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Abstract

Unsatisfiable core analysis can boost the computation of optimum stable models for logic

programs with weak constraints. However, current solvers employing unsatisfiable core

analysis either run to completion, or provide no suboptimal stable models but the one

resulting from the preliminary disjoint cores analysis. This drawback is circumvented here

by introducing a progression based shrinking of the analyzed unsatisfiable cores. In fact,

suboptimal stable models are possibly found while shrinking unsatisfiable cores, hence

resulting into an anytime algorithm. Moreover, as confirmed empirically, unsatisfiable core

analysis also benefits from the shrinking process in terms of solved instances.

KEYWORDS: answer set programming, weak constraints, unsatisfiable cores

1 Introduction

Answer set programming (ASP) is a declarative formalism for knowledge repre-

sentation and reasoning based on stable model semantics (Gelfond and Lifschitz

1991; Niemelä 1999; Marek et al. 2008; Lifschitz 2008; Eiter et al. 2009; Brewka

et al. 2011), for which efficient implementations such as clasp (Gebser et al. 2015a),

cmodels (Lierler and Maratea 2004; Giunchiglia et al. 2006), dlv (Alviano et al.

2010), and wasp (Alviano et al. 2013; Dodaro et al. 2011) are available. ASP

programs are associated with classical models satisfying a stability condition:

only necessary information is included in a model of the input program under

the assumptions provided by the model itself for the unknown knowledge in the

program, where unknown knowledge is encoded by means of default negation.

Moreover, the language includes several constructs to ease the representation of

real world knowledge, among them aggregates (Simons et al. 2002; Liu et al. 2010;

Bartholomew et al. 2011; Faber et al. 2011; Ferraris 2011; Alviano and Faber 2013;

Gelfond and Zhang 2014; Alviano and Leone 2015; Alviano et al. 2015d; Alviano

et al. 2016).

Reasoning in presence of unknown knowledge is quite common for rational agents

acting in the real world. It is also common that real world agents cannot meet all

their desiderata, and therefore ASP programs may come with weak constraints for
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representing numerical preferences over jointly incompatible conditions (Buccafurri

et al. 2000; Simons et al. 2002; Gebser et al. 2011a; Gebser et al. 2011b). Stable

models are therefore associated with a cost given by the sum of the weights of the

unsatisfied weak constraints, so that stable models of minimum cost are preferred.

It is important here to stress the meaning of the word preferred: any stable model

describes a plausible scenario for the knowledge represented in the input program,

even if it may be only an admissible solution of non optimum cost. In fact, many

rational agents would still accept suboptimal solutions, possibly with an estimate on

the maximum distance to the optimum cost. This flexibility is also justified by the

intrinsic complexity of the problem: the computation of an optimum stable model

requires in general at least linearly many calls to a ΣP
2 oracle (Buccafurri et al.), and

it is therefore practically unfeasible for the hardest instances.

According to the above observations, a good algorithm for answer set optimization

should produce better and better stable models during the computation of an

optimum stable model. Algorithms having this property are called anytime in

the literature (Alviano et al. 2014; Bliem et al. 2016), and among them there is

linear search sat-unsat, the first algorithm introduced for answer set optimization

(Buccafurri et al. 2000). In short, any stable model is searched so to initialize an

overestimate of the optimum cost, and new stable models of improved cost are

iteratively searched until an unsatisfiability arises, proving optimality of the latest

found stable model. The algorithm is simple and anytime, but in practice quite

inefficient in computing stable models of reasonable cost. Moreover, the algorithm

does not provide any underestimate, or error estimation. (Section 3.1 provides

additional details within this respect.)

Answer set optimization is often boosted by algorithms based on unsatisfiable

core analysis, such as oll (Andres et al. 2012) and one (introduced by Alviano

et al. 2015b for MaxSAT, and adapted to ASP in Section 3.2). These algorithms

start by searching a stable model satisfying all weak constraints, which would be

therefore an optimum stable model. On the other hand, if there is no stable model

of this kind, a subset of the weak constraints that cannot be jointly satisfied is

identified. Such a set is called unsatisfiable core, and essentially evidences that any

optimum stable model must sacrifice at least one of the desiderata expressed by the

weak constraints. Hence, unsatisfiable cores provide underestimates of the cost of

optimum stable models. Moreover, the program can be modified by replacing the

weak constraints in the core with new weak constraints that essentially express a

preference for stable models satisfying all but one of the original weak constraints,

and anyhow the largest number of them, so that the process can be reiterated.

The main drawback of these algorithms is that they run to completion, and

therefore provide no intermediate suboptimal stable models for the hardest instances

that cannot be solved in reasonable time. In ASP, current alternatives are based

on disjoint cores analysis, and on stratification. Disjoint cores analysis amounts

to identifying unsatisfiable cores with empty intersection, and terminates with a

(suboptimal) stable model. After that, the usual core based algorithm is run to

completion, providing no further intermediate stable models. With stratification,

instead, only weak constraints of the greatest weight are first considered, so that
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the underestimate may be better improved by the identified unsatisfiable cores.

After all cores have been analyzed, a (suboptimal) stable model will be found,

and weak constraints with the second greatest weight will be also considered. The

process is repeated, hence producing a (suboptimal) stable model at each iteration,

possibly improving the current overestimate. However, no intermediate stable model

is produced before completing each iteration, which means that few overestimate

improvements occur when few different weights occur in the input. Actually, when all

weak constraints have the same weight, the algorithm runs to completion providing

no intermediate stable models.

The main questions addressed in this paper are therefore the following: How

to produce better and better stable models while running core based algorithms

for answer set optimization? Should any overhead be paid for obtaining such an

anytime behavior? The answer we propose for the first question is the following:

Unsatisfiable cores are often non-minimal, and their sizes can be significantly reduced

by a few additional oracle calls, where each call may either return a smaller core,

or a stable model possibly improving the current overestimate. Within this respect,

we implemented two strategies, referred to as linear and reiterated progression based

shrinking (Section 3.3). Concerning the second question, the overhead introduced

by the additional oracle calls is often mitigated by the performance gain obtained

thanks to the smaller unsatisfiable cores that the algorithm has to analyze. Indeed, we

provide empirical evidence that often the running time of our core based algorithm

sensibly decreases when core shrinking is performed (Section 4). The advantage of

introducing our strategy for core shrinking is also confirmed by a comparison with

clasp (Gebser et al. 2015a): even if our solver, wasp (Alviano et al. 2015a), is in

general slower than clasp at completing stable model searches, its performance

is sufficiently improved by core shrinking that the two solvers are almost on par

in terms of solved instances, with the crucial difference that wasp provides both

overestimates and underestimates during the computation, while ones or the others

are produced by clasp only after running to completion.

2 Background

Let A be a set of (propositional) atoms comprising ⊥. A literal is an atom p

possibly preceded by zero or more occurrences of the default negation symbol ∼. A

sum aggregate is of the form:

sum[w1 : �1, . . . , wn : �n]� k (1)

where n, k, w1, . . . , wn are nonnegative integers, �1, . . . , �n are literals, and � ∈ {<,�
,�, >,=, �=}. If w1 = · · · = wn = 1, (1) is also called count aggregate, and denoted

as count[�1, . . . , �n] � k. A rule r is an implication H(r) ← B(r), where H(r) is a

disjunction of atoms, and B(r) is a conjunction of literals and aggregates. H(r) and

B(r) are called head and body of r, and abusing of notation also denote the sets of

their elements. If H(r) ⊆ {⊥}, then r is called integrity constraint. A program Π is a

set of rules. Let At(Π) denote the set of atoms occurring in Π.
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An interpretation I is a set of atoms not containing ⊥. Relation |= is inductively

defined as follows: for p ∈ A, I |= p if p ∈ I; I |= ∼� if I �|= �; for A of the form

(1), I |= A if
∑

i∈[1..n], I |=�i
wi � k; for a rule r, I |= B(r) if I |= � for all � ∈ B(r), and

I |= r if I ∩ H(r) �= ∅ whenever I |= B(r); for a program Π, I |= Π if I |= r for all

r ∈ Π. I is a model of a literal, aggregate, rule, or program π if I |= π. Note that

I �|= ⊥, and I |= ∼⊥, for any interpretation I; let � be a shortcut for ∼⊥.

The reduct ΠI of a program Π with respect to an interpretation I is obtained

from Π as follows: (i) any rule r such that I �|= B(r) is removed; (ii) any negated

literal � such that I �|= � is replaced by ⊥; (iii) any negated literal � such that I |= �

is replaced by �. An interpretation I is a stable model of a program Π if I |= Π,

and there is no J ⊂ I such that J |= ΠI . Let SM (Π) denote the set of stable models

of Π. A program Π is coherent if SM (Π) �= ∅; otherwise, Π is incoherent.

Example 1

Let Π1 be the program comprising the following five rules:

a ∨ c← ∼b, ∼d a← ∼b, c c← a, b b← a, c d← ∼∼d

Its stable models are I1 = {a} and I2 = {d}, and the associated program reducts are

the following: ΠI1
1 = {a ∨ c←} and ΠI2

1 = {d←}, where � in rule bodies is omitted

for simplicity. �

A weak constraint r is of the form w@l �B(r), where B(r) is a conjunction of

literals and aggregates, and w, l are positive integers denoted respectively weight(r)

and level (r). For a multiset W of weak constraints, and l � 1, let Wl denote the

multiset of weak constraints in W whose level is l. The cost of an interpretation

I for Wl is Wl(I) :=
∑

r∈Wl , I |=B(r) weight(r). For any pair I, J of interpretations,

J <W I if there is l � 1 such that both Wl(J) <Wl(I), and Wl+i(J) �Wl+i(I) for

all i � 1. I is an optimum stable model of a program Π with respect to a multisetW
of weak constraints if I ∈ SM (Π), and there is no J ∈ SM (Π) such that J <W I .

Let OSM (Π,W) denote the set of optimum stable models of Π with respect to W.

Example 2

Continuing with Example 1, letW1 be {1@2 �d, 2@1 �a, 2@1 �b, 1@1 �c}.
Hence, OSM (Π1,W1) only contains I1, with W2

1(I1) = 0 and W1
1(I1) = 2. Indeed,

I2 is such that W2
1(I2) = 1 and W1

1(I1) = 0, and therefore it is discarded because

I1 <W1
I2. �

3 Optimum stable model search

The computational problem analyzed in this paper is referred to as optimum stable

model search: Given a (coherent) program Π and a multiset of weak constraintsW,

compute an optimum stable model I∗ ∈ OSM (Π,W). Currently available algorithms

for this problem are either inefficient, as linear search sat-unsat (Section 3.1), or not

anytime, as algorithms based on unsatisfiable core analysis; one is among the core-

based algorithms originally introduced for MaxSAT (Alviano et al. 2015c), and is

adapted to ASP in Section 3.2. A concrete strategy to obtain anytime variants of
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Algorithm 1: Linear search sat-unsat

Input : A coherent program Π, and a nonempty multiset of weak constraints

W.

Output: An optimum stable model I∗ ∈ OSM (Π,W).

1 V := At(Π); // visible atoms

2 whileW �= ∅ do

3 l := max{i ∈ �+ | Wi �= ∅}; Π := Π ∪ relax (Wl);

ub := 1 +
∑

r∈Wl weight(r);

4 if I∗ is defined then ub :=Wl(I∗);

5 (res , I) := solve(Π ∪ {⊥ ← sum[(weight(r) : ∼sr) | sr ∈ soft(Wl)] � ub});
6 if res is COHERENT then I∗ := I ∩ V ; ub :=Wl(I); goto 5;

7 ; Π := Π ∪ {⊥ ← sum[(weight(r) : ∼sr) | sr ∈ soft(Wl)] �= ub};
W :=W\Wl;

8 return I∗;

core-based algorithms is then presented in Section 3.3; it consists in a progression

(or linear) search to shrink unsatisfiable cores that may also discover better and

better stable models.

3.1 Inefficiencies in linear search sat-unsat

An immediate algorithm for addressing this problem is known as linear search sat-

unsat: a first stable model is searched, and new stable models of improved cost

are iteratively computed until an incoherence arises, proving optimality of the last

computed model. To ease the definition of such an algorithm, weak constraints are

transformed into relaxed integrity constraints by introducing fresh literals called soft

literals: whenever the body of a weak constraint is true, the associated soft literal

is inferred false so to satisfy the relaxed integrity constraint. Formally, for a weak

constraint r, its relaxed form is ⊥ ← B(r) ∧ sr , where sr is the soft literal associated

with r, and defined by a choice rule sr ← ∼∼sr . For a multiset of weak constraints

W, let relax (W) be the set of relaxed integrity constraints and choice rules obtained

from the weak constraints in W, and soft(W) be the set of associated soft literals.

Example 3

Continuing with Example 2, relax (W2
1) is {⊥ ← d, s1} ∪ {s1 ← ∼∼s1}, where s1 is the

soft literal in soft(W2
1), and relax (W1

1) is {⊥ ← a, s2; ⊥ ← b, s3; ⊥ ← c, s4} ∪ {si ←
∼∼si | i ∈ [2..4]}, where s2, s3, s4 are the soft literals in soft(W1

1). �

Linear search sat-unsat is reported as Algorithm 1. Levels are processed one at

a time, from the greatest to the smallest, by relaxing weak constraints (line 3) and

iteratively searching for stable models improving the current upper bound (lines 5–

6). When the upper bound cannot be further improved, an integrity constraint is

added to the program in order to discard all stable models of cost different from

the upper bound (line 7), so that the next level can be processed correctly.

https://doi.org/10.1017/S147106841600020X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841600020X


538 M. Alviano and C. Dodaro

Example 4

Continuing with the previous examples, Algorithm 1 with input Π1 and W1 would

relax weak constraints in W2
1, and set ub to 2. After that, a stable model of the

following program:

a ∨ c← ∼b, ∼d a← ∼b, c c← a, b b← a, c d← ∼∼d

⊥ ← d, s1 s1 ← ∼∼s1 ⊥ ← sum[1 : ∼s1] � 2

is searched, and I2 = {d} may be found. In this case, ub is decreased to 1, and

a stable model satisfying the new constraint ⊥ ← sum[1 : ∼s1] � 1 is searched.

Eventually, I ′1 = {a, s1} is found, and ub is set to 0. The next stable model search

trivially fails because of ⊥ ← sum[1 : ∼s1] � 0, and therefore the cost for level 2 is

fixed to 0 by adding ⊥ ← sum[1 : ∼s1] �= 0. Weak constraints of level 1 are relaxed,

and ub is set to W1
1(I1) = 2. A stable model of the following program:

a ∨ c← ∼b, ∼d a← ∼b, c c← a, b b← a, c d← ∼∼d

⊥ ← d, s1 si ← ∼∼si (∀i ∈ [1..4]) ⊥ ← sum[1 : ∼s1] �= 0

⊥ ← a, s2 ⊥ ← b, s3 ⊥ ← c, s4 ⊥ ← sum[2 : ∼s2, 2 : ∼s3, 1 : ∼s4] � 2

is searched, but none is found. The algorithm terminates returning I ′1 ∩ {a, b, c, d} =

{a} = I1. �

The main drawback of linear search sat-unsat is that in practice it is quite

inefficient. In fact, the sum aggregate introduced in order to improve the current

upper bound (line 4 of Algorithm 1) allows the solver to discard several stable

models, but often does not provide sufficiently strong evidences to help the refutation

process. It is because of this fact that linear search sat-unsat is often unable to

prove optimality of a stable model, even if it is provided externally. In fact, an

integrity constraint of the form ⊥ ← sum[(wi : �i) | 1 � i � n] � k is satisfied by

exponentially many interpretations. Even when all weights are 1, the number of

satisfying interpretations is in the order of
(

n
k−1

)
. It is a prohibitive number even for

small values of k when n is a large integer, as it usually happens for Algorithm 1,

where n is essentially the number of weak constraints.

3.2 Almost silent unsatisfiable core analysis

The idea underlying algorithms based on unsatisfiable core analysis is the following:

a set of soft literals that cannot be jointly satisfied is identified, and the reason of

unsatisfiability is removed by adjusting the program and the soft literals; the process

is repeated until a stable model is found, which is also guaranteed to be optimum.

To ease the definition of such an algorithm, the notion of unsatisfiable core is given

in terms of assumptions: modern ASP solvers accept as input a set S of atoms, called

assumptions, in addition to the usual logic program Π, and return a stable model

I of Π such that S ⊆ I , if it exists; otherwise, they return a set C ⊆ S such that

Π ∪ {⊥ ← ∼p | p ∈ C} is incoherent, which is called unsatisfiable core.
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Algorithm 2: Unsatisfiable core analysis with one

Input : A coherent program Π, and a nonempty multiset of weak constraints

W.

Output: An optimum stable model I∗ ∈ OSM (Π,W).

1 V := At(Π); for p ∈ A do w(p) := 0;

2 whileW �= ∅ do

3 l := max{i ∈ �+ | Wi �= ∅}; Π := Π ∪ relax (Wl); lb := 0; ub := ∞;

stratum := ∞;

4 for sr ∈ soft(Wl) do w(sr) := weight(r); // soft literals

initialization

5 if I∗ is defined then ub :=Wl(I∗); hardening(Π, w, lb, ub);

6 stratum := maxp∈A,w(p)<stratum w(p); // next stratum

7 (res , I, C) := solve(Π, {p ∈ A | w(p) � stratum});
8 if res is INCOHERENT then

16 Let C be {p0, . . . , pn} (for some n � 0), and s1, . . . , sn be fresh atoms;

17 lb := lb + stratum;

18 for i ∈ [0..n] do w(pi) := w(pi)− stratum; // remainders

19 for i ∈ [1..n] do w(si) := stratum; // new soft literals

20 Π := Π ∪ {si ← ∼∼si | i ∈ [1..n]} ∪ {⊥ ← si, ∼si+1 | i ∈ [1..n− 1]}
∪ {⊥ ← count[p0, . . . , pn, ∼s1, . . . , ∼sn] < n}; // relax core

21 hardening(Π, w, lb, ub); goto 7;

22 if Wl(I) < ub then I∗ := I ∩ V ; ub :=Wl(I); hardening(Π, w, lb, ub);

23 if ∃p ∈ A such that 1 � w(p) < stratum then goto 6;

24 W :=W\Wl;

25 return I∗;

Procedure hardening(Π, w, lb, ub)

1 for p ∈ A such that lb + w(p) > ub do Π := Π ∪ {⊥←∼p}; w(sr) :=0;

Example 5

Consider program Π1 from Example 1 with the addition of relax (W2
1) and relax (W1

1):

a ∨ c← ∼b, ∼d a← ∼b, c c← a, b b← a, c d← ∼∼d

⊥ ← d, s1 ⊥ ← a, s2 ⊥ ← b, s3 ⊥ ← c, s4 si ← ∼∼si (∀i ∈ [1..4])

If {s1, . . . , s4} is the set of assumptions, the unsatisfiable cores are {s1, s2}, and its

supersets. �

The algorithm presented in this paper is one, reported as Algorithm 2 (lines 9–15

will be injected later to shrink unsatisfiable cores). Every atom p is associated with

a weight w(p), initially set to zero (line 1), and levels are processed from the greatest

to the smallest by relaxing constraints (line 3). Note that soft literals are associated

with nonzero weights (line 4), and are processed per stratum, i.e., the greatest weights

are processed first (line 6). A stable model containing all soft literals in the current

stratum is then searched (line 7). If an unsatisfiable core {p0, . . . , pn} is returned
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(lines 8 and 16), since at least one of p0, . . . , pn must be false in any optimum stable

model, the lower bound is increased by the minimum weight among w(p0), . . . , w(pn)

(or equivalently by stratum; line 17). Such a quantity is removed from p0, . . . , pn
(line 18), and assigned to n new soft literals s1, . . . , sn (line 19). The new soft literals,

and the following constraint (line 20):

⊥ ← count[p0, . . . , pn, ∼s1, . . . , ∼sn] < n

enforce the next call to function solve to search for a stable model satisfying at

least n literals among p0, . . . , pn. Moreover, note that symmetry breakers of the form

⊥ ← si, ∼si+1 are also added to Π, so that si is true if and only if at least n − i + 1

literals among p0, . . . , pn are true.

The current stratum is then processed again (line 21), until a stable model is

found. In this case, the upper bound is possibly improved (line 22), and the stratum

is extended to soft literals of smaller weight (line 23), if there are. Otherwise, the

processed stratum covers all soft literals, and weak constraints of the current level

are removed so that the next level can be considered (line 24). Note that the

algorithm also includes the hardening procedure, which essentially enforces truth

of soft literals that are guaranteed to belong to all optimum stable models.

Example 6

Initially, the weak constraint in W2
1 is relaxed, and the soft literal s1 is associated

with weight w(s1) = 1. A stable model for the assumption {s1} and the following

program:

a ∨ c← ∼b, ∼d a← ∼b, c c← a, b b← a, c d← ∼∼d

⊥ ← d, s1 s1 ← ∼∼s1

is searched, and I ′1 = {a, s1} is found. Hence, ub is set to 0, and s1 is hardened by

adding ⊥ ← ∼s1. Weak constraints in W1
1 are relaxed, w is such that w(s2) = 2,

w(s3) = 2 and w(s4) = 1, and ub is set to W1
1(I1) = 2. A stable model for the

assumptions {s2, s3} and the following program:

a ∨ c← ∼b, ∼d a← ∼b, c c← a, b b← a, c d← ∼∼d ⊥ ← ∼s1
⊥ ← d, s1 ⊥ ← a, s2 ⊥ ← b, s3 ⊥ ← c, s4 si ← ∼∼si (∀i ∈ [1..4])

is searched, and an unsatisfiable core, say {s2, s3}, is returned. The lower bound lb is

set to 2, the program is extended with the following rules:

s5 ← ∼∼s5 ⊥ ← count[s2, s3, ∼s5] < 1

and function w is now such that w(s2) = 0, w(s3) = 0, w(s4) = 1 and w(s5) = 2.

Since lb = ub, all soft literals are hardened. The algorithm terminates returning

I ′1 ∩ {a, b, c, d} = {a} = I1. �

The algorithm described in this section is almost silent, as it essentially runs

to completion without printing any suboptimal stable models but those computed

when changing stratum or level. This fact is actually limiting the use of core-based

algorithms in ASP, as common instances usually have one or few levels, and also

weights are often uniform. In particular, when all weak constraints have the same

level and the same weight, the algorithm is completely silent.
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Algorithm 3: Unsatisfiable core shrinking with reiterated progression

9 m := −1; pr := 1;

10 Let C be {p0, . . . , pn} (for some n � 0);

11 (res , I, C ′) := solve with budget(Π, {pi | i ∈ [0..m + pr]});
12 if res is INCOHERENT then C := C ′; // smaller core found

13 if res is COHERENT and Wl(I) < ub then I∗ := I ∩ V ; ub :=Wl(I)

14 if m + 2 · pr � |C| − 1 then m := m + pr; pr := 1/2; // reiterate

progression

15 if m + 2 · pr < |C| − 1 then pr := 2 · pr; goto 10; // increase progression

Example 7

Consider now a multiset W2 of weak constraints obtained from W1 by setting all

weights and levels to 1. Algorithm 2 starts with assumptions {s1, . . . , s4} and the

following program:

a ∨ c← ∼b, ∼d a← ∼b, c c← a, b b← a, c d← ∼∼d

⊥ ← d, s1 ⊥ ← a, s2 ⊥ ← b, s3 ⊥ ← c, s4 si ← ∼∼si (∀i ∈ [1..4])

Hence, an unsatisfiable core, say {s1, . . . , s4}, is returned, and the following rules are

added:

si ← ∼∼si (∀i ∈ [5..7]) ⊥ ← s5, ∼s6 ⊥ ← s6, ∼s7
⊥ ← count[s1, s2, s3, s4, ∼s5, ∼s6, ∼s7] < 3

where s5, s6, s7 are the new soft literals. The assumptions are now {s5, s6, s7}, and

either I ′′1 = {a, s1, s3, s4, s5, s6, s7} or I ′2 = {d, s2, s3, s4, s5, s6, s7} is found. The algorithm

terminates because lb = ub = W1
2(I
′′
1 ) = W1

2(I
′
2) = 1. Note that no stable model

was found before running to completion, and in general Algorithm 2 has to analyze

several unsatisfiable cores to terminate. �

3.3 Unsatisfiable core shrinking and upper bounds

Unsatisfiable cores returned by function solve are not subset minimal in general.

The non-minimality of the unsatisfiable core is justified both theoretically and

practically: linearly many coherence checks are required in general to verify the

minimality of an unsatisfiable core, hence giving a ΔP
3 -complete problem; on the

other hand, extracting an unsatisfiable core after a stable model search failure is

quite easy and usually implemented by identifying the assumptions involved in

the refutation. The non minimality of the analyzed unsatisfiable cores may affect

negatively the performance of subsequent calls to function solve due to aggregation

over large sets. However, it also gives an opportunity to improve Algorithm 2:

the size of unsatisfiable cores can be reduced by performing a few stable model

searches within a given budget on the running time. In more detail, Algorithm 3 is

injected between lines 8 and 16 of Algorithm 2. It implements a progression search

in the unsatisfiable core {p0, . . . , pn}: the size of the assumptions passed to function

solve with budget is doubled at each call (line 15), and the progression is reiterated

when all assumptions are covered (line 14). If function solve with budget terminates
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within the given budget, it either returns a smaller unsatisfiable core (line 12), or a

stable model that possibly improves the current upper bound (line 13).

Example 8

Consider W2 from Example 7, and the unsatisfiable core {s1, . . . , s4} returned after

the first call to function solve. The shrinking process searches a stable model with

assumption {s1}, and {a, s1} ∪ X (for some X ⊆ {s3, s4}) may be found within the

allotted budget. In any case, a stable model satisfying the assumptions {s1, s2} is

searched, and the unsatisfiable core {s1, s2} may be returned if the budget is sufficient.

Otherwise, the progression is reiterated, and one more soft literal is added to the

assumptions. Hence, {s1, s2, s3} may be returned as an unsatisfiable core, or the

budget may be insufficient and the original unsatisfiable core will be processed. �

As an alternative, the shrinking procedure reported in Algorithm 3 can be modified

as follows: variable pr is not doubled in line 15, but instead it is incremented by

one, i.e., pr := pr + 1. The resulting procedure is called linear based shrinking. For

unsatisfiable cores of size 4 or smaller, as those considered in Example 8, the two

shrinking procedures coincide, while in general linear based shrinking performs more

stable model searches.

Theorem 1

Let C be an unsatisfiable core. Function solve with budget is invoked O((log |C|)2)
times by progression based shrinking, and O(|C|) times by linear based shrinking.

Proof

The worst case occurs when solve with budget never returns COHERENT , either

because the tested set of assumptions is not an unsatisfiable core, or because the

allotted budget is insufficient. This is the case, for example, if C is already minimal.

For progression based shrinking, line 14 of Algorithm 3 is first executed after

k := �log |C|� executions of lines 11 and 15. After that, and in the worst case, the

process is repeated on half of the literals in C , for k − 1 executions of lines 11

and 15. Hence, for a total of k(k + 1)/2 executions of function solve with budget .

For linear based shrinking, instead, line 14 of Algorithm 3 is first executed after

|C| − 1 executions of lines 11 and 15. After that, the process terminates because

m � |C| − 1. �

4 Implementation and experiments

Algorithm one (Alviano et al. 2015c) has been implemented in wasp (Alviano et al.

2015a), an ASP solver also supporting, among other algorithms, linear search sat-

unsat. The implementation of one optionally includes the two shrinking procedures

described in Section 3.3, so that both underestimates and overestimates can be

produced by wasp in any case, weighted or unweighted. Currently, the time budget

of function solve with budget is fixed to 10 seconds, but the architecture of wasp

can easily accommodate alternative options, such as a budget proportional to the

time required to find the unsatisfiable core to be shrank.

https://doi.org/10.1017/S147106841600020X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841600020X


Anytime answer set optimization 543

wasp also implements disjoint cores analysis, which is essentially a preliminary

step where only soft literals associated with weak constraints in the input are passed

as assumptions to function solve, while new soft literals introduced by the analysis

of detected cores are temporarily ignored. Disjoint cores analysis terminates with

the detection of a stable model, and after that algorithm one is run as usual not

distinguishing between initial and new soft literals.

In order to assess empirically the impact of these shrinking procedures to the

performance of wasp, instances (with weak constraints) from the ASP Competition

2015 (Gebser et al. 2015b) were considered. Moreover, wasp was also compared

with clasp (Gebser et al. 2015a), which implements linear search sat-unsat (strategy

bb,1) and oll (strategy usc; usc,1 with disjoint cores analysis; Andres et al. 2012),

a core based algorithm that inspired the definition of one. The experiments were

run on an Intel Xeon 2.4 GHz with 16 GB of memory, and time and memory were

limited to 20 minutes and 15 GB, respectively.

An overview of the obtained results is given in Table 1, where the number of

solved instances is reported. As a first comment, the fact that clasp is in general

faster than wasp to complete stable model searches is confirmed by comparing

the performance of the two solvers running linear search sat-unsat (linSU in the

table; clasp solves 29 instances more than wasp) or the core based algorithms

(difference of 12 instances, reduced to 9 if disjoint cores are computed). This gap is

completely filled by adding the shrinking procedures if disjoint cores are computed,

and significantly reduced otherwise: 6 instances with linear based shrinking (Lshr in

the table), and 3 instances with reiterated progression (Pshr in the table). It is also

important to observe that the performance of wasp is boosted by disjoint cores only

for instances of Video Streaming, where there are many strata and few unsatisfiable

cores, which is the worst case for stratification.

Table 1 also shows the number of wins of each tested strategy, where a strategy

wins on a tested instance if it terminates in the allotted time, or it finds the smallest

upper bound and none of the tested strategies terminated. Within this respect,

the linear search sat-unsat algorithm implemented by clasp has a significant

performance improvement, in particular for instances of Steiner Tree and Video

Streaming. However, even according to this measure, a better performance is

obtained by clasp using oll and disjoint cores analysis, which is also reached

by wasp thanks to the core shrinking procedures introduced in this paper.

Concerning the average execution time of the tested algorithms, a cactus plot is

reported in Fig. 1 (left; wasp using linSU is not reported because it solves less than

50 instances). The graph highlights that core based algorithms are faster than linear

search sat-unsat in more testcases. Moreover, and more important, the addition

of core shrinking does not add overhead to wasp. This aspect is even more clear

in the scatter plots on the right, where the impact of Pshr is shown instance-by-

instance. It can be observed that the majority of points are below the diagonal,

meaning that often core shrinking provides a performance gain, and only in a few

cases it introduces overhead. The main reason for this performance improvement is

that shrinking a core often implies that subsequently found unsatisfiable cores are

smaller: The cumulative number of literals in the analyzed cores is reduced by at
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Table 1. Solved instances, and wins in parentheses (180 testcases; 20 for each problem).

clasp wasp wasp+disj

Problem linSU oll oll+disj linSU one Lshr Pshr one Lshr Pshr

ADF 20 (20) 19 (19) 19 (19) 18 (18) 14 (14) 17 (17) 18 (18) 14 (14) 18 (18) 18 (18)

ConnectedStillLife 7 (10) 11 (11) 13 (13) 0 (0) 13 (13) 10 (10) 10 (12) 13 (13) 9 (11) 10 (10)

CrossingMin 7 (7) 19 (19) 19 (19) 2 (2) 19 (19) 19 (19) 19 (19) 19 (19) 19 (20) 19 (19)

MaxClique 0 (4) 16 (16) 16 (16) 0 (0) 10 (10) 14 (14) 16 (16) 11 (11) 15 (15) 16 (16)

MaxSAT 7 (7) 15 (15) 15 (15) 5 (5) 19 (19) 20 (20) 20 (20) 18 (18) 20 (20) 20 (20)

SteinerTree 3 (16) 1 (1) 1 (1) 1 (1) 1 (5) 1 (3) 1 (3) 0 (1) 0 (0) 0 (1)

SystemSynthesis 0 (1) 4 (11) 4 (11) 0 (4) 0 (2) 0 (2) 0 (2) 0 (2) 0 (2) 0 (2)

ValvesLocation 16 (17) 9 (9) 11 (11) 11 (11) 15 (17) 16 (19) 16 (19) 14 (14) 16 (16) 16 (16)

VideoStreaming 14 (19) 9 (9) 9 (9) 8 (8) 0 (0) 0 (0) 0 (0) 9 (10) 9 (9) 9 (9)

Total 74 (101) 103 (110) 107 (114) 45 (49) 91 (99) 97 (104) 100 (109) 98 (102) 106 (111) 108 (111)
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Table 2. Number of solved instances within a given error estimation (140 testcases).

clasp + best lb

wasp wasp+disj by wasp

ε(ub, lb) one Lshr Pshr one Lshr Pshr linSU oll+disj

0.00% (0) 77 80 82 84 88 90 77 84

� 6.25% (1/16) 77 87 88 86 95 94 90 87

� 12.50% (1/8) 77 91 93 86 101 97 96 88

� 25.00% (1/4) 77 97 95 92 105 103 99 99

� 50.00% (1/2) 78 97 97 102 105 105 99 101

� 100.00% (1) 78 97 97 104 105 105 107 105
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Fig. 1. Solved instances within a bound on the running time (cactus plot on the left), and

instance-by-instance comparison of one with and without Pshr (scatter plots on the right).

least 68% when shrinking is performed (excluding Steiner Tree, System Synthesis

and Video Streaming, for which wasp found few unsatisfiable cores). The budget is

reached at least once in each problem, and often no more than 2 times, with a peak

of 20–25 times on average for instances of Max Clique and Still Life.

Another advantage of unsatisfiable core shrinking is that better and better stable

models are possibly discovered while computing an optimum stable model. In order

to measure the impact of our strategies within this respect, let us define the estimate

error ε of the last stable model produced by Algorithm 2 as follows:

ε(ub, lb) :=

⎧⎨
⎩

ub−lb
lb

if ub �= ∞ and lb �= 0;

∞ if ub = ∞, or both ub �= 0 and lb = 0;

0 if ub = lb = 0.

Hence, the cost associated with the stable model returned by Algorithm 2 is at most

ε(ub, lb) times greater than the cost of an optimum stable model. Such a measure is

applicable to testcases comprising weak constraints of the same level, which is the

case for all problems in our benchmark but ADF and System Synthesis.

Table 2 reports the number of instances for which wasp produced a stable model

within a given error estimate. In particular, the first row shows the number of

instances for which an optimum stable model was computed (error estimate is 0).

The last row, instead, shows the number of instances solved with error estimate

bounded by 1, and smaller values for the error estimate are considered in the
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intermediate rows. It is interesting to observe that without shrinking and disjoint

cores analysis, the number of solved instances only increases by 1, confirming the

fact that stratification alone is not sufficient to produce suboptimal stable models

of reasonable cost. Better results are instead obtained by adding core shrinking,

which gives an increase of up to 17 instances, many of which with an error estimate

bounded by 6.25%. Another interesting observation concerns disjoint cores analysis.

The stable model produced after the analysis of all disjoint cores is already sufficient

to obtain an error estimate bounded by 100% for many tested instances. However,

many of these stable models have an error estimate greater than 25%. Also in this

case, adding core shrinking leads to better results.

For the sake of completeness, also clasp is included in Table 2. However, since

clasp does not print any lower bound, the best value for lb produced by wasp is

combined with the upper bounds given by clasp running linSU and oll. If an

error estimate of 100% is acceptable, then the number of stable models produced

by clasp is aligned with wasp, or even better. However, when the error estimate

must be less or equal than 50%, the combination of disjoint cores analysis and core

shrinking implemented by wasp leads to better results in this benchmark.

5 Related work

Weak constraints are the analogous of soft clauses in MaxSAT (Cha et al. 1997),

which was also considered as target language by some ASP solver (Liu et al. 2012).

The main difference is that weak constraints are associated with levels and weights,

while soft clauses can be only associated with weights. However, levels can be

simulated by properly modifying weights as follows:

1. Let s := 1 +
∑

r∈W1 weight(r), and let l be the smallest integer such that l � 2

and Wl �= ∅.
2. For all weak constraints r in Wl , set weight(r) := weight(r) · s and level (r) := 1.

3. Repeat steps 1–2 while there are weak constraints of level different from 1.

Actually, the above process was reverted in the MaxSAT literature in order to take

advantage from the “identification of levels” (Argelich et al. 2009). In fact, taking

into account levels is crucial for some algorithms, as for example linear search

sat-unsat (i.e., Algorithm 1).

Example 9

Consider the following simple program Π2, for any m � 1 and any n � 1:

pij ← ∼∼pij 1@i �∼pij ∀i ∈ [1..m], ∀j ∈ [1..n]

In the worst case, Algorithm 1 has to find n stable models before understanding

that the optimum cost of level m is 0. Similarly for the other levels, for a total of

m · n stable models in the worst case. If levels are ignored, then in the worst case

the upper bound is improved by one after each stable model search, and therefore

exponentially many stable models are computed. �
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The first algorithms based on unsatisfiable core analysis were introduced in

MaxSAT (Fu and Malik 2006; Marques-Silva and Manquinho 2008; Marques-Silva

and Planes 2008; Manquinho et al. 2009; Ansótegui et al. 2009), and subsequently

ported to ASP in the experimental solver unclasp (Andres et al. 2012), where also

oll was presented. The main drawback of oll is that it may add new constraints

if soft literals introduced by the analysis of previous cores belong to subsequently

detected unsatisfiable cores, and these new constraints only minimal differ from

those already added to the input program. This drawback was later circumvented

in the MaxSAT solver mscg using a smart encoding based on sorting networks

(Morgado et al. 2014).

Algorithm oll was also implemented in the ASP solver wasp (Alviano et al.

2015b), and compared with other algorithms from MaxSAT literature such as pmres

(Narodytska and Bacchus 2014). These two algorithms, oll and pmres, are also

the origin of two other algorithms for MaxSAT, namely one and k (Alviano et al.

2015c). In fact, one is a simplification of oll, and adds exactly one constraint for

each analyzed core; whether new soft literals will be part of other unsatisfiable cores

is irrelevant for one, as all the information required to complete the computation is

already encoded in the added constraint.

Concerning k, instead, it is a generalization of one based on the observation

that aggregates involving a huge number of literals are handled inefficiently in

the refutation process. This fact was first observed by Narodytska and Bacchus,

who proposed pmres: the inefficiency is circumvented because pmres introduces

constraints of size 3. The more general idea underlying k is to bound the size of the

new constraints to a given constant k. Hence, k combines one and pmres, which are

obtained for special values of k (respectively, infinity and 3).

Finally, it is important to observe that current core based algorithms in ASP

cannot continuously improve both lower and upper bound. Alternatives for obtaining

such a behavior are based on combinations of different algorithms, either sequentially

or in parallel (Alviano et al. 2015b; Gebser et al. 2015a). The strategy suggested in

this paper is instead to improve core based algorithms by shrinking unsatisfiable

cores. Within this respect, the proposed shrinking procedures are also original,

and the closest approaches in MaxSAT iteratively remove one literal from the

unsatisfiable core, either obtaining a smaller unsatisfiable core, or a necessary literal

in the processed unsatisfiable core (Nadel 2010; Nadel et al. 2014).

6 Conclusion

The combination of ASP programs and weak constraints is important to ease the

modeling of optimization problems. However, the computation of optimum stable

models is often very hard, and suboptimal stable models may be the only affordable

solutions in some cases. Despite that fact, the most efficient algorithms developed so

far, which are based on unsatisfiable core analysis, produce few (or even no) stable

models while running to completion.

A concrete strategy to improve current ASP solvers is presented in this paper:

better and better stable models can be produced if unsatisfiable cores are shrunk.
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The overhead due to the shrinking process is limited by introducing a budget on

the running time, and eventually a performance gain is obtained thanks to the

reduced size of the analyzed unsatisfiable cores. On the instances of the Sixth ASP

Competition, our implementation is often able to provide (suboptimal) stable models

with a guarantee of distance to the optimum cost of around 10%.
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Ansótegui, C., Bonet, M. L. and Levy, J. 2009. Solving (weighted) partial maxsat through

satisfiability testing. In O. Kullmann (Ed.), Proceedings of Theory and Applications of

Satisfiability Testing, SAT 2009, Volume 5584 of Lecture Notes in Computer Science,

Springer, 427–440.

Argelich, J., Lynce, I. and Silva, J. P. M. 2009. On Solving Boolean Multilevel Optimization

Problems. In C. Boutilier (Ed.), Proceedings of the 21st International Joint Conference on

Artificial Intelligence, IJCAI 2009, 393–398.

Bartholomew, M., Lee, J. and Meng, Y. 2011. First-order semantics of aggregates in answer

set programming via modified circumscription. In Logical Formalizations of Commonsense

Reasoning, Papers from the 2011 AAAI Spring Symposium, Technical Report SS-11-06,

Stanford, California, USA, March 21-23, 2011. AAAI.

Bliem, B., Kaufmann, B., Schaub, T. and Woltran, S. 2016. ASP for Anytime Dynamic

Programming on Tree Decompositions. In Proceedings of the Twenty-Fifth International

Joint Conference on Artificial Intelligence, IJCAI 2016. AAAI Press.

Brewka, G., Eiter, T. and Truszczynski, M. 2011. Answer set programming at a glance.

Commun. ACM 54, 12, 92–103.

Buccafurri, F., Leone, N. and Rullo, P. 2000. Enhancing Disjunctive Datalog by

Constraints. IEEE Trans. Knowl. Data Eng. 12, 5, 845–860.

Cha, B., Iwama, K., Kambayashi, Y. and Miyazaki, S. 1997. Local search algorithms for

partial MAXSAT. In Fourteenth National Conference on Artificial Intelligence and Ninth

Innovative Applications of Artificial Intelligence Conference, AAAI Press / The MIT Press,

263–268.

Dodaro, C., Alviano, M., Faber, W., Leone, N., Ricca, F. and Sirianni, M. 2011. The

birth of a WASP: preliminary report on a new ASP solver. In F. Fioravanti (Ed.),

Proceedings of the 26th Italian Conference on Computational Logic, Pescara, Italy, August

31 - September 2, 2011, Volume 810 of CEUR Workshop Proceedings, CEUR-WS.org,

99–113. .

Eiter, T., Ianni, G. and Krennwallner, T. 2009. Answer Set Programming: A Primer.

In S. Tessaris, E. Franconi, T. Eiter, C. Gutierrez, S. Handschuh, M. Rousset and

R. A. Schmidt (Eds.), Reasoning Web. Semantic Technologies for Information Systems, 5th

International Summer School 2009, Tutorial Lectures, Volume 5689 of Lecture Notes in

Computer Science, Springer, 40–110.

Faber, W., Pfeifer, G. and Leone, N. 2011. Semantics and complexity of recursive aggregates

in answer set programming. Artif. Intell. 175, 1, 278–298.

Ferraris, P. 2011. Logic programs with propositional connectives and aggregates. ACM Trans.

Comput. Log. 12, 4, 25.

Fu, Z. and Malik, S. 2006. On Solving the Partial MAX-SAT Problem. In A. Biere

and C. P. Gomes (Eds.), Proceedings of Theory and Applications of Satisfiability

Testing, SAT 2006, Volume 4121 of Lecture Notes in Computer Science, Springer,

252–265.

https://doi.org/10.1017/S147106841600020X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841600020X


550 M. Alviano and C. Dodaro

Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., and Schaub, T. 2015a. Progress in

clasp Series 3. In F. Calimeri, G. Ianni and M. Truszczynski (Eds.), LPNMR 2015, Volume

9345 of Lecture Notes in Computer Science, Springer, 368–383.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2011a. Multi-Criteria Optimization

in Answer Set Programming. In J. P. Gallagher and M. Gelfond (Eds.), Technical

Communications of the 27th International Conference on Logic Programming, ICLP 2011,

Volume 11 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 1–10.

Gebser, M., Kaminski, R. and Schaub, T. 2011b. Complex optimization in answer set

programming. Theory and Practice of Logic Programming 11, 4-5, 821–839.

Gebser, M., Maratea, M. and Ricca, F. 2015b. The Design of the Sixth Answer

Set Programming Competition. In F. Calimeri, G. Ianni and M. Truszczynski (Eds.),

Proceedings of Logic Programming and Nonmonotonic Reasoning - 13th International

Conference, LPNMR 2015, Volume 9345 of Lecture Notes in Computer Science, Springer,

531–544.

Gelfond, M. and Lifschitz, V. 1991. Classical Negation in Logic Programs and Disjunctive

Databases. New Generation Comput. 9, 3/4, 365–386.

Gelfond, M. and Zhang, Y. 2014. Vicious circle principle and logic programs with aggregates.

Theory and Practice of Logic Programming 14, 4-5, 587–601.

Giunchiglia, E., Lierler, Y. and Maratea, M. 2006. Answer set programming based on

propositional satisfiability. J. Autom. Reasoning 36, 4, 345–377.

Lierler, Y. and Maratea, M. 2004. Cmodels-2: Sat-based answer set solver enhanced to non-

tight programs. In V. Lifschitz and I. Niemelä (Eds.), Logic Programming and Nonmonotonic
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