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A negative or nonsignificant empirical correlation between aggregate R&D intensity and
the economic growth rate is a well-known fact in the empirical growth literature, but
scarcely addressed in the theoretical growth literature. This paper develops an
endogenous-growth model that explores the interrelation between horizontal and vertical
R&D under a lab-equipment specification that is consistent with that stylized fact. A key
feature is that the growth rate is fully endogenous both on the intensive and on the
extensive margin. Strong composition effects between horizontal and vertical R&D, along
both transition and the balanced-growth path, then emerge as the main mechanism
producing those results. This setting also allows us to obtain a relationship between
economic growth and firm dynamics that is consistent with the empirical facts.
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1. INTRODUCTION

In the empirical growth literature, it is a well-known fact that R&D inten-
sity, measured as the fraction of output devoted to R&D, and the economic
growth rate tend to exhibit a nonsignificant or negative correlation, both in the
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FIGURE 1. R&D expenditure over GDP versus per capita GDP growth rate—cross-sectional
evidence for the OECD countries. Source: OECD in Figures 2006–2007, available online
at www.oecd.org/infigures.

cross-sectional and in the time-series perspective [e.g., Backus et al. (1992);
Bassanini et al. (2000); Pintea and Thompson (2007)]. For example, in a cross
section of OECD countries, the simple correlation between business R&D ex-
penditure over GDP and total factor productivity growth was −0.03 in the 1980s
and 0.03 in the 1990s [Bassanini et al. (2000)], and an even stronger negative
correlation has been observed between R&D expenditure over GDP and the per
capita GDP growth, for more recent years (Figure 1). As regards time series data,
business R&D spending has been growing faster than GDP in the United States
and other developed countries over the past decades. In the United States, for
instance, business R&D expenditures have grown from 0.63% of GDP in 1953
to 2.01% of GDP in 2008. At the same time, the per capita GDP growth rate has
been declining slightly [Pintea and Thompson (2007)]. Figure 2 depicts similar
data for Japan and Denmark, where a growing R&D intensity has been observed
together with a decreasing or stagnant economic growth rate.

FIGURE 2. R&D expenditure over GDP and per capita GDP growth rate—time-series
evidence for Japan and Denmark. Source: Eurostat online database, available at http://epp.
eurostat.ec.europa.eu.
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Despite these well-known facts, few explanations have been put forward for the
growth rate–R&D intensity relationship.1

A notable exception is the paper by Pintea and Thompson (2007). However,
this paper addresses the time-series perspective, but is silent as regards the cross-
sectional relationship. It proposes an endogenous-growth model of vertical R&D,
skills accumulation, and learning, whose transitional dynamics can be confronted
with the data. New product generations, which raise the quality of a product line,
arrive according to an exogenous process. While manufacturing, firms learn how to
further enhance the relative quality of their products by employing skilled labor.
R&D intensity is measured as the fraction of skilled labor devoted to (quality-
improving) R&D. A one-time increase in complexity because of the arrival of
a new technological paradigm slowly diffuses (also according to an exogenous
process) through the economy as firms gradually adopt new product generations
embodying the new paradigm. As a result, despite the rise in R&D intensity,
because of the increase in the number of adopters, the economic growth rate
declines, because diffusion involves aggregate diminishing returns.

In our paper, an alternative—entirely endogenous—analytical mechanism is
considered, within an endogenous-growth model with simultaneous horizontal
(expanding number of varieties) and vertical R&D (quality ladders). The tran-
sitional dynamics and the long-run (balanced-growth path, BGP) behavior of
our model are consistent with both the time-series and the cross-sectional ev-
idence. We measure the R&D intensity by the sum of vertical and horizontal
R&D as a fraction of output. The negative relationship between the economic
growth rate and the R&D intensity then stems from the (endogenous) interrela-
tion between vertical and horizontal R&D, both operating along time and across
economies.

Consider an economy out of the BGP characterized by, for instance, a shallow-
market regime, displaying a small number of varieties relative to the technological-
knowledge stock (measured by the economywide quality index). Such an econ-
omy starts with a high growth rate for the number of varieties, a small vertical-
innovation rate, and a high economic growth rate relative to the BGP. Along the
transition path, the resources allocated to horizontal R&D are gradually retargeted
to vertical R&D. However, the positive impact of the latter on the economic
growth rate is more than compensated for by the downward movement in the
former. This negative net result reflects the asymmetry between the influence of
the specialization effect related to the number of varieties, which has a one-to-one
impact on economic growth, and the efficiency effect of higher quality levels,
which is dampened by a creative-destruction effect. On the other hand, a falling
consumption rate implies an increasing investment rate and hence an increase in
R&D intensity. Thus, along the transition path, the economic growth rate falls,
whereas R&D intensity increases. Alternatively, if the economy starts from a deep-
market regime, a negative relationship between R&D intensity and the economic
growth rate will also arise, but now with the former falling and the latter increasing
along the adjustment path.
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In turn, the long-run relationship between the economic growth rate and R&D
intensity is assessed by performing a comparative-statics analysis where the BGP
is shifted by technological parameter changes. Thus, we can compare the results
of the model with the data from the perspective of the cross-sectional correlation
between those variables, under the assumption that there is heterogeneity across
countries in any or all of those parameters. A mixed result is obtained, as the
sign of the comparative-statics results depends upon the source of the change
in the general equilibrium, thereby lending theoretical support to the previously
highlighted lack of a clear-cut empirical relationship between those variables. On
one hand, the same mechanism that generates the negative correlation between the
economic growth rate and R&D intensity in the transitional dynamics also applies
to the comparative-statics results. However, the response of the effective rate of
return rewarding R&D activity to variations in some parameters is a new effect
arising in this context, and may induce a reversal of that correlation.

The joint consideration of horizontal and vertical R&D allows us also to address
the relationship between economic growth and firm dynamics, measured by size
and/or the number of firms. The literature identifies an unclear empirical relation-
ship between the economic growth rate and firm size [see Pagano and Schivardi
(2003)], and our model allows a discussion of the origins of that fact.

Summing up, we show that considering innovation as the ultimate source of
economic growth [see, e.g., Samaniego (2007)] is compatible with the empirical
evidence concerning the link between R&D intensity and both firm size and the
economic growth rate.

Concerning the formal setup, we develop a dynamic general equilibrium model
where we consider two R&D sectors, one targeting vertical innovation, by which
entrants increase the quality of an existing variety and hence substitute for the
incumbent—i.e., there is a creative-destruction effect [e.g., Aghion and Howitt
(1992)]—and the other targeting horizontal innovation, by which entrants create
a new variety [e.g., Romer (1990)].2

We use a lab-equipment R&D specification, whereas the literature on simul-
taneous vertical and horizontal R&D typically assumes that R&D is knowledge-
driven.3 In the latter, the allocation of resources between vertical and horizontal
R&D implies a division of labor between the two types of R&D. Because the total
labor level is determined exogenously, there is a shortcoming: in the end, the rate
of extensive growth is exogenous—i.e., the BGP flow of new goods occurs at the
same rate as (or is proportional to) population growth. The alternative assumption
that R&D is of the lab-equipment type implies that the allocation of resources
between vertical and horizontal innovation is related to the splitting of R&D
expenditures, which are fully endogenous. Therefore, we endogenize the rate of
extensive growth, which will be a crucial feature in generating the inter-R&D
composition effects and hence the negative correlation between R&D intensity
and the economic growth rate that characterizes our results. In the existing mod-
els featuring a knowledge-driven specification [e.g., Dinopoulos and Thompson
(1998); Peretto (1998); Howitt (1999); Peretto and Smulders (2002); Peretto and
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Connolly (2007)], inter-R&D composition effects are not able to produce that kind
of negative correlation, because the growth rate tends to change in response to
vertical innovation only.4

The remainder of the paper is organized as follows. In Section 2, we present the
model, giving a detailed account of the production, price, and R&D decisions, and
derive the dynamic general equilibrium. In Section 3, we characterize the interior
BGP and the transitional dynamics, and then discuss their consistency with the
empirical literature. In Section 4, we briefly discuss Pareto optimality. Section 5
concludes.

2. THE MODEL

We consider a closed economy where a single competitively produced final good
can be used in consumption, production of intermediate goods, and R&D. The final
good is produced by a (large) number of firms, each using labor and a continuum
of intermediate goods indexed by ω ∈ [0, N ]. The economy is populated by L

identical dynastic families, each endowed with one unit of labor that is inelastically
supplied to final-good firms. Thus, the total labor level is L, which, by assumption,
is constant over time. In turn, families make consumption decisions and invest in
firms’ equity.

A potential entrant can devote resources either to horizontal or to vertical R&D.
Horizontal R&D increases the number of intermediate-good industries N , whereas
vertical R&D increases the quality of the good of an existing industry, indexed
by j (ω). The number of intermediate-good varieties can be taken as a measure
of a specialization effect on final-good productivity. The quality level j (ω) of
each variety translates into productivity through an efficiency effect from using
the good produced by industry ω, λj(ω), where λ > 1 is a parameter measuring the
size of every quality upgrade. By improving on the current best-quality index j , a
successful R&D firm will introduce the leading-edge quality j (ω) + 1 and hence
render the existing input inefficient. Thus, the successful innovator will become a
monopolist in ω. However, this monopoly, and the monopolist earnings that come
with it, are temporary, because a new successful innovator will eventually replace
the incumbent.

2.1. Production and Price Decisions

The final-good firm has a constant–returns to scale technology using labor and
a continuum of intermediate goods with measure N(t). The final-good output at
time t is

Y (t) = A0 · L1−α ·
∫ N(t)

0

[
λj(ω,t) · X(ω, t)

]α
dω, 0 < α < 1, λ > 1, (1)

where A0 > 0 is the total factor productivity, L is the labor input, and 1 − α is
the labor share in production, and λj(ω,t) · X(ω, t) is the input of intermediate
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good ω measured in efficiency units at time t .5 That is, we integrate the final-
producer technologies that are considered in variety-expansion [Barro and Sala-i-
Martin (2004, Ch. 6)] and quality-ladders [Barro and Sala-i-Martin (2004, Ch. 7)]
models.

Final-good producers are price-takers in all the markets they participate in.
They take wages, w(t), and input prices, p(ω, t), as given and sell their output at
a price equal to unity. From the profit-maximization conditions, we determine the
demand for the intermediate good ω:

X(ω, t) = L ·
[
A0 · α · λj(ω,t)α

p(ω, t)

] 1
1−α

, ω ∈ [0, N(t)]. (2)

The intermediate-good sector consists of a continuum of N(t) industries. There
is monopolistic competition if we consider the whole sector: the monopolist in
industry ω fixes the price p(ω, t) but faces the isoelastic demand curve (2). We
assume that the intermediate good is nondurable and entails a unit marginal cost
of production, in terms of the final good, whose price is taken as given. Profit in
industry ω is thus π(ω, t) = [p(ω, t)−1]·X(ω, t), and the profit-maximizing price
is a constant markup over marginal cost, p(ω, t) ≡ p = 1/α > 1.6 We denote the
quality of the intermediate good ω by the index q(ω, t) = q(j) ≡ λj(ω,t)α/(1−α).
Then the production

X(ω, t) = L · (A0 · α2)
1

1−α q(ω, t), (3)

and the profit
π(ω, t) = π0 · L · q(ω, t), (4)

accrued by the monopolist in ω, are both linear functions of q(ω, t). The constant
π0 ≡ (1−α)α2/(1−α)A

1/(1−α)
0 /α can be seen as “basic” profit, which accrues when

j = 0 (i.e., q = 1).
The aggregate quality index

Q(t) =
∫ N(t)

0
q(ω, t)dω (5)

measures the technological-knowledge level of the economy. This implies that
aggregate output,

Y (t) =
(
A

1
α

0 α2
) α

1−α · L · Q(t) = AY · L · Q(t), (6)

where AY ≡ (A
1
α

0 · α2)
α

1−α , total resources devoted to intermediate-goods produc-
tion,

X(t) =
∫ N(t)

0
X(ω, t)dω = (A0α

2)
1

1−α · L · Q(t) = AX · L · Q(t), (7)
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where AX ≡ (A0 · α2)
1

1−α , and total profits,

�(t) =
∫ N(t)

0
π(ω, t)dω = π0 · L · Q(t), (8)

are all linear functions of Q(t).

2.2. R&D

We consider two R&D sectors, one targeting vertical innovation—which can be
seen as pertaining to process innovation or incremental product innovation—and
the other targeting horizontal innovation—pertaining to radical product innova-
tion. The technological-knowledge stock, Q(t) in (5), has two components: a
quantity component, N , and a quality component, q. The quantity component,
which is targeted by horizontal R&D, behaves in a way similar to physical capital:
it can be accumulated, in the sense that technological knowledge may be dissem-
inated, and it can be reversed, in the sense that some sectors may be destroyed.
The second component, q, is irreversible, in the sense that after the invention
is done, it cannot be uninvented. Thus, there is asymmetry between horizontal
and vertical R&D, between dissemination of technology and creation of new
technologies, or between technology embodied in new products and in improved
processes/products.

We assume that the pools of innovators performing the two types of R&D
are different. We also make the simplifying assumptions that both vertical and
horizontal R&D are performed by (potential) entrants, and that successful R&D
leads to the setup of a new firm in either an existing or a new industry [e.g., Howitt
(1999); Segerstrom (2000); Cozzi and Spinesi (2006); Strulik (2007)]. There is
perfect competition among entrants and free entry in the R&D business.

Vertical R&D. As is common in the literature [e.g., Aghion and Howitt (1992);
Barro and Sala-i-Martin (2004, Ch. 7)], every new design is granted a patent and
thus a successful innovator retains exclusive rights over the use of his/her good. By
improving on the current top quality level j (ω, t), a successful R&D firm earns
monopoly profits from selling the leading-edge input of quality j (ω, t) + 1 to
final-good firms. A successful innovation will instantaneously increase the quality
index in ω from q(j) to q(j + 1) = λα/(1−α)q(j). At equilibrium, lower qualities
within sector ω are priced out of business.

Let Ii(j) denote the Poisson arrival rate of vertical innovation introduced by
potential entrant i in industry ω when the highest quality is j . The rate Ii(j)

is independently distributed across firms, across industries, and over time and
depends on the flow of resources Rvi(j) committed by entrants at time t . Moreover,
Ii(j) features constant returns in R&D expenditures, Ii(j) = Rvi(j) ·�(j), where
�(j) is the R&D productivity factor, which is assumed to be homogeneous across
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i in ω. We assume

�(j) = 1

ζ · L · q(j + 1)
, (9)

where ζ > 0 is a constant fixed (flow) cost. Equation (9) incorporates a complex-
ity effect [e.g., Barro and Sala-i-Martin (2004, Ch. 7); Etro (2008)], implying the
existence of vertical-R&D dynamic decreasing returns to scale (i.e., decreasing
returns to cumulated R&D). That is, the higher the level of quality, q, the costlier
it is to improve it further.7 Moreover, (9) also implies that an increase in market
scale, L, dilutes the effect of R&D outlays on innovation probability. Overall, this
may happen because of coordination, organizational, and transportation costs [e.g.
Dinopoulos and Thompson (1999)] and rental protection actions by incumbents
[e.g., Sener (2008)] which are (positively) related to market size. These assump-
tions allow us to avoid the usual scale effect arising from the aggregate labor level.
Aggregating across i in ω, we get Rv(j) = ∑

i Rvi(j) and I (j) = ∑
i Ii(j), and

thus the vertical-innovation rate becomes

I (j) = Rv(j) · 1

ζ · L · q(j + 1)
, (10)

where I (j) = I (ω, t) is time-varying.
As the terminal date of an existing monopoly arrives as a Poisson process

with frequency I (j) per (infinitesimal) increment of time, the present value of a
monopolist’s profits is a random variable. Let V (j) denote the expected value of
an incumbent firm with current quality level j (ω, t) [see, e.g., Diewert and Huang
(2011)],8

V (j) = π(j)

∫ ∞

t

e− ∫ s

t [r(ν)+I (j)]dνds, (11)

where r is the equilibrium market real interest rate and π(j), given by (4), is
constant between innovations. Free entry prevails in vertical R&D such that the
condition I (j) · V (j + 1) = Rv(j) holds. Thus,

V (j + 1) = 1

�(j)
= ζ · L · q(j + 1), (12)

where V (j + 1) is analogous to (11).
The arbitrage condition facing a vertical innovator,

r(t) + I (t) = r0 ≡ π0

ζ
, (13)

can be obtained by time-differentiating V (j + 1) and considering equations (12)
and (4).9 This equation has several implications. First, the effective rate of return
for introducing an innovation , r + I , should be equal to the “basic” rate of return
associated with the existing technology, or equivalently the cost of entry should
be equal to the present value of the “basic” profit using the effective interest rate
as a discount factor. Second, the rates of entry are symmetric across industries,
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I (ω, t) = I (t). Last, the effective discount rate is constant over time. Thus, the
vertical-innovation rate is perfectly negatively correlated with the rate of return
I (t) = r0 − r(t), and takes only place if r0 > r(t).

After solving (10) for Rv(ω, t) = Rv(j) and aggregating across industries
ω, we determine the aggregate expenditure devoted to vertical R&D, Rv(t) =∫ N(t)

0 Rv(ω, t)dω = ∫ N(t)

0 ζ ·L ·q(j (ω, t)+1) · I (ω, t)dω. As the innovation rate
is industry-independent, the cost function for vertical R&D is

Rv(t) = max{ζ · λ
α

1−α · (r0 − r(t)) · L · Q(t), 0}. (14)

Vertical innovation is only performed if the rate of return from becoming a mo-
nopolist is higher than the macroeconomic rate of return. There is irreversibility
as far as vertical innovation is concerned because, after an innovation has been
introduced in a particular sector, it cannot be uninvented.

Horizontal R&D. Variety expansion arises from R&D aimed at creating a new
intermediate good. Again, innovation is performed by a potential entrant, which
means that, because there is free entry, the new good is produced by new firms.
Under perfect competition among R&D firms and constant returns to scale at the
firm level, instantaneous entry is obtained as

.

Ne(t) = Rne(t)/η(t), where
.

Ne(t)

is the contribution to the instantaneous flow of new varieties by R&D firm e at a
cost of η(t) units of the final good and Rne(t) is the flow of resources devoted to
horizontal R&D by innovator e at time t . The cost η is assumed to be symmetric.
Thus, Rn = ∑

e Rne and
.

N(t) = ∑
e

.

Ne(t), implying that

Rn(t) = η(t) ·
.

N(t). (15)

We assume that the cost of setting up a new variety (cost of horizontal entry)
is increasing in both the number of existing varieties, N , and the number of new
entrants, Ṅ ,

η(t) = φ · N(t)σ · Ṅ(t)γ , (16)

where φ > 0 is a constant fixed (flow) cost, and σ > 0 and γ > 0. Equation (16)
introduces two types of decreasing returns associated with horizontal innovation:
dynamic and static. Dynamic decreasing returns to scale are modeled by the
dependence of η on N and result from complexity [e.g., Evans et al. (1998);
Barro and Sala-i-Martin (2004, Ch. 6)], in the sense that the larger the number
of existing varieties, the costlier it is to introduce new varieties. Again, this may
happen because of coordination, organizational, and transportation costs related
to market size [e.g., Dinopoulos and Thompson (1999)]. Static decreasing returns
to scale are modeled by the dependence of η on Ṅ and mean that one potential
entrant exerts an externality on other entrants (e.g., because of congestion effects).
This externality is compatible with the previous assumption of constant returns
to scale at the firm level [e.g., Arnold (1998); Jones and Williams (2000)].10

The dependence of the entry cost on the number of entrants introduces dynamic

https://doi.org/10.1017/S1365100512000181 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100512000181


GROWTH AND FIRM DYNAMICS 1447

second-order effects from entry, implying that new varieties are brought to the
market gradually, instead of through a lumpy adjustment. This is in line with the
stylized facts on entry [e.g., Geroski (1995)]: entry occurs mostly on a small scale
because adjustment costs penalize large-scale entry.

Every horizontal innovation results in a new intermediate good whose quality
level is drawn randomly from the distribution of existing varieties [e.g., Dinopoulos
and Thompson (1998); Howitt (1999)]. Thus, the expected quality level of the
horizontal innovator is

q̄(t) =
∫ N(t)

0

q(ω, t)

N(t)
dω = Q(t)

N(t)
. (17)

As his/her monopoly power will be also terminated by the arrival of a successful
vertical innovator in the future, the benefits from entry are given by

V (q̄) = π̄(t)

∫ ∞

t

e− ∫ s

t [r(ν)+I (q̄)]dνds, (18)

where π̄ = π0Lq̄. The free-entry condition, Ṅ ·V (q̄) = Rn, by (15), simplifies to

V (q̄) = η(t). (19)

Substituting (18) into (19) and time-differentiating the resulting expression
yields the arbitrage equation facing a horizontal innovator:

r(t) + I (t) = π̄(t)

η(t)
. (20)

Thus, the cost function for horizontal R&D is

Rn(t) = π0 · L · Q(t)

r(t) + I (t)
· Ṅ(t)

N(t)
. (21)

No-Arbitrage Condition. No arbitrage in the market for innovations requires
that the two types of entry, into vertical and horizontal R&D, yield equal rates
of return; otherwise, a corner solution obtains. By considering (13) and (20), and
equating the effective rates of return r + I for both types of entry, there is no
arbitrage in the market for R&D if and only if

q(t) = Q(t)

N(t)
= η(t)

ζ · L
. (22)

This condition is one of the key ingredients of the model. It equates the average
cost of horizontal R&D, η, to the average cost of vertical R&D, q̄ζL.

From (22), we obtain the dynamic equation for the aggregate number of vari-
eties,

Ṅ(t) = x(Q(t),N(t)) · N(t), (23)
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where

x(Q,N) =
(

ζ · L

φ

) 1
γ

· Q
1
γ · N

−
(

σ+γ+1
γ

)
(24)

expresses the mechanism of entry adopted in our model, incorporating a chan-
nel between vertical innovation and firm dynamics. On the other hand, time-
differentiating (5) and using (23) yields a dynamic equation for the technological-
knowledge stock,

Q̇(t) = {� · I (t) + x[Q(t),N(t)]} · Q(t), (25)

where � ≡ [q(j +1)−q(j)]/q(j) = λ
α

1−α −1 is the quality shift that is generated
by successful vertical R&D. We call � the Schumpeterian push because it is equal
to the difference between the quality associated with the entrant and the quality
associated with the firm that is destroyed upon entry (creative-destruction effect).
The vertical-innovation rate, I , is endogenous and will be determined later as
an economywide function. Equation (25) expresses a second dynamic interaction
between the two types of entry, in this case between the number of varieties and
the quality index of the economy.

Thus, the instantaneous growth rate of average quality q is a linear function of
the vertical-innovation rate,

q̇

q
= Q̇

Q
− Ṅ

N
= � · I (t). (26)

Observe that both the vertical-innovation rate and the quality shift are industry-
independent. Given the irreversibility of vertical innovation, I ≥ 0. If I = 0, there
is no vertical R&D (no Schumpeterian push) and the technological knowledge
varies only by successful horizontal R&D. If the vertical-innovation rate is positive,
I > 0, meaning that vertical R&D also becomes profitable, then there will be a
positive Schumpeterian push and the technological-knowledge stock, Q, increases
by both increases in quality and number of varieties.

Because x > 0 from (24), we have Ṅ > 0 along the equilibrium with simulta-
neous vertical and horizontal R&D, although no irreversibility constraint has been
imposed. If we rewrite x as

x(q,N) =
(

ζ · L

φ

) 1
γ

· q(t)
1
γ · N(t)

−
(

σ+γ
γ

)
,

then we infer that, if the vertical-innovation rate is equal to zero, the growth rate of
the technological-knowledge stock is equal to the horizontal-entry rate, Ṅ/N [see
(25)], and they both depend positively on the average quality level, q̄, and nega-
tively on the number of varieties, N . The first effect represents complementarity
going from vertical innovation to the horizontal-entry rate, and the second results
from the complexity and the congestion effects in horizontal entry [see (16)]. If
the rate of vertical innovation is positive, there is an increase in average quality
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and this effect accelerates horizontal entry. Therefore, there is also a dynamic
complementarity effect of quality on the number of varieties.

2.3. Households

The economy has L identical dynastic families who consume and collect income
(dividends) from investments in financial assets (equity) and from labor. Each
family is endowed with one unit of labor, which is inelastically supplied. Thus,
total labor supply, L, is exogenous and constant. We assume that consumers have
perfect foresight concerning technological change over time and every household
chooses the path of consumption [C(t), t ≥ 0] to maximize discounted lifetime
utility,

U =
∫ ∞

0

(
C(t)1−θ − 1

1 − θ

)
e−ρtdt, (27)

where ρ > 0 is the subjective discount rate and θ > 0 is the inverse of the
intertemporal elasticity of substitution, subject to the flow budget constraint

ȧ(t) = r(t) · a(t) + w(t) − C(t), (28)

where a denotes the household’s real financial assets holdings. The initial level of
wealth a(0) is given and the non–Ponzi games condition limt→∞ e− ∫ t

0 r(s)dsa(t) ≥
0 is also imposed. The Euler equation for consumption and the transversality
condition are standard:

Ċ(t)

C(t)
= 1

θ
· (r(t) − ρ), (29)

lim
t→∞e−ρt · C(t)−θ · a(t) = 0. (30)

2.4. Equilibrium Vertical-Innovation Rate and R&D Intensity

We determine the equilibrium vertical-innovation rate from the equilibrium con-
dition in the market for the final good, or, equivalently, from the macroeconomic
aggregate constraint. The aggregate financial wealth held by all households is
L · a(t) = ∫ N(t)

0 V (ω, t)dω, which, from the arbitrage condition between vertical
and horizontal entry, yields L · a(t) = η(t) · N(t). Taking time derivatives and
comparing with (28), we get an expression for the aggregate flow budget constraint
that is equivalent to the product market equilibrium condition [see Gil et al. (2010)],

Y (t) = L · C(t) + X(t) + Rv(t) + Rn(t). (31)

If we substitute the expressions for the aggregate outputs (6) and (7) and for total
R&D expenditures (14) and (15), we have

A · L · Q(t) = L · C(t) + η(t) · Ṅ(t) + ζ · L · λ
α

1−α · I (t) · Q(t), (32)
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where A ≡ AY − AX = (αα−1 − 1) · (α · A0)
1
α > 0. Solving for I , and using (22)

and (23), we get the endogenous vertical-innovation rate at equilibrium,

I (Q,N,C) = 1

ζ · λ
α

1−α

·
[
A − C

Q
− ζ · x(Q,N)

]
, (33)

which is decreasing in consumption, increasing in the number of varieties, and
related in an ambiguous way to the aggregate quality level.11 As the function
I (Q,N,C) may be negative, the relevant vertical-innovation rate at the macroe-
conomic level is

I+(Q,N,C) = max {I (Q,N,C), 0} . (34)

Thus, there is also a complementary effect of horizontal innovation on vertical
innovation: if the number of varieties is too low, vertical R&D shuts down. This
contrasts with the result under the knowledge-driven framework [e.g., Peretto and
Connolly (2007)] that vertical R&D falls to zero when the number of varieties
becomes too high, which basically reflects the assumption that horizontal R&D
competes away scarce resources from vertical R&D.12

2.5. The Dynamic General Equilibrium

The dynamic general equilibrium is defined by the allocation [X(ω, t), ω ∈
[0, N(t)], t ≥ 0], the prices [p(ω, t), ω ∈ [0, N(t)], t ≥ 0], and the aggregate
paths [C(t),N(t),Q(t), I (t), r(t), t ≥ 0], such that (i) consumers, final-good
firms, and intermediate-good firms solve their problems; (ii) there is free entry
and absence of arbitrage opportunities both within and between the markets for
horizontal and vertical innovations; and (iii) markets clear. The equilibrium paths
solve the piecewise-smooth system13

Ċ =
⎧⎨
⎩

1
θ

· (r0 − ρ) · C if I (Q,N,C) ≤ 0

1
θ

· [r(Q,N,C) − ρ] · C if I (Q,N,C) > 0
, (35a)

Q̇ =
⎧⎨
⎩

x(Q,N) · Q if I (Q,N,C) ≤ 0

[� · I (Q,N,C) + x(Q,N)] · Q if I (Q,N,C) > 0
, (35b)

Ṅ = x(Q,N) · N, (35c)

together with the initial Q(0) and N(0) and the transversality conditions,

lim
t→∞e−ρtC(t)−θ ζ · L · Q(t) = 0. (36)
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When necessary, we will consider a convenient equivalent representation of
system (35a)–(35c) in the detrended variables, x as in (24), and z ≡ C/Q:

ẋ =

⎧⎪⎪⎨
⎪⎪⎩

−
(

σ
γ

+ 1
)

· x2 if I (x, z) ≤ 0

[
I (x, z) · � · 1

γ
−

(
σ
γ

+ 1
)

· x
]

· x if I (x, z) > 0

, (37a)

ż =
⎧⎨
⎩

(μ − x) z if I (x, z) ≤ 0[
μ − (

1
θ

+ �
) · I (x, z) − x

] · z if I (x, z) > 0
, (37b)

where the innovation rate becomes a linear function of (z, x),

I (x, z) = 1

ζ · λα/(1−α)
(A − z − ζ · x) . (38)

If we define the R&D intensity as R ≡ (Rn +Rv)/(Y −X) and use (14) and (21),
the equilibrium R&D intensity function is

R =
{
ζ · x/A, if I (x, z) ≤ 0,

1 − z/A, if I (x, z) > 0,
(39)

meaning that, when there is no vertical innovation, the R&D intensity is driven
solely by the change in the number of varieties; thus, R = max {ζ · x/A, 1 − z/A}.

The economy can operate in one of two regimes: in a shallow-market regime,
in which the number of differentiated goods is small relative to the technological-
knowledge stock (and the nonconsumed part of the final good is low) and there is
only horizontal R&D, or in a deep-market regime, in which the relative number
of differentiated goods is large and there is also vertical R&D. As both regimes
may operate with the same level of technological-knowledge stock, the distinction
between the regimes is not related to the existence of a poverty trap. If we measure
the average size of the firms by q = Q/N , firms will be relatively large in the
first regime and relatively small in the second. Nevertheless, we prove in the next
section that the first regime, in which large firms proliferate, is only transient.

3. EQUILIBRIUM DYNAMICS

Next, we deal with the existence, uniqueness, and characterization of a BGP
and compare the behavior of our model and the stylized facts presented in the
Introduction from both the long-run and the transitional-dynamics perspectives.

3.1. The Balanced-Growth Path

The BGP, denoted by ∗, is the path [(C∗(t),Q∗(t), N∗(t), t ≥ 0] such that
the growth rates g∗

C , g∗
Q, and g∗

N are constants. As the functions in system

https://doi.org/10.1017/S1365100512000181 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100512000181


1452 PEDRO MAZEDA GIL ET AL.

(35a)–(35c) are homogeneous, a BGP exists only if (i) the asymptotic growth
rates of consumption, gC , and of the quality index, gQ, are equal to the economic
growth rate (GDP growth rate), gC = gQ = g; (ii) the asymptotic growth rate of
the number of varieties is monotonically related to g, gN = g/(σ + γ + 1); and
(iii) the vertical-innovation rate, I , is asymptotically trendless.

PROPOSITION 1 (Balanced-Growth Path). Assume that μ ≡ (r0 − ρ)/θ > 0,
that θ ≥ 1, and that 0 < μ(σ+γ )

�(σ+γ+1)+(σ+γ )/θ
< I ≡ A(σ+γ )/ζ

�(σ+γ+1)+σ+γ
. Then a BGP

exists and is unique. Along the BGP, the vertical-innovation rate is positive but
bounded,

I ∗ = μ (σ + γ )

� (σ + γ + 1) + 1
θ
(σ + γ )

∈ (0, I ); (40)

the endogenous economic growth rate is also positive (and bounded),

g∗ =
(

σ + γ + 1

σ + γ

)
· � · I ∗; (41)

and

g∗
N = � · I ∗

σ + γ
. (42)

The level variables are C∗, Q∗, and N∗, where Q∗ is undetermined and

C∗ = z∗Q∗, (43)

N∗ =
(

ζ · L

φ

) 1
σ+γ+1

(x∗)
−γ

σ+γ+1 (Q∗)
1

σ+γ+1 , (44)

with

z∗ = ζ

(
1 + σ + γ + 1

σ + γ
�

)
· (

I − I ∗) > 0 (45)

and
x∗ = g∗

N. (46)

See the Proof in Appendix A. Under the conditions of this proposition, gC = g∗
C ,

gQ = g∗
Q, and gN = g∗

N , and x and z are asymptotically trendless.
We need to emphasize the result that a BGP will only exist if there is a positive

vertical-innovation rate, I > 0, and there is no BGP in which I = 0. This means
that we can only have I = 0 as a transient state of the economy (see the next
section). In this case, the growth rate g is positive and is equivalent to

g∗ = g∗
N + � · I ∗. (47)

Therefore, under a sufficiently productive technology, our model predicts a BGP
with constant positive growth rates, g and gN , where the former exceeds the
latter by an amount corresponding to the growth of intermediate-good quality,
and is driven by the expected productivity push resulting from vertical innovation.
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This is consistent with the idea that industrial growth proceeds along both an
intensive and an extensive margin. However, from equation (41), we observe
that the ultimate source of growth is the expected Schumpeterian push, i.e., the
(exogenous) increase in productivity generated by vertical innovation, �, times
its probability of occurrence, I (which is itself a function of the Schumpeterian
push, �).

From equation (42), we observe that, differently from the knowledge-driven
literature, a positive g∗

N does not depend on the existence of a positive (exoge-
nous) growth rate of the population. The negative externality effect in (16) can
only generate a constant N along the BGP [provided population growth is zero;
see Barro and Sala-i-Martin (2004, Ch. 6)];14 however, the variety expansion is
sustained by technological-knowledge accumulation (independent of population
growth), because the expected growth of intermediate-good quality due to vertical
R&D makes it attractive, in terms of intertemporal profits, for potential entrants
always to put up a (horizontal) entry cost, even if it is increasing with N .

3.2. Long-Run R&D Intensity, Firm Size, and the Economic Growth Rate

We now focus on the long-run growth effects of changes in the technological
parameters. The effect of changes in the Schumpeterian push, �, the fixed cost
of vertical and horizontal R&D, ζ and φ, respectively, and the elasticities of the
horizontal entry cost, σ and γ , on the vertical-innovation rate, I ∗, the growth
rate of varieties, g∗

N , and the economic growth rate, g∗, are gathered in the next
proposition:

PROPOSITION 2 (Comparative Statics Results for I ∗, g∗
N , and g∗). A perma-

nent and unanticipated increase in

(a) The Schumpeterian push (the elasticities of the horizontal entry cost) will decrease
(increase) the vertical-innovation rate, but will increase (decrease) both the economic
growth rate and the growth rate of varieties.

(b) The fixed cost of vertical R&D will decrease the vertical-innovation rate and both the
economic growth rate and the growth rate of varieties. The fixed cost of horizontal
R&D and the level of the labor force, L, have no growth effects.

A positive shock in the Schumpeterian push, �, decreases the long-run vertical-
innovation rate, I ∗(�), because fewer resources are necessary to generate a given
upward push in the quality level. This decreases the probability of arrival of a
vertical innovation.

However, there are two effects of an increase in the Schumpeterian push over the
two growth rates: a positive, direct effect that increases the growth rates because
inputs become more productive, and a negative, indirect effect associated with the
decrease in the vertical-innovation rate. Because the direct effect dominates, both
the aggregate and the extensive growth rate increase because � · I ∗(�) increases.
This means that the expected value of a Schumpeterian push is positive.
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The lack of relationship between the growth rates and the fixed cost of horizontal
R&D, φ, is noteworthy. Intuitively, it results from the dominant effect exerted by
the vertical-innovation mechanism (the intensive margin) over the horizontal-
entry dynamics (the extensive margin). Given the postulated horizontal entry
technology, an equilibrium BGP with positive net entry occurs ultimately because
entrants expect incumbency value to grow, propelled by quality-enhancing R&D.

Now, in order to associate our results with the empirical facts that were men-
tioned in the Introduction, we analyze the theoretical counterparts to the R&D
intensity,

R∗ = 1 − z∗

A
= ζ

A

[
1

σ + γ + 1
· g∗ + (� + 1) · I ∗

]
, (48)

and to the long-run average firm size q∗ = Q∗/N∗ ,

q∗ =
(

φ

ζ · L

) 1
σ+γ+1

·
(

� · I ∗

σ + γ

) γ
σ+γ+1

(Q∗)
σ+γ

σ+γ+1 . (49)

Firm size is thus measured as technological-knowledge stock per firm (or firm size
relative to market size is measured as 1/N∗), which relates closely to production
(sales) per firm or financial assets per firm.15 Because q̇/q = � · I > 0, firm
size expands at the growth rate of intermediate-good quality along the BGP. These
results are broadly supported by historical empirical evidence. The increase in
sales per firm over time is referred to, e.g., by Jovanovic (1993) for the United
States. The increase in the number of firms and establishments over the long run
is reported, e.g., by Maddison (1994).16

The next proposition summarizes the long-run effects of changes in the techno-
logical parameters on R&D intensity, R∗, and on firm size, q∗.

PROPOSITION 3 (Comparative Statics Results for R∗ and q∗).
(a) Let θ ≥ 1. Then a permanent and nonanticipated increase in the Schumpeterian

push, � (the elasticities of the horizontal entry, σ and γ ), will decrease (increase)
the R&D intensity. An increase in the fixed cost of vertical R&D, ζ , will decrease the
R&D intensity. Both the fixed cost of horizontal R&D, φ, and the level of the labor
force, L, have no effect on R&D intensity.

(b) For a given Q∗, a permanent and nonanticipated increase in σ , �, and φ (in γ , ζ ,
and L) will increase (decrease) the firm size.

Propositions 2 and 3 offer a mixed picture with respect to the correlation between
the economic growth rate, g∗, and both the R&D intensity, R∗, and the firm size,
q̄∗, because comparative-statics results depend upon the source of the shift in the
general equilibrium.

COROLLARY 1 (Long-Run Relationships between g∗, R∗, and q̄∗).
(a) Changes in the Schumpeterian push, �, or in the elasticities of the horizontal en-

try cost, σ and γ (the fixed cost of vertical R&D, ζ ), yield a negative (positive)
relationship between g∗ and R∗.
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(b) Changes in σ yield a negative relationship between g∗ and q̄∗, but changes in �, γ ,
and ζ (φ and L) give rise to a positive (null) correlation.

An increase in ζ induces a rise in the number of firms, for a given q̃∗, such that
the initial increase in ζ is matched by a decrease in average quality [see (22)] and
hence firm size. The increase in ζ also reduces the effective rate of return I ∗ + r∗

[see (13)], which leads to fewer resources being allocated to investment (vertical
and horizontal R&D) in favor of present consumption [and hence granting smaller
consumption growth—see the impact of ζ on (29)]. This then implies a reduction
in both the growth rate of the number of firms, g∗

N , and the Poisson rate, I ∗. Thus,
both R&D intensity and the economic growth rate are decreased.

In turn, an increase in, say, the horizontal entry cost elasticity σ implies a
decrease in the number of firms, although having no impact on the effective
rate of return. However, because a change in σ alters the balance between the
growth rate of the number of firms and the growth rate of quality [recall that
gQ/gN = (σ + γ + 1) on the BGP], there will be a shift of resources from
horizontal R&D, R∗

n, to vertical R&D, R∗
v , and hence a reduction in the growth

rate of the number of firms and an increase in the Poisson rate. However, the
effect on the economic growth rate, g∗, of the increment of the intensive margin is
dominated by the decrease in the extensive one. In the end, the observed negative
correlation between g∗ and R∗ reflects the negative correlation between g∗ and
R∗

v , which outweighs the positive relationship between g∗ and R∗
n.

Also in Dinopoulos and Thompson (1998), Peretto (1998), and others, a change
in horizontal entry costs induces a change of the vertical-innovation rate in the
same direction. However, this implies a positive correlation with the economic
growth rate, because the latter changes solely because of the intensive margin (the
extensive margin is linked to the exogenous population growth rate).

We can compare the results of the model with the data from the perspective of the
cross-section correlation between those variables, in the following sense: if there
is heterogeneity across countries in any or all the (technological) parameters, we
expect that the data exhibit an unclear relationship between the economic growth
rate and both the R&D intensity and the firm size.

Empirical studies in general find a strong positive relationship between R&D
intensity and the growth rate at the sectoral and firm level, but a clear link is
usually difficult to establish at the aggregate (cross-country) level [e.g., Backus
et al. (1992); Bassanini et al. (2000)]. On the other hand, although recent empirical
work has found a positive relationship between firm size and the growth rate at
the aggregate level, the majority of the empirical literature still gives little support
for this view [see Pagano and Schivardi (2003)].

The empirical literature often places the emphasis on the complexity of the
link between these variables [Audretsch and Keilbacha (2008)] and the several
conceptual and measurement problems that still afflict empirical analysis in this
field [Bassanini et al. (2000)] to explain the lack of robust results. According to
our model, the underlying positive relationship between R&D and growth may
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FIGURE 3. Phase diagram in the detrended variables (x, z) for the piecewise smooth system
(37a)–(37b). Curves ẋ = 0 and ż = 0 are the isoclines and curve Ws is the stable manifold,
which is the only equilibrium trajectory.

be counteracted by the the shift of resources between vertical and horizontal
R&D. Therefore, the existence of an endogenous inter-R&D composition effect
causes those ambiguous relationships and possibly the lack of clear-cut empirical
findings.

3.3. Aggregate Transitional Dynamics

Because the BGP level is indeterminate, as is usual in endogenous-growth models,
we set Q∗ = Q(0), which is given. The economy will follow along the BGP if
N(0) = Ñ(0) = (ζ · L/φ)1/(σ+γ+1)(x∗)−γ /(σ+γ+1)[Q(0)]1/(σ+γ+1) and C(0) =
z∗Q(0). If, given Q(0), the initial number of varieties is different from Ñ(0), then
a transitional dynamics path will unfold. The qualitative dynamics is easier to
characterize if we study it using the detrended system (37a)–(37b).

PROPOSITION 4 [Transitional Dynamics (See Figure 3)]. Under the previous
assumptions, the BGP is determinate and is saddlepoint stable. There is a piecewise
smooth continuous stable manifold that is positively sloped, implying there is a
positive correlation between x and z along the transition to the BGP. In addition,
there is a magnitude x̃ ∈ (μ, �(σ+γ+1)+σ+γ

�(σ+γ+1)+(σ+γ )/θ
μ) such that

(a) If x(0) > x̃, then there is a point z(0) such that the pair (x(t), z(t)) diminishes through
time until the economy crosses the point (x̃, z̃) at time t0 > 0. When t ∈ [0, t0], we
have I (t) = 0. From t0 onward, I (t) increases and the pair (x(t), z(t)) will still
diminish in time until it converges asymptotically to the BGP levels (x∗, z∗).
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(b) If x∗ < x(0) < x̃, we have 0 < I (0) < I ∗ and I (t) increases, whereas the pair
(x(t), z(t)) diminishes and converges asymptotically to the BGP levels.

(c) If 0 < x(0) < x∗, then I (0) > I ∗ > 0 and I (t) decreases, whereas the pair
(x(t), z(t)) increases and converges asymptotically to the BGP levels.

See the Proof in Appendix B.
We focus in particular on the deviations of x above its steady-state value,

x(0) > x∗, where

x(0) =
(

ζ · L

φ

) 1
γ

· q(0)
1
γ · N(0)

−(σ+γ )
γ . (50)

This would be the case for an economy with a low N(0) relative to Q(0) and,
thus, having a large firm size and/or displaying a shallow market for differentiated
goods. Proposition 4 makes clear the complementarity between horizontal and
vertical innovation by showing that, when the number of varieties is too low,
no vertical R&D is performed. This result is supported by, e.g., Ciccone and
Matsuyama (1996), who analyze the existence of a no-growth trap if there are
initially a small number of varieties of innovative goods. This complementarity
result can also be seen as the dynamical counterpart of the prediction that vertical
R&D allows sustained horizontal R&D along the BGP, which was mentioned in
Subsection 3.1.

Alternatively, consider an economy that is initially endowed with N(0), such
that x∗ < x(0) < x̃ and θ > 1. An economy with few varieties relative to the
technological-knowledge stock (i.e., with a large firm size) starts with a small
vertical-innovation rate, I , high growth rates, gN and g, and a high interest rate, r ,
relative to the BGP. A high interest rate implies a low vertical-innovation rate, I

[see (13)], and a low vertical R&D expenditure, Rv [see (10)], freeing resources to
be allocated to horizontal R&D, Rn. The higher g is justified solely by the higher
rate of variety expansion, gN .

The transitional dynamics of g and R is then characterized as follows:

COROLLARY 2 (Co-movement of g and R in the Neighborhood of the Steady
State). Let θ > 1; then the economic growth rate is negatively correlated with
R&D intensity along the transition path converging to the BGP.

See the Proof in Appendix C. The economy experiences a decreasing z and x (=
gN), which implies that more resources become available to vertical innovation,
boosting I [see (38)] and reducing r [see (13)]. Hence, part of the resources
allocated to Rn are gradually re-targeted to Rv . However, the positive impact of the
intensive margin on g is more than compensated for by the downward movement
on the extensive margin. This negative net effect reflects the asymmetric impact of
the extensive and the intensive margin on economic growth: (i) the former works
its way through a specialization effect related to the number of varieties, which has
a one-to-one impact on economic growth; (ii) the latter is based on an efficiency
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FIGURE 4. Transitional dynamics of the growth rates, g and gN , the vertical-innovation
rate, I , the R&D intensity, R, and the firm size, q̃/n, when x∗ < x(0) < x̃.

effect of higher quality levels, which is dampened by the creative-destruction
effect [see (25)]. On the other hand, the fall in the consumption rate, z, and the
corresponding increase in the savings rate finance an expansion in R [see (39)].
Thus, along the transition path, g falls, whereas R increases (see Figure 4).17

Dinopoulos and Thompson (1998) report a similar rebalancing effect between
vertical and horizontal R&D; however, their vertical-innovation rate, as well as
total R&D intensity, falls parallel to aggregate growth and the interest rate along
the transition path [as in Peretto (1998)]. In contrast, the medium-run negative
relationship between aggregate growth and the vertical-innovation rate is also
apparent in Aghion and Howitt (1998, Ch. 3), but only for a specific set of
parameter values.18

We can study the comparative dynamics consequences from an exogenous
increase in technological complexity, brought about as a drop in the Schumpeterian
push, �, as in Pintea and Thompson (2007), or from an increase in the elasticities of
the horizontal entry technology, σ and γ . In any of those cases, the stable manifold
in Figure 3 will shift southwest. The short-term response will be a discrete fall in
the consumption rate, z, and hence an increase in R&D intensity, R. The medium-
term adjustment will then consist of a gradual further increase in R&D intensity
toward the new BGP, whereas the growth rate will follow a downward path.19

The results described offer a theoretical explanation for the negative relationship
between total R&D intensity and the per capita GDP growth rate found in the
United States and other developed countries over the past decades [e.g., Pintea
and Thompson (2007)]. Our own calculations, based on data for the 1975–2010
period,20 confirm the view that a growing R&D intensity has been paralleled by
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a decreasing or stagnating economic growth rate in an array of countries besides
the United States, such as Japan, Denmark, France, and Italy.

Finally, our model also allows one to analyze the correlation between firm size
and the economic growth rate along the transition path. To that end, it is convenient
to compute the number of firms, N , and the technological-knowledge stock, Q,
in stationarized terms; i.e., we define n and q̃ such that n(t) = N(t) · e−g∗

N ·t

and q̃(t) = Q(t) · e−g∗·t . When x∗ < x(0) < x̃, both n and q̃ grow along the
transition path, but the former grows more than the latter, implying a falling firm
size.21 Thus, firm size and the economic growth rate are positively related along
the transition path (see Figure 4).

In Aghion and Howitt (1998, Ch. 12), firm size, measured as the physical-capital
stock per firm in efficiency units, is commanded by the physical-capital stock
along the transition path. As long as the model exhibits the convergence property,
it produces a positive relationship between firm size and aggregate growth. The
models of Arnold (1998) and Peretto (1998) also generate a positive relation-
ship along the transition path between aggregate growth and firm size, measured
as employment per firm in the former and human-capital stock per firm in the
latter.

Empirical evidence of a positive correlation between aggregate growth and firm
size in the medium run is provided by Jovanovic (1993) and Laincz and Peretto
(2006), whereas Campbell (1998) reports evidence for a positive correlation be-
tween aggregate growth and the rate of entry (corresponding, in our model, to gN ).
It is noteworthy that the less than one-to-one relationship predicted by our model
is clearly consistent with the empirical findings in Campbell (1998).

4. OPTIMALITY

Our model inherits the well-known features found in the standard R&D
endogenous-growth models [e.g., Barro and Sala-i-Martin (2004)] as regards
Pareto optimality of the equilibrium. It can be shown that both static and dynamic
social inefficiencies arise from the monopolistic structure in the intermediate-
good sector. The dynamic effect is related to the finite duration of the monopoly
(creative-destruction effect), implying that the resources allocated to R&D are too
high. The static effect is related to the monopoly power, implying that the produc-
tion of intermediate goods is too low from a social perspective; this then implies
that the resources allocated to R&D are too low. As a result, the optimal economic
growth rate may be either lower or higher than the (decentralized equilibrium)
growth rate in our model. To achieve the first best, a subsidy to intermediate-good
production must be combined with a mechanism that implements a transfer from
the entrant to the exiting incumbent.

However, in our model, there are also spillover effects in the horizontal entry
mechanism in addition to the standard effects referred to previously. It can be
shown that these effects are only relevant for the gap between the decentralized
equilibrium and the social optimum, because there is an interaction with the
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way resources are endogenously allocated between vertical and horizontal R&D.
This allocation involves either the interplay of the free-entry conditions (and the
associated creative-destruction effect), in the decentralized equilibrium, or the
elimination of (vertical) R&D competition, in the centralized equilibrium. These
spillover effects, per se, imply that the optimal growth rate is higher than the
decentralized equilibrium growth rate.

5. CONCLUSION

This paper develops a nonscale tournament endogenous-growth model, with simul-
taneous expanding variety and quality ladders under a lab-equipment specification.
The choice between vertical and horizontal innovation is related to the splitting
of R&D expenditures, which are fully endogenous. Therefore, we endogenize the
rate of extensive growth. There is complementarity between vertical and horizon-
tal R&D acting in both senses: vertical R&D allows sustained horizontal R&D,
whereas positive vertical R&D occurs when the number of varieties is above a
certain threshold.

Our framework gives rise to strong endogenous inter-R&D composition effects
and makes economic growth and firm dynamics closely related: vertical R&D
is the ultimate growth engine, whereas horizontal R&D builds an explicit link
between aggregate and firm-dynamics variables.

The model predicts, under a sufficiently productive technology, a BGP with
constant positive growth rates, and in which the consumption growth rate equals
the growth rate of the number of varieties plus the growth rate of intermediate-
good quality, in line with the general view that industrial growth proceeds along
both an intensive and an extensive margin. The growth of the number of varieties
is sustained by technological-knowledge accumulation, as the expected growth of
intermediate-good quality makes it attractive for potential entrants always to put
up an entry cost, in spite of its upward trend.

We obtain specific results with respect to the impact of changes in the entry-cost
parameters both on the economic growth rate and on the market structure along
the BGP. We highlight (i) the lack of relationship between the economic growth
and the fixed horizontal entry cost, but the positive relation between the latter and
firm size, (ii) the contrasting effect of changes in the two elasticity parameters of
the entry cost function on firm size, and (iii) the mixed result with respect to the
BGP relation between the economic growth rate and both R&D intensity and firm
size.

Along the transition path, the model produces results that differ from (or expand
the results of) the early models of simultaneous vertical and horizontal R&D. In
particular, we obtain as a general medium-term result that economic growth and
firm size are positively correlated, whereas R&D intensity and both economic
growth and firm size move in opposite directions. The former result adds to the
theoretical predictions already found in the literature, of a positive correlation
between economic growth and firm size measured either as employment per firm,
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human-capital stock per firm, or physical-capital stock per firm in efficiency
units, and which have had wide empirical support. Importantly, the last result—
together with (iii), earlier—offers a theoretical explanation for the nonsignificant
or negative empirical correlation between aggregate R&D intensity and both the
economic growth rate and firm size, a well-known fact in the growth literature.

Our framework is still quite stylized and encourages extensions in several
directions. For example, although R&D is a key driver of economic growth, our
theoretical framework can be extended to include human-capital accumulation. It
can be also extended to explore the interrelation between horizontal and vertical
innovation within a nontournament setting, in this way accommodating R&D by
both incumbents and entrants.

NOTES

1. Most R&D models predict a positive correlation between the economic growth rate and R&D
intensity [see, e.g., Aghion and Howitt (1998)].

2. It is well known that investment in R&D is actually done by both incumbents and entrants. A
large fraction of new innovators are occasional innovators that exit soon from the innovative scene,
whereas only a small part of entrants survive; these firms then become persistent innovators [e.g.,
Malerba and Orsenigo (1999)]. Because, on one hand, our focus is not on the strategic interaction
between incumbents and entrants over the R&D process [in contrast with, e.g., Segerstrom (2007) and
Etro (2008)], and, on the other, we wish to highlight the role of the complementarity between horizontal
and vertical R&D, we choose the simplifying assumption that only entrants perform (vertical) R&D,
following the standard approach in the literature [e.g., Aghion and Howitt (1992); Howitt (1999);
Segerstrom (2000); Strulik (2007); Francois and Lloyd-Ellis (2009)].

3. Using Rivera-Batiz and Romer (1991)’s terminology, the assumption that the homogeneous final
good (which is the numeraire) is the R&D input means that one adopts the “lab-equipment” version
of R&D, instead of the “knowledge-driven” specification, in which labor is ultimately the only input.
In the latter case, R&D intensity is usually measured as labor devoted to R&D as a share of total labor
force.

4. Alternatively, an endogenous extensive margin may be obtained under a knowledge-driven
setup where (endogenous) human capital, instead of labor, is the input in both vertical and horizontal
R&D. However, the presence of one more state variable (human capital)—in comparison with our
lab-equipment setup—would render the analytical study of the model a lot more cumbersome, without
new insights regarding the major focus of our paper.

5. In equilibrium, only the top quality for every industry ω is produced and used; thus, X(j, ω, t) =
X(ω, t).

6. We assume that innovations are drastic, i.e., 1/α < λ, such that existing monopolies do not need
to limit price and can instead charge the unconstrained monopoly price.

7. The way � depends on j implies that the increasing difficulty of creating new qualities exactly
offsets the increased rewards from marketing higher qualities—see (9) and (4). This allows a constant
vertical-innovation rate over t and across ω along the BGP, i.e., a symmetric equilibrium.

8. We assume that entrants are risk-neutral and, thus, only care about the expected value.
9. Observe that, from (4) and (10), we have π̇(ω, t)/π(ω, t) = I (ω, t) · [j̇ (ω, t) · ( α

1−α
) · ln λ] and

Ṙv(ω, t)/Rv(ω, t) − İ (ω, t)/I (ω, t) = I (ω, t) · [j̇ (ω, t) · ( α
1−α

) · ln λ]. Thus, if we time-differentiate

(12) by considering (11) and the equations preceding, we get r(t) = π(j+1)·I (j)
Rv(j)

− I (j + 1), which
can then be rewritten as (13).

10. We depart from Howitt (1999) [see also Segerstrom (2000)] because he hypothesizes decreasing
returns to scale to R&D at the firm level. Such an entry technology implies that (keeping our notation)
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V = η = dRn

dṄ
> Rn

Ṅ
. In contrast, given our assumption of constant returns to scale, we have

V = η = Rn

Ṅ
= dRn

dṄ
[see (19)]. Note that the price of entry, V , equals the marginal cost of entry, η, in

both cases considered earlier; nevertheless, the assumption of constant returns eschews positive profits
from entering, because V = Rn

Ṅ
.

11. The partial derivative with Q has the sign of C(t)/Q(t) − ζ/γ , meaning that it may change
over t .

12. In contrast, Peretto and Smulders (2002) obtain a result similar to ours under a knowledge-driven
setup, but only for a specific set of parameter values, by assuming a feedback from the number of
varieties to vertical R&D through a network spillover effect.

13. From (13), we get equivalently the innovation rate as a discount over the baseline rate of interest:
I+(Q, N, C) = r0 − r(Q, N, C).

14. In fact, the dependence of η on N is necessary to eschew the explosive growth that would occur
if η were constant over t , or depended solely on Ṅ , thus implying that a BGP would not exist. This
is not the case in Barro and Sala-i-Martin (2004)’s basic model of pure expanding variety. It can be
shown that the specification η ≡ η(Q), η′ > 0, η′′ < 0 produces a similar result in our model.

15. Observe that production (or sales) per firm is given by X/N = AXQ/N [see (7)], whereas
financial assets per firm is given by a/N = η = ζLQ/N [see (22)]. On the other hand, although
empirical evidence usually relates directly to size, measured as employment per firm, a number of
recent papers address the sensitivity of firm dynamics to different measures of size (employment, sales,
capital and value added). The evidence is qualitatively similar to that obtained when employment is
the measure of firm size [e.g., Bottazzi et al. (2007)].

16. See Gil (2010) for a detailed discussion of the empirical literature relating firm dynamics to
long-run economic growth.

17. We use the following set of baseline parameter values to illustrate the transitional dynamics:
γ = 1.2, σ = 1.2, φ = 1, ζ = 0.9, λ = 2.5, ρ = 0.02, θ = 1.5, α = 0.4, A0 = 1, L = 1. Given that
along the BGP, gQ − gN = (σ + γ )gN , the choice of values for σ and γ is such that (σ + γ ) = 2.4,
which is the ratio between the growth rate of the average firm size and the growth rate of the number
of firms we have found in the empirical data (the data, which are available from the authors upon
request, concern 23 European countries in the period 1995–2005 and were taken from the Eurostat
online database, available from http://epp.eurostat.ec.europa.eu). The values for λ, θ , ρ, and α were
set in line with previous work on growth and guided either by empirical findings or by theoretical
specification, whereas the normalization of A0 and L to unity at every t implies that all aggregate
magnitudes can be interpreted as per capita magnitudes. The values of the remaining parameters were
chosen to calibrate the BGP aggregate growth rate around 2.5%/year.

18. The mechanism in Aghion and Howitt (1998, Ch. 3) is different from ours. They develop a
quality-ladders model with physical capital as an input to R&D. Innovation, and hence aggregate
growth, is stimulated by a rise in capital intensity toward its BGP level, whereas diminishing marginal
returns to physical capital imply per se a fall in the aggregate-growth rate. For some parameter values,
economic growth and the innovation rate move in opposite directions along the transition path.

19. The negative relationship between the growth rate and R&D intensity obtained in Pintea and
Thompson’s model hinges on the negative (exogenous) impact of the increase in technological com-
plexity on “passive learning” (the process by which skilled workers secure increases in product
quality). In our paper, that relationship stems from the (endogenous) interrelation between vertical and
horizontal R&D along the adjustment path, as already explained.

20. The data were taken from the Eurostat on-line database, available from http://epp.eurostat.
ec.europa.eu.

21. To understand this result, first let Q(t) = Q0e
gQ(t)t , Q0 > 0, and N(t) = N0e

gN (t)t , N0 > 0.
Together with Q(t) = q̃(t) · eg∗·t and N(t) = n(t) · eg∗

N ·t , we get q̃(t) = Q0e
(gQ(t)−g∗)t and n(t) =

N0e
(gN (t)−g∗

N )t . Because, if x∗ < x(0) < x̃, gN (t) − g∗
N > 0 and I (t) − I ∗ < 0 for t ≥ 0, whereas,

from (25), gQ(t) = � · I (t) + gN (t), we have gN (t) − g∗
N > gQ(t) − g∗ along the transition path.

22. We draw on results obtained in a recent applied mathematical literature presented in Di Bernardo
et al. (2008). This is a Lie derivative calculated along the switching boundary.
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APPENDIX A: PROOF OF PROPOSITION 1

Using the Caballé and Santos (1993) decomposition, we write C(t) = c(t) · eg∗
C ·t , Q(t) =

q̃(t) · eg∗
Q ·t , and N(t) = n(t) · eg∗

N ·t . We can build a detrended system in (c, q̃, n) only if
gC = gQ = g and gQ = gN(σ + γ + 1), such that gC = g∗

C , gQ = g∗
Q, and gN = g∗

N .
If those conditions hold, then x(q̃, n) = x(Q,N) and I+(C,Q, N) = I+(c, q̃, n), and an
equivalent piecewise-continuous system (PWS) for the detrended variables is obtained:

ṅ = [x(q̃, n) − gN ] · n, (A.1)

ċ = [μ − I±(c, q̃, n) − θ · g] · (c/θ), (A.2)

˙̃q = [I±(c, q̃, n) · � + x(q̃, n) − gQ] · q̃. (A.3)

The BGP is defined in the main text, where (c∗, q̃∗, n∗, g∗) is obtained for the equilibrium
points of the PWS system (A.1)–(A.3). It can be determined instead from the equivalent
system (37a)–(37b), where the change in variables z = c/q̃ = C/Q is introduced.

First, the condition for the existence of a BGP on the branch I < 0 is A− z∗ − ζx∗ < 0;
then I = I− = 0, and there may exist only one steady state x∗ = z∗ = 0, which is
impossible for A > 0. Thus there is no BGP on this branch. Second, the condition for
the existence of a BGP on the branch I > 0 is A − z∗ − ζx∗ > 0. Thus, an admissible
interior steady state (x∗, z∗) ∈ R2

++ verifies I (x, z) = (σ + γ ) · x/� = θ(μ − x)/(1 +
θ�). We obtain I ∗ and x∗ as in equations (40) and (42), which are positive if μ > 0.
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Substituting back into the expression for I , we get (45), which is positive if I ∗ < I . We can
obtain the long-run levels for (c, q̃) by transforming back c∗ = q̃∗ · z∗, where q̃∗ verifies
(x∗)γ = (ζ · L/φ) · q̃∗ · (n∗)−(1+σ+γ ), where n∗ is left undetermined. Then there is a unique
BGP, C∗(t) = c∗eg∗ t , Q∗(t) = q̃∗eg∗ t , N∗(t) = n∗eg∗

N t , on which the long-run growth rates
g∗ and g∗

N , as in (41) and (42), are positive if μ > 0. Last, the transversality condition
limt→∞ ζL(c∗)−θ q̃∗e−[ρ+(θ−1)g∗]t = 0 holds if θ ≥ 1. �

APPENDIX B: PROOF OF PROPOSITION 4

Consider the system (37a)–(37b) and its admissible steady state (x∗, z∗), where I ∗ =
I+(x∗, z∗) > 0. The Jacobian evaluated at that steady state is

J (x∗, z∗) =
(

a11 a12

a21 a22

)
= 1

1 + �

⎛
⎜⎜⎜⎝

1 + θ�

θζ
z∗ (1 − θ)

θ
z∗

− �

γ ζ
x∗ −�(σ + γ + 1) + σ + γ

γ
x∗

⎞
⎟⎟⎟⎠ .

As det(J (x∗, z∗)) = −[�(σ + γ + 1) + (σ + γ )/θ ] · z∗x∗/ζγ (1 + �) < 0, J (x∗, z∗) has
one negative, λs < 0, and one positive, λu > 0, eigenvalue. The stable manifold Ws has
dimension one. The slope of the stable eigenspace, which is tangent to the stable manifold
in the neighborhood of (x∗, z∗), is dz

dx

∣∣
Ws = λs−a22

a21
. As a21 < 0, the slope has the same sign

as a22 − λs . After some algebra, we get

a22−λs = − 1

2(1 + �)
·
[

(�(σ + γ + 1) + σ + γ ) x∗

γ
+ (1 + θ�)z∗

θζ

]
+�(J (x∗, z∗))1/2,

where the discriminant of the Jacobian is equivalent to

�(J (x∗, z∗)) =
{

1

2(1 + �)
·
[

(�(σ + γ + 1) + σ + γ ) x∗

γ
+ (1 + θ�)z∗

θζ

]}2

+ z∗x∗�
ζγ θ(1 + �)2

(θ − 1).

Then a22 − λs ≥ 0 if θ ≥ 1 and the local stable manifold is positively (zero) sloped in the
neighborhood of (x∗, z∗) if θ > 1 (θ = 1).

The phase diagram in Figure 3 allows a geometric characterization of the dynamics
of transition. Observe that the switching curve, I (x, z) = 0, divides the state space into
two zones: in the northeast area, where I (x, z) < 0, we set I = 0 and the dynamics is
given by the first branch, and in the southwest area, where I (x, z) > 0, the dynamics is
given by the second branch I = I+. The isocline ẋ = 0 is negatively sloped and lies
entirely in the second branch. The isocline ż = 0 passes through the two branches: it may
have a positive intercept in the second branch if A > ζ · θ · (1 + �) · μ/(1 + θ�) has
a positive slope and cuts the switching curve at point x = μ, where it is continuous but
piecewise smooth, and it is vertical in the first branch. As x is a predetermined variable,
this means that if x(0) < μ then the transition path lies entirely on the second branch, and
approaches the BGP values (x∗, z∗) as shown in the figure because the slope of the stable
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manifold is flatter than the isocline ż = 0. This can easily be proved if it is observed that
dz
dx

|ż=0 − dz
dx

|Ws = − a12
a11

+ a22−λs

a21
= λu+a11

a11a21
λs > 0. If x(0) > x̃, the transition path is a

concatenation of a transition path lying in the first branch with the transition path in the
second branch. This can be proved if we observe that, first, the paths on the first branch to
the right of the isocline ż = 0 cross the switching curve at a point x̃ that is larger than μ

but is smaller than �(σ+γ+1)+σ+γ

�(σ+γ+1)+(σ+γ )/θ
μ, which is the projection of the steady state z∗ onto

the switching curve (this is an implication of the slope of the stable manifold); second, the
paths starting on the first branch to the right of the isocline ż = 0 approach the switching
curve and cross it. We can prove that there is no other form of collision by computing the
projections of the vector fields on both sides of the switching curve,22

∂I+

∂z
ż− + ∂I+

∂x
ẋ− = ∂I+

∂z
ż+ + ∂I+

∂x
ẋ+ = 1

ζ(1 + �)

[(
σ + γ

γ
x2 + ζ(x − μ)z

)]
> 0,

because the collision should take place for x > μ. This means that the path coming from
the first branch approaches the switching curve with the same direction as the one defined
by the vector field for I+ < 0, that is, both x and z decrease, which means that it will cross
the switching boundary and continue with the same direction inside the second branch. We
cannot determine the crossing point exactly, but we know that it should be in the intersection
of the stable manifold in the second branch with the switching boundary. This means that
the stable manifold is piecewise smooth and lies on the two branches as depicted in
Figure 3. �

APPENDIX C: PROOF OF COROLLARY 2

The dynamic system in the detrended variables x and z has no closed form solution.
Nevertheless, Proposition 4 presents the qualitative dynamics in the neighborhood of the
BGP. If we take x as a predetermined variable, we already proved in the proof of Proposition
4 that dz(t)

dx(t)
|Ws ≥ 0 if θ ≥ 1. As along the transitional dynamics we have I (t) = (A −

z(t) − ζ · x(t))/(ζ · (1 + �)), g(t) = � · I (t) + x(t), and R(t) = 1 − z(t)/A, we
can determine the co-movement of the variables by determining their asymptotic co-
movement with the predetermined variable x in the neighborhood of the BGP. We obtain
dI (t)

dx(t)
|Ws = − 1

1+�
(1 + 1

ζ

dz(t)

dx(t)
|Ws ) ≤ − 1

1+�
< 0, dR(t)

dx(t)
|Ws = − 1

A

dz(t)

dx(t)
|Ws ≤ 0, and

dg(t)

dx(t)

∣∣∣∣
Ws

= 1

1 + �

(
1 − �

ζ

dz(t)

dx(t)

∣∣∣∣
Ws

)
= γ · λs + (σ + γ + 1)x∗

x∗

= T0

2
−

[(
T0

2

)2

− D0

]1/2

> 0,

because T0 = 1
1+�

[( 1+θ�
θζ

z∗ + ( �(σ+γ+1)+σ+γ+2
γ

)x∗)] > 0 and D0 = x∗
(1+�)γ

· ( z∗
ζθ

+
(σ+γ+1)x∗

γ
) > 0. �
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