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A dynamical system is called chaotic if small changes to its initial conditions can create
large changes in its behavior. By analogy, we call a dynamical system structurally
chaotic if small changes to the equations describing the evolution of the system produce
large changes in its behavior. Although there are many definitions of “chaos,” there are
few mathematically precise candidate definitions of “structural chaos.” I propose a
definition, and I explain two new theorems that show that a set of models is structurally
chaotic if it contains a chaotic function. I conclude by discussing the relationship
between structural chaos and structural stability.

Suppose a scientist wishes to predict the behavior of a dynamical system,
such as the evolution of an ecosystem, the motion of a pendulum, or the
spread of an epidemic. To do so, the scientist might estimate the current
state of the system ðe.g., the number of predators in an ecosystemÞ, develop
a mathematical model of how the system evolves ðe.g., equations describing
how the number of predators changes over timeÞ, and use her model to
predict the future given the estimated current state. Thus, there are at least
two potential sources of predictive inaccuracy. First, predictions may be
inaccurate because the scientist mismeasures or misestimates the system’s
initial conditions. Call this initial conditions error ðICEÞ. Alternatively,
error may arise from an inaccurate model of how the system changes over
time. Call this model error ðSMEÞ.1
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Frigg et al. ð2014Þ argue that the distinction between SME and ICE is
crucial for both scientific practice and policy making. They claim that,
although there are methods that generate accurate predictions in the pres-
ence of both ICE and chaos, there are no known methods for doing the
same with respect to SME and a phenomenon akin to chaos, which they call
the “hawk-moth effect.”2 For this reason, Frigg et al. ð2014Þ argue that the
hawk-moth effect and SME are neglected but important topics for philos-
ophers of science.

The hawk-moth effect is intended to be the analog of Lorenz’s famous
“butterfly effect,” which occurs when small changes to a system’s initial
conditions ðe.g., a butterfly flapping its wingsÞ can create large changes in
the system’s behavior ðe.g., storm patternsÞ. Analogously, a hawk-moth
effect occurs when small changes to the structural equations describing the
evolution of a dynamical system produce large changes in its behavior. Frigg
et al. ð2014Þ produce ample arguments and computer simulations to think
that the hawk-moth effect is both widespread and important, but they do
not provide a precise mathematical definition of the phenomenon. This is
important because although there are many formal definitions of the butter-
fly effect and “chaos” ðBatterman 1993; Werndl 2009Þ, there are far fewer
mathematically precise definitions that might be used to formalize Frigg
et al.’s ð2014Þ hawk-moth effect, or what I will call “structural chaos.”

Frigg et al.’s ð2014Þ argument, therefore, raises at least three important
questions for philosophers of science, applied mathematicians, and working
scientists. First, for each definition of “chaos,”what is the analogous concept
of structural chaos? Second, what are the relationships among the various
notions of chaos ðsimpliciterÞ and the analogous notions of structural chaos?
Finally, what are the implications of structural chaos for prediction, control,
and explanation?

This article takes a preliminary step with respect to the first two ques-
tions. Section 1 discusses definitions of “chaos.” I focus on topologically
mixing systems, which are an important class of chaotic ones.3 In section 2,
I define an analogous notion of “structural mixing” that might be used to
characterize structural chaos. I then prove that a collection of models is
structurally mixing if it contains a topologically mixing model.

2. Similar arguments appear in Parker ð2011Þ.
3. According to Devaney’s ð1989Þ widely cited definition, chaotic systems satisfy three
conditions: ðiÞ they are sensitive to initial conditions, ðiiÞ they are topologically tran-
sitive, and ðiiiÞ their periodic points are dense in state space. Topological mixing systems
are topologically transitive, and under very general conditions, they are also sensitive to
initial conditions. Thus, they satisfy two of the three properties that are widely used to
define “chaos.”
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Section 3 explores the relationship between my results and other poten-
tial characterizations of structural chaos. There, I argue that definitions of
“structural instability” are not clearly analogous to notions of chaos. Finally,
section 4 discusses the philosophical importance of my results.

1. Chaos. To study chaos, it is necessary to define precisely what a “dy-
namical system” is. I will consider only discrete-time dynamical systems,
which are triples hX, d, Ji where ðiÞ hX, d i is a metric space called the
state space and ðiiÞ J : X→ X is a time-evolution function. For the remainder
of the article, I use the phrases “model,” “dynamical function,” and “time-
evolution function” interchangeably, although of course I recognize not all
models in science are time-evolution functions.

For example, a dynamical systemmight describe the number of rabbits in
an ecosystem over time. In this case, X is the set of natural numbers, which
represent different numbers of rabbits; d measures the difference between
two population sizes, and J describes how the number of rabbits changes
over time. Or X might be the set of vectors specifying the temperature,
pressure, and wind velocities at different places in the atmosphere; d would
represent how similar two descriptions of the earth’s climate are, andJwould
represent how the climate changes over time. I consider only deterministic
dynamical systems, in which future states are determined entirely by initial
conditions and the system’s time evolution function J. If the system’s initial
condition is x, then JnðxÞ represents the state of the system after n stages,
so that JðxÞ, J2ðxÞ, J3ðxÞ, and so on, represent the state of the system after
one unit of time, two units, three units, and so on.

When is a dynamical system sensitive to initial conditions? Let D be a
number representing a large distance between states. What counts as “large”
can depend upon the state space and one’s interests. Say a dynamical sys-
tem’s behavior is sensitive to initial conditions to degree D if for every state
x ∈ X and every arbitrarily small distance ε > 0, there exists a state y within
distance ε of x and a natural number N such that dðJNðxÞ, JNðyÞÞ > D.
Informally, a system exhibits sensitivity to initial conditions if no matter
the true initial state x, there is an arbitrarily close state y such that, if y had
been the initial state, the future would have been radically different.

This mathematical definition is the natural way of capturing the informal
description of the butterfly effect above, but there are many time-evolution
functions that are sensitive to initial conditions in the above sense and yet
are hardly “chaotic” in any sense of the word. Consider, for example, the
function fðxÞ 5 2x on the state space consisting of all real numbers. Then f
is sensitive to initial conditions because if two numbers x and y differ by
even the smallest amount, then the result of multiplying them by 2 re-
peatedly will cause them to drift apart. That is, j f nðxÞ 2 f nðyÞj 5 2njx2 yj
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becomes arbitrarily large as n grows. So f is sensitive to initial conditions,
but f does not exhibit “chaotic” behavior in the least.

What other conditions might one add to characterize “chaos”? There is no
wide agreement, and several different definitions of chaos are common.4

Because my aim is to show how three types of questions might be answered,
I will not defend a particular analysis of chaos. Rather, I will show how to
answer the three questions with respect to the concept of “topologically
mixing,” which plays an important role in characterizing chaos ðsee n. 3Þ.

A time-evolution function J is called topologically mixing if for any
pair of nonempty open sets U and V, there exists a number N > 1 such that
the intersection of JnðUÞ and V is nonempty for all n ≥ N. To reduce tech-
nical jargon, I say J is chaotic if it is topologically mixing.

For the reader unfamiliar with topology, ignore the phrase “open set.”
Just think of U and V as representing sections of state space. If the system
begins in some state in U, then the expression JnðUÞ represents all possible
future states after nmany steps of time. For example, suppose the dynamical
system describes the movement of a gas molecule in a room. Further,
assume that U represents the upper-left quarter of the room and that V
represents the lower-right-hand corner. Then JnðUÞ represents the possible
positions of the gas molecule after n units of time if the gas particle starts in
the upper-left quarter of the room. The above equation says that there is
some time in the future such that, from that point onward, there is always a
position in the upper-left corner of the room ðUÞ such that, if the gas particle
starts in that position, then it will end up in the lower-right quarter of the
room ðV Þ. A model is chaotic if this holds for any regions of state space, so
that a gas particle that starts in one area of the room can end up in any other
area after a sufficiently long time.

2. Structural Chaos. A dynamical system is chaotic if, when a model is
held fixed, similar initial conditions can have any future. Analogously, a
set of models should be called “structural chaotic” if, when the initial con-
ditions are held fixed, similar models can produce any future ðsee fig. 1Þ. To
rigorously define “structural chaos,” therefore, one needs a metric to quan-
tify how “close” two models are.

4. For what it is worth, I agree with Werndl ð2009Þ that most systems that are agreed to
be chaotic are strongly mixing. Moreover, I agree with Berkovitz, Frigg, and Kronz
ð2006Þ that, because strong mixing is one among several concepts of probabilistic
independence in the ergodic hierarchy, it is most productive to think of chaos as coming
in degrees, where different degrees may have different implications for prediction,
explanation, and control.
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Let X X represent all time-evolution functions for a system with state
space X. Depending on one’s interests, different metrics will be appropriate.
However, there is clearly some relationship between ð1Þ the distance be-
tween two models and ð2Þ the distances between their predicted future
states after one unit of time. If twomodels entail that a system, starting in the
same initial position, will be in radically different places in a short amount
of time, then the models are substantially different.

One demanding notion of closeness requires that two models are close
only if their values are close everywhere in state space. That is, the distance
between two models is the maximum/supremum distance between the
models after one unit of time, where the maximum is taken over all possible
starting states. In symbols, define

DðJ; wÞ5 sup
x∈X

dðJðxÞ; wðxÞÞ:

Henceforth, I assume that D quantifies the distance between two models,
but my results hold for a variety of metrics.

“Structural mixing” should capture the idea that similar models can
produce very different trajectories through the state space given the same
initial conditions. To make this idea rigorous, I introduce some notation.
Suppose F ⊆ X X is a set of models that a scientist considers to be plausible
for a given dynamical system. For any ε > 0, let BF

ε ðJÞ denote all models in
F that are within distance ε of J. The set BF

ε ðJÞ represents all models that are
“sufficiently similar” to J. Next, for any natural number n ∈N and any point
x ∈ X, define a map fx;n : PðXX Þ→ PðX Þ as follows:

fx;nðWÞ5 fJnðxÞ : J ∈Wg;

Figure 1. Color version available as an online enhancement.

1240 CONOR MAYO-WILSON

https://doi.org/10.1086/684086 Published online by Cambridge University Press

https://doi.org/10.1086/684086


where PðSÞ is the power set of S ði.e., the set of all subsets of SÞ. In other
words, fx,n maps a set of time-evolution functions to the set of points they
reach after n stages if they are initialized to start at x.
Say that the set of models F is structurally mixing at J if for all states

x ∈ X, all ε > 0, and all nonempty open sets V ⊆ X, there is some time N ∈ N
such that

fx;nðBF

ε ðJÞÞ \ V ≠ ∅

for all n ≥ N. In other words, small differences between the estimated model
and the true one can lead to divergent predictions even if one correctly
identifies the initial condition. To reduce jargon, I sometimes say a set of
models is structurally chaotic at J if it is structurally mixing.

What is the relationship between chaos and structural chaos so defined?
To answer that question, one last definition is necessary. Say the state space
X has no isolated points if every state contains points arbitrarily close to it.
For example, if X is the set of real numbers ðe.g., representing a location in
space or speed or temperatureÞ, then there are no isolated points. Why? For
every real number x and every arbitrarily small distance ε, there are numbers
within distance ε of x. Many dynamical systems have no isolated points, and
so the assumption is not particularly strong. Nonetheless, under this very
weak assumption, a set of time-evolution functions is structurally chaotic if
it contains a chaotic model.5

Theorem 1. Suppose J is continuous and topologically mixing. Then XX

is structurally mixing at J if X has no isolated points.

One might object that this theorem is very weak. According to the the-
orem, one should worry about structurally chaos if every time-evolution
function were a plausible description of the dynamics of the system. How-
ever, in practice, the set of plausible models F is much narrower given
available data, domain-specific knowledge, and so on. For example, if it is
40°C in Damascus today, then it would be bizarre if it snowed tomorrow.
However, one possible time-evolution function for Damascus’s weather
entails that 40° days are followed by snowy ones. Thus, one might object
that if the class of models is restricted to realistic ones, then structural chaos
will be rarer.

However, the proof of the above theorem shows something much
stronger. It shows that, if the true model is chaotic and the set of “plausible”

5. See the appendix for a proof.
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models contains those that are empirically indistinguishable from the true
one, then structural chaos will arise. To explain why, I introduce some
definitions.

Data sets are always finite. So let F be a finite set of states that represents
the observed history of the system so far. Let ε be a small positive number
representing the precision of one’s measurement devices. Say two models
are εF-indistinguishable if ð1Þ the values of the two models are equal for all
but finitely many states outside F and ð2Þ the two models are no more than ε
apart according to D.

Two models are εF-indistinguishable if they are, in a very strong sense,
indistinguishable given all available data. Why? The first clause entails that
the two models are equal on all observed data points, and so there is no way
that past data alone can distinguish between them. If two models differ
anywhere, however, then there are logically possible experiments that can
distinguish them. Namely, if controlled experiments are financially, prag-
matically, and ethically feasible ðwhich they often are notÞ, one can initialize
the system to one of the states at which the two models differ and observe
the results.

This is where the second clause kicks in. Suppose scientists’ measuring
instruments and statistical techniques cannot guarantee estimates of the
observed states with accuracy better than ε > 0. If two models are εF-
indistinguishable, then second clause guarantees that no information about
the current or next state of the system is sufficient to distinguish the models.
One might object that small measurement errors are detectable in the long
run, especially if chaos is present. However, if the true dynamics are con-
tinuous and ε is sufficiently small, then the second clause entails that no
experiment of a feasible length ði.e., timeÞ will distinguish between it and
an εF-indistinguishable model.

The previous discussion motivates the following definition. Let F denote
the finite set of observed states. Say a set F of models is closed under
empirical indistinguishability if there exists some ε > 0 such that if J ∈ F
and w is εF-indistinguishable from J, then w ∈ F. If scientists are strict
empiricists, then the set of models that they consider possible ought to be
closed under empirical indistinguishability. Theorem 1 is a special case of
the following stronger result.

Theorem 2. Suppose J is continuous and chaotic. Let F be a set of models
containing J. If X has no isolated points and F is closed under empirical
indistinguishability, then F is structurally chaotic at J.

3. Structural Stability: Conclusions and Future Research. Readers famil-
iar with chaos theory may find the previous theorem surprising. On one
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hand, my definition of “structural chaos” seems to formalize the idea that
small errors in identifying the model can lead to divergent future behavior.
On the other hand, many of “structurally chaotic” models ðaccording to my
definitionÞ are structurally stable in several senses discussed by chaos the-
orists.6 This is counter-intuitive because structural stability is intended to
formalize the idea that small changes to the model do not result in large
differences in the model’s trajectory.

One possible reason for the tension is that definitions of structural stability
almost always assume that the set of models under investigation are well
behaved, in the sense that models are differentiable ðperhaps several timesÞ
and, hence, continuous. In contrast, in order to demonstrate the existence of
“structural chaos” in computer simulations, Frigg et al. ð2014Þ simulate
discretized functions that are, by necessity, discontinuous. Moreover, if a set
of models is closed under empirical indistinguishability in my sense, it will
contain discontinuous functions and other “poorly behaved” models.

I will not defend the thesis that physical laws might be discontinuous or
nondifferentiable. Rather, I discuss the relation between structural chaos ðin
my senseÞ and various notions of structural stability in order to illustrate
a broader point. Mathematicians, scientists, and philosophers have yet to
investigate whether plausible structural analogs of “chaos” are in tension
with definitions of structural stability. My results show that there may be
no direct logical inconsistency and that inconsistency may only arise when
additional, substantive assumptions ðe.g., continuity or differentiabilityÞ about
the dynamics of the system are introduced.

There are two further reasons to question whether standard definitions of
“structural instability” are really the appropriate dynamical analogs of chaos.
It is not necessary to review all existing definitions of structural stability.
Rather, it suffices to describe their common logical form ðPugh and Peixoto
2008Þ. Given some equivalence relation R ðe.g., topological conjugacyÞ
over models, one says a function f is structurally stable if all “close”models
ðunder some metricÞ are R-equivalent to f. Why are definitions of this form
not analogous to definitions of chaos?

First, the concepts employed to define structural stability are disjoint from
those used to define chaos. For example, definitions of structural stability
typically discuss homeomorphisms and diffeomorphisms, whereas defini-
tions of chaos employ notions like sensitivity to initial conditions, topo-
logical transitivity, density, and so on. Of course, some difference in defi-

6. Suppose f : A → A and g : B → B are functions on topological spaces. Then f and g
are said to be topologically conjugate if there is a homeomorphism h : A → B such that
g ∘ h 5 h ∘ f. A function f : A → A is Cr structurally stable if there is some ε > 0 such
that every function within distance ε of f in the Cr metric is topologically conjugate to f.
Perhaps the most common definition of structural stability is Cr structural stability.
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nitions is unavoidable, as structural stability is about small changes in
models, whereas chaos is about small changes in states.

Nonetheless, if Berkovitz et al. ð2006Þ and Werndl ð2009Þ are correct,
then probability is a key concept in characterizing chaos. In contrast, none
of the definitions of structural stability employ probability at all. This is
surprising, given that probability is perhaps the most widely employed tool
used to characterize uncertainty, noise, and ðexpectedÞ error. The fact that
probability is not used in definitions of structural stability, therefore, raises
serious questions about the importance of such definitions for discussions
of prediction, control, and explanation.7

Second, time plays different roles in definitions of chaos and structural
stability, respectively. Definitions of chaos—like the definition of topolog-
ical mixing—typically place constraints on the distant future of the system.
For example, in many chaotic systems, nearby initial conditions may have
similar trajectories for a long period of time, but their trajectories may
diverge radically in the distant future. The potential for such sudden diver-
gence is what renders long-term predictions problematic. In contrast, to my
knowledge, all but one of the equivalence relations used to define structural
stability constrain only one time step in the evolution of a dynamical system,
and the exception is applicable only to dynamical systems that are described
by differential equations.

These two reasons do not provide conclusive evidence that the mathe-
matically rich research on structural stability is, at the end of the day,
unimportant for empirical science. Rather, they suggest two more questions
to add to the list at the outset of the article: What are the relationships among
various definitions of chaos and structural stability? And what is the im-
portance of the various notions of structural stability for prediction, control,
and explanation?

4. Upshot. Section 1 described three questions for philosophers and sci-
entists who study chaos theory. Section 2 provided an example of how one
might go about answering two of the three questions. There, I defined a notion
of “structural mixing” that is analogous to the standard notion of “topological
mixing,” and I proved a theorem relating the two concepts. I conclude by
discussing the philosophical significance of this research program.

Roughly, the main result asserts that, if the dynamics of a systemmight be
chaotic, then there are many “similar” regularities that ðiÞ produce widely
different future behavior and ðiiÞ are compatible with the observed past. The
consequent of that conditional is just an instance of the problem of induction.

7. Note that my definition of structural mixing likewise does not employ probability. It
turns out that the standard notion of topological mixing is closely related to the ergodic
ðand, hence, probabilisticÞ concept of strong mixing. I conjecture an analogous rela-
tionship will hold in the structural case, but that remains to be shown.
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So an investigation of structural chaos amounts to a mathematically precise
investigation of a central philosophical problem.

It is now easy to see why the three questions in section 1 are philo-
sophically important. Question 1 asks, “For each definition of ‘chaos’, what
is the analogous concept of structural chaos?” Because there are different
“degrees” of chaos ðBerkovitz et al. 2006Þ, an answer to that question
would characterize differing “degrees” of problem of induction.8 That is, an
answer to the first question would allow one to characterize inductive
problems in terms of their difficulty.

Question 2 asks, “what is the relationship between chaos and structural
chaos?” The classic problem of induction shows that past observations are
insufficient to identify a dynamical system’s time-evolution function, and
hence, there are many regularities that ðaÞ are compatible with past obser-
vations and ðbÞ predict radically different futures. The existence of chaos
entails that predicting or manipulating a dynamical system’s behavior might
be impossible even if the exact dynamics of the system are known. Hence,
an answer to question 2 connects research on the classical problem of induc-
tion and new research in chaos theory, which respectively identify different
sources of difficulty for prediction and manipulation.

Finally, question 3 asks, “what are the implications of structural chaos for
prediction, control, and explanation?” The importance of this question is
self-explanatory: prediction, control, and explanation are three central goals
of science, and so an answer to question 3 amounts to an answer to the
question, “Why is structural chaos important?”

Appendix

Lemma 1. Let X be any metric space, U ⊆ X be an open set, and F ⊆ X be
finite. Then U \ F is open. If X has no isolated points, U \ F is nonempty.

Theorem 2. Suppose J is continuous and topologically mixing. Suppose
that J ∈ F and that F is closed under F-indistinguishability for some finite
F ⊆ X. If X has no isolated points, then F is structurally mixing at J.

Proof. Let x0 ∈ X. It must be shown that for all ε > 0 and all nonempty open
sets V ⊆ X, there is some N ∈ N such that

8. Kelly ð1996Þ contains a sophisticated hierarchy of “problems” of induction. I am
skeptical that there is any relationship between Kelly’s hierarchy and that which would
arise from pursuing the first question here. So this project would provide an orthogonal
way of characterizing inductive difficulty.
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fx0;nðBF

ε ðJÞÞ \ V ≠ ∅ for all n ≥ N :

Call this condition yðε, V, NÞ. Let ε > 0 and V ⊆ X be an open set.
Define xj 5 J jðx0Þ for all natural numbers j, and letM5 jFj1 1. Because

F is closed under F-indistinguishability, there is b > 0 such that if ðaÞ J and
w agree everywhere on all but finitely many elements of X \F and ðbÞ
DðJ, wÞ < b, then w ∈ F. As J is continuous and F is finite, it follows that
for all k ≤ M there is dk > 0 such that

BdkðxkÞ \ F 5 fxkg if xk ∈ F
∅ otherwise.

�

and

y ∈ Bdk
ðxkÞ ⇒ dðJð yÞ; JðxkÞÞ <minfε; bg:

Here I am using BgðzÞ to refer to the g-ball around z ∈ X with respect to the
metric d.

Let d5minfdk : k ≤Mg. Because J is topologically mixing, for each k ≤
M there is Nk ∈ N such that for all n ≥ Nk

JnðBdðxkÞÞ \ V ≠ ∅ :

Let N* 5 M 1 maxfNk : k ≤ Mg. I claim that yðε, V, N*Þ. Let n ≥ N*. It is
necessary to find some w ∈ BF

ε ðJÞ such that wnðx0Þ ∈ V. If Jnðx0Þ ∈ V, then we
are done. Otherwise, becauseM > jFj, there is k ≤M such that xk ∉ F. Notice
that

n2 k ≥ N* 2M ≥maxfNj : j ≤Mg ≥ Nk:

Hence, by choices of d and N*, there is y ∈ BdðxkÞ such that Jn2kðyÞ ∈ V.
Note that y ≠ xk because Jn2kðxkÞ5 Jnðx0Þ ∉ V . I claim that ymay be chosen
so that J jðyÞ ≠ xk for all j ≤ n 2 k.

Why? Suppose for the sake of contradiction that for all y ∈ BdðxkÞ, there is
some j ≤ ðn2 kÞ such that J jðyÞ5 xk. In particular, there is j0 ≤ ðn2 kÞ such
that J j

0ðxkÞ 5 xk. Thus, for all m ≥ ðn 2 kÞ and all y ∈ BdðxkÞ
Jmð yÞ ∈ fxk; JðxkÞ; : : : ; J j021ðxkÞg:

Let T 5 X =fxk; JðxkÞ; : : : ; J j021ðxkÞg. Then T is nonempty and open by
the lemma. However, JmðBdðxkÞÞ \ T 5 ∅ for all m ≥ ðn 2 kÞ. So J is not
topologically mixing, contradicting our assumption.
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It has been shown that y ∈ BdðxkÞmay be chosen so that J jð yÞ ≠ xk for all j ≤
ðn 2 kÞ. Define w : X → X as follows:

wðzÞ5 JðyÞ if z 5 xk
JðzÞ otherwise.

�

Note that DðJ, wÞ 5 dðJðxkÞ, Jð yÞÞ. By continuity of J, it follows that
dðJðxkÞ, Jð yÞÞ ≤ minfb, εg. Hence, w ∈ BεðJÞ. Because w is equal to J
everywhere except xk ∉ F, it follows that w is bF-indistinguishable from J.
As F is closed under bF-indistinguishability, w ∈ F. Finally, wnðxÞ 5
Jn 2 kð yÞ ∈ V because Jjð yÞ ≠ xk for all 0 ≤ j ≤ n 2 k. QED
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