring.

Early-stage PC is generally asymptomatic (Ref. 5). The symptoms of locally progressive PC
or metastatic disease comprise unspecific lower urinary tract symptoms that could be because
of benign prostatic hyperplasia (BPH). According to the Federal Drug Administration (FDA),
conventional screening tools include digital rectal examination and serum prostate-specific
antigen (PSA) levels (Ref. 6). Since PSA has a low specificity and high false-positive rate, fur-
ther evaluation by biopsy or by imaging technologies becomes necessary (Ref. 7). Hence, aux-
iliary tools such as trans-rectal ultrasound-guided biopsy followed by a histopathology-based
Gleason score (GS) approach have been the gold standard clinical practice for evaluating PC
and its grades (Ref. 8) to date.

Contemporary innovations, however, extend much better outcomes in contrast to the con-
ventional GS approach (Refs 9–11). Radiological tactics, magnetic resonance imaging (MRI)
and multi-parametric-MRI-based biopsy have been proposed as the diagnostic tool for PC.
After evaluating the PSA levels, GC score and clinical tumour-lymphnode-metastasis (TNM)
staging patients are classified into one of the three clinical risk groups: low, intermediate or high-
risk. However, because of the inherent limitations of high inter-observer inconsistency (Ref. 12)
and the pitfall of missing the more advanced or aggressive areas of the tumour, these approaches
need extremely conscientious, close monitoring and reassessment of non-aggressive low-GS PC.

The widely accepted threshold value for PSA is 4.0 ng/ml (Ref. 13). The PSA levels
(between 4 and 10 ng/ml) and GS (between 6 and 10) patients are considered moderate to
high risk and, depending upon observation, are classified into different categories. Their treat-
ment is executed according to the tumour’s behaviour and progression. Subsequently, under
psychosomatic anguish and observed clinical findings, clinicians and patients with mutual
consent select for the most convincing yet intensive therapy; most of the time, this leads to
widespread overtreatment.

That intensive procedure comprises initial surgery or various forms of radiation therapy
that may negatively affect the quality of life (Refs 14, 15). Studies have gleaned that surgery
or radiation intent with curative purposes have relapsed and shown escalating PSA levels by
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50% (Ref. 16). The least invasive approach – androgen deprivation
therapy (ADT) – has revealed that most tumours respond well to
different ADT forms; thus, for metastatic disease, the standard
care roadmap recommends anti-hormonal therapy. But most
PC cases show recurrence after 18 months and progress later to
castration-resistant prostate cancer (CRPC) (Ref. 17).

Despite intense research and clinical treatment efforts all of
these findings indicate that the medical benefits for PC have
not been upheld for a long time (Ref. 6). Therefore, to better com-
bat PC, novel biomarkers are indispensable to enhance the diag-
nosis, treatment strategy and its management. Advancements in
various omic’s technologies have revealed important biomarkers
for PC. Metabolomics is the systematic analysis of
low-molecular-weight metabolites assessment in biological sam-
ples to appraise the disease condition and progression. It provides
insights into the underlying pathophysiology and has become a
crucial tool in clinical research (Ref. 18). The metabolomics attri-
bute of minimal biological sample and least derivatisation, early-
stage disease identification and downstream measurement of per-
turbed pathways of clinical conditions highlight its utility for clin-
ical diagnostics. The greatest challenges to performing clinical
metabolomics are the selection of a precise analytical technique
the intricacy of biological sample to be appraised, and the objec-
tives of the study. Two methodologies are mainly employed to
identify the metabolites in a biological sample: nuclear magnetic
resonance (NMR) spectroscopy or mass spectrometry (MS).
NMR spectroscopy (frequently 1H NMR), and MS (predomin-
antly liquid chromatography [LC-MS] and gas chromatography
[GC-MS]) are the two most imperative analytical techniques
applied in metabolomics-intended research (Ref. 19).

The clinical utility of blood increases manifold to uncover meta-
bolic programming in any pathophysiological condition because it
carries all biomolecules that are being secreted, excreted or dis-
carded by diverse tissues of the organs. This fact is utilised in
most of today’s clinical research, and tests are based on the analysis
of blood (Ref. 20). Blood derivatives – plasma and serum – are both
extensively used matrices in clinical metabolomics studies.
However, over the last decade, most of the studies have been exe-
cuted to detect serum metabolomics biomarkers for PC, and several
articles and review have been published. This paper focused on the
role of different serum metabolomics-based biomarkers of PC for
diagnosis, prognosis and prediction. We have classified the biomar-
kers in aforementioned categories in order to better understand the
relationship of these biomarkers with their clinical significance.

Methods

This review adheres to the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) guidelines and is pre-
sented in accordance with the PRISMA statement.

Search strategy

The present systematic search was conducted on PubMed for all
publications with relation to PC metabolomics reported from
January 2004 to October 2021, using the following combinations
of MeSH terms: human prostate cancer (tiab) intervention with
(metabolite OR metabolomic OR metabolomics) intervention
with (marker OR biomarker) intervention with (serum or
plasma). Initially, titles and abstracts of all the identified studies
were screened with PC metabolomics. Later in the more refined
research regarding human PC, metabolomics article titles and
full text articles were selected that were further stringently evalu-
ated for human PC metabolomics using blood as the sample for
PC identification, progression or prediction by different metabo-
lomics spectroscopic plethora as an analytical tool.

Selection criteria

Only full-text significant articles in English based on titles and
abstracts were reviewed. The inclusion criteria included: human
PC serum/plasma metabolite biomarkers for identification, pro-
gression or reoccurrence and their clinical utility using metabolo-
mics analytical platforms. Reviews and studies conducted on
animal models or on cell model systems were excluded.

Data extraction

The studies were mined for PC metabolite biomarkers by the fol-
lowing criteria: type of sample, age of participant, sample size,
analytical platform used in the study, outcome, potential bio-
marker candidate, validation, statistical analysis, year of publica-
tion, name of the first author and any significant or additional
comments about the study.

Results

A total of 74 articles were recognised in the literature search
(Fig. 1). The full text was obtained for 66 articles after screening
and exclusion on the basis of titles and abstracts. In a more
refined search circumscribed by serum or plasma metabolomics
of PC via spectroscopic analytical techniques, 27 studies were
finally included in this systematic review and are summarised in
chronological order (Table 1).

The first study that met the criteria of this review was an
Austrian study conducted by Osl et al. using a novel algorithm,
associative voting (AV), to reveal the PC signature candidates
from complex metabolic data sets. Control and PC serum samples
were examined using flow injection analysis-MS/MS and LC-MS/
MS. The authors narrated that the AV method recognised subsets
of metabolites to discriminate cancer versus control better than
information gain and ReliefF. The topmost metabolites to segre-
gate PC and controls included serotonin, aspartate and ornithine
along with two lysophosphatidylcholines (C16:0 and C18:0).
However, the same set of metabolites showed a low score to categor-
ise GS 6 versus GS 8–10; hence, the study could not reveal a signa-
ture candidate to differentiate low- and high-grade PC (Ref. 21).

Stabler et al. conducted targeted and non-targeted NMR,
GC-MS and LC-MS studies to identify prognostic biomarkers
that may predict biochemical recurrence (BCR) after radical pros-
tatectomy was implemented on serum samples of PC patients
without BCR for at least 5 years after prostatectomy, and on
serum samples obtained from pre-surgical patients with BCR
within 2 years. The outcomes showed that sarcosine, dimethylgly-
cine (DMG), methionine, homocysteine, cystathionine, cysteine,
methylmalonic acid and methyl citrate were potent biomarkers.
The Wilcoxon rank-sum statistics test found that homocysteine,
cystathionine and cysteine were significantly different (P < 0.001)
between the two groups and were the top predictors for recurrence
in multiple logistic regression models. The study claimed that each
of these metabolites was able to distinguish recurrent from
recurrence-free patients in Kaplan–Meier curves, and suggested
cysteine as the most selective and potential biomarker (Ref. 22).

By the random forest ensemble classification method, Fan
et al. accessed NMR-derived serum metabolic perturbation
between BPH and PC. The NMR results showed that lipid
(CH2CH2Co, C = CCH2C = C), lysine, acetoacetate, glutamate,
cysteine, tyrosine and formate were altered between BPH and
PC. Out of these, glutamate and formate were found to be sign-
ificantly augmented (P < 0.05) in the PC compared with BPH
(Ref. 23).

Using ultra-performance liquid chromatography coupled with
high-resolution mass spectrometry and tandem mass
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spectrometry (UPLC-MS and MS/MS) combined with machine
learning, Zang et al. tried to develop a metabolite-based in vitro
diagnostic multivariate index assay to forecast the presence or
absence of PC (Ref. 24). A set consisting of 40 metabolic spectral
features was found to be able to segregate PC from control with
92.1% sensitivity, 94.3% specificity and 93.0% accuracy. Using
utmost rigorous approach revealed, out of 40, 28 panels of meta-
bolites were able distinguish PC with 89.7% sensitivity, 90.7% spe-
cificity and 90.2% accuracy. In higher throughput analysis to meet
the cost efficacy, a panel of 13 metabolites was able to segregate
PC with 88.3% sensitivity, 80.3% specificity and 85.0% accuracy
from control (Ref. 24).

Only a few studies have been executed to determine the treat-
ment response of PC using blood biomarkers. In one such type of
study, Huang et al. evaluated 18 newly diagnosed untreated PC,
18 control and 36 PC patients who received ADT at the time of
CRPC diagnosis by LC-MS (Ref. 25). Tandem MS revealed that
deoxycholic acid (DCA) and glycochenodeoxycholate, omega-3
fatty acid (docosapentaenoic acid), tryptophan, omega-6 fatty
acid (arachidonic acid), nucleotide deoxycytidine triphosphate
and pyridinoline were probable biomarkers for predicting
response to ADT. The serum levels of these metabolites were per-
turbed in PC compared with controls and was reverted (close to
the levels observed for the control group) for the patients who
responded to ADT. These results support the finding that meta-
bolites are important markers for early response to endocrine
therapy (Ref. 25).

In the JANUS study, 317 000 serum samples of Norwegian
men participating in either health screening surveys or blood
donation were analysed using LC-MS and GC-MS for targeted
analysis of distinct metabolites. Vogel et al. examined the conno-
tation of sarcosine and metabolites along the choline oxidation
pathway; from betaine down to serine; and risk of occurrence of
PC. PC and control samples were explored for quintiles of ambi-
ent betaine, DMG, sarcosine, glycine and serine. The outcomes
revealed that betaine, DMG and serine do not show significant
association with PC; the men with high serum sarcosine (P =
0.03) or glycine (P = 0.07) levels had less risk for PC only if folate
concentration was above 13.7 nmol/l (Ref. 26).

The alpha-tocopherol and beta-carotene (ATBC) study was a
cancer prevention trial that enrolled men aged 50–69 years and
who smoked at least five cigarettes per day. The subjects were
assigned to one of the four intervention groups to examine

whether vitamin supplementation with ATBC either alone or in
combination would inhibit cancers compared with placebo.
Mondul et al. conducted an LC-MS/GC-MS-derived serum meta-
bolomics study to determine the risk of PC up to 20 years prior to
diagnosis. In the first prospective ATBC study, fasting serum from
74 PC cases that developed PC up to 23 years after blood collec-
tion and 74 controls without PC diagnosis were selected. The
authors revealed that circulating 1-stearoylglycerol (1-SG) was
inversely associated with the risk of PC; that is, men with higher
serum 1-SG were less likely to develop PC. The other two meta-
bolites, glycerol and alpha-ketoglutarate, were also studied, but
their statistical significance was not much evidenced (Ref. 27).
In their second ATBC cohort study using the same analytical plat-
form, yet another 200 confirmed PC cases and 200 matched con-
trols; the previous study findings between PC and 1-SG could not
be reproduced (Ref. 28). However, several other biomolecules
were detected at disparity levels between the PC and control sam-
ples. They observed an inverse relationship between energy and
lipid metabolites and aggressive cancer. Furthermore, alpha-
ketoglutarate, citrate, inositol-1-phosphate and several glycero-
phospholipids and fatty acids showed a contrary relation with
aggressive PC. Among these, inositol-1-phosphate showed the
strongest significance (P < 0.002). Trimethylamine N-oxide, a
downstream product of liver metabolite trimethylamine (P <
0.021), and thyroxine (P < 0.039) metabolite signals were per-
ceived for aggressive versus non-aggressive prostate malignancies;
the constituents of ribonucleic acid pyrimidine-nucleoside
2′-deoxyuridine and adenosine 5′-monophosphate were found
to be diminished in aggressive PC (Ref. 28).

One other group of peers executed a study for the appraisal of
PC biomarkers by intact serum samples comprising a low grade of
PC (LGPC), a high grade of PC (HGPC) and healthy control
(HC) using proton NMR spectroscopy with PCA and
Orthogonal Projections to Latent Structures Discriminant
Analysis (OPLS-DA) statistical analysis (Ref. 29). Their study
unveiled four biomarkers (alanine, pyruvate, glycine and sarco-
sine) that were able to differentiate 90.2% of PC cases, with sen-
sitivity, specificity and Receiver Operating Characteristic (ROC):
84.4%, 92.9% and 0.966 respectively, compared with HC.
Moreover, three biomarkers (alanine, pyruvate and glycine)
were able to differentiate 92.9% of LGPC from HGPC, with sen-
sitivity (92.5%), specificity (93.3%) and ROC (0.978). Thus, the
study established a model for PC appraisal and disease

Fig. 1. PRISMA-based cascade of the literature search.
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Table 1. NMR and LC-MS-based metabolomics findings with diagnostic, prognostic and predicative approaches of PC

Sl.
no. Authors Methods Sample type, age

Metabolomic
approach Study group Statistical approach Study type Scrutinised metabolites Validation Reference

1 Osl et al. LC-MS/MS Serum, no
information
about age

Targeted n = 320
114 HC
206 PC

Associative voting
algorithm
Logistic regression

Diagnostic Aspartate, lysophosphatidyl choline,
ornithine serotonin (↓)

No 21

2 Stabler et al. LC-MS/GC-MS Serum, 53–67 Targeted, non-
targeted

n = 58
28 (recurrence within
2 years); 30
(no recurrence after
5 years) PC

Wilcoxon rank test,
likelihood ratio, ROC,
logistic regression, log
rank tests, Kaplan–Meier,
integrated discrimination
improvement (IDI) and
net reclassification
improvement (NRI) Cox
proportional hazard
regression

Prognostic Cysteine, cystathionine and
homocysteine (↑)

No 22

3 Fan et al. NMR Serum, 60–70 Non-targeted n = 56
14 BPH
42 PC
(20 GS 5 + 22 GC
7 grade),

ANOVA, PCA, Hotelling T2

test, ROC
Predictive Formate, glutamate (↑), acetoacetate,

cysteine, lipid and tyrosine (↓)
No 23

4 Zang et al. UPLC-LS/MS,
machine
learning

Serum, 49–65 Non-targeted n = 114
50 HC
64 PC

Marker Lynx X software,
linear support vector
machine (LSVM), RFE
methods, PCA

Diagnostic Amino acids, choline, citrate, lactate,
lysophospholipids (↑)

No 24

5 Hung et al. LC-MS Serum, 65–77 Non-targeted n = 72
18 HC, 18
new PC (untreated)
36 PC cases receiving
endocrine therapy

Multivariate analysis, PLS-
DA, OPLS and ANOVA

Predictive Deoxycholic acid (DCA),
glycochenodeoxycholate (GCDC) (↑),
L-tryptophan, docosapentaenoic acid
(DPA) (↓), arachidonic acid, deoxycytidine
triphosphate and pyridinoline

No 25

6 Vogel et al. LC-MS
GC-MS

Serum, 50–65 Targeted n = 6000
3000 HC
3000 PC

Kruskal–Wallis,
conditional logistic
regression

Diagnostic Sarcosine, glycine (↓) No 26

7 Mondul et al. UPLC-MS/GC-
MS

Serum, 50–69 Non-targeted n = 148
74 HC
74 PC
(ATBC study group)

Logistic regression,
Bonferroni correction

Diagnostic 1-Steroylglycerol (↓) No 27

8 Mondul et al. UPLC-MS/GC-
MS

Serum, 50–69 Non-targeted n = 400
200 HC
200 PC

Conditional logistic
regression, Bonferroni
correction, gene set
analysis

Risk assessment Alpha-ketoglutarate, citrate, inositol-
1-phosphate (↓) and several
glycerophospholipids fatty acids,
trimethylamine N-oxide, thyroxine (↑)

No 28

9 Kumar et al. NMR Serum, 40–70 Non-targeted n = 102
32 HC
70 PC
(40 LGPC, 30 HGPC)

Unsupervised PCA,
supervised OPLS-DA,
ANOVA, Student–Newman
Keuls test, ROC

Diagnostic,
prognostic

Alanine (↑), pyruvate (↑), glycine (↓),
sarcosine (↑) (HC versus PC) alanine (↓),
pyruvate (↑), glycine (↓), (LGPC versus
HGPC)

Yes 29

10 Giskeødegård
et al.

MRS-GC-MS Serum, plasma,
58–76

Non-targeted n = 50
21 BPH
29 PC

PCA, OPLS-DA, Wilcoxon
test, ROC analysis

Diagnostic 26 panel of metabolites mainly
acylcarnitines, amino acids,
dimethylsulphone (↑) eight different
phospholipids and triglycerides (↓)

No 30
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11 Ankerst et al. HPLC-EIMS Serum, 45–88 Targeted n = 497
246 HC
251 PC

Logistic regression, AUC Predictive Sarcosine (↑) No 31

12 Huang et al. UPLC-MS/GC-
MS

Serum, 55–74 Non-targeted n = 760
380 HC
380 PC

Conditional logistic
regression, Bonferroni
correction, gene set
analysis

Diagnostic Pyroglutamine, phenylpyruvate,
N-acetylcitrulline, gamma-
glutamylphenylalanine, tocopherol (↓),
acylcarnitine, stearoylcarnitine (↑)

No 32

13 Kumar et al. NMR Filtered serum,
40–70

Non-targeted n = 210
65 HC
70 BPH
75 PC

ANOVA, Student–Newman
test, DFA, ROC analysis

Diagnostic Glycine (↓), sarcosine, alanine, creatine,
xanthine and hypoxanthine (↑)

Yes 33

14 Huang et al. LC-MS
GC-MS

Serum, 50–69 Non-targeted n = 210
200 HC 138 PC 72 (T2),
51 (T3), 15 (T4)

Logistic regression Diagnostic N-Acetyl-3-methylhistidine
3-methylhistidine and 2′-deoxyuridine
(T2) (↑), glycerophospholipid oleoyl-
linoleoyl-GPI and four other lipid
metabolites (T3) (↓)

No 34

15 Schmidt et al. Absolute IDQ
p180 Kit Triple
Quad MS

Plasma, 40–88 Targeted n = 2154
1077 HC
1077 PC

Logistic regression, χ2

test, Benjamini–Hochberg
Diagnostic Citrulline, glycerophospholipids (↓),

acylcarnitine C3, methionine, trans-4-
hydroxyproline, biogenic amine ADMA,
hexose and sphingolipid SM (OH) C14:1
(↑)

No 35

16 Andras et al. HPLC-ESI-QTOF
MS

Serum, 56–76 Targeted and
non-targeted

n = 90
59 for prediction
(25 BPH, 34 PC) and
31 for validation (17
BPH, 14 PC)

Kolmogorov–Smirnov
test, Mann–Whitney test,
partial
least squares regression–
discriminant analysis,
ROC analysis

Predictive Decanoylcarnitine, homocysteine-
inosine, hydroxymelatonin, lipoic acid,
lysophosphatidylcholine 18:2 and
methyladenosine

Yes 36

17 Dereziński
et al.

LC-ESI-MS/MS Serum, 40–86 Non-targeted n = 89
HC = 40
PC = 49
Training set
(25 HC + 30 PC),
Validation
(15 HC + 19 PC)

Mann–Whitney U test,
Student’s t-test, Welch’s F
test, ROC analysis
multivariate (PLS-DA)

Diagnostic Sarcosine, 3-methylhistidine, alanine and
aspartic acid, serine and proline (↑)
methionine, ethanolamine, glutamine,
isoleucine, arginine and leucine (↓)

Yes 37

18 Khan et al. LC-MS-based
HRM

Serum, 55–75 Non-targeted n = 146
96 HC
50 PC

Univariate analysis, false-
discovery rate, PCA,
hierarchical clustering
analysis, Mummichog

Diagnostic Tryptophan metabolism, kynurenine
pathway (↑) carnitine shuttle, aspartate,
asparagine metabolism, anthranilate,
isophenoxazine, glutaryl-CoA, (S )-3-
hydroxybutanoyl-CoA, acetoacetyl-CoA,
acetyl-CoA (↑), indoxyl, indolelactate,
indole-3-ethanol (↓)

Yes 38

19 Hunag et al. GC-MS
LC-MS

Serum, 50–86 Non-targeted 197 PC Cox models, Fisher’s
method, Kaplan–Meier
method, Bonferroni
correction, bootstrap PCA

Predictive N-Oleoyl taurine, 4-androsten-3beta,
17beta-diol disulphate; pregnenolone
sulphate; 5alpha-androstan-3beta,
17beta-diol disulphate; 5alpha-
androstan-3alpha, 17alpha-diol
monosulphate; pregnen-diol disulphate

No 39

(Continued )
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Table 1. (Continued.)

Sl.
no. Authors Methods Sample type, age

Metabolomic
approach Study group Statistical approach Study type Scrutinised metabolites Validation Reference

20 Zheng et al. NMR Serum, 64–75 Non-targeted n = 76
18 BPH
16 EPC
11 APC
23 MPC
8 CRPC

PCA, PLS-DA, permutation
test, ANOVA

Predictive Citrate, creatinine, acetate, leucine,
valine, glycine, lysine, histidine,
glutamine and choline (↓)
Uridine, formate (↑)

No 40

21 Schmidt et al. Absolute IDQ
p180 Kit Triple
Quad MS

Plasma, 51–65 Non-targeted n = 3057 matched
case–control sets

Logistic regression Predictive Phosphatidylcholines,
hydroxysphingomyelins, acylcarnitines
C18:1, C18:2, glutamate, ornithine,
taurine lysophosphatidylcholines (↓)

No 41

22 Kiebish et al. MS/MS, LC/MS
HIILC-MS/
MS, GC-TOF-MS

Serum, 50–68 Non-targeted 382 PC Linear regression,
Kaplan–Meier estimation
curves, multivariable Cox
proportional hazards
analysis, ROC

Prognostic
markers

Tenascin C (TNC) and apolipoprotein A1V
(Apo-AIV), 1-methyladenosine (1-MA) (↑)

Yes 42

23 Cebrián et al. NMR Serum, 52–75 Targeted 73 PC Multivariate statistical
analyses, PCA, OPLS-DA

Prognostic Glucose, glycine phenylalanine,
1-methyl-nicotinamide, nucleotide
synthesis pathway (↑)

No 43

24 Penney et al. GC-MS
LC-MS/MS

Serum, no
information
about age

Non-targeted n = 194 original cohort
(21 GS 6; 58 GS≥ 7)
Upgrading cohort
(50 GS 6; 50 GS≥ 7)

Wilcoxon signed-rank
test, Mann–Whitney rank-
sum test. Unsupervised
clustering, L1-regularised
LASSO regression, L2-
regularised ridge
regression SVC, RF, tree-
based ML

Predictive Twelve metabolites found to be
perturbed in different pathways, but no
metabolites intersection between two
groups

Yes 44

25 Xu et al. GC-MS
LC-MS

Serum, 47–68 Non targeted n = 134
50 HC
39 PC
45 control patients
with negative
prostate biopsy

Pearson spearman
correlation analysis,
logistics analysis, one-
way ANOVA analysis, t-test
and ROC

Diagnostic [dMePE (18:0/18:2), PC (16:0/20:2), PS
(15:0/18:2), SM (d16:0/24:1)], carnitine
(C14:0)

No 45

26 Kumar et al. NMR Serum, 50–70 Non-targeted n = 160
70 HC
90 PC

Unpaired t-tests,
Pearson’s correlation
coefficient, DFA, ANN

Diagnostic Glutamate (↑), citrate, glycine (↓) Yes 46

27 Bei Xu et al. LC-MS/MS Serum, 54–75 Non-targeted n = 220
72 PH
74 BPH
74 PC

Student’s t-test, PCA, PLS-
DA, ROC, correlation
analysis

Diagnostic 18 metabolites (involved in
glycerophospholipid, glycerolipid
metabolism)

No 47

(↑) indicates up-regulation; (↓) indicates down-regulation.
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stratification using intact serum-based NMR-derived metabolo-
mics (Ref. 29).

Giskeødegård et al. executed a study with PC and controls to
reveal the metabolic alterations in blood using NMR and MS tac-
tics. In a limited sample size, the study revealed large altered
metabolites (n = 28), fatty acids (n = 34) and lipoprotein-related
variables (n = 105) in an NMR-derived metabolic profile of
serum. The MS analysis of plasma revealed 142 metabolites for
the same. The OPLS-DA score of NMR and MS data exhibited
that the set of 14 and 12 metabolites, respectively, had the potential
to lead cataloguing of PC and control. Among these 26 discrimina-
tive metabolites, the decanoylcarnitine (C10:0), tetradecenoylcarnitine
(C14:1), octanoylcarnitine (C8), sulphur compound dimethylsul-
phone, phenylalanine and lysine had high potential for classification
with increased values. Phosphatidylcholine diacyl C34:4 and lipid2
were augmented in BPH and also added substantially to split BPH
and PC (Ref. 30).

Ankerst et al. designed a case–control study with PC and control
subjects to evaluate sarcosine levels in serum using HPLC–electron
ionisation mass spectrometry (EIMS) and explored the relation with
the GS scores. The outcome displayed overlapping sarcosine levels
between PC and control but no correlation was observed with
high or low PSA value. Sarcosine was not found to be efficient
alone to predict GS and PC risk in the subjects (Ref. 31).

Huang et al. piloted serum metabolomics study to assess the
risk of PC in prostate, lung, colorectal and ovarian (PLCO) cancer
screening trial using ultrahigh-performance LC-GC/MS (Ref. 32).
The amino acids pyroglutamine, phenylpyruvate and N-acetylci-
trulline, as well as the peptide gamma-glutamylphenylalanine
spawned robust signals, being contrarily associated with overall
PC and acylcarnitine metabolite stearoylcarnitine exhibited a
reverse relation. Branched and medium-chain fatty acid metabo-
lites, tocopherol metabolites, showed an inverse association with
overall PC risk, as were primary bile acid and steroid hormone
metabolites. Out of the five best metabolites observed in the
ATBC cohort, only three lipids were reproduced with the same
results: 1-palmitoyl-2-linoleoyl-GPC (16:1/18:2) (P = 0.0096)
and tauro-beta-muricholate (P = 0.033), and the nucleotide
20-deoxyuridine (P = 0.019) (Ref. 32).

Kumar et al. executed a study comprising PC, BPH and HC
cohorts and applied an innovative filtered serum approach with
NMR spectroscopy to reveal the profound signature variables of
PC in clinical metabolomics. The advantage of using filtered sam-
ples was the removal of high molecular weight proteins, lipids and
lipoproteins to get more sieved low molecular weight metabolites.
Linear multivariate discriminant function analysis (DFA) revealed
that glycine, sarcosine, alanine, creatine, xanthine and hypoxan-
thine were able to differentiate abnormal prostate (BPH + PC)
from HC. On the other hand, a panel of biomarkers (alanine,
sarcosine, creatinine, glycine and citrate) was found to be capable
of discriminating PC from BPH. An applied model exhibited bet-
ter accuracy than the clinical laboratory method and suggested
that the NMR-based model may be used as a surrogate PC detec-
tion modality (Ref. 33).

Huang et al. carried out an analysis to assess whether serum
metabolites unveiled qualitative distinctions among the men diag-
nosed with ≥T2 stage of PC (Ref. 34). The study outcome showed
that the strongest signal was N-acetyl-3-methylhistidine in T2
stage. Other than this, 3-methylhistidine and 2′-deoxyuridine
were also increased with T2 cancers compared with controls.
The T3 stage exhibited a sharp signal of glycerophospholipid
oleoyl-linoleoyl-GPI and four other lipid metabolites displayed
the converse relation: oleoyllinoleoyl-glycerophosphoinositol
(GPI), palmitoyl-linoleoyl-GPI, cholate and inositol 1-phosphate.
Thirty metabolites were detected to be correlated with T4 stage.
These metabolites included secondary bile acid, lipid, sterol/

steroid lipid, sex steroid metabolites, caffeine-related xanthine
metabolites and Krebs cycle metabolites. The histamine metabol-
ite 4-imidazoleacetate, taurodeoxycholate, glycodeoxycholate,
deoxycholate and tauroursodeoxycholate were clearly elevated
and associated with T3 and T4 stages of PC. Moreover, the
reduced levels of glycerophospholipids, stearoyl-arachidonoyl-gly-
cerophospho-ethanolamine (GPE), stearoyl-linoleoyl-GPE and
augmented levels of euricoyl sphingomyelin were observed in
T2 and T3 stages but not in the T4 stage (Ref. 34).

Schmidt et al. executed a multi-centre European cohort study
to investigate a probable link between diet-influenced metabolite
concentrations in plasma measured by MS and cancer risk
(Ref. 35). The study gathered an inverse relation of citrulline
with an overall risk of PC diagnosis within the first 5 years of
follow-up. Twelve different glycerophospholipids were found to
be inversely associated with advanced stage (TNM stage T3, T4
and/or N1-3 and/or M1) PC. The six other metabolites (acylcar-
nitine C18:1, trans-4-hydroxyproline, three glycerophospholipids
and sphingolipid SM [OH]) were found to be statistically related
to the risk of aggressive PC. Moreover, high concentrations of acyl-
carnitine C3, amino acids methionine and trans-4-hydroxyproline,
biogenic amine ADMA, hexose and sphingolipid SM (OH) and the
lower concentrations of glycerophospholipid were observed to be
associated with death because of PC. The authors highlighted
citrulline as a subclinical marker of PC (Ref. 35).

Andras et al. executed a study with serum obtained from sus-
pected PC patients who underwent prostate biopsy to differentiate
the metabolic profile between BPH and PC using high-performance
liquid chromatography coupled with electrospray ionisation quad-
rupole time-of-flight mass spectrometry (HPLC-ESI-QTOF MS).
The outcome revealed decanoylcarnitine, homocysteine-inosine,
hydroxymelatonin, lipoic acid, lysophosphatidylcholine 18:2 and
methyladenosine were differential metabolites and exhibited an
Area Under the ROC curve (AUC) 0.779 (P < 0.001), with 74% sen-
sitivity and 76% specificity to distinguish PC from BPH (Ref. 36).

Derezinski et al. used LC-ESI-MS/MS and serum samples to
evaluate amino acids between PC and HC (Ref. 37). Out of 32,
only 18 metabolites were found to be statistically significant.
Among these 18, four metabolites (sarcosine, 3-methylhistidine,
β-alanine and aspartic acid) showed considerably higher levels
in PC; 14 others were significantly lower in PC compared with
HC. The multivariate PLS-DA revealed that methionine; sarco-
sine, 3-methylhistidine, serine and proline were the most signifi-
cant metabolites to discriminant PC and HC. However, no
significant differences were observed in amino acid profiles
between patients representing different GS (Ref. 37).

Khan et al. executed an LC-MS-based serum metabolic profil-
ing study comprising PC (PSA level >4 and PSA Level <4) and
HC subjects to investigate profound potential metabolites between
these cohorts. Stringent statistical analysis revealed no significant
discrepancy between two PSA level-based PC groups; however,
the PC serum metabolome was substantially different from the
HC cohorts. Mummichog, in combination with the KEGG and
MetaboAnalyst, found tryptophan metabolism to be the most sig-
nificantly up-regulated pathway along with kynurenine pathway,
carnitine shuttle, aspartate and asparagine metabolism. L-
Tryptophan, kynurenine, anthranilate, isophenoxazine, glutaryl-
CoA, (S )-3-hydroxybutanoyl-CoA and acetoacetyl-CoA were aug-
mented, whereas indoxyl, indolelactate and indole-3-ethanol were
diminished in PC compared with HC (Ref. 38).

Huang et al. executed a serum-based metabolomics study to
evaluate the link between compromised metabolism and the
lethality of PC through pathway analysis. Rigorous statistical ana-
lysis including Cox models, Fisher’s method and bootstrap PCA
disclosed that 44 potent steroid hormones were associated with
PC survival. Following survival plot by the Kaplan–Meier method
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revealed that serum N-oleoyl taurine was most importantly
involved in PC-specific mortality. Besides these 4-androsten-
3beta, 17beta-diol disulphate; pregnenolone sulphate (pregn
steroid monosulphate); 5alpha-androstan-3beta, 5alpha-androstan-
3alpha, 17alpha-diol monosulphate and pregnen-diol disulphate
were additional top steroids that were allied with PC survival.
This was the first study to investigate serum sex steroid metabolites
in the androgen pathway in PC cases. It has also been reported that
men in the uppermost tertile of prediagnostic serum N-oleoyl taur-
ine diagnosed with PC were thrice more presumptive to die of their
disease compared with cases with lower levels (Ref. 39).

Zheng et al. analysed the metabolic alteration in BPH and dif-
ferent stages of PC (early PC [EPC], advanced PC [APC], meta-
static PC [MPC] and castration-resistant PC [CRPC]) using 1H
NMR spectroscopy-based metabolomics (Ref. 40). Based on the
PCA and PLS-DA approach, citrate and glutamate were the two
most important metabolites showing contrasting patterns. The cit-
rate level was found to have gone down as the PC advanced in both
tissue and serum samples, whereas the glutamate level had gone up
in advanced stages of PC compared with BPH. Reduced trends in
creatine and creatinine were observed in both tissue and serum
samples on comparing BPH with CRPC. Trimethylamine was
shown to be significantly higher in EPC compared with APC.
Uridine also displayed augmented levels from BPH to MPC. The
amino acids histidine, leucine, valine and lysine, and acetate were
several other important metabolites and showed a diminished con-
centration from BPH to APC. The above-mentioned results were
presented with the small sample size (Ref. 40).

Schmidt et al. executed a prospective study to evaluate metab-
olite profiling and PC risk. A total of 119 metabolites were quan-
tified at the initial stage: 8 acylcarnitines, 21 amino acids, 5
biogenic amines, 72 different types of phosphatidylcholines, hex-
ose and 12 sphingomyelins. A Treelet transform statistical
approach combined with PCA trait divulged sets of interrelated
metabolites allied with PC. The higher concentrations of either
phosphatidylcholines or hydroxysphingomyelins, acylcarnitines
C18:1 and C18:2, glutamate, ornithine and taurine, or lysopho-
sphatidylcholines had the lower risk of PC progression. The
study also stated that men with high lysophosphatidylcholines
may have lower risk of dying because of PC (Ref. 41).

Kiebish et al. performed a retrospective study to identify PC
prognostic biomarkers. Serum from PC patients who underwent
Radical Prostatectomy (RP) without neo-adjuvant therapy for
treatment was used to investigate the discriminating biomarkers
to predict BCR. Meticulous methodology to execute multistep
serum analysis including MS, shotgun lipidomic, HRMS/MS sig-
nalling lipidomics, targeted hydrophilic interactive LC-MS
(HIILC-MS/MS), reverse phase HRLC-MS, volatile metabolite
analysis using GC-TOF-MS were employed to cascade into inter-
rogative biology platform, Bayesian network inference modules
and statistical models to extract the prognostic risk of BCR of
PC. Tenascin C (TNC) and apolipoprotein A1V (Apo-A1V) pro-
teins, 1-methyladenosine (1-MA) and phospholipid namely phos-
phatidic acid (PA) 18:0-22:0, showed aggregated predictive
performance AUC = 0.78 in segregating subjects with and without
BCR event. The combination of observed metabolites, T stage and
GS further enhanced the sensitivity to AUC = 0.89 for BCR. The
authors concluded that the reported four metabolites with T stage
and GS complement efficiently presented prognostic markers and
may help to monitor the probable influence of primary treatment
versus surveillance on PC (Ref. 42).

In another study, Cebrián et al. carried out NMR-based meta-
bolomics of serum samples of PC patients classified according to
their GS into low-GS (GS <7) and high-GS PC (GS≥ 7) groups.
In the search for important prognostic biomarkers, the study
gleaned 36 metabolic pathways that were dysregulated in low

and high grades of PC. Multivariate statistical analyses revealed
that glucose, glycine, 1-methylnicotinamide, energy metabolism
and nucleotide synthesis pathways were altered (Ref. 43).

Penny et al. aimed to build a prediction model by applying
cutting-edge AI/machine learning methods for tissue and serum
metabolic profiling of PC using Dana-Farber/Harvard Cancer
Center SPORE Prostate Cancer Cohort with GS 6 versus ≥7
(Ref. 44). A total of 135 metabolites and one sugar metabolism
pathway were found to be differently articulated. Six metabolites
including citrate, spermine and α-ketoglutarate were found to
be significantly discriminating in tumour versus normal tissue.
The total 119 common metabolites were evaluated to predict
the correlation of metabolites across tissue and serum. Out of
these, only two metabolites – pyroglutamine and 1,5-anhydroglu-
citol – had shown Pearson’s correlations of 0.73 and 0.72, respect-
ively. The study further stated that no metabolites were steadily
related to the GS in serum. Despite the assets of the AutoML
method, the study was unable to develop a strong prediction
model for GSs in serum (Ref. 44).

In a recent study, Xu et al. performed GC-MS and LC-MS-
based metabolomics on PC, HC (negative prostate biopsy) and
HC for validation of metabolomics readouts. Various statistical
analyses revealed that five metabolites [dMePE (18:0/18:2), PC
(16:0/20:2), PS (15:0/18:2), SM (d16:0/24:1), carnitine (C14:0)]
were significantly altered in PC compared with controls. The
metabolic panel (MET) calculations for these metabolites dis-
played higher diagnostic ability than PSA in discriminating PC
from controls [AUC (MET versus PSA): 0.823 ± 0.046 versus
0.712 ± 0.057, P < 0.001]. The validation cohort also exhibited
AUC = 0.0823 for the MET panel in differentiating PC from
HC. Not only this, but the study also reported that the MET
panel was much more efficient than PSA in segregating PC
from negative prostate biopsies (Ref. 45).

In order to appraise PC biomarkers and to establish their cor-
relative evidence, filtered serum-based NMR metabolomics was
executed by Kumar et al. (Ref. 46). Kumar’s study was the first
to show the knock-in and knock-out effects of PC. The study
comprised of cohorts: HC, pre-radical prostatectomy PC patients
(knock-in PC) and 15 and 30 days post-radical prostatectomy
(knock-out PC). Multiple rigorous statistical analyses including
an artificial neural network (ANN) were executed. Glutamate, gly-
cine and citrate were concluded as hallmarks of PC. This study
evidenced a proof of concept, with a trajectory of biomarkers
panel, in the pathophysiological milieu of PC (Ref. 46).

Very recently, Bei et al. used LC-MS/MS-based non-targeted
metabolomics to characterise serum metabolic profiling compris-
ing BPH and PC with PSA levels between 4–10 ng/ml. The obser-
vations revealed that glycerophospholipid and glycerolipid
pathways were augmented in PC. Stringent statistical analysis
showed that the following 18 lipid or lipid-related metabolites
were able to differentiate PC from BPH efficiently and had AUC
>0.80: 4-oxoretinol, anandamide, palmitic acid, glycerol 1-hexade-
canoate, DL-dihydrosphingosine, 2-methoxy-6Z-hexadecenoic acid,
3-oxo-nonadecanoic acid, 2-hydroxy-nonadecanoic acid, N-palmi-
toyl glycine, 2-palmitoylglycerol, hexadecenal, D-erythro-sphingo-
sine C-15, N-methyl arachidonoyl amine, 9-octadecenal, hexadecyl
acetyl glycerol, 1-(9Zpentadecenoyl)-2-eicosanoyl-glycero-3-phos-
phate, 3Z,6Z,9Z-octadecatriene and glycidyl stearate (Ref. 47).

Summary

Among these 27 blood-derived metabolomics studies, one was
embedded in the JANUS cohort (Ref. 26); two studies were nested
within ATBC cancer prevention study (Refs 27, 28). A distinct
study was part of PLCO cancer screening trial (Ref. 32). Two
more different studies were incorporated within the European
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Prospective Investigation into Cancer and Nutrition (EPIC)
(Refs 35, 41).

Briefly, out of the 27 studies, six were targeted to explore par-
ticular metabolites; the remaining 21 studies were non-targeted.
In these selected studies; 13 studies focused on the diagnostic
metabolites for PC; one nested the diagnostic and prognostic fea-
tures of some metabolites. A total of six studies paved the path for
the predicative metabolites and four focused on the prognosis
revelation of certain biomarkers. Last, only two studies focused
on risk assessment and one on the therapeutic predication efficacy
of metabolites.

Abundant metabolites are floating in the blood and have the
potency to be candidate biomarkers alone or in combination for
PC. Reported metabolites have been investigated for their efficacy
and accuracy by different analytical platforms and are listed in
Table 1. These metabolites provide a detailed understanding of
the pathophysiology of PC. Past and ongoing research has
shown that various metabolic pathways are convoluted in PC
onco-pathophysiology. Divergent groups of researchers have
shown the association of lipid metabolism with PC (Refs 23, 24,
28, 30, 34, 41, 47). Glycero-phospholipids (GPL) are important
constituents of cell membrane and have been observed with the
aggressiveness of PC, which is coherent with contemporary
acquaintance of GPL augmentation with oncogenesis and tumour
progression compared with normal tissue and is linked with cell
metabolic changes related to biosynthetic pathways, signalling
involving Tricarboxylic Acid (TCA) also (Refs 48–52). The
major phospholipid component of eukaryotic membranes – phos-
phatidylcholine (PCho) and choline (Cho) – both exhibit aberrant
levels in PC. Different consortiums of research (Refs 21, 30, 35)
have identified PCho and Cho to be related to malignant trans-
formation, invasion and metastasis of PC (Ref. 53). Different

investigators (Refs 30, 32, 35, 36, 38, 45) have observed that dif-
ferent biomolecules of the carnitine family play a significant
role in PC. Carnitine is an essential ‘shuttle-molecule to assist
fatty acid acyl moieties inflow into the mitochondrial matrix’
for the β-oxidation pathway (Ref. 54). A number of studies
from different peers (Refs 21–26, 29, 33, 35, 37–40) have pub-
lished several amino acids’ augmentation in PC. Glycine, glutam-
ine, serine, proline, alanine, arginine, leucine, isoleucine,
methionine and tryptophan have been acknowledged for their
role in PC metabolism. Amino acid pools serve as potent fuel
for onco-development as well as act as an anaplerotic source for
various biochemical pathways via different bio-physiological
routes comprising lipogenesis, protein synthesis, purine and pyr-
imidine biosynthesis (Refs 27, 28, 32, 35, 43), kynurenine pathway
(Ref. 38), Tetrahydrofolate (THF) and folate metabolism and zinc
metabolism. Briefly, the contributory metabolic pathways and
their important intermediate metabolites involved in PC are sum-
marised in Figure 2.

One other non-proteinogenic amino acid, sarcosine, an inter-
mediate product in the biochemical cycle of glycine has been
found in the studies conducted by different study groups as a
potent biomarker for PC (Refs 25, 28, 30, 36). Few research stud-
ies have emphasised the bile acids’ perturbation in PC (Refs 24,
28) as well. Besides this, some studies have identified exclusive
biomolecules, such as 1-steroylglycerol (Ref. 27), TNC, Apo-
AIV (Ref. 42) and serotonin (Ref. 21) for PC progression.

So far, the metabolic flexibility, diversity and its association
with PC and direct comparison of metabolites alone with PSA
is still in early phase. To conceptualise the most specific and sen-
sitive metabolic marker for PC high-dimensional dataset required
a stringent mull over to diminish the multivariate differences of
analytical, statistical approaches and other confounding factors.

Fig. 2. Typical contributory metabolic pathways and their intermediate metabolites involved in metabolism of PC. Up-regulated and down-regulated metabolites
are depicted with (↑) and (↓), respectively.
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Discussion of the present and future prospective

The scientific community has exerted mammoth efforts to deter-
mine the consequential biomarkers for PC diagnosis and identifi-
cation using metabolomics as an analytical platform. Dozens of
research studies have been published using different biological
matrices boosting commonly used PSA testing and phenotyping
metabolites variation in tumour biology and treatment response.

During the past two decades, extensive efforts have been made
to overcome the biological and technical challenges, to translate
all the potentialities of metabolomics as a promising tool in PC
diagnosis and take it to the clinic for better healthcare. The meta-
bolic profile is influenced by genetic, epigenetic, lifestyle and indi-
vidual physiological factors; hence, the concept of using a panel of
biomarkers or multivariate biomarkers will be an asset for PC
diagnosis. The multivariate biomarker sets provide more insights
regarding metabolic alterations happening in PC development
and progression (Ref. 55). A panel of biomarkers would equip a
more established PC metabolomic signature compared with single
metabolite capricious changes and would diminish the possibility
of erroneous results (Ref. 56). The 15 diagnostic studies, four
prognostic, eight predicative studies and one risk assessment
study garnered potent metabolites that alter in and during PC.

Moreover, some studies advocated that the metabolic variables
can be used for detection of PC in parallel to clinical PSA mea-
sures. Serum methionine metabolites are suggested to measure
as a risk factor for PC progression as the PSA level (Ref. 22). A
combination of seven metabolites (DCA, GCDC, DPA, trypto-
phan, arachidonic acid, deoxycytidine triphosphate and pyridino-
line) was found to be on a par with clinical PSA levels (Ref. 25).
Glycine, pyruvate and sarcosine levels were well correlated with
PSA measurements (Ref. 29) and in another study, pyruvate, cit-
rate, glycine and sarcosine levels were well associated with PSA
level (Ref. 33) suggested that these measures can easily be applied
to PC detection. Two independent studies suggested that a panel
of six metabolites (Ref. 36) and a panel of five metabolites
(Ref. 45) was cumulatively exhibited a similar outcome compared

with PSA. Very recently, another study advocated that glutamate,
citrate and glycine levels were found to be not only able to identify
PC, but also post-surgery monitoring for recovery of patients
(Ref. 46).

Starting from the use of a single analytical platform via untar-
geted metabolomics studies to identify and discover novel meta-
bolites, metabolomics has progressed to targeted metabolomics
approaches that employ a combination of analytical platforms
enabled by advancements in analytical and data processing sys-
tems for metabolites identification and quantification.
Integrated approaches combining metabolomics observations
and data analysis via multivariate methods would be ideal tools
to extract the most relevant information on dynamic pathological
conditions and the relationship between variables. This will also
help to minimise variance in the outcome. The convergence of
the mentioned studies in this review features that amino acid,
lipid, choline and carnitine pathways are very much indulged in
the PC physiology and plays a cardinal role together with other
metabolic pathways. The percentage of independent perturbed
identified metabolic pathways in the gleaned literature published
in the past two decades (Fig. 3) reveals that amino acids and
TCA cycle intermediates are most prominent metabolites playing
a significant role not only in the progression, but also for the
detection of PC. Few studies have witnessed sarcosine (Refs 22,
57–59) as a promising chemical phenotype of PC; however, sev-
eral other groups could not reproduce it (Refs 27, 28, 60, 61).
These discrepancies can be depleted by using stringent statistical
approaches, considering confounding factors and sample size.

Most of the research studies are investigational and have lim-
ited sample size. Sample size is a major concern because the
numeral of identified metabolites in each investigation is stereo-
typically more than 1000 metabolites. Bio-diverse cohorts from
different parts of the world might display variable outcomes.
Hence an adequate sample size reduces the chance of standard
error and increases the power of outcome to a significant level.
The collaboration of a skilled specialist having good scientific
knowledge in the art and practice of medical statistics may further

Fig. 3. Percentage of potential metabolites reported in various studies published in the last two decades.
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accredit the findings. The role of sample size and multicentric
studies combined with statistical strategy is pivotal in data mining
and processing to maximise the reproducibility, reliability and
robustness (RRR) of the results in clinical references.

The other greatest constraint for RRR in biomarker discovery via
metabolomics is the finding that many studies have lacked the
necessary step of validation. The majority of reported biomarkers
were difficult to replicate using a clinically independent validation
set and the reason is still uncertain. Hence, the best tactic for meta-
bolomics should include validation of the findings with an inde-
pendent sample set using rigorous statistical methods and by
evaluating the clinical performance of candidate biomarkers using
AUC, sensitivity, specificity and accuracy as an obligatory step.

Briefly the number of metabolites and pathways are repeatedly
described by different research groups across various sample
sizes, and cohorts are very encouraging to discover the chief set
of metabolites for PC diagnosis, progression and recurrence.
Identification of small, yet important, signals among metabolic
pool sample variation, data replication, integration into large-
scale metabolomics is a considerable challenge in clinical metabo-
lomics. Further sample size, various pre- and post-analytical
methods, inter-laboratory reproducibility, preclude consistent, uni-
versal metabolomics biomarkers for PC. Thus, multicentric studies
including large sample size, matched control and outcome valid-
ation via multivariate statistical model may benefit clinical PC
metabolomics to establish the most significant putative PC bio-
marker. To better interpret PC metabolomics and intensify diagnostic
power expanding the study population increased data mining and
processing together with validation becomes obligatory.

Article highlights
(1) The existing indexes for PC biomarkers are not eminently

specific, sensitive, non-invasive, rapid and robust.
(2) To meet this goal serum became the preferred bio-fluid for

investigation.
(3) The current review narrated existing PC serum metabolomics

biomarkers exploration and advancement during the last two
decades.

(4) Expert opinion towards future workflow for precise and
meticulous PC diagnosis and relevant key issues to be con-
verse are emphasised.
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