
Canad. Math. Bull. Vol. 65 (3), 2022, pp. 653–664
http://dx.doi.org/10.4153/S0008439521000539
© Canadian Mathematical Society 2021

Analytic order-isomorphisms of countable
dense subsets of the unit circle
Maxim R. Burke

Abstract. For functions in Ck(R) which commute with a translation, we prove a theorem on
approximation by entire functions which commute with the same translation, with a requirement
that the values of the entire function and its derivatives on a specified countable set belong to specified
dense sets. Using this theorem, we show that if A and B are countable dense subsets of the unit circle
T ⊆ C with 1 ∉ A, 1 ∉ B, then there is an analytic function h∶C ∖ {0} → C that restricts to an order
isomorphism of the arc T ∖ {1} onto itself and satisfies h(A) = B and h′(z) /= 0 when z ∈ T . This
answers a question of P. M. Gauthier.

1 Introduction

The Barth–Schneider theorem [1] states that whenever A, B are countable dense
subsets of R, there is an entire function f which restricts to an order-isomorphism
of A onto B. This generalizes Cantor’s theorem which gives an order-isomorphism of
A onto B which then extends uniquely to an order-isomorphism of R onto itself. P. M.
Gauthier noted (private communication) that if A and B are countable dense subsets
of the unit circle T ⊆ C, then there is a diffeomorphism T → T mapping A onto B and
asked whether this diffeomorphism can be taken to be analytic.

It is a standard exercise (cf. [4, Exercise 4, p. 264 and Exercise 25, p. 295]) that
the entire functions that map the unit circle T into itself are the functions f (z) = azn ,
∣a∣ = 1, n = 0, 1, 2, . . . . These map T bijectively onto itself only when they are rotations,
i.e., when n = 1. Thus they give a bijection satisfying f (A) = B only when B is the
image of A under a rotation.

We will prove a version (Theorem 3.6) of the Barth–Schneider theorem for sets A,
B which are invariant under a translation σ(x) = x + t and use it to show (Theorem
4.1) that if A and B are countable dense subsets of T ∖ {1}, where T ⊆ C is the unit
circle ∣z∣ = 1, then there is an analytic function h∶C ∖ {0} → C that restricts to an
order isomorphism of the arc T ∖ {1} onto itself T ∖ {1} and satisfies h(A) = B and
h′(z) /= 0 when z ∈ T . The proof uses a version (Theorem 3.3 and Corollary 3.5) of
Theorem 3.2 of [2], adapted to produce functions which commute with a translation.

Received by the editors April 21, 2021; revised July 7, 2021; accepted July 8, 2021.
Published online on Cambridge Core July 14, 2021.
Research supported by NSERC.
AMS subject classification: 30E10, 42A10, 41A05, 41A28.
Keywords: Order-isomorphism, countable dense set, entire function, analytic function, unit circle.

https://doi.org/10.4153/S0008439521000539 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008439521000539
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008439521000539&domain=pdf
https://doi.org/10.4153/S0008439521000539


654 M.R. Burke

In this paper, we fix a positive real number t, and the translation σ given by σ(z) =
z + t. Note that f σ = f says that f is periodic with period t, where f σ denotes the
composition f ○ σ .

2 Preliminary results

In this section, we prove two technical facts needed in the next section. The first is an
analog of a result of Walsh (cf. [3, Corollaries 1.2 and 1.3]). This is likely known, but
we have not found it in the literature except for k = 0, so we give a proof. The second
is adapting Proposition 2.1 of [2] to our present context.

Theorem 2.1 Let k be a nonnegative integer, σ(z) = z + t. If f ∶R→ R is a Ck function
which satisfies f σ = f , and F ⊆ R is finite, then there is an entire function g such that
(a) g(R) ⊆ R and gσ = g
(b) ∣D i g(x) − D i f (x)∣ < ε, x ∈ R, i = 0, . . . , k
(c) D i g(x) = D i f (x) for x ∈ F, i = 0, . . . , k

Proof If we can arrange (a) and (b), then it follows that we can also arrange (c)
by Theorem 0 of [3] applied to the space Xk = { f ∈ Ck(R) ∶ f σ = f } with the norm
∥ f ∥ = ∑k

i=0 ∥D i f ∥∞. (Cf. [3, Example (1), p. 1183, and Corollary 1.3]) So we need only
arrange (a) and (b).

It is standard that in X0 the functions g(2πz/t), where g is a trigonometric
polynomial with real coefficients, are dense (e.g., see [3, Example (2), p. 1183] or [5,
Remark 9.4.24 (2)]).

For the general case, we proceed by induction on k. When k > 0, fix f ∈ Xk and
apply the induction hypothesis to D f to get an entire function g1 satisfying g1(R) ⊆ R,
g1σ = g1 and ∣D i−1 g1(x) − D i f (x)∣ < δ =min(ε/2, ε/(2t)) for x ∈ R and i = 1, . . . , k.
Define an entire function g by

g(z) = f (0) + ∫
z

0
g1(s) ds − cz, z ∈ C,

where c = (1/t) ∫
t

0 g1(s) ds is the average value of g1 over [0, t]. Since ∫
t

0 D f = 0 by
periodicity, we have

∣c∣ = ∣ 1
t ∫

t

0
(g1(s) − D f (s)) ds∣ ≤ δ.

To verify that gσ = g, it suffices to check that g(x + t) = g(x) when x is real, and that
follows by the following calculation.

g(x + t) = f (0) + ∫
x+t

0
g1(s) ds − c(x + t) = g(x) + ∫

x+t

x
g1(s) ds − ct = g(x).
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For x ∈ [0, t], we also have

∣g(x) − f (x)∣ = ∣∫
x

0
(g1(s) − D f (s)) ds − cx∣

≤ ∫
x

0
∣g1(s) − D f (s)∣ ds + ∣c∣x

≤ tδ + tδ = 2tδ < ε,

and so, by periodicity, ∣g(x) − f (x)∣ < ε for all x ∈ R. This takes care of the bound on
∣D i g(x) − D i f (x)∣, x ∈ R, when i = 0. When i = 1 we have

∣Dg(x) − D f (x)∣ = ∣g1(x) − c − D f (x)∣ ≤ ∣g1(x) − D f (x)∣ + ∣c∣ ≤ 2δ < ε,

and when 2 ≤ i ≤ k, ∣D i g(x) − D i f (x)∣ = ∣D i−1 g1(x) − D i f (x)∣ < δ < ε. ∎

Lemma 2.2 Let ε > 0. Let k be a nonnegative integer and let F ⊆ [0, t] be a finite
set such that {0, t} ⊆ F or {0, t} ∩ F = ∅. For each p ∈ F and i = 0, . . . k, let kp, i ∈
{−1, 0, 1} with k0, i = kt , i if 0 ∈ F. Then there is an entire function f ∶C→ C such that
f σ = f , f (R) ⊆ R and for i = 0, . . . , k and x ∈ R, we have ∣(D i f )(x)∣ < ε and for p ∈ F,
(D i f )(p) is < 0, = 0, > 0 when kp, i = −1, 0, 1, respectively.

Proof For r > 0 and p ∈ R, write Ir(p) = (p − r, p + r). For each p ∈ F, choose
0 < rp < 1, so that the intervals Ir p(p) are contained in (0, t) when 0 < p < t, Ir t(t) =
Ir0(0) + t if 0 ∈ F, and the intervals Ir p(p) for p ∈ F and have closures which are
disjoint from each other. For each p ∈ F, choose a C∞ bump function φp with support
equal to the closure of Ir p(p), so that 0 ≤ φp ≤ 1, φp(p) = 1, φp has a flat point at
p (i.e., (D i φp)(p) = 0 for all nonzero i), taking φt(x) = φ0(x − t) if 0 ∈ F. Let θ p
be a C∞ function whose derivatives at p follow the requisite pattern, with θ t(x) =
θ0(x − t) if 0 ∈ F, for example, take θ p(x) = ∑k

i=0 kp, i(x − p)i . For suitably chosen
positive constants λp , we set g(x) = ∑p∈F λpθ p(x)φp(x), 0 ≤ x ≤ t, and extend g by
periodicity to all of R so that gσ = g. This function g is C∞ and its derivatives have
the requisite pattern at the points p ∈ F since for i = 0, . . . , k we have (D i g)(p) =
λp(D i(φpθ p))(p) = λp D i θ p(p). Choose the constants λp , p ∈ F, small enough so
that for each i = 0, . . . , k,

λp∥D i(φpθ p)∥∞ < ε/2.

Then g is a C∞ function which satisfies the conclusion in the place of f and with ε
replaced by ε/2. Get the desired entire function f by applying Theorem 2.1 to g with
ε/2 in the place of ε. ∎

3 Barth–Schneider for periodic functions

Definition 3.1 A fiber-preserving local homeomorphism of R2 ≅ R ×R is a homeo-
morphism h∶G1

h → G2
h between two open sets G1

h , G2
h ⊆ R2 such that h has the form

h(x , y) = (x , h∗(x , y)) for some continuous map h∗∶G1
h → R. We write kh for the

inverse of h.
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We can identify a fiber-preserving homeomorphism h with the family {(h∗)x} of
vertical sections of h∗, given by (h∗)x(y) = h∗(x , y). These are homeomorphisms
(h∗)x ∶ (G1

h)x → (G2
h)x , where (G1

h)x , (G2
h)x are the vertical sections at x of G1

h , G2
h .

G 1
h

x

(x , y) G2
h

x

(x , (h∗)x(y))

It is separate continuity rather than joint continuity that we require for these fiber-
preserving maps. In our context, however, this is not a weaker property as the
following proposition shows.

Proposition 3.1 Let X be any topological space, G ⊆ X ×R an open set, and let
h∶G → X ×R. Assume that for each x ∈ X, h(Gx) ⊆ {x} ×R, h is one-to-one and h
is separately continuous, i.e., the functions x ↦ h(x , y), y ↦ h(x , y) are continuous on
their domains. Then h is continuous.

Taking h(x , y) = (x , h∗(x , y)) on R ×R with h∗(x , y) = x y/(x2 + y2) when
(x , y) /= (0, 0), h∗(0, 0) = 0, shows that the assumption that h is one-to-one cannot
be omitted.

Proof Write h(x , y) = (x , h∗(x , y)). The continuity of h is equivalent to that of h∗.
Also note that because h is one-to-one, so is y ↦ h∗(x , y) for each fixed x. Let a ∈ X,
b, c ∈ R with (a, b) ∈ G and h∗(a, b) = c. Fix an open neighborhood U of a and an
open interval V containing b such that U × V ⊆ G. Choose an open interval W with
c ∈W . Since y ↦ h∗(a, y) is continuous, there is a δ > 0 such that ∣y − b∣ ≤ δ implies
y ∈ V and h∗(a, y) ∈W . The two functions x ↦ h∗(x , b ± δ) are continuous at a and
hence there is an open neighborhood U ′ ⊆ U of a such that x ∈ U ′ implies h∗(x , b ±
δ) ∈W . For x ∈ U ′, y ↦ h∗(x , y) is a continuous one-to-one function on the interval
[b − δ, b + δ], so that the image of this interval is an interval with endpoints h∗(x , b ±
δ), and hence is contained in W. Thus, h∗(U ′ × (b − δ, b + δ)) ⊆W and therefore h∗
is continuous at (a, b). ∎

Remark 3.2 The inverse kh of a fiber-preserving local homeomorphism h is also a
fiber-preserving local homeomorphism and is related to h by the fact that (x , y) ∈ G1

h
and h∗(x , y) = z if and only if (x , z) ∈ G2

h and k∗h(x , z) = y. As pointed out in the
proof of Proposition 3.1, the vertical sections of h∗ are one-to-one since h is one-to-
one. The main examples for our purposes are h = idR2 , the identity map on R

2 (for
which (h∗)x(y) = y is the identity map for each x ∈ R), and for a given a continuous
map g∶R→ R, h∗(x , y) = g(x) + y. Both of these have G1

h = G2
h = R2.

We shall prove our main results using the following version of Theorem 3.2 of [2].
The proof is similar to that of the original version, but we repeat the argument with
the necessary changes in order to be clear.
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Theorem 3.3 Let E i ⊆ [0, t], i = 0, . . . , k, be countable sets with {0, t} ⊆ E i or E i ∩
{0, t} = ∅. Let F ⊆ [0, t] be a finite set disjoint from ⋃k

i=0 E i with {0, t} ⊆ F or F ∩
{0, t} = ∅. For each p ∈ E i , let Ap, i ⊆ R be a countable dense set, with A0, i = At , i if
{0, t} ⊆ A. Let ε > 0. Let H be a countable family of fiber-preserving local homeomor-
phisms of R2. There exists an entire function f ∶C→ C such that f (R) ⊆ R, f σ = f and
for all x ∈ R and i = 0, . . . , k,
(a) ∣(D i f )(x)∣ < ε, and if x ∈ F then D i f (x) = 0.
(b) for each p ∈ E i , (D i f )(p) ∈ Ap, i .
(c) for every q ∈ R, h ∈H and every open interval U ⊆ R ∖ F, if

(x , (D i f )(x)) ∈ G1
h and q = h∗(x , (D i f )(x))

for some x ∈ U ∩ cl Yh ,q , i , where Yh ,q , i = {p ∈ E i ∶ for some q′ ∈ Ap, i , (p, q′) ∈ G1
h

and q = h∗(p, q′)}, then q = h∗(p, (D i f )(p)) for some p ∈ U ∩ E i .

Remark 3.4 (i) For the hypothesis in (c) to be nonvacuous, there must be a point
x ∈ U ∩ cl E i ⊆ U ∩ [0, t], so only intervals which intersect [0, t] are relevant.

(ii) It is sometimes useful to reword clause (c) in an equivalent form. The criterion
for p ∈ Yh ,q , i is that p ∈ E i and q ∈ (h∗)p(Ap, i). Clause (c) says equivalently that for
x ∈ [0, t] ∖ F, if q = (h∗)x((D i f )(x)) and arbitrarily close to x there are points p ∈ E i
such that q ∈ (h∗)p(Ap, i), then arbitrarily close to x there are points p ∈ E i such that
q = (h∗)p((D i f )(p)).

(iii) If we require idR2 ∈H then this ensures that either f is constant or for x ∈
[0, t] ∖ F, i = 0, . . . , k, if q = (D i f )(x) and arbitrarily close to x there are points p ∈ E i
such that q ∈ Ap, i , then x ∈ E i . To see why, apply the reworded clause (c) in (ii) with h
being the identity map to get that if q = (D i f )(x) and arbitrarily close to x there are
points p ∈ E i such that q ∈ Ap, i , then arbitrarily close to x there are points p ∈ E i such
that q = (D i f )(p). If x itself does not belong to E i , then since D i f is entire, D i f is
constant with value q and hence f is a polynomial. Since f is periodic, it then follows
that f is constant.

Proof We may assume that ⋃k
i=0 E i /= ∅ (otherwise take f = 0) and that ε ≤ 1. Let

B = {Ur ∶ r = 1, 2, . . . } be a one-to-one enumeration of a base of bounded open inter-
vals for R ∖ F. For each r, write Ur = ⋃∞n=1 Ur ,n , the union of an increasing sequence
of concentric intervals so that cl Ur ,n ⊆ Ur ,n+1. Let {(in , sn) ∶ n = 1, 2, . . . } list all pairs
(i , s) consisting of an i = 0, . . . , k and a point s ∈ E i . Let Q = {h∗(p, q′) ∶ h ∈H , p ∈
E i , q′ ∈ Ap, i , (p, q′) ∈ G1

h , i = 0, . . . , k}. List the quadruples (h, j, q, V) consisting
of an h ∈H , a j = 0, . . . , k and elements q ∈ Q, V ∈B as {(hm , jm , qm , Vm) ∶ m =
1, 2, . . . } with each quadruple listed infinitely many times. As with the Ur above, we
write Vm = ⋃∞n=1 Vm ,n where if Vm = Ur then Vm ,n = Ur ,n . We will write G1

m , G2
m , km

for G1
hm

, G2
hm

, khm , respectively.
We will build the required function as f = ∑∞n=1 λnun , where for each n ∈ N, λn ∈

R satisfies ∣λn ∣ ≤ 1 and un ∶C→ C is an entire function such that un(R) ⊆ R. We
recursively define the following.
(i) λn and un .
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(ii) An increasing sequence of finite sets ∅ = K0 ⊆ K1 ⊆ . . . of pairs (w , p) consist-
ing of a w = 0, . . . , k and a point p ∈ Ew .

(iii) A decreasing sequence of positive numbers 1 = δ0 > δ1 > . . . .
We will arrange that the following properties hold for n = 1, 2, . . . . In this list, fn
denotes the sum∑n

k=1 λkuk , and f0 = 0.
(1) un σ = un and ∣(D i un)(x)∣ < 2−n−1δn−1ε for x ∈ R, i = 0, . . . , k.
(2) (Dw un)(p) = 0 for (w , p) ∈ Kn−1.
(3) (D i un)(x) = 0 whenever x ∈ F, i = 0, . . . , k.
(4) ∣un(z)∣ < 2−n , for ∣z∣ ≤ n.
(5) For each (w , p) ∈ Kn , (Dw fn)(p) ∈ Ap,w .
(6) If n is odd then Kn = Kn−1 ∪ {(i� , s�)} for the least � such that (i� , s�) /∈ Kn−1.

We have (D i�un)(s�) /= 0.
(7) If n = 2m is even, we have the following. Suppose that

(x , (D jm fn−1)(x)) ∈ G1
m and (x , qm) ∈ G2

m whenever x ∈ Vm .

(a) If qm = h∗m(x , (D jm fn−1)(x)) for some x ∈ Vm ∩ cl Yhm ,qm , jm then for some
p ∈ Vm ∩ Yhm ,qm , jm , h∗m(p, (D jm fn)(p)) = qm and Kn = Kn−1 ∪ {( jm , p)}.

(b) If qm /= h∗m(x , (D jm fn−1)(x)) for all x ∈ Vm ∩ cl Yhm ,qm , jm then un =
0, Kn = Kn−1 and δn < inf{∣k∗m(x , qm) − (D jm fn−1)(x)∣ ∶ x ∈ Vm ,n ∩
cl Yhm ,qm , jm}.

We now explain how to carry out the construction at odd stages and at even
stages.

First suppose n is odd. This stage includes the initial step n = 1. Set Kn = Kn−1 ∪
{(i� , s�)} for the least � such that (i� , s�) /∈ Kn−1. Apply Lemma 2.2 to get an entire
function un ∶C→ C satisfying (1), (2), (3), and (6). Arrange (4) by replacing un by a
smaller positive multiple of itself if necessary. Since (D i�un)(s�) /= 0 by (6), and As� , i�
is dense inR, we may choose λn so that 0 < λn < 1 and (D i� fn)(s�) = (D i� fn−1)(s�) +
λn(D i�un)(s�) ∈ As� , i� . This gives (5) because if (w , p) ∈ Kn−1 then (Dw un)(p) = 0
by (2), so (Dw fn)(p) = (Dw fn−1)(p) which by (5) for n − 1 belongs to Ap,w . For δn ,
choose any positive number satisfying δn < δn−1.

Now suppose that n = 2m is even. If the assumption of (7) fails, take un = 0,
λn = 0, Kn = Kn−1, and let δn be any number such that 0 < δn < δn−1. Clearly (1)–(7)
hold. Now suppose that the assumption is satisfied, i.e., (x , (D jm fn−1)(x)) ∈ G1

m and
(x , qm) ∈ G2

m whenever x ∈ Vm .

Case 1. qm /= h∗m(x , (D jm fn−1)(x)) for all x ∈ Vm ∩ cl Yhm ,qm , jm .

Let un = 0, λn = 0, Kn = Kn−1. Clearly (1)– (5) hold. For (7), choose any
positive number δn < δn−1 so that δn < inf{∣k∗m(x , qm) − (D jm fn−1)(x)∣ ∶ x ∈ Vm ,n ∩
cl Yhm ,qm , jm} where the right-hand side is positive because cl(Vm ,n) ∩ cl(Yhm ,qm , jm)
is compact and contained in Vm ∩ cl Yhm ,qm , jm .

Case 2. h∗m(p, (D jm fn−1)(p)) = qm for some p ∈ Vm ∩ Yhm ,qm , jm .

By definition, p ∈ Yhm ,qm , jm means that p ∈ E jm and there is a (unique) q′ ∈ Ap, jm

such that (p, q′) ∈ G1
m and qm = h∗m(p, q′). Since the vertical sections of h∗m are
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one-to-one, we must have (D jm fn−1)(p) = q′ and hence (D jm fn−1)(p) ∈ Ap, jm . Let
un = 0, λn = 0, Kn = Kn−1 ∪ {( jm , p)}. Clearly (1)–(5) and (7) hold. For δn , choose
any positive number satisfying δn < δn−1.

Case 3. h∗m(x , (D jm fn−1)(x)) /= qm for all x ∈ Vm ∩ Yhm ,qm , jm , but

h∗m(p, (D jm fn−1)(p)) = qm

for some p ∈ Vm ∩ cl Yhm ,qm , jm .

The assumptions give h∗m(p, (D jm fn−1)(p)) = qm and p /∈ Vm ∩ Yhm ,qm , jm , and
since p ∈ Vm this gives p /∈ Yhm ,qm , jm . It follows from (5) that ( jm , p) /∈ Kn−1 because
if ( jm , p) ∈ Kn−1 then p ∈ E jm and by (5) we have

(D jm fn−1)(p) ∈ Ap, jm ,

which together with h∗m(p, (D jm fn−1)(p)) = qm gives p ∈ Yhm ,qm , jm , contradiction.
Apply Lemma 2.2 to get an entire function un ∶C→ C satisfying (1), (2), (3) and
(D jm un)(p) > 0. Arrange (4) by replacing un by a smaller positive multiple of itself
if necessary. The function x ↦ (k∗m(x , qm) − (D jm fn−1)(x))/(D jm un)(x) is contin-
uous at p with value 0 there, and p ∈ Vm ∩ cl Yhm ,qm , jm , so we can pick an element p′
of Vm ∩ Yhm ,qm , jm so close to p that the number

λn =
k∗m(p′ , qm) − (D jm fn−1)(p′)

(D jm un)(p′)

satisfies ∣λn ∣ < 1. With this value of λn , we have k∗m(p′ , qm) = (D jm fn)(p′) and
therefore

h∗m(p′ , (D jm fn)(p′)) = qm ,

and hence (7) holds if we take Kn = Kn−1 ∪ {( jm , p′)}. Note that (5) is satisfied. For
δn , choose any positive number satisfying δn < δn−1.

This completes the construction. Property (4) ensures that the formula f =
∑∞n=1 λnun defines an entire function and that

(D i f )(z) =
∞

∑
n=1

λn(D i un)(z)

for all i = 0, . . . , k and z ∈ C. Clearly f (R) ⊆ R and by (1), we have f σ = ∑∞n=1 λnun σ =
f . We now verify (a)–(c).

(a) When i = 0, . . . , k, x ∈ R, we have using (1) that ∣(D i f )(x)∣ ≤ ∑∞i=1 ∣(D i u i)(x)∣ <
∑∞i=1 2−i−1ε = ε and, using (3), when x ∈ F we have (D i f )(x) = 0.

(b) When p ∈ E i , i = 0, . . . , k, (6) ensures that (i , p) ∈ Kn if n is sufficiently large.
Then (5) gives (D i fn)(p) ∈ Ap, i . From (2), we get that (D i u j)(p) = 0, j ≥ n + 1, and
hence (D i f )(p) = (D i fn)(p) ∈ Ap, i .

(c) Suppose i = 0, . . . , k, q ∈ R, U ⊆ R ∖ F is an open interval, and we have
(p, (D i f )(p)) ∈ G1

h , and q = h∗(p, (D i f )(p)) for some p ∈ U ∩ cl Yh ,q , i . We wish
to show that q = h∗(p̄, (D i f )(y)) for some y ∈ U ∩ E i . We may assume that U ∈B
and for some open intervals W1 , W2 ⊆ R, for all x ∈ U ,

https://doi.org/10.4153/S0008439521000539 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439521000539


660 M.R. Burke

• (D i f )(x) ∈W1 ⊆ cl W1 ⊆W2, and U ×W2 ⊆ G1
h and

• (x , q) ∈ G2
h .

Since D i fn → D i f uniformly on compact sets, for large enough n we have for x ∈ U
that (D i fn)(x) ∈W2 and hence (x , (D i fn)(x)) ∈ G1

h . By assumption, p ∈ cl Yh ,q , i ,
so Yh ,q , i /= ∅ and hence q ∈ Q. Fix r such that U = Ur . Choose an even n = 2m
with (hm , jm , qm , Vm) = (h, i , q, Ur), n large enough so that p ∈ Ur ,n = Vm ,n and
(x , (D i fn−1)(x)) ∈ G1

h for all x ∈ U .

Claim. q = h∗(x , (D i fn−1)(x)) for some x ∈ U ∩ cl Yh ,q , i .

If not, then by (7), δn < inf{∣k∗m(x , qm) − (D jm fn−1)(x)∣ ∶ x ∈ Vm ,n ∩ cl Yhm ,qm , jm}
and un = 0, so that fn = fn−1. We have that for j > n, ∣(D i u j)(p)∣ < 2− j−1δn . This gives

∣(D i f )(p) − (D i fn−1)(p)∣ ≤
∞

∑
j=n

2− j−1δn < δn < ∣k∗m(p, q) − (D i fn−1)(p)∣.

This contradicts h∗(p, (D i f )(p)) = q (which is equivalent to k∗h(p, q) = (D i f )(p)).
This completes the proof of the claim.

The claim says that qm = h∗m(x , (D jm fn−1)(x)) for some x ∈ Vm ∩ cl Yhm ,qm , jm ,
so by (7), for some y ∈ Vm ∩ Yhm ,qm , jm , h∗m(y, (D jm fn)(y)) = qm and Kn = Kn−1 ∪
{( jm , y)}. But then by (2), (D jm uk)(y) = 0 if k > n, so h∗m(y, (D jm f )(y)) =
h∗m(y, (D jm fn)(y)) = qm . ∎

The next corollary incorporates into the theorem the ability to approximate a given
function g such that either gσ = g or gσ = σ g. These two types of functions are related
by the fact that for a function g, if we write g = g1 + id, i.e., g(x) = g1(x) + x, then σ g =
gσ if and only if g1σ = g1. Also note that if either gσ = g or gσ = σ g then (D i g)σ =
D i g for i > 0 when the derivatives exist.

Corollary 3.5 (A) Let g ∈ Ck(R) satisfy gσ = g. Let E i ⊆ [0, t], i = 0, . . . , k, be
countable sets with {0, t} ⊆ E i or E i ∩ {0, t} = ∅. Let F ⊆ [0, t] be a finite set disjoint
from ⋃k

i=0 E i with {0, t} ⊆ F or F ∩ {0, t} = ∅. For each p ∈ E i , let Ap, i ⊆ R be a
countable dense set, with A0, i = At , i if {0, t} ⊆ E i . Let ε > 0. Let H be a countable
family of fiber-preserving local homeomorphisms of R2. There exists an entire function
f ∶C→ C such that f (R) ⊆ R, f σ = f and for all x ∈ R and i = 0, . . . , k,
(a) ∣(D i f )(x) − (D i g)(x)∣ < ε, and if x ∈ F then D i f (x) = D i g(x).
(b) for each p ∈ E i , (D i f )(p) ∈ Ap, i .
(c) for every q ∈ R, h ∈H and every open interval U ⊆ R ∖ F, if

(x , (D i f )(x)) ∈ G1
h and q = h∗(x , (D i f )(x))

for some x ∈ U ∩ cl Yh ,q , i , where Yh ,q , i = {p ∈ E i ∶ for some q′ ∈ Ap, i , (p, q′) ∈ G1
h

and q = h∗(p, q′)}, then q = h∗(p, (D i f )(p)) for some p ∈ U ∩ E i .
(B) The same statement is true with gσ = g, f σ = f replaced by gσ = σ g, f σ = σ f ,
respectively, and the condition At , i = A0, i(when {0, t} ⊆ E i) replaced by At , i = A0, i
when i /= 0, At ,0 = A0,0 + t.

https://doi.org/10.4153/S0008439521000539 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439521000539


Analytic order-isomorphisms 661

Proof (A) Using Theorem 2.1, we can approximate g by an entire function g0 so
that g0(R) ⊆ R, g0σ = g0, and for x ∈ R, i = 0, . . . , k, ∣D i g0(x) − D i g(x)∣ < ε/2 and
if x ∈ F then D i g0(x) = D i g(x). If we approximate g0 as in Corollary 3.5, replacing ε
by ε/2, we get the desired function f. Hence, we may assume that g is entire.

For p ∈ E i , define Bp, i = Ap, i − (D i g)(p). Writing ξ i for the fiber-preserving
homeomorphism of R2 given by ξ i(x , y) = (x , y + (D i g)(x)), take Hi = {h ○ ξ i ∶
h ∈H } and apply Theorem 3.3 with Ap, i replaced by Bp, i and H replaced by
H = ⋃i Hi . (Here, h ○ ξ i ∶ ξ−1

i (G1
h) → G2

h .) If f1 is the resulting entire function, the
function f = g + f1 is as desired. We have f σ = gσ + f1σ = g + f1 = f . Clauses (a) and
(b) are immediate from the corresponding clauses of Theorem 3.3 and the definition
of Bp, i .

For (c), fix an i = 0, . . . , k, q ∈ R, h ∈H , an open interval U ⊆ R ∖ F, and
assume that (x , (D i f )(x)) ∈ G1

h and q = h∗(x , (D i f )(x)) for some x ∈ U ∩
cl Yh ,q , i . Then ξ i(x , (D i f1)(x)) ∈ G1

h , so (x , (D i f1)(x)) ∈ ξ−1
i (G1

h), and q = (h∗ ○
ξ i)(x , (D i f1)(x)).

Claim. Yh ,q , i ⊆ Yh○ξ i ,q , i where the set Yh○ξ i ,q , i is defined using the Bp, i instead of the
Ap, i .

Let p ∈ Yh ,q , i . Then p ∈ E i and for some q′ ∈ Ap, i , (p, q′) ∈ G1
h and q = h∗(p, q′).

We then have q′ − (D i g)(p) ∈ Bp, i , (p, q′ − (D i g)(p)) = ξ−1
i (p, q′) ∈ ξ−1

i (G1
h) and

q = (h∗ ○ ξ i)(p, q′ − (D i g)(p)) = (h ○ ξ i)∗(p, q′ − (D i g)(p)). Thus, p ∈ Yh○ξ i ,q , i ,
which proves the claim.

By the claim, x ∈ cl Yh○ξ i ,q , i and hence by (c) of Theorem 3.3, q = (h ○
ξ i)∗(p, (D i f1)(p)) = (h∗ ○ ξ i)(p, (D i f1)(p)) for some p ∈ U ∩ E i . Then
h∗(p, (D i f )(p)) = (h∗ ○ ξ i)(p, (D i f1)(p)) = q.

(B) This part follows from (A) by an argument similar to that used for (A).
Given g ∈ Ck(R) satisfying gσ = σ g, write g = g1 + id. As pointed out above, we
have g1σ = g1. For p ∈ E i , define Bp, i = Ap, i − (D i id)(p). (So Bp,0 = Ap,0 − p, Bp,1 =
Ap,1 − 1, Bp, i = Ap, i(i > 1).) Writing ξ i for the fiber-preserving homeomorphism of
R

2 given by ξ i(x , y) = (x , y + (D i id)(x)), take Hi = {h ○ ξ i ∶ h ∈H } and apply
part (A) to g1 with Ap, i replaced by Bp, i and H replaced by H = ⋃i Hi . (Here,
h ○ ξ i ∶ ξ−1

i (G1
h) → G2

h .) If f1 is the resulting entire function, the function f = id+ f1
is as desired. Since f1 satisfies f1σ = f1, it follows that f satisfies f σ = σ f . Clauses (a)
and (b) of part (B) are immediate from the corresponding clauses of part (A) and the
definition of Bp, i . For (c), as in part (A), fix an i = 0, . . . , k, q ∈ R, h ∈H , an open
interval U ⊆ R ∖ F, and assume that (x , (D i f )(x)) ∈ G1

h and q = h∗(x , (D i f )(x))
for some x ∈ U ∩ cl Yh ,q , i . Then ξ i(x , (D i f1)(x)) ∈ G1

h , so (x , (D i f1)(x)) ∈ ξ−1
i (G1

h),
and q = (h∗ ○ ξ i)(x , (D i f1)(x)). As in the proof of (A), we get Yh ,q , i ⊆ Yh○ξ i ,q , i where
the set Yh○ξ i ,q , i is defined using the Bp, i instead of the Ap, i . (In the proof of the claim
in part (A), replace the four g’s by id.) Then finish exactly as in part (A), reading “by
(c) of part (A)” instead of “by (c) of Theorem 3.3.” ∎

Theorem 3.6 Let (Ai
n , B i

n), i = 0, . . . , k, n ∈ N, be pairs of countable dense subsets of
R invariant under σ such that for each fixed i, the Ai

n are pairwise disjoint. Assume also
that the B0

n are pairwise disjoint. Let F ⊆ R be a finite set disjoint from each Ai
n . Fix ε > 0.
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Then for each g ∈ Ck(R) with k ≥ 1 such that gσ = σ g, Dg > 0, and g(F) ∩ B0
n = ∅ for

all n ∈ N, there is an entire function f such that for i = 0, . . . , k, n ∈ N, and x ∈ R,
(a) f (R) ⊆ R, f σ = σ f , D f (x) > 0
(b) ∣(D i f )(x) − (D i g)(x)∣ < ε, and if x ∈ F then D i f (x) = D i g(x)
(c) D i f (Ai

n) ⊆ B i
n , f (A0

n) = B0
n

Proof For i = 0, . . . , k, let E i = [0, t] ∩ ⋃∞n=1 Ai
n . For pairs (p, i) with p ∈ E i , for

some unique n we have p ∈ Ai
n . Define Ap, i = B i

n . If 0, t ∈ E i , then for some n we have
0, t ∈ Ai

n . Then A0, i = At , i = B i
n and therefore also σ(A0, i) = At , i by invariance of B i

n .
The orbit of each point has at most two points in [0, t], so F1 = [0, t] ∩ ⋃�∈Z σ�(F)
is finite. We have E i ∩ F1 = ∅ for each i, because E i ∩ F1 ⊆ (⋃∞n=1 Ai

n) ∩ (⋃∞�=1 σ�(F))
and for all n, �, Ai

n ∩ σ�(F) = σ�(Ai
n ∩ F) = ∅. Similarly, g(F1) ∩ B0

n = ∅ because
g(σ�(F)) ∩ B0

n = σ�(g(F) ∩ B0
n) = ∅ for all n, �. Take ε′ =min(ε, inf{Dg(x) ∶ x ∈

R}) which is positive by periodicity of Dg and since Dg > 0. Corollary 3.5 (B) with
H = {idR2} gives f such that f (R) ⊆ R, f σ = σ f and for all x ∈ R and i = 0, . . . , k,
(i) ∣(D i f )(x) − (D i g)(x)∣ < ε′, and if x ∈ F1 then D i f (x) = D i g(x).
(ii) for each p ∈ E i , (D i f )(p) ∈ Ap, i .
(iii) for any q ∈ R, if q = f (x) for some x ∈ cl{p ∈ E0 ∶ q ∈ Ap,0}, x ∉ F1, then q =

f (p) for some p ∈ E0. (Since f is injective, necessarily x = p.)
From (i) we get (b). From (i) we also get for x ∈ R, ∣D f (x) − Dg(x)∣ < ε′ ≤ Dg(x), so
D f (x) > 0 giving (a). For (c), fix i = 0, . . . , k, n ∈ N. We want to show that D i f (Ai

n) ⊆
B i

n , and when i = 0, f (A0
n) = B0

n . For p ∈ Ai
n we have for some � that σ�(p) ∈ [0, t].

When i = 0, we get, using (ii), f (p) = σ−� f (σ�(p)) ∈ σ−�Aσ�(p),0 = B0
n . When i > 0,

we get similarly D i f (p) = D i f (σ�(p)) ∈ Aσ�(p), i = B i
n .

There remains to show that B0
n ⊆ f (A0

n). Let q ∈ B0
n . Since f (t) = f (0) + t, for

some �, σ�(q) ∈ [ f (0), f (t)] and therefore, for some x ∈ [0, t], f (x) = σ�(q). We
have x ∉ F1 because otherwise g(x) = f (x) = σ�(q) ∈ B0

n , contradicting the fact that
g(F1) ∩ B0

n = ∅. Since A0
n is dense, arbitrarily close to x there are p ∈ A0

n ∩ [0, t] and
these satisfy σ�(q) ∈ B0

n = Ap,0, so by (iii), there is a p ∈ E0 such that σ�(q) = f (p) and
therefore f (σ−�(p)) = q. This gives q ∈ f (A0

n) as long as p ∈ A0
n . Let m be such that

p ∈ A0
m . Then σ�(q) = f (p) ∈ f (A0

m) ⊆ B0
m . Since B0

m and B0
n are disjoint, it follows

that m = n. ∎

4 Order-isomorphisms of the arc T ∖ {1}

Applying Theorem 3.6 we can transfer the Barth–Schneider theorem for the real line
to the following analog for the arc T ∖ {1}.

Theorem 4.1 Let (An , Bn), n ∈ N, be countable dense subsets of T ∖ {1}. Assume
that An ∩ Am = ∅ and Bn ∩ Bm = ∅ when n /= m. Let g∶T → T satisfy g(e iθ) = e i β(θ),
0 ≤ θ ≤ 2π, where β∶ [0, 2π] → [0, 2π] is a C1 bijection such that Dβ > 0 and Dβ(0) =
Dβ(2π). Let F ⊆ T ∖ {1} be a finite set so that F is disjoint from each An and g(F) is
disjoint from each Bn . Then there is an analytic function h∶C ∖ {0} → C that restricts
to an order-preserving bijection of the arc T ∖ {1} onto itself and satisfies the following.
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(a) ∣h(z) − g(z)∣ < ε for z ∈ T and h(z) = g(z) for z ∈ F.
(b) h(An) = Bn(n ∈ N).
(c) Dh(z) /= 0 when z ∈ T.

Remark 4.2 (i) It will be apparent from the proof that we can require that h(e iθ) =
e iα(θ) where α∶ [0, 2π] → [0, 2π] is a bijection which is the restriction of an entire
function, and Dα(θ) > 0 and ∣Dα(θ) − Dβ(θ)∣ < ε for θ ∈ [0, 2π].

(ii) We take the ordering on the arc T ∖ {1} to be counterclockwise. We could
replace “order-preserving” by “order-reversing.” In this context, Dβ > 0 should be
replaced by Dβ < 0. To get the desired conclusion, define Ān = {z̄ ∶ z ∈ An}, F̄ = {z̄ ∶
z ∈ F}. Then define β̃(θ) = β(2π − θ), g̃(z) = g(1/z) = e i β̃(θ). Note that F̄ ∩ Ān =
F ∩ An = ∅ and g̃(F̄) ∩ Bn = g(F) ∩ Bn = ∅. From Theorem 4.1, get h̃ satisfying (a)–
(c) with respect to g̃, F̄, and the pairs (Ān , Bn). Then h(z) = h̃(1/z) gives the desired
order-reversing bijection of the arc T ∖ {1}.

(iii) The order-preserving bijection from the arc T ∖ {1} to itself can be replaced
by an order-preserving bijection T ∖ {p} → T ∖ {q} (where p ∈ T ∖ An , q ∈ T ∖ Bn)
by considering the rotated sets p̄An and q̄Bn .

Proof Define F′ = {0} ∪ {θ ∈ (0, 2π) ∶ e iθ ∈ F}, and define

A′n = {θ ∈ R ∶ e iθ ∈ An}, B′n = {θ ∈ R ∶ e iθ ∈ Bn}.

The assumption on β ensures that it extends to a C1 function on R satisfying σ β = βσ .
The sets A′n , B′n are countable, dense, and invariant under translation by t = 2π. The
A′n are pairwise disjoint, as are the B′n , and the conditions F ∩ An = ∅, g(F) ∩ Bn =
∅, 1 ∉ An , Bn imply the conditions F′ ∩ A′n = ∅, β(F′) ∩ B′n = ∅. Choose δ > 0 so that
Dβ(θ) > δ, θ ∈ R, and ∣θ1 − θ2∣ < δ implies ∣e iθ 1 − e iθ2 ∣ < ε. Apply Theorem 3.6 to get
an entire function α such that such that α(R) ⊆ R, ασ = σα, and
(i) ∣α(θ) − β(θ)∣ < δ for θ ∈ R and α(θ) = β(θ) for θ ∈ F′.
(ii) ∣Dα(θ) − Dβ(θ)∣ < δ for θ ∈ R.
(iii) α(A′n) = B′n(n ∈ N).
(iv) Dα > 0.
(Note that (iv) follows from (ii) and the choice of δ.) From (i) we get α(0) = β(0) = 0.
For the function γ(z) = α(z) − z we have γ(z + 2π) = γ(z), α(z) = z + γ(z). Con-
sider the branches of log

Log z = ln ∣z∣ + i Arg z (−π < Arg z < π),
log z = ln ∣z∣ + i arg z (0 < arg z < 2π).

We have Log z = log z when Im z > 0 and log z = Log z + 2πi when Im z < 0. By the
periodicity of γ we have

γ(−i log z) = γ(−i Log z) (Im z /= 0).(4.1)

Define

h(z) = e iα(−i log z)
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for z /= 0 not a positive real number. We have

h(z) = e iα(−i log z) = e i(−i log z)e iγ(−i log z) = ze iγ(−i log z) .

Similarly, if we set H(z) = e iα(−i Log z) when z /= 0 is not a negative real number, we
get H(z) = ze iγ(−i Log z), and by (4.1), h(z) = H(z) for Im z /= 0. Thus, h extends to an
analytic function defined on C ∖ {0} by setting h(z) = H(z) when z is a positive real
number.

When z = e iθ , 0 < θ < 2π, we have −i log z = θ, so h(z) = e iα(θ). As θ runs over
(0, 2π) from 0 to 2π, α(θ) does the same since α(0) = 0 and α(2π) = α(0) + 2π =
2π, so h(z) = h(e iθ) = e iα(θ) runs over the arc T ∖ {1} counterclockwise from 1 to 1.
From (i) and the choice of δ we get

∣h(z) − g(z)∣ = ∣h(e iθ) − g(e iθ)∣ = ∣e iα(θ) − e i β(θ)∣ < ε

and this implies the first part of (a). If θ ∈ F′ then h(e iθ) = e iα(θ) = e i β(θ) = g(e iθ)
and this implies the second part of (a).

Also, for 0 < θ < 2π and n ∈ N,

e iθ ∈ An ⇔ θ ∈ A′n ⇔ α(θ) ∈ B′n ⇔ e iα(θ) ∈ Bn ,

so that for z ∈ T ∖ {1}, we have z ∈ An if and only if h(z) ∈ Bn . Hence h restricts to an
order-isomorphism of T ∖ {1}mapping An onto Bn .

There remains to verify that Dh(z) /= 0 when ∣z∣ = 1. When ∣z∣ = 1, z /= 1, we have

Dh(z) = d
dz

e iα(−i log z) = e iα(−i log z) ⋅ i ⋅ Dα(−i log z) ⋅ −i
z

,

which is nonzero since −i log z is real when ∣z∣ = 1 and Dα(θ) /= 0 for θ ∈ R. Writing
Log instead of log we have the analogous computation when ∣z∣ = 1, z /= −1. ∎
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