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Abstract

lon—electron two-stream instabilities in high intensity heavy ion fusion beams, described self-consistently by the
nonlinear Vlasov—Maxwell equations, are studied using a three-dimensional multispecies perturbative particle simula-
tion method. Large-scale parallel particle simulations are carried out using the recently developed Beam Equilibrium,
Stability, and TransporfBEST) code. For a parameter regime characteristic of heavy ion fusion drivers, simulation
results show that the most unstable mode of the ion—electron two-stream instability has a dipole-mode structure, and the
linear growth rate decreases with increasing axial momentum spread of the beam particles due to Landau damping by the
axial momentum spread of the beam ions in the longitudinal direction.
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1. INTRODUCTION relativistic kinematics, presence of a conducting wall, and
so forth. Abackground population of electrons can result by
In typical linear induction accelerators for heavy ion fusionsecondary emission when energetic beam ions strike the
drivers, the beam current is much higher than that in conehamber wall, or through ionization of background neutral
temporary accelerators and storage rings. To obtain enougias by the beam ions. A well-documented example is the
fusion energy gain, the peak current for each beam is reelectron—protofe-p) instability observed in the Proton Stor-
quired to be order of 1A or larger. Even though the kinetic age Ring experimentMaceket al., 2001; Neufferet al.,
energy is expected to be in the range of several gigaelectral®92), although a similar instability also exists for other ion
volts, the reduction of space-charge effects due to the selspecies, including, for example, ion—electron interactions in
magnetic fields is small because of the large ion mass. For electron storage ringdzawaet al., 1995; Byrdet al., 1997;
given focusing lattice, most designs of heavy ion fusionOhmi, 1997. When electrons are present, two-stream inter-
drivers operate near the space-charge limit. Large spacections in heavy ion fusion drivers are expected to be stron-
charge forces inevitably induce a strong interaction amonger than the two-stream instabilities observed so far in proton
the beam particles, and in some regimes can result in comachines(as well as electron machinebecause of the
lective instabilitieChao, 1993; Davidson, 2001; Davidson much larger beam intensity. In this article, we study the
& Qin, 2001). It has been recognized recently, both in theo-ion—electron two-stream instability using a perturbative par-
retical studies and in experimental observatigKgil & ticle simulation methodsf method for solving the Vlasov—
Zotter, 1971; Koshkarev & Zenkevich, 1972; Laslett, 1974;Maxwell equations. As a low-noise nonlinear particle
Neufferet al, 1992; Izaweet al, 1995; Byrdet al,, 1997;  simulation techniquéLeeet al,, 1997; Stoltzet al.,, 1999,
Ohmi, 1997; Davidsoret al., 199%, 199%; Davidson &  thesf method has been implemented in the recently devel-
Qin, 2000, 2001; Mace#t al, 2001; Wanget al,, 2000, that  oped Beam Equilibrium, Stability, and TranspoBEST)
the relative streaming motion of the high-intensity beamcode(Qin et al,, 2000, which has been applied to a wide
particles through a background charge species provides thange of important collective processes in intense beams
free energy to drive the classidalo-streaninstability, ap-  (Qin et al,, 2000; Startseet al., 2002. In the present sim-
propriately modified to include the effects of dc space chargeulation study, we consider a Coeam with rest mass, =
133m,, wherem, is the proton rest mass, and kinetic energy
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retical model and the physics of the two-stream instability isson, 2001 have identified an important class of surface
briefly summarized, which is followed by a description of modes driven unstable by ion—electron interactions. A ki-
the nonlinearsf method in Section 3. Typical simulation netic dispersion relation has been derived for beams with a
results are presented in Section 4, and in Section 5, wKapchinskij—Vladimirskij (KV ) distribution in the trans-
summarize the conclusions and describe future work. verse direction and a Lorentzian distribution in axial mo-
mentum in the longitudinal directidiDavidsoret al., 199%,
199%; Davidson & Qin, 200D A careful examination of the
dispersion relation shows that the strongest instability oc-
The theoretical model employed here is based on the noreurs for azimuthal mode numbeér= 1, corresponding to a
linear Vlasov—Maxwell equations. We consider a thin, con-simple dipole displacement of the beam ions and electrons.
tinuous, high-intensity ion beafj = b), with characteristic  The dispersion relation for tHe= 1 dipole mode is given by
radiusr, propagating in the-direction through background (Davidsonet al, 199%, 199%; Davidson & Qin, 2000,

2. THEORETICAL MODEL

electrons(j = e), with each component described by a 2001

distribution functiorf;(x,p, t) (Davidsonet al,, 199%; Da-

vidson & Qin, 200). The charge componenf§ = b,e) [ =k Vo + i K |v7p)? — 02 ][(@ + ik, |v7e)? — 03] = f,
propagate in the-direction with characteristic axial momen-

tumy;m; B;c, whereV, = g, c is the average directed axial ©)

velocity, y; = (1 — B?)"¥2 is the relativistic mass factog,
andmy are the charge and rest mass, respectively,jtha Where
species particle andis the speed of light ivacua While

the nonlineasf formalism described in Section 3 is readily w0t = 1 f<1_ r_b2>2 YoMp o4 4)
adapted to the case of @eriodic applied focusing field "4 r2) me P

(Davidsonet al,, 199%), for present purposes we make use

of a smooth-focusingnodel in which the applied focusing w2 = 1yem, @2b<l _f r_b2> )
force is described by, ° = —y, m wj x, , wherex, = x&, + S 2me ra)’

y&, is the transverse displacement from the beam axis, and 5

wgj = constis the effective applied betatron frequency for 02 = wd + }d)zb<f _1 r_b> (6)
transverse oscillations. Furthermore, in a frame of reference 2T g ra

moving with axial velocitys; c, the motion of gth species
particle is assumed to be nonrelativistic. The space-chargdere, w is the complex oscillation frequency, charge
intensity is allowed to be arbitrarily large, subject only to stateZ, = 1 is assumedn, is the electron massyj, =
transverse confinement of the beam ions by the appliedf,e5/y, M, is the ion plasma frequency-squared on axis,
focusing force, and the background electrons are confinedr |, andvre are the characteristic longitudinal thermal ve-
in the transverse plane by the space-charge poteffigt)  locity of the beam ions and electroriss A./f, is the frac-
produced by the excess ion charge. tional charge neutralization, afglis the axial wavenumber.
In the electrostatic and magnetostatic approximations, wén the cold limit (v, = 0 = vr|e), and in the absence of
represent the self-electric and self-magnetic fieldE as background electrons = 0), Eq.(3) gives stable collective
—Vé(x,1) andBs =V X A,(x, t)&,. The nonlinear Vlasov— oscillations of the ion beam with frequeney — k,V, =

Maxwell equations can be approximated Bavidsoret al., +wy. Forf # 0, however, the ion and electron modes are
199%; Davidson & Qin, 2001 coupled by thew{* term on the right-hand side of E(g),
leading to one unstable mode with dni> 0 for a certain
d ] ) v, ] range of longitudinal wavenumblky. The instability is two-
{E VT [71 mjwpXs+ @ (W T LA >]_} stream in nature, and results from the directed ion motion
with axial velocity V,, through the background electrons
X fi(x,p,t) =0, (1) (assumed stationary witt, = 0). Examination of Eq(3)
(Davidsonet al, 199%, 199%; Davidson & Qin, 2000,
and 2001 shows that the unstable mode has frequency and wave-
number closely tuned @, = weandk,g = (we + wp)/Vy. FOr
V2 = —47 > § fd3pfj (x,p,1), heavy ion fusion beamsn, > m,), because? < w2in the
]

) regimes of practical interest, it follows that the phase veloc-
4 ity in the longitudinal direction of the unstable mode is
VA= - X %fdspvzfj (X,p,b). downshifted only slightly from the directed beam velocity
: V,, and therefore can be strongly affected by Landau damp-
Applying the theoretical model outlined above to the ion—ing effects associated with a longitudinal momentum spread
electron two-stream instability, Davidsan al. (Davidson  of the beam ions. This fact can be easily demonstrated by
etal, 199%, 199%; Davidson & Qin, 2000, 2001; David- analyzing the dispersion relati¢8) with finite v, (David-
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son & Qin, 2000, 20011 Thel =1 dipole-mode instability son & Qin, 200). The perturbed distributioff; is obtained
predicted by Eq(3) has features similar to the resistive-hosethrough the weighted Klimontovich representati@avid-

instability (Lee, 1978 in the collisionless limit. For azi- son, 200},

muthal mode numbdr= 0, the two-stream dispersion rela-

tions analogous to Eq3) have also been derived by Uhm | N

and Davidsor{Uhm et al, 2001 for the so-called sausage o = leji 8(x = x;i)8(p = pji), 9

and hollowing instabilities in the collisionless regime. o

whereN, is the total number of actuath species particles,
3. NONLINEAR &f METHOD andN; is the total number adimulationparticles for thgth

To simulate the ion—electron two-stream instability in a heavysr?euest' Mbaxdwlslllz equ?ju;)hns aretal.';‘)o :jaxpr:essed mdterms OI
ion beam, it is necessary to use a fully three-dimensionaﬁ € perturbed Tields and e perturbed charge and curren

(3D), kinetic, low-noise simulation method. This is becausedenSItIeS according to

the instability has a 3D mode structure which depends 4

on (x, Y, z), and Kinetic effects dominate the stabilization V2%5¢ = —4m > gn, VA, = —— > 8j, (10
process and the nonlinear saturation of the instability. Due i €

to the large mass ratio between the ions and the electrons

(me/m, = 1/(1836x 133 = 4.1x 1075, for cesium, and the ~ Where

fact that the growth rate of the instability is much smaller

than the real frequency of the eigenmode, it takes a rela- N &
N Y 9 8nj:_JE\NjiS(X_in)l

tively long time to simulate the instability. The low-noise Ngj 51
method(Lee et al, 1997; Stoltzet al,, 1999; Qinet al, (11
2000 used here is therefore highly desirable. In i#fe gN

" NSJ
djz = : > Uzji Wi S(X = X;i ).
i=1

method, the total distribution function is divided into two
parts, f; = + &fj, wheref; o is aknownequilibrium solution
(6/t = 0) to the nonlinear Vlasov-Maxwell equatiofy  Here,S(x — x;) is a shape function distributing particles on
and(2), and the numerical simulation is carried out to de-the grids in configuration space. The nonlinear particle sim-
termine the detailed nonlinear evolution of the perturbedyjations are carried out by iteratively advancing the particle
distribution funCt|Or6fJTh|S|S accomplished by adVanCing motions7 inc|uding the We|ghts they carry, according to
the weight function defined by; = &f; /f;, together withthe  Eqs. (7) and (8), and updating the fields by solving the
particles’ positions and momenta. The equations of mOtiOfberturbed Maxwell's equatiori&0) with appropriate bound-
for the particles, obtained from the characteristics of theary conditions at the cylindrical, perfectly conducting wall

N;

nonlinear Vlasov equatiofl), are given by (r = r,). Even though it is a perturbative approach, &ie
e method ifully nonlinearand simulates completely the orig-
L = (y,m) py, inal nonlinear Vlasov—Maxwell equations. Compared with
dt conventional particle-in-cel{PIC) simulations, the noise
dz - level in 6f simulations is significantly reduced. The domi-
o - Ve = BiCt v Mg — v m i ©), (") nant numerical noise mechanisms in particle simulations,
such as numerical collisions, are statistical. Dhenethod
dpji Zj reduces the noise level of the simulations because the sta-

_ 2 Yzji
gt MenXs T8 (Vd) c VLAZ>' tistical noise, which is of orde®(Ns%/2) for the total dis-
tribution function in the conventional PIC method, is only
associated with the perturbed distribution function indhe
method. If the same number of simulation particles is used
in the two approaches, then the noise level indhmethod

is reduced by a factor df5f relative to the PIC method. The
=—(1-wy Ty 6( ) 6f method can also be used to stubhear stability proper-
jo 9P ®) ties, provided the factail — w; ) in Eq.(8) is approximated
dp;; Vs by unity, and the forcing terms in E({) are replaced by the
5(?) =-§ <V5¢ S VMSAz)- unperturbed force. Implementation of the 3D multispecies
nonlinearsf simulation method described above is embod-
whered¢ = ¢ — ¢poandSA, = A, — A,. Here, the equilib- ied in the BEST cod€Qin et al, 2000. For those fast
rium solutions(¢o, A, fjo) solve the steady-state Vlasov— particle motions that require much larger sampling fre-
Maxwell equations(1) and (2). A wide variety of quency YAt than the frequency of the mode being studied,
axisymmetric equilibrium solutions to Eq4) and(2) have  the code uses an adiabatic field pusher to advance the par-
been investigated in the literatufPavidson, 2001; David- ticles many time steps without solving for the perturbed

Here the subscrigi labels thath simulation particle of the
jth species. The dynamical equationsvgris given by(Lee
et al,, 1997; Qinet al., 2000

dv
dt

1 ofio _(dp;

dt
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fields. The upper limit forAt, the time step to advance the
particles’ phase space position, is normally determined by
the Courant condition. On the NERSC IBM SP-2 supercom-
puter, the BEST code advances (00" particlesx time
steps in the present study.

=

ni(r)/#; (j = e,b)

4. SIMULATION RESULTS

In the present simulations of the two-stream instability, in-
stead of using the theoretically convenient KV distribution
(Davidson & Qin, 200}, we assume that the background
equilibrium distribution(o/at = 0) is the more realistibi- Fig. 1. Plots of the normalized equilibrium beam ion and background
Maxwelliandistribution with temperatur§, = constinthe  electron density profiles.

x-y plane, and temperatuik, = const in the z-direction.

1.0

That is,
ions in Figure 1 are chosen to g /y,myV2 =1.1x107°
A, andTy, /vo M, V2 = 2.47X 1078, such that the ion and elec-
fio(r.p) = (27m, )¥/2y5/2T T2 tron density profiles overlap radially. The overlapping of the
' Lo electron density profile with that of the ions is expected to
(p,— ;M B;c)? maximize the two-stream interaction and therefore the growth
X eXP{W} rate. In the space-charge lint#, = 1), if there is no electron

population, the beam would have a flat-top density profile.
PZ/2y;my + vym w3t Y2 + €(do — B Ax) However, the presence of electrons offsets some of the space-
X EXP{_ T, } charge force and produces the bell-shape beam density pro-
file in Figure 1. In the simulations, after small-amplitude
(12 perturbations are excited &t= 0, the system is evolved
self-consistently for thousands of wave periods. Plotted in
wheren; is the number density on ax{s = 0) of thejth  Figure 2 is the time history of the beam density perturbation
species. Herey, = 0 andy, = 1 for stationary background at one spatial location in a simulation using {ivearized
electrons, and, andA,, are equilibrium self-field poten- version of the BEST code. Evidently, after an initial transi-
tials, determined self-consistently from the nonlinear Max-tion period, the perturbation grows exponentially, which is
well equations the expected behavior of an instability during the linear
growth phase. In Figure 3, they projections of the per-
d do(r) 5 turbed potentiab¢ at a fixed longitudinal position are plot-
a o _4721.: G fd Pio(r.p), ted att = 0 andt = 3.25wg,. Clearly,6¢ grows to a moderate
(13 amplitude byt = 3.25wgy,, and thd = 1 dipole mode is the
WAp(r) 4w » fd3 ‘ dominant unstable mode, for which the growth rate is mea-
o c A G Pz io(r, ). sured to be Imv = 0.78wg,. The real eigenfrequency of the
mode is R@ = 480wg,, and the normalized wavelength at

In the simulations, we take, = 1.02,m,/m, = 1/(1836x  maximum growth is,Vy/wg, = 480.4.
133 =4.1x 1078 V,=0, andwge = 0 (corresponding to
axially stationary electrons Unlike the KV distribution,
which is unstable due to the highly inverted distribution in
phase space, a single-species charged particle beam with
bi-Maxwelliandistribution has been proven to be linearly
and nonlinearly stabléDavidson, 1998; Davidson & Qin,
200)) for transverse perturbations with = 0. The beam
intensity is taken to be near the upper limit, corresponding to
S = @5/ 2yE wh, — 1. The fractional charge neutralization
f=n./hyis taken to be 10%, wherg andn, are the electron

and beam ion densities on axis= 0). Plotted in Figure 1 g ‘ ‘
are the normalized equilibrium density profiles for the ce- 0 5 10
sium ions and electrons’(r)/fy = (1/fy) [ d3pfio(r,p,t) gt

(j= b’.e)’ which are readily obtained Pnce the equilibrium Fig. 2. Time history of perturbed densién,/f, at a fixed spatial location.
potentialsp, andA, are solved numerically from EQEL2)  after an initial transition period, the= 1 dipole-mode perturbation grows
and(13). The transverse temperatures of the electrons anekponentially.

1
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1

(a) t=0 about 0.58% for the case in Figure 4, the mode is completely
stabilized by longitudinal Landau damping effects by the
beam ions. This result agrees qualitatively with theoretical
predictions. For a fixed value a&fp,,/ppi, the growth rate
obtained from the simulation is several times smaller than
the theoretical value predicted by the dispersion relation
Eqg. (3). This difference can be attributed to the fact that
Eq. (3) is derived for KV beams with flat-top density pro-
files whereas the simulation is carried out for more realistic
thermal equilibrium beams with bell-shaped density pro-
files. The nonlinear space-charge potential due to the bell-
shaped density profiles induces substantial tune spread in
the transverse direction, which provides a damping mecha-
nism for the two-stream instability. Because the phase ve-
locity of the unstable mode in the longitudinal direction is
far removed from the electron velocity distributida/k,|

> V, + vra, We do not expect the longitudinal electron
temperature to significantly affect the growth rate of the
instability.

8¢ (Arbitrary Units)

8¢ (Arbitrary Units)

5. CONCLUSIONS AND FUTURE RESEARCH

Inthis article, we have studied the linear growth phase of the
Fig. 3. Thex-y projection(at fixed value ofz) of the perturbed electro-  ion—electron two-stream instability in a high intensity heavy
static potentiab¢ (X, y, t) for the ion—electron two-stream instability grow-  jon fusion beam using a perturbative particle simulation
ing from a smallinitial perturbation, shown(@ t =0, and(b) wg,t = 3.25. method(8f method for solving the Viasov—Maxwell equa-
tions. As a low-noise nonlinear particle simulation tech-
) ) _ __nique, thesf method is an ideal tool for simulating the

In the simulation results for the two-stream instability yy-stream instability, which requires the capability of self-
presented above, we have assumed initially cold beam iongysjstently evolving small perturbed field quantities for
in the longitudinal directioriA py /Py = 0) to maximize the  jjlions of time steps. Large-scale parallel particle simula-
growth rate of the instability. Herey, = ypMpVo- I g€N- tions have been carried out using the recently developed
eral, when the longitudinal momentum spread of the beanesT code. The simulation results show that the most un-
ions is finite, Landau damping by parallel ion kinetic effects staple mode of the two-stream instability has a dipole struc-
provides a mechanism that reduces the growth rate. Showyre, and that the linear growth rate decreases with increasing
in Figure 4 is a plot of the maximum linear growth rate ayia| momentum spread of the beam particles due to Landau
(IM®)may versus the normalized initial axial momentum gamping by the beam ions in the longitudinal direction.
spreadApy,/pp obtained in the numerical simulations. As yrther studies are necessary to better understand the linear
evident from Figure 4, the growth rate decreases dramatiyng nonlinear properties of the two-stream instability for
cally asApy /P is increased. Whelipy, /pyiis high enough, - heavy jon fusion parameters. In the linear regime, the de-
pendence of the instability threshold on momentum spread
and fractional charge neutralization, and the additional damp-

Lot ] ing mechanism due to transverse tune spread are important
o8l 1 guestions that need to be investigated. Nonlinearly, it is
. ] essential to understand the nonlinear saturation level, and
g“ 06l ] the possible subsequent nonlinear evolution of the system.
I ] Results in these areas will be reported in future publications.
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