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We present a new, simple and physically motivated parameterization, based on the ratio
of Thorpe and Ozmidov scales, for the irreversible turbulent flux coefficient ΓM = M/ε,
i.e. the ratio of the irreversible rate M at which the background potential energy increases
in a stratified flow due to macroscopic motions to the dissipation rate of turbulent
kinetic energy ε. Our parameterization covers all three key phases (crucially, in time)
of a shear-induced stratified turbulence life cycle: the initial, ‘hot’ growing phase, the
intermediate energetically forced phase and the final ‘cold’ fossilization decaying phase.
Covering all three phases allows us to highlight the importance of the intermediate one,
to which we refer as the ‘Goldilocks’ phase due to its apparently optimal (and so neither
too hot nor too cold, but just right) balance, in which energy transfer from background
shear to the turbulent mixing is most efficient. The value of ΓM is close to 1/3 during this
phase, which we demonstrate appears to be related to an adjustment towards a critical or
marginal Richardson number for sustained turbulence ∼0.2–0.25. Importantly, although
buoyancy effects are still significant at leading order for the turbulent dynamics during
this intermediate phase, the marginal balance in the flow ensures that the turbulent mixing
of the (density) scalar is nevertheless effectively ‘locked’ to the turbulent mixing of
momentum. We present supporting evidence for our parameterization through comparison
with six oceanographic datasets that span various turbulence generation regimes and a
wide range of geographical location and depth. Using these observations, we highlight
the significance of parameterizing an inherently variable flux coefficient for capturing the
turbulent flux associated with rare energetic, yet fundamentally shear-driven (and so not
strongly stratified) overturns that make a disproportionate contribution to the total mixing.
We also highlight the importance of representation of young turbulent patches in the
parameterization for connecting the small scale physics to larger scale applications of
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mixing such as ocean circulation and tracer budgets. Shear-induced turbulence is therefore
central to irreversible mixing in the world’s oceans, apparently even close to the seafloor,
and it is critically important to appreciate the inherent time dependence and evolution of
mixing events: history matters to mixing.

Key words: stratified flows, mixing and dispersion, ocean processes

1. Introduction

The efficiency of shear-induced turbulent mixing has been widely studied over the past
several decades using various observational, experimental, theoretical and computational
approaches (Peltier & Caulfield 2003; Ivey, Winters & Koseff 2008; Gregg et al. 2018;
Caulfield 2020, 2021). Many works have relied on parameterizing the turbulent flux
coefficient, Γ , (loosely the ratio of the mixing rate, with various definitions, to the
turbulent kinetic energy dissipation rate ε) in terms of various non-dimensional parameters
such as the buoyancy Reynolds number, Reb = ε/(νN2), where ν is the kinematic
viscosity and N2 is an appropriate buoyancy frequency, the turbulent Froude number
Fr = ε/[Nk], where k is the turbulent kinetic energy (density) or (for sheared turbulence)
the Richardson number, Ri = N2/S2, where S is the vertical shear of some ‘background’
streamwise velocity. Indeed, some of these approaches are dimensionally insufficient to
represent mixing as previously discussed in the literature (e.g. see Ivey & Imberger 1991;
Shih et al. 2005; Mashayek & Peltier 2011b, 2013; Mater & Venayagamoorthy 2014).
More specifically, it has been shown that despite an empirically observed emergence of
power-law dependence of Γ on Reb over various turbulent regimes, when observational,
experimental and numerical data of Γ are plotted against Reb, they typically do not
overlap, but rather display a wide scatter (Bouffard & Boegman 2013; Mashayek et al.
2017c; Monismith, Koseff & White 2018). It has been demonstrated that such scatter has
leading-order implications for the role of mixing in sustaining the deep branch of ocean
circulation (De Lavergne et al. 2016; Mashayek et al. 2017c; Cimoli et al. 2019). In fact,
recent observational work of Ijichi et al. (2020) casts further doubt on parameterizing Γ

in terms of Reb alone.
Of course, such non-dimensional parameters can be interpreted as ratios of length scales,

and an alternative but thus clearly related approach to the parameterization of Γ , first
proposed by Ivey & Imberger (1991), has been to consider the ratio of the Ozmidov and
Thorpe scales, ROT , defined as

ROT ≡ LO/LT , (1.1)

where LO ≡ (ε/N3)1/2 and the Thorpe scale LT is the root mean square (r.m.s.) of the
displacements required to reorder a particular profile of density measurements into a
monotonically decreasing profile. Use of ROT has been suggested by some as an indication
of ‘overturn age’ and therefore a suitable basis for a parameterization of Γ (Gibson 1987;
Ivey & Imberger 1991; Smyth, Moum & Caldwell 2001; Mashayek, Caulfield & Peltier
2017a; Ijichi & Hibiya 2018). However, for practical reasons, in physical oceanography it
is often operationally assumed that ROT is equal or close to one to infer estimates of rate
of dissipation of kinetic energy.

At its heart, this assumption relies on the combination of the ideas that LT may be
thought of as the characteristic height scale of an overturning turbulent event, while LO
is the largest (vertical) scale that is not strongly or (perhaps more accurately) dominantly
affected by the background stratification, and that these scales should be similar for a
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Goldilocks ocean mixing

vigorous turbulent patch. However, this view does not capture the importance of the
inherent time dependence of mixing events, and in particular that mixing events evolve
through a life cycle, with subsequent phases retaining an imprint of previous stages
in the flow evolution. As Villermaux (2019) noted for passive scalar mixing, followed
up by Caulfield (2021) in the density-stratified context, history really does matter for
mixing, and so it is important to parameterize mixing events throughout their entire life
cycle.

In this work we build on more fundamental theoretical grounds, specifically the
assumption of the existence of an inertial subrange, mixing length theory and criteria for
shear instability, and propose a parameterization for Γ in terms of ROT . Our approach
thus has two central pillars. First, as we suppose shear instability drives the mixing,
the flows always have a stratification that is not too strong to suppress the growth of an
instability to a significant (overturning) amplitude. Here, we refer to such a stratification
as subcritical, in the specific sense that the key parameter quantifying the relative strength
of the stratification to the shear, the Richardson number (defined more precisely below),
is sufficiently small to allow the growth of such a shear-driven overturning instability. It
is always important to remember that buoyancy can still play a leading-order role in such
subcritical flows, and as we discuss further below, there is accumulating evidence that
flows generically adjust so that characteristic values of the Richardson number become
close to the critical or marginal value at which instability can (just) occur. Second, the
inherent time dependence of such mixing is a distinguishing characteristic which must
always be captured by our modelling and/or parameterization.

In the limit ROT � 1, our parameterization reduces to a scaling relation previously
offered by others, however, our inherently time-dependent yet subcritically stratified
interpretation relies on understanding this limit as being associated with the late-time
decay of an ‘old’ shear-driven overturning mixing event. In the ROT � 1 limit, however,
the parameterization reduces to a new scaling for ‘young’ turbulent patches. We argue
that neither of the two limits’ scaling is correct in isolation, but that their merged form
is appropriate since ocean data are known to be distributed near ROT ∼ 1 (Dillon 1982;
Ferron et al. 1998; Thorpe 2005; also shown in § 4). Vitally, this intermediate value
should still be associated with a subcritical, shear-driven overturning mixing event at an
intermediate, and energetic stage in its temporal evolution. We also determine the value of
the sole coefficient in the parameterization based on the further, physically and empirically
motivated assumptions of turbulent Prandtl number ∼1 and a critical Richardson number
around 1/4. These two assumptions are of course at their heart assumptions that the
stratification is not too strong to dominate all aspects of the dynamics: the turbulent Prandtl
number being around one implies that scalar mixing is (at least approximately) locked to
the mixing of momentum; while the very presence of shear-driven instabilities requires a
sufficiently low value of the Richardson number.

To support this proposed parameterization, we demonstrate good agreement with several
oceanic datasets corresponding to various turbulence types and different depth ranges. The
value inferred for the coefficient of the parameterization based on data regression closely
matches the theoretical prediction. Thus, our primary finding is that a parameterization
based entirely on physical grounds (even up to its sole coefficient) appears to explain the
efficiency of mixing of the observed turbulent patches for a range of oceanic turbulent
processes, as long as, crucially, the source of the turbulence is background shear, and
the conceptual picture is that the turbulence is time developing, evolving through various
phases of shear-driven mixing events, inevitably associated with stratification not being
too strong.
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Our theory and observations suggest Γ ∼ 1/4 − 1/3 for most of such shear-driven
turbulent data when ROT is within a factor of 3 of unity. Significantly, the mixing
coefficient Γ , is predicted to be slightly larger, yet still quite comparable to, the classical
value of 0.2. This somewhat more efficient mixing is associated with a phase of energetic
turbulence in which the stratification, not yet overly eroded, gives rise to a rich cascade
of hydrodynamic instabilities that efficiently channel energy from the parent overturn and
the background shear through shear production. Through analogy with the common usage
in astrobiology of ‘Goldilocks zone’ for the circumstellar habitable zone, we refer to this
phase as Goldilocks turbulence, as it is neither too hot, nor too cold, but just right.

Less informally, it demonstrates the vital importance of appreciating the time history of
shear-driven mixing events, specifically the ensuing efficient mixing occurring after the
break down of a relatively large primary shear-driven overturning, which once again, can
only arise if the stratification may be considered to be below some critical strength. We
also show evidence, based on numerical simulations, that for energetic ocean turbulence
(i.e. at sufficiently high Reynolds numbers and sufficiently small Richardson numbers)
most of the overturn evolution life cycle corresponds to the Goldilocks phase (ROT ∼ 1),
thereby giving credence to arguments of Gregg (1987) and Caldwell (1983) as opposed to
Gibson (1987), who argued that most observations were what he referred to as fossilized
turbulence, i.e. the turbulence from late in the life cycle of a mixing event.

Finally, although it is undoubtedly tempting to use an averaged value of Γ in models,
we demonstrate that doing so has the potential to lead to large inaccuracies, due perhaps
unsurprisingly to a range of inherent nonlinearities in the system. For example, we show
that the total buoyancy flux obtained through summation of the contribution of individual
patches in various datasets is strongly dominated by those patches with the largest values
of the rate of dissipation of kinetic energy (as one would expect) and so it is important to
capture as accurate a value as possible of Γ for such patches, rather than using a mean
value extracted from data associated with all patches. We also highlight the significance
of the large Γ associated with young turbulence for quantification of bulk mixing in a grid
cell of a coarse resolution climate model.

To present our key points, the rest of the paper is organized as follows. In § 2, we present
definitions of the various important length scales and parameters. We then describe the
key aspects of the phenomenology of a shear-driven mixing event in § 3, extracted from a
numerical simulation. In § 4, we briefly describe six oceanic datasets, which we then use
to verify our proposed parameterization for Γ in terms of ROT in § 5. We also compare
and contrast this parameterization with previous studies, in particular those of Maffioli,
Brethouwer & Lindborg (2019) and Garanaik & Venayagamoorthy (2019) based around
the use of the turbulent Froude number. Specifically, we highlight the interesting fact
that similar scalings can arise based on conceptually different physical interpretations,
not relying on the inherent time dependence and not particularly strong stratification at the
heart of our interpretation of shear-driven overturning mixing events. We highlight three
key implications of our parameterization in § 6. In § 7 we argue that, while observationally
desirable, parameterization of Γ based on Reb or (Reb, Ri) might be impractical. We draw
our conclusions in § 8, and suggest some future avenues of research.

2. Basic definitions

The basic turbulence scales that we employ herein are the Kolmogorov scale, LK ,
representing the scale below which viscous dissipation takes kinetic energy out of
the system, the Ozmidov scale, LO, the maximum (vertical) scale that is not strongly
affected by stratification, the Corrsin scale, LC, the maximum scale that is not strongly
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affected by the background shear, and finally the Thorpe scale, LT , a geometrical
vertical scale characteristic of displacement of notional fluid parcels within an overturning
turbulent patch. The first three may be defined as

LK =
(

ν3

ε

)1/4

, LO =
( ε

N3

)1/2
, LC =

( ε

S3

)1/2
. (2.1a–c)

It is important to remember that the calculation of characteristic values of ε, N and S for a
given flow must always involve some averaging, whether over ensembles, space or time.

Note also that while we conveniently will refer to LT as a turbulence length scale, it
is more appropriate to think of it as a geometric, and somewhat subjective property of
an identified ‘patch’ of turbulence. (Dillon 1982; Thorpe 2005; Chalamalla & Sarkar
2015; Mater et al. 2015; Mashayek et al. 2017a). Nevertheless, it has proved to be an
important measure which can be readily inferred from observations. Once such length
scales have been defined, their ratios lead naturally to various non-dimensional parameters.
In particular, definitions of a Richardson number and a buoyancy Reynolds number can be
written as

Ri =
(

LC

LO

)2/3

= N2

S2 , Reb =
(

LO

LK

)4/3

= ε

νN2 , (2.2a,b)

where here we further assume that the background shear S is the vertical shear of
horizontal velocity.

In this paper, we are interested in parameterizing various properties of turbulent mixing,
in particular its ‘efficiency’. Here, we choose to define the instantaneous efficiency of
turbulent mixing in terms of a ratio of conversion rates: i.e. the ‘mixing’ rate M at which
the minimal background potential energy is irreversibly increasing due to macroscopic
fluid motions (Winters et al. 1995; Caulfield & Peltier 2000) divided by M + ε, the rate
at which kinetic energy is being irreversibly lost

Ei = M
(M + ε)

. (2.3)

As expected for an ‘efficiency’, Ei � 1 strictly. A corresponding flux coefficient (often
somewhat confusingly referred to as an efficiency, although in principle M > ε is
possible) may then be defined as

ΓM = Ei

1 − Ei
= M

ε
, (2.4)

where the subscript M makes explicit that this definition of the turbulent flux coefficient
is in terms of the irreversible mixing rate. (As discussed in recent reviews by Gregg et al.
(2018) and Caulfield (2020, 2021), there are several different possible definitions for this
flux coefficient, and it is important to be clear which particular definition is being utilized
when comparing different data sources.)

Generically, there is no reason to suppose that ΓM is constant. As originally argued by
Osborn (1980), an understanding of the properties of ΓM can lead to a parameterization
for the (vertical) eddy or turbulent diffusivity of buoyancy κT , defined as

κT ≡ − B
N2 = −〈w′b′〉

N2 , (2.5)

where w′ and b′ are turbulent velocity and buoyancy perturbations, and hence B is an
(appropriately averaged) vertical buoyancy flux. Assuming that transport terms, reversible

928 A1-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

74
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.740


A. Mashayek, C.P. Caulfield & M.H. Alford

processes and spatio-temporal variability in general can be ignored (see, for example,
Mashayek, Caulfield & Peltier (2013) for further discussion) B can be approximated by
M in many situations of interest, and so the enhanced turbulent diffusivity is given by

κT

κ
≡ − B

κN2 ≈ ΓM
(ν

κ

) ( ε

νN2

)
= ΓMPrReb, (2.6)

where κ is the (molecular) diffusivity of the buoyancy field, and so Pr is a (molecular)
Prandtl number.

3. Phenomenology of shear-driven mixing events

For the construction of a physically motivated mixing parameterization, it is useful to
consider the time evolution of various length scales and the flux coefficient during the
turbulence life cycle of a transient, shear-driven mixing event, as a particularly simple
model of a breaking wave. To this end, in figure 1 we describe the evolution of turbulence
due to the breakdown of the canonical shear instability referred to as the Kelvin–Helmholtz
instability (KHI). The KHI paradigm has been commonly suggested to be relevant to
oceanic turbulent overturning mixing events (Smyth et al. 2001; Mater et al. 2015); we
will provide further support towards this idea throughout this paper.

Figure 1(a) illustrates growth of a Kelvin–Helmholtz ‘billow’, its turbulence transition,
breakdown and relaminarization, from a simulation of a flow with initial hyperbolic
tangent velocity and buoyancy distributions

u = U(z̃)x̂; U(z̃) = U0

tanh

(
z

d0

)
; b = b0 tanh

(
z
δ0

)
, (3.1a–c)

Re0 ≡ U0d0

ν
; Rib ≡ b0d0

U2
0

; R ≡ d0

δ0
, (3.2a–c)

defining the appropriate flow Reynolds number Re0, ‘bulk’ Richardson number Rib
and scale ratio R; x̂ is the unit vector in the streamwise x-direction, and tildes denote
dimensionless quantities. For this particular simulation (see Mashayek et al. (2013) for
details) Re0 = 6000, Rib = 0.16, R = 1 and Pr = 1. In the sense discussed in § 1, this
stratification is definitely subcritical, in that shear-driven overturning instabilities are able
to grow to finite amplitude, and indeed to break down to turbulence.

Physical and quantitative interpretation of the associated mixing may be achieved
through consideration of the various turbulence scales shown in figure 1(b). There are
three key phases which occur sequentially during the life cycle of a generic shear-driven
mixing event: an early growing young or ‘hot’ phase; an intermediate, energetic and
efficient mixing phase; and an ultimate decaying or ‘cold’ phase. As we demonstrate,
the intermediate phase appears to lead to ‘optimal’ mixing, neither too hot nor too cold
but ‘just right’, so as already mentioned in § 1, we refer to this as the Goldilocks mixing
phase, inspired by the fairy tale. In what follows we will describe these three phases by
discussing the evolution of the relevant above-defined turbulent length scales. The specific
methodology for calculating the scales from direct numerical simulations (DNS) were
discussed in Mashayek et al. (2017a).

By dimensionless time t̃ = 79 (scaled with the advective time scale d0/U0), the
primary overturn has fully grown, as is marked by the peaking of LT . This represents an
accumulation of available potential energy (APE) from the kinetic energy (KE) reservoir,
originally stored in the background shear. Upon the saturation of the primary billow, small
scale turbulence grows, effectively through feeding on the APE. This leads to a significant
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Figure 1. (a) Turbulent life cycle of a shear-driven KHI. Colours represent density, with red, green and blue
representing dense, intermediate and light waters, respectively. (b) Evolution of the various (non-dimensional)
length scales defined in § 2, scaled with the time-evolving half-depth of the shear layer (following Mashayek
et al. 2017a). (c) Evolution of LT and LO as well as the non-dimensional irreversible mixing rate M̃ (scaled
with U3

0/d0) and turbulent flux coefficient ΓM. The vertical dashed lines in (b,c) mark various characteristic
times that correspond to different images in (a) with similar symbol markings. These plots are reproduced
from the data associated with a simulation with Re0 = 6000, Rib = 0.16, Pr = 1, R = 1 from Mashayek et al.
(2013).

increase in the rate of dissipation of turbulent kinetic energy (TKE), leading to a relatively
rapid growth of the Ozmidov and Corrsin scales and a decrease in the Kolmogorov scale,
together representing a widening of the inertial subrange within which energy can be
transferred from the injection scale to dissipation scale through a cascade of eddies, largely
unaffected by either stratification or shear.

A critical time in the turbulence life cycle occurs when the characteristic scales of the
turbulence approach those associated with the initial vertical scale of the primary overturn,
i.e. when LO ∼ LT . Under the (reasonable) assumption that it is appropriate to think of LT
as the injection scale for the turbulent motions, due to the implied conversion of APE to
KE at this scale, then this critical time marks the instant at which the broadest possible
range of scales largely unaffected by stratification occurs, and so there is an opportunity
for efficient extraction of energy from the background (see Mashayek et al. (2017a), and
references therein for a discussion). Unsurprisingly, LC < LO, as it is to be expected that
the characteristic Richardson number, defined in (2.2a,b) in terms of the length scales,
Ri < 1. Therefore, although the scales below LO are largely unaffected by the stratification,
there is typically a range of scales still strongly affected by the background shear,
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which nevertheless appear to still allow efficient mixing processes to occur where it is
appropriate to think of the (dynamical) influence of the stratification as being perhaps
important, but definitely not dominant.

After this critical time, APE is depleted rapidly, as manifested through the relatively
sharp drop in LT ; LO and LC also decay, albeit markedly more slowly than LT . We can
interpret this behaviour through remembering that LO and LC represent the largest scales
that the turbulent eddies notionally could have accessed had they been sufficiently ‘fed’
energetically. However, since the turbulence has decayed so much, the overturning (and
presumably injection) scale LT has become smaller than both LO and LC. This empirically
observed decay lag between LO and LT is of significance for the theoretical arguments
that we make in the following sections. Crucially, this decay should not be interpreted
as anisotropic turbulence collapse due to ‘strong’ stratification, but rather primarily due to
kinetic energetic losses to viscous dissipation, and, to a lesser extent, to irreversible mixing
increasing the potential energy of the system. Ultimately, the flow enters a (molecular)
diffusion-dominated regime, as diffusivity drops back to molecular values and so LO →
LK , as is shown as t̃ → 250 in (b).

Figure 1(c) shows the evolution of the turbulent flux coefficient, ΓM, and the
(non-dimensional) irreversible mixing rate M̃, i.e. scaled with the characteristic scales
U3

0/d0. As would be expected based on the evolution of scales in (b), mixing is most
efficient between the peak of LT (and so when APE is largest) and the ‘critical’ time when
LT ≈ LO. This reflects the richness of the zoo of hydrodynamic instabilities within the
broad inertial subrange and their ability to stir and hence irreversibly mix density (and
tracer) gradients efficiently (see, for example, Mashayek & Peltier (2012a,b) for a detailed
analysis of the link between the cascade of hydrodynamic instabilities that facilitate
turbulence breakdown and the characteristics of turbulent mixing). The subsequent decay
of the mixing rate is highly correlated with the decay of its (driving) source of energy
(i.e. APE), and so is highly correlated with the decay of LT . From the time APE saturates
onwards, LT/LO decays essentially monotonically since LT consistently decays (relatively
rapidly) and LO first grows and then decays at a slower rate. For this reason, and as we will
discuss further, this ratio has been suggested to be a good proxy for evolution of mixing
during turbulent life cycles in shear flows (Smyth et al. 2001; Mashayek et al. 2017a). This
is a reasonable suggestion, as is apparent from the apparent correlation between the ratio
LT/LO and ΓM.

4. Data

We now consider six oceanic datasets to constrain and inform our proposed
parameterizations for Γ , principally in terms of ROT . All six were collected
from free-falling microstructure profilers, which sample shear and temperature with
sub-centimetre resolution in order to estimate the dissipation rate of KE, ε, and the
thermal variance dissipation rate, χ . Each also carries a conductivity–temperature–depth
instrument in order to sample the profiles of temperature and salinity needed to estimate
potential density and buoyancy frequency N. Ozmidov scales are then directly calculated
from ε and N, while Thorpe scales are calculated following Dillon (1982) by re-ordering
the measured potential density, and evaluating the r.m.s. of the required displacements of
individual measurements, which is essentially the one-dimensional observational analogue
of the approach used by Winters et al. (1995).

Following the methodology proposed by Moum (1996), a turbulent flux coefficient Γχ

is computed from ε and an appropriately scaled version of the thermal dissipation rate,
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χ , corresponding to the destruction rate of buoyancy variance, or equivalently, under the
further assumption that the characteristic buoyancy frequency is constant, the destruction
rate of available potential energy

Γχ ≡ χ

ε
. (4.1)

As discussed further in recent reviews (Gregg et al. 2018; Caulfield 2020, 2021), under
certain circumstances it is reasonable to suppose that ΓM � Γχ , an assumption we make
here when comparing observational and numerical simulation data.

The Tropical Instability Wave Experiment (TIWE) dataset includes turbulent patches
sampled at the equator at 140◦W in the shear-dominated upper-equatorial thermocline,
between 60 m and 200 m depths, spanning both the upper and lower flanks of the Pacific
Equatorial Undercurrent (Lien et al. 1995; Smyth et al. 2001). The FLUX STAT (FLX91)
experiment sampled turbulence at the thermocline (∼350–500 m depth), in part generated
through shear arising from downward-propagating near-inertial waves, approximately
1000 km off the coast of northern California (Moum 1996; Smyth et al. 2001). The IH18
experiment measured full-depth turbulence (up to ∼5300 m deep) primarily generated by
tidal flow over the Izu-Ogasawara Ridge (western Pacific, south of Japan), a prominent
generation site of the semidiurnal internal tide that spans the critical latitude of 28.88N
for parametric subharmonic instability (Ijichi & Hibiya 2018). The Samoan Passage data
are measurements of abyssal turbulence generated by hydraulically controlled flow over
sills in the depth range 4500–5500 m in the Samoan Passage, an important topographic
constriction in the deep limb of the Pacific Meridional Overturning Circulation (see Alford
et al. (2013) and Carter et al. (2019), we use data from the latter). The BBTRE data are
from turbulence induced by internal tide shear in the deep Brazil Basin (∼2500–5000 m
depth) and were acquired as a part of the original Brazil Basin Tracer Release Expermient
(BBTRE; Polzin et al. 1997), recently re-analysed by Ijichi et al. (2020). Also re-analysed
by Ijichi et al. (2020), we use the data from DoMORE which focused on flow over a sill
on a canyon floor in the Brazil Basin (Clément, Thurnherr & St. Laurent 2017; Ijichi et al.
2020). In total, these datasets comprise nearly 50 000 patches and six different turbulence
generation regimes over a wide range of depth and geographical locations.

5. Parameterizing ΓM as a function of LO/LT

Building on the phenomenology of the overturning life cycle illustrated in figure 1, in
this section we propose a functional dependence of ΓM on the key ratio of length scales,
which has historically been defined as ROT ≡ LO/LT , as in (1.1). Although the canonical
example shown in figure 1 was of the breakdown of a KHI, for our following arguments to
hold, all that is needed is the notion of an overturning-induced turbulence (not necessarily
a classical shear instability) that comprises a growing phase, an energetically mixing
phase and a decaying phase. As we argue in more detail below, this decaying phase
can be considered, at least in some sense, as a ‘fossilizing’ phase of turbulence, with
some points of analogy with the classical arguments of Gibson (1987). Importantly,
underlying this approach is the concept that the stratification is not too strong, so that
in can be considered to be subcritical, in the very specific sense that the developing
turbulence is not itself thoroughly dominated by the stratification, but rather that vigorous
overturnings have managed to develop. This concept can be supported by identification
of spatio-temporally localized turbulent patches within flows where the stratification,
although possibly dynamically important, is not, at least locally, dominant, while in bulk
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terms, the larger scale flow can be classified as being strongly stratified, as demonstrated
by Portwood et al. (2016).

5.1. Length scale ratio for ΓM
First, we assume that the largest energy containing eddies of length Li inject energy into
the system and that such an input is ultimately balanced by an energy sink at the viscous
dissipation scale after a (net) forward cascade. This leads to the classic turbulent (and
inherently unstratified) integral scale,

Li ∝ k3/2

ε
, (5.1)

where k is the TKE. This scaling has at its heart that the turbulence being considered is
not strongly affected by stratification.

Next, we invoke classic mixing length theory (Taylor 1915; Prandtl 1925), which gives
the turbulent diffusivity in terms of a mixing length Lm and k

κT ∝ Lm k1/2. (5.2)

Here, the (possibly significant) dynamical influence of ambient stratification may be
embedded within the mixing length, but it also contains an implicit assumption that the
mixing of the buoyancy is assumed to be set by (and so in a sense locked to) the mixing
of momentum, as quantified by the right-hand side of the expression. Equivalently, it is
assumed that the turbulent Prandtl number PrT ∼ O(1), defined as

PrT ≡ νT

κT
; νT ≡

〈
u′w′〉

S
� P

S2 , (5.3a,b)

where νT is the eddy diffusivity (of momentum), and we assume that the turbulent
production P is dominated by Reynolds stress extraction from the mean shear S. Therefore,
it is most definitely not appropriate to think of the flow as ‘strongly’ stratified in any
meaningful sense.

Also, by its very nature ‘overturning’ mixing must be occurring in (at least locally) a
subcritical stratification as observed by Alford & Pinkel (2000). Such overturning mixing
is qualitatively different from the ‘scouring’ mixing in the vicinity of ‘sharp’ and strong
density interfaces, a classification distinction drawn by Woods et al. (2010) (see Caulfield
(2020, 2021) for more discussion).

Finally, we invoke the Osborn balance presented previously in (2.6):

κT ≈ ΓM
ε

N2 . (5.4)

These three ingredients can form the basis for a simple parameterization that fits all the
data introduced earlier, provided various data are thought of as being sampled at different
stages in the time evolution of a particular mixing event. To achieve this, however, it is also
important to distinguish between the two characteristic length scales defined in (5.1) and
(5.2). Remembering that ε and N can in turn be related to the Ozmidov length scale since
L2

O = ε/N3, it is possible to use these equations to arrive at

ΓM ∝
[

LiL3
m

L4
O

]1/3

. (5.5)

To develop a parameterization, it is now necessary to identify appropriate candidate
lengths for Lm and Li that can actually be quantified. Since here we are interested in
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overturns far from boundaries, we expect that the distance to the boundary is not a relevant
candidate. Motivated by the phenomenology discussed in § 3, we argue that there are
different appropriate candidates for these scales at different stages of the flow evolution
of an overturn in a sufficiently weakly stratified flow.

5.2. ‘Young’ turbulence scaling for ΓM
During the first growing phase of the turbulence, LT � LO. During that phase, it is
appropriate to identify the mixing length Lm ∼ LT , as the Thorpe scale is the relevant
scale over which the fluid gets stirred and mixed against the background stratification.
On the other hand, the actual turbulent motions (and the associated inertial range for the
forward cascade of energy) are expected to be constrained to lengths bounded above by
LO, and so a reasonable estimate for Li should be LO. Therefore, (5.5) reduces to

ΓM ∝ R−1
OT (5.6)

for this first ‘young’ turbulence phase.

5.3. ‘Fossilization’ scaling for ΓM
Conversely, during the final decaying or ‘fossilization’ phase when LT � LO, it seems
reasonable that the mixing length can still be identified with the overturning scale, so Lm ∼
LT . In this stage, LT can also be closely related to the integral scale of the turbulence, Li, as
the energy for turbulence and mixing is injected by the remaining, and smaller scale than
earlier in the flow evolution, overturnings; LO may now be interpreted as the largest eddies
which could in principle be present within the given ambient stratification. However, for
such eddies actually to arise, energy has to be injected in to the system at a sufficient rate,
and since LT has dropped below LO, there is no longer a mechanism by which that injection
can occur. Crucially, this should not be interpreted as ‘strong’ stratification suppressing
(in particular) vertical motions inducing strongly stratified anisotropic flow, but rather
that turbulent dissipation has converted a large proportion of the KE, and there is (at the
moment) no forcing or energy injection mechanism occurring. Such a gap between the
actual eddy length scale (scaling with LT ) and the notionally possible eddy length scale
(scaling with LO, if only the flow were energetic enough) is one of the hallmarks of ‘fossil
turbulence’ (Gibson 1987). It is important to remember that both LT and LO decrease with
time, but LT decreases more rapidly, and so the LO is ‘left behind’ by the more rapid decay
of the energy injection scale associated with LT .

Thus, in the final fossilization phase, (5.5) reduces to

ΓM ∝ R−4/3
OT , (5.7)

where once again it is important to remember that this argument is fundamentally
associated with the stratification always being below some critical, threshold strength, not
least because of the implicit assumption that buoyancy and momentum are mixed on the
same scales and by the same processes. In summary, we thus suppose that (5.6) holds in the
ROT � 1 limit, corresponding to the first growing ‘young turbulence phase’, while (5.7)
holds in the ROT � 1 limit, corresponding to the final decaying or ‘fossilization phase’,
with the variation in the dependence of the flux coefficient with ROT being associated
with different (temporal) phases in the evolution of the overturning stratified mixing event,
where buoyancy forces never dominate the dynamics.
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5.4. Goldilocks scaling for ΓM
As previously reported in observations (e.g. see Dillon 1982; Ferron et al. 1998), and
further confirmed by our analyses of these oceanographic datasets, most of the observed
overturns actually exist around ROT ∼ 1, which, from § 3, occurs during the intermediate,
energetically mixing phase. As pointed out in Mashayek et al. (2017a), this also actually
turns out to be a regime of efficient (indeed apparently optimal) mixing, which we refer to
as Goldilocks mixing. To achieve a parameterization for this regime, we simply combine
(5.6) and (5.7) using the following formula:

ΓM = A
R−1

OT

1 + R1/3
OT

, (5.8)

which is constructed to have the correct asymptotic properties at small and large ROT .
Before discussing the physical interpretation of (5.8) and attempting to determine the

scaling coefficient ‘A’ on physical grounds, it is very important to appreciate that many
of the arguments presented above are not new. In fact, employing ROT as a turbulence
age proxy goes back several decades as reviewed by Smyth & Moum (2000), who also
proposed that it be used to quantify ΓM. Numerical simulations and observations have
also shown clear dependence of mixing on ROT (Smyth et al. 2001; Mashayek et al. 2017a;
Ijichi & Hibiya 2018; Ijichi et al. 2020; Smith 2020). Equation (5.7), in particular, has been
previously proposed by many authors (Weinstock 1992; Schumann & Gerz 1995; Baumert
& Peters 2000; Ijichi & Hibiya 2018).

Indeed, these previous authors typically invoked turbulence properties largely
unaffected by ‘weak’ stratification. We go a step further by arguing that (5.7) is appropriate
only late in the life cycle of a time-varying overturning mixing event, where the
stratification is only required not to be so strong that it always remains sub-dominant in the
flow evolution. Furthermore, LT was argued by Ivey & Imberger (1991) as representative
for the actual mixing length scales (once again without explicit consideration of time
dependence), an idea which was verified later via numerical simulations (see Shih et al.
(2005), for example). However, we are not aware of a previous proposal of (5.6) for
‘young’, yet vigorously overturning mixing events, and as we shall show, its combination
with (5.7) leads to an accurate parametric modelling of ΓM through (5.8) (or indeed
alternative definitions like Γχ ) in a way that would not be possible merely based on (5.7).

5.5. Context in terms of previous studies
It should also be noted that while we use the paradigm of a single (with three temporal
phases) mixing life cycle for arguments herein, our arguments also hold in a system
composed of a multitude of interacting, co-existing overturns, at different stages of their
individual life cycle. In such systems, the young phase simply refers to the phase where
large quasi-laminar and relatively recently formed overturns exist and provide APE to
small scale overturns to grow, while the fossilization phase corresponds to when the APE
source has been largely depleted and the actual still-occurring overturns are smaller than
the notionally possible size scale as marked by LO.

Mater et al. (2015) showed, using several oceanic datasets, that the evolution of ROT
in data does in fact resemble that based on the shear-driven KHI induced mixing
flow evolution shown in figure 1. In a companion paper, Scotti (2015) argued that
in shear-driven mixing LT ∼ LO, whereas in convectively driven mixing (where the
underlying source of TKE is APE), LT can actually overestimate mixing. However,
we would argue such a clear and binary distinction between the two types of mixing
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is not entirely appropriate. A simple mixing event due to a shear instability can be
dominated by a cascade of ‘secondary’ shear instabilities growing on shear instabilities,
for example as in an energetic estuary as shown in Geyer et al. (2010), or it can be more
appropriately characterized as being convectively driven once the primary billow has
rolled up, as observed in the thermocline by Woods (1968). We argue that if a distinction
is allowed in principle between the mixing length and the turbulent integral scale, as
done here, at least some ‘convective’ mixing can fit within the same parameterization
as ‘shear-driven’ overturnings; oceanic datasets appear to support this argument. Needless
to say, our argument does not extend to truly convection-driven mixing such as that in
deep convection zones, but rather to patches of mixing where it is reasonable to think
of relatively isolated time-varying overturning mixing events where the stratification is
sufficiently subcritical so as not to suppress such overturning.

Caldwell (1983) provided a nice description of the observed data on ROT on physical
grounds and summarized the opposing views that became a source of controversy: on one
hand, Gibson (1987) argued that most observations were what he referred to as fossilized
turbulence, while Gregg (1987) argued that they were of active turbulence. Caldwell
proposed that the largest eddies (of scale LO) feed on the original overturn (of scale LT ).
He provided scaling arguments, observational support, and other references, to show that
LO ∼ LT in this growth phase. This was also pointed out by Itsweire et al. (1993). This is
consistent with the idealized picture presented in figure 1, as well as with simulations of
other non-shear-instability-like turbulent overturns (e.g. see Fritts et al. 2003; Chalamalla
& Sarkar 2015). Caldwell argued that while the fossilization phase is also captured in the
data, most of the observed overturns are in a state of ‘continuous production’.

This continuous production corresponds to the intermediate energetically mixing phase
identified in § 3. As the mixing during this phase seems both to be most efficient and also to
be associated with LO ∼ LT , we refer to this phase as being the Goldilocks mixing phase,
where the turbulent overturning is neither too ‘hot’ (LT � LO) nor too ‘cold’ (LT � LO)
but ‘just right’ (LO ∼ LT ). As argued in Mashayek et al. (2017a), in this Goldilocks phase,
the energy is most efficiently supplied to turbulence as the external driving (associated
with the primary KHI billow roll up) is at a scale which essentially matches the upper
bound of an assumed inertial subrange largely unaffected by the stratification for which
the (dynamic) scalar mixing of buoyancy is subordinate to the turbulence cascade.

5.6. Quasi-equilibrium and self-organized criticality
It has been suggested (Turner 1973; Sherman, Imberger & Corcos 1978; Salehipour,
Peltier & Caulfield 2018; Smyth, Nash & Moum 2019; Smyth 2020) that various kinds of
shear-induced geophysically relevant turbulence are in a state of self-organized criticality
(SOC) in which the system is marginally unstable and overturns spontaneously emerge
when the flow properties intermittently drop below a stability criterion with respect
to a critical Richardson number, i.e. in the sense discussed in § 1, the stratification
intermittently becomes (just) subcritical, self-organizing and relaxing back towards
criticality. Although Howland, Taylor & Caulfield (2018) demonstrated that KHI are
exceptionally weak when the minimum Richardson number approaches the classical
Miles–Howard (Howard 1961; Miles 1961) criterion of 1/4, calling into question the
appropriateness of describing an energetically turbulent flow as being ‘marginally
unstable’ with respect to that specific value, as proposed by Thorpe & Liu (2009), a
body of evidence suggests that stratified turbulent flows can indeed adjust towards a state
where characteristic values of Ri � 0.17–0.25 (Zhou, Taylor & Caulfield 2017; Portwood,
de Bruyn Kops & Caulfield 2019; van Reeuwijk, Holzner & Caulfield 2019). As originally
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argued by Turner (1973) and Sherman et al. (1978), this evidence is at least suggestive
that shear-driven turbulent flows adjust to a ‘kind of equilibrium’ with PrT ∼ O(1), and
characteristic values of Ri close to the linear stability critical value, perhaps fortuitously.

We combine these ideas to propose an appropriate value for the scaling coefficient ‘A’ in
(5.8). Keeping in mind that the ROT � 1 and ROT � 1 limits of (5.8) represent the young
and decaying or fossilizing limiting phases of a turbulent mixing event, ROT ∼ 1 thus
represents the intermediate Goldilocks mixing phase. Let us assume that such a mixing
phase is in the ‘kind of equilibrium’ proposed by Turner, which in the modern language
of physics is essentially equivalent to a state of SOC. However, it might be described,
emergence of the balance ROT on physical grounds is consistent with the empirical fact
that the majority of observed overturns appear to be in this phase of efficient, and indeed
‘optimal’ mixing, as has been discussed previously (Dillon 1982; Ferron et al. 1998; Mater
et al. 2015; Mashayek et al. 2017a).

Therefore, we assume that the flow has a characteristic critical Richardson number Ricr
close to, but perhaps somewhat less than 1/4, i.e. that the stratification of the flow is just
slightly subcritical. Although it is perhaps stating the obvious, it important to appreciate
that such a Richardson number should be considered as being significantly less than one,
and to be associated with a flow where it is not to be expected that the turbulence will be
dominated by the stratification. For such a subcritically stratified flow at ROT ≈ 1, (5.8)
reduces to

Γgold = A
2

. (5.9)

Combining (2.5) and (5.3a,b),

PrT = P
[−B]

N2

S2 = Ri
Rif

, (5.10)

defining the ‘flux’ Richardson number Rif (Turner 1973). Over sufficiently long averages
and ignoring transport terms, we can assume Rif is equivalent to a particular definition of
a mixing efficiency, since P � M + ε and −B � M. Therefore

Rif � ΓM
1 + ΓM

, (5.11)

(see Ivey & Imberger 1991; Shih et al. 2005; Salehipour & Peltier 2015) Therefore,

ΓM =
Ri

PrT

1 − Ri
PrT

. (5.12)

Since we are always assuming that the mixing of scalar is locked to the mixing of
momentum so that PrT ∼ 1, Rif ∼ Ri � 1/4, and so ΓM � 1/3. As we shall see, the
underlying assumption that the flow is ‘subcritically stratified’ but time evolving, leading
to these various scalings, must always be remembered when comparing with previous
studies, particularly those of Maffioli et al. (2019) and Garanaik & Venayagamoorthy
(2019) based around the turbulent Froude number FrT = ε/[Nk].

If we further assume that the Goldilocks optimally efficient mixing occurs at some
specific Ricr rather than over some range bounded above by Ricr, consistently with the flow
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being in a self-organized critical equilibrium, we can then express the scaling parameter
‘A’ as

A =
2

Ricr

Prt

1 − Ricr

Prt

. (5.13)

Evidence from a range of flows suggests that vigorous turbulence in a subcritically
stratified flow (i.e. in the specific sense that the flow has sufficiently small Ri that the
turbulence, characterized by overturnings, can be sustained throughout the flow) has
PrT � 1 (Zhou et al. 2017; Portwood et al. 2019; van Reeuwijk et al. 2019). There is
also evidence that appropriate values of Ricr range from 0.16 (as reported in Portwood
et al. 2019) through 0.21 (Zhou et al. 2017; van Reeuwijk et al. 2019) to the canonical
‘marginally stable’ value of 1/4 (Salehipour et al. 2018; Smyth et al. 2019; Smyth 2020).
Indeed, due to a variety of reasons, in particular associated with the presence of ambient
turbulence, the critical value of the Richardson number associated with linear instability
may be expected to be less than this canonical value of 1/4 (Smyth et al. 2001; Thorpe,
Smyth & Li 2013; Kaminski & Smyth 2019).

Using these expressions PrT � 1 and 1/6 � Ricr � 1/4 suggests that 2/5 � A � 2/3,
i.e. 1/5 � ΓM � 1/3, with the canonical lower value being associated with Ricr = 1/6
and PrT = 1, consistently with the direct calculations of Portwood et al. (2019) in a
continuously forced flow, and also the (apparently) most efficient mixing in an evolving
Kelvin–Helmholtz unstable shear flow (Mashayek et al. 2013). Alternatively ΓM = 0.2
can also be identified with Ricr = 1/4, PrT = 5/4, which is also largely consistent with
available data, as one might argue that a continuously forced flow should correspond to the
intermediate mixing phase of an evolving overturning event. As we will soon show, for the
data considered in this work, ‘A’ lies within 2/5 � A � 2/3 for individual and combined
datasets. This implies that the above assumptions about PrT , Ricr are reasonable.

At the risk of belabouring the point, it is also important to appreciate two fundamental
aspects of our argument concerning this optimal mixing phase with intermediate values of
ROT ∼ O(1) between the two asymptotic regimes of ‘young’ turbulence and the decaying
‘fossilization’ phase. First, although this regime is indeed intermediate, it still occurs when
the flow has relatively small characteristic Richardson numbers significantly less than one,
with crucially PrT � 1, and so also Rif � Ri. Therefore, the mixing of buoyancy is set by
the mixing of momentum, and the density is mixed essentially as a passive scalar, with
buoyancy playing an at most sub-dominant dynamical role. Specifically, and critically for
our modelling, the properties of the turbulence itself, in particular characteristic length
scales and time scales, are largely unaffected by stratification in this intermediate mixing
phase within our framework. Second, the time dependence of the flow evolution is central
to our argument, and this phase naturally follows the ‘young’ (and crucially vigorously
overturning) phase of the flow evolution, and precedes the later decaying or fossilizing
phase. Fundamentally, at no stage in the flow evolution do buoyancy effects dominate any
aspect of the flow evolution.

To illustrate our proposed parameterization, figure 2 shows the parameterization in (5.8)
plotted for A = 2/3 along with the asymptotic limits given by (5.6) and (5.7). Also shown
is the naturally equivalent definition for an (instantaneous) mixing efficiency, i.e.

Ei ≡ ΓM
1 + ΓM

. (5.14)
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Γ

Figure 2. Variation with ROT of the parameterization (5.8) (with A = 2/3, implying ΓM = 1/3 and Ei =
1/4 at ROT = 1). Also shown are the two asymptotic scalings for growing turbulence (5.6) and for decaying
turbulence (5.7) with thin grey lines, and the corresponding mixing efficiency, with a dashed red line. The
light blue box in the middle of the plot represents the bounding box within which the ocean turbulence data
considered in this work lie, as will be shown in figure 3. Conceptually, time for a particular shear-driven mixing
event runs from left to right as ROT increases.

This definition of mixing efficiency tends to one in the limit of a non-turbulent flow
due to non-zero molecular diffusion (at Pr = 1) but the complete absence of turbulent
dissipation, hence yielding a perfectly efficient (laminar) mixing, but importantly, no
turbulent mixing. Yet again, it is important to remember that the flows of interest should
never be thought of as strongly stratified, and so ROT → 0 because ε → 0 in the numerator
of the Ozmidov length LO as there is no turbulence at all, not because N is very large in
the denominator, thus suppressing the turbulence due to buoyancy forces. In the limit of
ROT → ∞, Ei tends to zero as would be expected in decaying turbulence, and ROT → ∞
since the Thorpe length LT is decaying more rapidly than LO. Finally, at the heart of the
intermediate Goldilocks phase, ROT = 1, Ei = A/(2 + A).

Figure 3(a– f ) shows an excellent agreement between the parameterized form of
Γparam = ΓM using (5.8) and measurements of ROT and the observationally inferred
Γdata = Γχ = χ/ε constructed from measurements of χ and ε ‘directly’ from the six
datasets introduced earlier. Each panel also includes the Γ = A R−1

OT and Γ = A R−4/3
OT

limits. These two are expected to be relevant only in the limits of ROT � 1 and ROT � 1,
as was shown in figure 2. However, the datasets in figure 3 lie near the Goldilocks limit
ROT ∼ 1 (the blue box in the middle of figure 2). Thus, the two limiting cases are, perhaps
unsurprisingly, inaccurate in the range relevant to the data whereas their joint scaling, as
formulated by (5.8), much better represents the data. This is particularly clear when all
the data are combined in (g) where a total of ∼50 000 turbulent patches provide sufficient
statistics to provide a fair comparison between the data and the parameterization (note
that at least a few tens of thousands of samples are needed to capture the distribution
statistically significantly, as discussed in Cael & Mashayek (2020)).

As discussed earlier in connection with (5.13), for PrT � 1 and 1/6 � Ricr � 1/4,
we obtain 2/5 � A � 2/3. As shown in the captions of individual panels in figure 3,
the range of values for ‘A’ obtained based on regression of individual datasets to the
parameterization (5.8) falls within this range except for TIWE which is data-limited
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Figure 3. (a–g) Observationally inferred turbulent flux coefficient Γdata = Γχ (constructed from
measurements of χ and ε) as a function of ROT for six oceanic datasets introduced in § 4, as well as for the
combined data. In each panel, blue scattered dots in the background represent actual patches, the solid blue line
with filled circles and error bars represents the data binned (in log(Γχ ) space) and the solid red line with square
symbols represents the parameterized Γparam = ΓM using (5.8). Error bars represent ±1 standard deviation.
The value of ‘A’ for each panel is inferred based on linear regression of the corresponding data to log (5.8).
The right side inset compares probability density functions (p.d.f.s) of Γdata vs Γparam and the top inset shows
the p.d.f. of data in log(ROT ). The solid straight black lines represent Γ = A R−1

OT and Γ = A R−4/3
OT . Panel (h)

shows p.d.f.s of Γdata/Γparam for the various datasets.

from a statistical standpoint but nevertheless gives an ‘A’ very close to the upper bound.
The corresponding ‘A’ for the combined data is almost exactly 2/3 which corresponds
to PrT � 1 and Ricr � 1/4. Of course, this close agreement might well be somewhat
fortuitous considering we only use six oceanic datasets. But given the wide range of
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processes, geographical locations and oceanic depths spanned by these datasets, it is
pleasing that their mixing can be captured so well using a parameterization entirely based
on physical grounds: (5.8) depends on the Kolmogorov theory, the mixing length theory
and the TKE budget, while ‘A’ is determined based on a classical theoretical prediction
for the critical Richardson number necessary for shear-induced instability. No empiricism,
tuning, or filtering/modification of the data was required to obtain the agreement. Indeed,
allowing some empiricism associated with numerical simulations such as those reported
in Deusebio, Caulfield & Taylor (2015), Zhou et al. (2017), Portwood et al. (2019) and
van Reeuwijk et al. (2019) so that the critical Richardson number Ricr ∼ 0.2 would
nevertheless only modify the result slightly.

Crucially, this agreement also suggests that ocean mixing likely occurs at scales
sufficiently small that the local gradient Richardson number falls below a critical value so
that mixing in such a state remains close to and perhaps slightly below marginally unstable,
and fundamentally, scalings for the properties of the turbulence are never dominated by the
ambient stratification. The turbulence itself may be generated at a scale close to the shear
instability, through for example mixing in the thermocline through the breakdown of KHI.
Alternatively, the initial generation may be at a much larger scale through (for example)
tidal generation, which through linear and nonlinear processes, leads to generation of shear
at sufficiently small scales at which local Ri can become sufficiently small (Nikurashin &
Legg 2011). In other words, we hypothesize that the classic paradigm of a parallel shear
flow, as idealized as it undoubtedly is, may plausibly lie at the heart of ocean interior
mixing.

To compare the data and parameterization more quantitatively, figure 3(h) shows the
histograms of the ratio of Γ from data and the parameterized Γ . The agreement is
remarkable given the range of dominant driving mechanisms for the different datasets:
shear instability triggered by tropical instability waves in the equatorial undercurrent
(TIWE), near-inertial-shear (FLX91), internal tides (BBTRE) and hydraulically controlled
flow over abyssal canyons and sills (DoMORE and Samoan Passage). For the latter two
cases, the agreement is somewhat surprising considering that the measured turbulence
is close to the seafloor and possibly partially convectively driven, although even such
convectively breaking overturns are shear driven in the sense that the background shear
is a main source of energy. Nevertheless, it is reasonable to expect an influence of another
length scale, which is absent in the construction of (5.8) for near boundary turbulence.
Perhaps this explains the larger spread in the data for the Samoan Passage than predicted
by (5.8). Nevertheless, the agreement remains good at the peak of the p.d.f. of the data
where ROT ∼ 1.

5.7. Comparison to FrT-based parameterizations
Here, we have been focussed on mixing events which can be related to shear-driven
processes with subcritical stratification in the specific sense that vigorous overturning
events can be observed. As cogently argued by Maffioli et al. (2019), building on the
insights of Ivey & Imberger (1991), there are several reasons why it is appropriate to
attempt to construct parameterizations in terms of the turbulent Froude number FrT
defined (using our notation) as

FrT ≡ ε

Nk
. (5.15)
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They observed (from the results of body-forced numerical simulations) that Γ ∝ Fr−2
T for

large FrT , which is also consistent with gravity current observations as discussed in Wells,
Cenedese & Caulfield (2010).

Of course, large FrT corresponds to ‘weak’ stratification, and so it is entirely expected
that the unstratified scaling (5.1) applies. Therefore, remembering also the definition of LO
(2.1a–c), appropriately large FrT is proportional to

FrT ∝
(

LO

Li

)2/3

. (5.16)

Considering this weakly stratified class of flows, Maffioli et al. (2019) (effectively)
assumed that PrT ∼ 1, Γχ = ΓM and that the mixing length Lm ∼ Li (using our notation),
so that (2.1a–c) becomes

ΓM ∝
(

Li

LO

)4/3

∝ Fr−2
T . (5.17)

Garanaik & Venayagamoorthy (2019) extended the discussion of Maffioli et al. (2019),
constructing and interpreting various Froude number scalings in terms of time scales
and length scales, motivated by constructing a parameterization that would be practically
useful in terms of oceanic measurements. In the high FrT limit, they also argued (in
our notation) that Li ∼ LT , and so that ΓM ∝ Fr−2

T ∝ R−4/3
OT . This corresponds to the

final decaying fossilization phase described above, though neither Maffioli et al. (2019)
nor Garanaik & Venayagamoorthy (2019) considered time dependence of mixing events
(by design). In contrast to our inherently time-dependent viewpoint, their argument was
that LT < LO was a generic characteristic of weakly stratified turbulent flows, whereas
we postulate that this scaling only occurs late in the flow evolution of a shear-driven
overturning mixing event, and in point of fact, our arguments only require the stratification
to be subcritical (and thus allow shear-driven overturnings) with sufficiently small but not
necessarily negligible characteristic Richardson number.

Furthermore, although not couched in terms of shear flows by Maffioli et al. (2019), the
Fr−2

T scaling can also be interpreted in terms of (sufficiently small) Richardson numbers,
as the natural equivalent scaling is that

FrT ∼ U0

LiN
∝ Ri−1/2, (5.18)

and so
ΓM ∝ Fr−2

T ∝ Ri. (5.19)

This is of course entirely as expected for flows with PrT ∼ 1, as then ΓM � Rif � Ri �
1/4.

Interestingly, Garanaik & Venayagamoorthy (2019) also presented scaling arguments
for two other (effectively assumed to be quasi-steady) classes of flows, neither of
which should be construed as being equivalent to the (inherently time-dependent) phases
of a subcritically stratified flow as considered here. Building on the observations of
Maffioli et al. (2019), which in turn were motivated by experimental observations dating
back (at least) to Kato & Phillips (1969), (see also Park, Whitehead & Gnanadeskian
1994; Oglethorpe, Caulfield & Woods 2013; Olsthoorn & Dalziel 2015) Garanaik &
Venayagamoorthy (2019) presented a scaling argument for the observed constant flux
coefficient Γχ ∝ Fr0

T in (at least apparently) strongly stratified flows as FrT → 0. They
argued that the strong stratification completely dominates the dynamics, so that both
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the turbulent dissipation rate ε and the buoyancy flux B (and hence χ as the flow is
quasi-steady) scale with w2N, where w is the (perturbation) vertical velocity. Therefore
Γχ is constant in very strong stratification. Clearly, this class of flows is not considered
accessible by the (vertical) shear-driven mixing events with subcritical stratification
allowing overturnings to reach significant amplitude on which we are focusing in this
paper.

Furthermore, as argued in more detail in Caulfield (2021), care must be taken in inferring
the existence of this class of strongly stratified and yet vigorously turbulent flows. The
motivating experimental data were typically extracted from flows with emergent density
staircases, where relatively well-mixed and deep ‘layers’ are separated by relatively thin
‘interfaces’ of enhanced density gradient. Indeed, as demonstrated by Portwood et al.
(2016), flows with low FrT (when averaged over relatively large scales) typically exhibit
significant spatio-temporal variability, with vigorous turbulence (characterized by large
local values of ε) being restricted to patches of locally significantly weaker stratification. It
is also necessary to be cautious when comparing scaling arguments from different studies,
as there are often significant differences in the way in which superficially equivalent
non-dimensional parameters are defined.

In particular, as discussed in detail in Brethouwer et al. (2007), very strongly stratified
turbulent flows at sufficiently high Reynolds number can be profoundly anisotropic, with
characteristic horizontal length scales significantly larger than characteristic vertical scales
of turbulent patches, which in turn are larger than the Ozmidov scale (see also Caulfield
(2020) for further discussion). Therefore, the particular length and velocity scales which
are used to construct Froude numbers must be chosen with care and consistency before
direct comparisons between different flows (and indeed scaling arguments) are made.

Connecting this (assumed) strongly stratified class of flows as FrT → 0 and the
weakly stratified class with FrT � 1, Garanaik & Venayagamoorthy (2019) argued for the
existence of an intermediate ‘moderately stratified’ class of flows, where the properties are
effectively hybrid between the two end members. They argued that the buoyancy variance
destruction rate should scale as in the strongly stratified limit so that χ ∝ w2N, while
the turbulent kinetic energy (and its dissipation rate) are both (largely) unaffected by the
stratification, so k ∼ w2, and so, in this class of flows, they argued that

Γχ ∝ kN
ε

= Fr−1
T . (5.20)

Furthermore, they argued that this moderately stratified class is also characterized by
FrT ∼ O(1), which finally allowed them to argue that this intermediate class should have
the length scaling Γχ ∝ R−1

OT as when FrT ∼ O(1) it is expected that ROT ∼ O(1) as well.
The presented evidence of this intermediate class is perhaps not as convincing as for the

two end members. Whatever the quality of the data fit, it is important to appreciate that the
arguments leading to this scaling are fundamentally different from our arguments leading
to the (superficially same) scaling (5.6) for the early-time ‘young’ phase of an inherently
time-dependent and subcritically stratified shear-driven mixing event. Furthermore, our
‘subcritically stratified’ intermediate Goldilocks phase is also in marked conceptual
contrast to the intermediate, moderately stratified class of flows parameterized by Garanaik
& Venayagamoorthy (2019), in the sense that the physical processes and balances should
be thought of as arising for fundamentally different reasons.

In their argument, the stratification (and hence the characteristic values of the buoyancy
frequency) in their intermediate class has an order-one effect on the mixing. That can be
seen perhaps most clearly in terms of the implications of their scaling arguments for PrT .
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Since they argue that χ ∝ w2N,

κT ∝ χ

N2 ∝ w2

N
. (5.21)

On the other hand, since they argue that the TKE k ∝ w2 is largely unaffected by
stratification, it is natural to suppose that the mixing length for momentum is given by
(5.1), and so

νT ∝
(

w3

ε

)
w → PrT ∝ Nw2

ε
∝ Fr−1

T , (5.22)

using the scaling (5.21) for κT .
It could perhaps be argued that since in this regime FrT ∼ 1, PrT ∼ 1 still using this

scaling. Nevertheless, a consistent interpretation of this moderately stratified class of flows
leads to the prediction that the dynamics of the mixing of the buoyancy (as described by
PrT ) does depend on the stratification, with in particular PrT increasing as the stratification
becomes stronger, and hence FrT decreases. Importantly such a variation in FrT can occur
straightforwardly for different quasi-steady forced flows within their assumed class of
flows.

This is a qualitatively different mixing behaviour from the mixing behaviour we argue
occurs during the intermediate (in time) Goldilocks mixing phase. Our argument implicitly
assumes that the stratification is sufficiently subcritical that PrT � 1 throughout the
mixing life cycle, and in particular during the intermediate Goldilocks phase. During
this phase, it appears that the stratification is in some sense self-organized close to a
critical value of the Richardson number, and so there is not expected to be any parameter
dependence of PrT : the flow is after all neither too hot nor too cold, but just right. In
summary, their argument assumes an intermediate quasi-steady class of flows with hybrid
dynamical balance between buoyancy and turbulence, while our intermediate (in time)
phase is still (and always) subcritically stratified. We argue that it is the middle phase of
an inherently time-dependent flow evolution, that happens after a primary shear-driven
overturning breaks down, but before it enters a final fossilization decay phase.

Indeed, caution must always be shown in drawing any connections between descriptions
in terms of FrT and Ri, particularly as Ri � 1 is actually really a quite strongly stratified
flow in the context of shear-driven mixing events. Of course, there is no necessity for
equality in the various scalings used in the construction of the parameterizations, and
the presence of an order-one constant can always allow Ri to be sufficiently small to be
subcritical in the sense used in this paper, i.e. for a shear-driven overturning to develop to
sufficiently large amplitude to undergo vigorous turbulent breakdown, which we believe is
actually the dominant process far from boundaries.

In summary, while (5.7) was proposed previously, to our knowledge (5.5), (5.6) and
thereby (5.8) are new. Furthermore, the previously proposed scaling relation only strictly
applies for ROT � 1 which corresponds to a small fraction of the data. Through proposing
a scaling for the ROT � 1 limit and combining the two limits, we have managed to propose
a comprehensive parameterization and also to determine the coefficient of proportionality
on physical grounds. Note that earlier works used (5.7) with an adjustable coefficient that
could be tuned to fit the data better. Figures 2 and 3 suggest that such a tuning is incorrect,
and the data ‘feel’ both (5.6) and (5.7). In the next section, we will further discuss the
significance of (5.6) for bulk estimates of mixing on regional and global scales.
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Figure 4. (a) Value of Γ × ε, considered a proxy for the buoyancy flux through the Osborn relation (2.6),
calculated based on Γdata, Γparam using our full parameterization (5.8) and Γ−4/3 using only the asymptotic
scaling (5.7), as well as based on use of constant values Γ = 0.2 and Γ = 1/3. The last choice is based
on (5.13) if we consider Ricr = 1/4. (b) Cumulative flux for the cases of panel (a), all normalized by the
total Γdataεdata both obtained directly from data. (c–e) Bivariate histogram plots for the data over Γ − ε,
Γdata/Γparam − ε and ROT − ε parameter spaces. All plots are made for the data combined for all six
experiments in table 1.

6. Three key points

6.1. The devil is in the tails
An important question, one mostly left out of the literature discussing properties of various
definitions of the turbulent flux coefficient Γ , is the extent to which the nuances of
variations in Γ with other parameters matter in practice. There is no simple answer to
this question, as it depends on the application for which the rate of mixing is being
measured. Furthermore, a key missing piece is how one would connect the fluid-dynamical
understanding of mixing of turbulent patches (as studied herein and in articles cited
throughout), to an appropriate time- and space-averaged rate of mixing. The latter is out of
the scope of our paper (but some discussion is provided in Cael & Mashayek 2020). Since
our primary motivation behind this work is to relate efficiency of mixing to transformation
of water masses in the ocean interior, which depends on the vertical divergence of the
buoyancy flux (see Mashayek et al. 2015; Ferrari et al. 2016), we attempt to answer the
question by simply quantifying the extent to which various measures of Γ will affect
the total buoyancy flux obtained by summing the flux due to all the overturns in the datasets
that we consider here.

Taking Γ ε (for various definitions of Γ ) as a proxy for the buoyancy flux κN2

through the Osborn balance (2.6), in figure 4(a) we plot the flux based on Γdata = Γχ

from the data, parameterizations and as constants. While we of course appreciate the
many questionable assumptions underlying the approximation of actual flux with Γ ε, as
discussed in Mashayek & Peltier (2013) and Mashayek et al. (2013) for example, they do
not affect our arguments here in any significant way. As expected based on figure 3, flux
parameterized using (5.8) agrees well with the observed flux, while flux parameterized
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Σ(εΓparam)/Σ(εΓdata) Σ(0.2ε)/Σ(εΓdata) Σ( 1
3 ε)/Σ(εΓdata) Σ(εΓ−4/3)/Σ(εΓdata)

TIWE 0.96 0.53 0.89 2.01
FLX91 0.97 0.72 1.16 2.02
IH18 1.03 0.41 0.67 2.62
Samoan Passage 2.91 1.21 1.99 6.58
BBTRE 0.96 0.52 0.86 2.96
DoMORE 0.91 0.24 0.39 2.27
Combined 1.43 0.63 1.05 3.2

Table 1. Comparison of the inaccuracies between the total buoyancy fluxes using the Osborn approximation
Γ ε estimated based on constant values and various other parameterizations of Γ .

using (5.7) is biased high. Most importantly, if we consider the total flux due to all
overturns, given the several orders of magnitude that ε spans, the tail of the histograms
makes a significant contribution and so the extent to which Γ is accurately estimated for
the tails is key. As shown in panel (b), it is the higher ε tail that leads to an overestimate
when using parameterization (5.7). It is also notable that, while Γ = 0.2 underestimates
the total flux, Γ = 1/3 actually leads to a much better agreement. Since Γ = 1/3 is linked
(at least within our modelling approach) to assuming that the critical Richardson number
Ricr � 1/4, as was discussed above, it seems a more appropriate choice in the simplest
approach of using a single constant value of Γ .

Figure 4 plots all six datasets combined. The disagreement between various estimates,
however, can be much larger when looked at case by case. To do so, in table 1 we compare
the total flux based on various estimates (i.e. the high end of the curves in figure 4b) for
individual datasets. It is clear that parameterization (5.8) is quite accurate in capturing the
total flux for five of the six cases (within 10 %). Even for the Samoan Passage case, which
is somewhat of an outlier, it is still within a factor of 3. On the other hand, parameterization
(5.7) is less accurate. Γ = 0.2 underestimates the total flux by as much as a factor of four,
and fixing Γ = 1/3 does a much better job.

It is useful to interpret figure 4(a,b) and the agreement of data with parameterization
(5.8) by looking at the distribution of data over various parameter spaces, as shown in
(c–e) of the figure. While the data are spread around ROT ∼ 1, the spread is much larger
at low ε, representing both the early stages of turbulence growth and the later stages of
the turbulence after significant decay, as one would expect from consideration of figure 1.
For energetic patches that correspond to the optimal Goldilocks mixing phase, ROT nicely
collapses around the value ROT � 1 as shown in (e). For this Goldilocks phase, Γ ∼ 1/3
as shown in (c) and in agreement with the assumption of Ricr ∼ 1/4, while at early and
later stages of turbulence life cycles, Γ can be very large or very small, respectively.
Panel (d) shows that the parameterization (5.8) manages to collapse this spread on ROT ,
and that importantly it works well for the tail of the histograms which make the largest
contribution to the total flux. In summary, given the accuracy, simplicity, and physically
justified nature of the parameterization (5.8), it seems like a natural way to model the
turbulent flux coefficient Γ associated with overturns in shear-induced turbulence.

6.2. Bulk Γ : the importance of young turbulence events
In ocean and climate general circulation models, small scale wave breaking is not resolved
but the combined power available for mixing from tides, winds and other sources is
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Figure 5. (a) An example of an energetic oceanic turbulence zone, in the Samoan Passage, to demonstrate
the intermittency of turbulence; reproduced from Alford et al. (2013): northward velocity (colours), potential
temperature (black contours) and dissipation rate measured by the velocity microstructure profiles (shaded
black profiles) and from Thorpe scales (blue profiles). The scale for ε is given at the lower left and redrawn
above each profile. (b) A snapshot of vertical shear from an observationally forced and tuned wave-resolving
simulation of the Drake Passage, borrowed from the work of Mashayek et al. (2017b). (c– f ) Bivariate
histograms showing the distribution of patches over the ε − Γ parameter space for four of the datasets
considered herein. The values of bulk Γ in each panel’s title is obtained from (6.1). Note that the data in
(e) are associated with (a).

available as a bulk value per grid cell. For example, an energetic turbulent zone in the
ocean, such as that shown in figure 5(a) for the Samoan Passage, is roughly represented
by 1–2 grid cells (in each direction) in a typical climate model. A bulk Γ is thus required
to divide the power available (from tides, winds, currents, etc.) into bulk measures of
mixing and dissipation for a given grid cell (see Cimoli et al. (2019), for a thorough
discussion). In practice, this ΓBulk is often taken to be 0.2. Even without all the variations
and caveats associated with Γi for individual turbulent patches, ΓBulk inevitably depends
on the statistics of turbulent patches within each grid cell. Several studies have applied
parameterizations for Γ , derived based on patch data, to coarse grid-based calculations
to establish the leading-order importance of variations in Γ for the larger scale ocean
circulation (De Lavergne et al. 2016; Mashayek et al. 2017c; Cimoli et al. 2019). That
approach, while illuminating, is also not correct since it applies a patch-based quantity
to grid cells of O(100 km) × O(100 km) × O(100 m) in size. In this subsection we show
how ΓBulk depends on statistics of turbulent patches and that not only does it depend on
Goldilocks mixing of energetic patches, but equally on the young patches which possess
large Γ and decaying patches with vanishing Γ .

Imagining a typical energetic zone, such as the example in figure 5(a), we assume
the domain to contain n number of turbulent patches (within a grid cell of a coarse
resolution model which would represent the region) and over a period associated
with a coarse resolution model time stepping. Panel (b) shows a snapshot from a
wave-resolving high resolution realistic simulation to demonstrate the intermittency of
vertical shear generated by surface winds and flow–topography interaction in the very
energetic Drake Passage in the Southern Ocean where high flow speeds occur due to
the constriction of the Antarctic Circumpolar Currents and the overlying strong westerly
winds known as the roaring forties. Even in such an energetic region, the flow is mostly
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non-turbulent (from a small scale stratified turbulence perspective – a rich mesoscale
and submesoscale turbulence field exists throughout the domain). However, in the ‘quiet’
regions, background weak mixing almost always exists: 97 % of the data acquired from
∼750 full-depth microstructure profiles from 14 field experiments considered in Cael &
Mashayek (2020) possessed a diffusivity larger than 10−6 m2 s−1 (also see Waterhouse
et al. 2014). In the limit of completely laminar flow, κ → O(10−7) m2 s−1 and so the
flux M ≈ κN2 stays finite while ε tends to zero. Thus, while for energetic turbulent
patches Γ ≈ Γgold, for quieter regions it tends to O(10) and larger values (see histograms
in figure 3).

To show how the energetic, young and decaying turbulent patches collectively set the
bulk Γ , we define

ΓBulk = Mtot

εtot
≈

n∑
i=1

Γi × εi

n∑
i=1

εi

, (6.1)

where n represents the number of patches in a region of interest. Figure 5(c– f ) shows the
estimated ΓBulk for four deep energetic turbulent datasets considered herein. As discussed
in figure 4, for energetic patches with high ε, Γi → Γgold while small ε corresponds to
young and decaying patches which possess large and small Γi, respectively. For BBTRE
and DoMORE, abundance of young patches result in a large ΓBulk even though most of the
data correspond to Goldilocks mixing. For IH18, a larger fraction of the data correspond
to Goldilocks mixing and so does ΓBulk. A simple thought experiment can help illustrate
the impact of young turbulent patches. Imagine a box with three turbulent patches: a
young patch (ε = 0.001, Γ = 100), a moderately turbulent patch (ε = 0.1, Γ = 10) and
an energetic patch (ε = 1, Γ = 1/3). This results in ΓBulk = 0.44.

Our key message is that while most of the collective community efforts have focused
on finding the right parameterization for energetic turbulent patches, the net mixing also
critically depends on young patches and the large fraction of the water column where only
weak background turbulence occurs. This highlights the importance of the new scalings
presented in this work in (5.5), (5.6). It also highlights the need for investing efforts in
understanding better the statistics of turbulence to quantify its intermittency. Such statistics
are key to connecting our understanding of physics of small scale stratified turbulence, as
discussed in this work and the ones cited herein, to the larger scale applications. This
statistical bridge is arguably highly underdeveloped – see Cael & Mashayek (2020) for a
discussion. Finally, while we used the patch data for four experiments in figure 5, it was
merely to illustrate the simple point that ΓBulk can be large even though most patches
have Γ ∼ Γgold. We have no reason to believe that the number of patches within each
experiment was statistically sufficient to quantify mixing accurately in the geographical
region of each experiment. Also, the data we used are only for the already identified
patches. The actual microstructure profiles also include regions that are not identified as
patches, but should contribute to ΓBulk.

6.3. Statistics of LO/LT: active vs fossil turbulence
Thus far we have repeated on several occasions and on empirical grounds (based on the
data used in this study and other works cited herein) that ‘most of the data are centred
around ROT ∼ 1’. This, however, lies at the heart of a historically significant debate.
As discussed in the introduction, Gibson (1987) argued that most observations were of
fossilized turbulence, while Gregg (1987) argued that they were of active turbulence.
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Figure 6. (a) Probability density function of ROT , grouped into quartiles of ε, from the combined six oceanic
datasets considered in this work. (b,c) Temporal fraction of turbulence life cycle as well as the ratio of ROT
during turbulent phase of the flow to its mean value over the whole life cycle. Each symbol represents a
life-cycle-averaged quantity from a direct numerical simulation for a given pair of Reynolds and Richardson
numbers. All cases in (b) are for Ri = 0.12 while all cases in (c) are for Re = 6000. Turbulent phase of the
life cycles are defined as the times when Reb > 20. Panels (b,c) are produced from analysis of simulations
originally discussed in Mashayek & Peltier (2011a,b) and Mashayek & Peltier (2013); Mashayek et al. (2013).

The latter, referred to as ‘continuous production’ by Caldwell (1983) and as Goldilocks
mixing herein, is supported by a seemingly universal concentration of data around
ROT ∼ 1.

Figure 6(a) shows the histogram of the combined data considered in this work to
highlight the clustering around ROT ∼ 1. Importantly, the clustering improves for more
energetic turbulent patches with larger ε. Panels (b,c) of the figure demonstrate, based
on data from direct numerical simulations of shear instabilities, that once the parameter
ranges approach those of oceanic turbulent patches (i.e. large Re and subcritical Ri),
a larger fraction of the total overturning life cycle corresponds to sustained energetic
turbulence (for which ROT ∼ 1). This explains the statistical distribution of ROT in panel
(a). In contrast, less energetic turbulence events, such as those created in laboratory or
numerical simulations, or those observed in lakes, are expected to have a more broadly
distributed (over ROT ) distributions. Once again, we argue that ROT ∼ 1 is associated with
an intermediate phase of an energetic time-dependent subcritically stratified mixing event,
not an intermediate, hybrid class of moderately stratified quasi-steady mixing events as
argued by Garanaik & Venayagamoorthy (2019).

7. A note on Γ as a function of Reb

Heretofore, we have presented arguments for parameterizing the turbulent flux coefficient
in terms of a ratio of length scales. On the other hand, the literature proposing the
use of appropriate definitions of a buoyancy Reynolds number Reb and/or a Richardson
number Ri to quantify mixing efficiency is relatively well established (Peltier & Caulfield
2003; Ivey et al. 2008; Gregg et al. 2018; Caulfield 2021). However, efforts that compared
various datasets found them not to overlap when mapped onto these parameters (Bouffard
& Boegman 2013; Mashayek et al. 2017c; Monismith et al. 2018). To highlight this for
the datasets employed in this article, in figure 7 we plot the totality of the six datasets
considered herein in the Γ − Reb space and also include bin-averaged means for each
dataset. Put simply, the data are all over the place.

Substantial empirical evidence suggests that in the energetically mixing regime, Γ ∝
Re−1/2

b (Ivey et al. 2008; Bouffard & Boegman 2013; Mashayek et al. 2017c; Monismith
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Figure 7. Scatter plot of data for the six oceanic datasets in Reb − Γ space, overlaid by bin-averaged curves
for each experiment.

et al. 2018). There is also some evidence from experimental and numerical data (see
review in Bouffard & Boegman (2013); also see Mashayek et al. 2017c) that for smaller
Reb, Γ ∝ Re1/2

b . Finally, substantial evidence also suggests Γ ∝ Ri ∼ Fr−2 in sufficiently
weakly stratified flows when PrT ∼ O(1) (Shih et al. 2005; Wells et al. 2010; Lozovatsky
& Fernando 2013; Deusebio et al. 2015; Salehipour & Peltier 2015; Zhou et al. 2017;
Maffioli et al. 2019; Garanaik & Venayagamoorthy 2019). One could argue that each line
in figure 7 consists of left and right flanks that represent these limits.

We have tried, unsuccessfully, to interpret these limits as young and decaying turbulence
phases and parameterize Γ in a fashion similar to Bouffard & Boegman (2013) and
Mashayek et al. (2017c) with the addition of Ri to the parameterization. For that to work,
most of the data would be expected to be at the transition between the left and right scaling
(i.e. the peak of the lines in figure 7) but that did not hold for any of the various data
we considered here. From a physical perspective, the most fundamental message of this
paper is the need to account for both energy injecting and dissipation scales to quantify
mixing; Reb only conveys information about the latter, and thus is insufficient by design.
Our efforts to resort to Ri as a means for including a scale for background shear and
reconcile the various data were not fruitful even for the two datasets that possess Ri
measurements. Considering Ri is often not measured, and the success of (5.8), we did
not pursue Γ = f (Reb, Ri) further here. We also like to point out that while Reb spans five
orders of magnitude in figure 7, the corresponding ROT captures most of the data within
two orders of magnitude. So even if a measurable energy injection scale could somehow be
combined with Reb, (5.8) would still be much preferable, as attested to by the nice collapse
of data in figure 3(g).

8. Conclusions

In this paper, we have shown that a parameterization of an appropriate definition of
the turbulent flux coefficient Γ based on the ratio ROT of Ozmidov and Thorpe scales
may be derived using classical ideas of energy transfer within the inertial range, mixing
length theory, and criticality conditions for parallel free shear layers. The novelty of
this parameterization is that it spans the entire turbulent life cycle of a mixing event,
and yet does not involve any empirical tuning coefficients. We have shown that the
parameterization agrees well with a host of oceanic observations of turbulent overturns
in different geographical, depth, and turbulence regimes. Most energetic turbulent patches
appear to correspond to an intermediate phase of turbulence where ROT ∼ 1, implying an
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efficient transfer of energy between the background flow and the hierarchy of eddies that
exist in the inertial range. We refer to this efficient and in some sense optimal phase as the
Goldilocks mixing phase, and have shown that Γ � 1/3 in this phase. This value agrees
not only with observations but also directly follows from assuming a critical Richardson
number Ricr ∼ 1/4, suggesting a connection with such flows being in a critical ‘kind of
equilibrium’ state, or close to ‘marginal’ stability in some sense.

Our work further emphasizes the essential significance of identification and
quantification of both the energy injecting and dissipation scales for accurate
parameterization of mixing. Of course, this is well known both from observations and
simulations. However, it is common to infer turbulent diffusivity from microstructure
measurements alone or from Thorpe scale estimates with the assumption of a fixed ROT .
We simply further emphasize that both such approaches are fundamentally limited. When
ε, LT , and χ are all available, (4.1), (5.8), may be used in conjunction to constrain Γ quite
tightly. In the absence of χ , (5.8) can still be used successfully to estimate Γ .

We have also quantified the extent to which variations in Γ matter for the total buoyancy
flux based on the sum of contributions of individual patches for the various observational
datasets, and have shown that these variations can lead to inaccuracies as high as a factor
of 7. The key point appears to be that the statistics of overturn characteristics have a
surprisingly long and fat tail in the high ε limit. Since ε is observed to vary over orders of
magnitude, estimating Γ correctly for the tail is crucially important, and a constant value
based on the mean of many overturns will inevitably be inaccurate. Our parameterization
describes Γ relatively well for such tails and also demonstrates that 1/3 may be more
appropriate than 0.2 as a rule of thumb for a constant Γ .

Finally, we wish to emphasize that everything that we have discussed in this paper is in
relation to spatially and temporally isolated turbulent patches. Such patches are identified
from profiler data that include quiescent regions. We showed that young turbulent patches
with high Γ can bias to high values the bulk value of Γ associated with a coarse resolution
climate model grid cell. Thus, not only the high tail of ε matters, but so does the portion of
the low tail that corresponds to young patches (with the rest of the low tail corresponding
to decaying turbulence). Outstanding open questions, pertinent to the quantification of
the role of mixing on regional and global scale in the world’s oceans, are (i) what is
the appropriate underlying distribution of patches in time and space, and (ii) what is the
relative importance of the driving mechanisms of ocean turbulence. While the properties
of the distribution or ‘census’ of the turbulent patch population and generating mechanisms
are key to any attempt to connect the physics of density-stratified turbulence to most
oceanographic applications, both issues remain extremely poorly understood (MacKinnon
et al. 2017; Cael & Mashayek 2020).
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