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ISOMORPHISM ON HYP

SY-DAVID FRIEDMAN

Abstract. We show that isomorphism is not a complete Σ11 equivalence relation even when restricted
to the hyperarithmetic reals: If E1 denotes the Σ

1
1 (even Δ

1
1) equivalence relation of [4] then for no Hyp

function f do we have xEy ifff(x) is isomorphic tof(y) for all Hyp reals x, y. As a corollary to the proof
we provide for each computable limit ordinal α a hyperarithmetic reduction of≡α (elementary-equivalence
for sentences of quantifier-rank less than α) on arbitrary countable structures to isomorphism on countable
structures of Scott rank at most α.

In classical descriptive set theory, analytic equivalence relations (i.e., Σ11 equiva-
lence relations with parameters) are compared under the relation of Borel reducibil-
ity (see [3]). An important subclass of the Σ11 equivalence relations is the class of
isomorphism relations, i.e., the restrictions of the isomorphism relation on count-
able structures (viewed as an equivalence relation on reals coding such structures)
to themodels of a sentence of the infinitary logic L�1� . Scott’s Theorem implies that
the equivalence classes of any isomorphism relation are Borel, and therefore no iso-
morphism relation can be complete (under Borel reducibility) within the class of Σ11
equivalence relations as awhole, as someof these havenon-Borel equivalence classes.
The picture is different in the computable setting. It is shown in [1] that iso-
morphism on computable structures (viewed as an equivalence relation on natural
numbers coding such structures), indeed on computable trees, is complete for Σ11
equivalence relations under the natural analogue of Borel-reducibility for equiv-
alence relations on numbers: E is reducible to F iff for some hyperarithmetic
f : N → N, E(m, n) iff F (f(m), f(n)) for all m, n.
In [2] we surveyed the situation for classes of structures intermediate between
the class of computable structures and the class of arbitrary countable structures.
But one important case was not treated in that paper, the class of hyperarithmetic
structures. The purpose of the present paper is to fill that gap.
By a Σ11 equivalence relation we mean an equivalence relation on the reals
which is Σ11 definable without parameters (equivalently, with a hyperarithmetic real
parameter). By a Hyp function from reals to reals we mean a function which is Δ11
(equivalently Σ11) definable without parameters. (Hyp stands for Hyperarithmetic,
which equals Δ11.) A Σ

1
1 equivalence relation F is complete on Hyp if for any Σ

1
1

equivalence relation E there is a Hyp function f such that for Hyp reals x, y: xE y
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iff f(x) F f(y). In [2] the question of whether isomorphism is complete on Hyp
was left open. The method of [1] showing that it is complete on the class of com-
putable structures does not seem to work due to the absence of a Hyp enumeration
of all Hyp reals, and the use of Scott’s Isomorphism Theorem to show that it is
incomplete on the class of arbitrary countable structures does not work either, as if
the countable structureA has a Hyp code there need not be a Borel set B with Hyp
code which agrees on Hyp with the set of codes for structures isomorphic to A.
The solution comes from a deeper look at descriptive set theory and infinitary
logic.

Theorem 1. Isomorphism is not complete on Hyp: There is a Σ11 (even Δ
1
1) equiv-

alence relation E such that for no Hyp function f do we have x E y iff f(x), f(y)
code isomorphic structures (on �) for all Hyp reals x, y.

The Relation E1

For x : � × � → 2 and n ∈ � define (x)n : � → 2 by (x)n(i) = x(n, i).
The equivalence relation E1 is defined by:

x E1 y iff (x)n = (y)n for large enough n.

E1 is a Hyp equivalence relation. It was introduced in [4], where it was shown that
there is no Borel reduction of E1 to isomorphism on countable structures (or even
to any orbit equivalence relation determined by a Borel action of a Polish group).
First we show:

Theorem 2. Suppose that α is a limit of admissible ordinals. Then E1 is not Hyp-
reducible to � (isomorphism) on Lα : There is no total Hyp function f such that for
x, y in Lα , x E1 y iff f(x), f(y) code isomorphic structures on �.

Proof. Suppose f were a Hyp-reduction of E1 to � on Lα . For structures A,
B on � define: A �n B iff A, B are isomorphic via an isomorphism which fixes
0, 1, . . . , n − 1.
Also write x En,k1 y iff (x)i = (y)i for i ≥ n and (x)i � k = (y)i � k for i < n.
Claim 3. Suppose that g : � × � → 2 is Cohen-generic over L�ck1 . Then for each
m, n there is a k so that if h : � × � → 2 is Cohen-generic over L�ck1 and g E

n,k
1 h

then f(g) �m f(h).
Proof. For any x : n × � → 2 let gx be defined to agree with g on (� \ n) × �
and to agree with x on n × �. Also let x0 : n × � → 2 take the constant value 0.
Now note that x = g � n×� is Cohen-generic over L�ck1 [g � (� \ n)×�] and let k
be large enough so that the condition g � n × k on x forces that f(gx), f(gx0 ) are
isomorphic via an isomorphism sending (0, 1, . . . , m − 1) to �k = (k0, k1, . . . , kn−1)
for some fixed �k. If h : � × � → 2 is Cohen-generic over L�ck1 and g E

n,k
1 h then

f(g), f(h) are both isomorphic to f(gx0 ) via an isomorphism sending (0, 1, . . . ,
m − 1) to �k and therefore f(g) �m f(h). �(Claim)
Now inductively build sequences ((gn, jn) | n ∈ �) and (�n | 0 < n ∈ �) as
follows (where the gn : � ×� → 2 are Cohen-generic over L�ck1 , 0 < j0 < j1 < · · ·
are natural numbers and �n is an isomorphism of f(gn−1) onto f(gn)). Fix an
enumeration (Dn | n ∈ �) in Lα of the dense sets for Cohen forcing which are
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definable over L�ck1 . Let g
0 : � × � → 2 be an arbitrary element of Lα which is

Cohen-generic over L�ck1 and set j0 = 1. Suppose that g
n, jn have been defined

(also �n if n > 0). To obtain gn+1 first apply the Claim to produce kn ≥ jn so that if
h is Cohen-generic overL�ck1 and g

nEjn,kn1 h thenf(gn) �ln f(h), where ln is greater
than the images and pre-images of the numbers less than n under the composition
�n ◦�n−1 ◦ · · · ◦�0 (if n = 0 set ln = 0). Then choose jn+1 large enough so that some
Cohen condition contained in jn+1 × jn+1, extending gn � jn × kn and satisfied by
gn belongs to the dense set Dn. Let gn+1 be gn except at the pair (jn+1, jn+1) where
its value is different from the value given by gn . Finally, let �n+1 be an isomorphism
witnessing f(gn) �ln f(gn+1).
The resulting sequences have the following properties:

1. f(gn) �ln f(gn+1) where the ln’s go to infinity. (thus the compositions �n ◦
�n−1 ◦ · · · ◦ �0 converge to a bijection).

2. The jn ’s and kn’s increase to infinity (so the gn ’s converge).
3. gn, gn+1 agree on jn+1 × jn+1 but (gn)jn+1 , (gn+1)jn+1 differ somewhere.
4. g = the limit of the gn ’s is Cohen-generic over L�ck1 .

Then g is not E1-equivalent to g0 by 3. Now recall our assumption that α is a
limit of admissibles. This implies that wellfoundedness is absolute to Lα (i.e., any
tree inLα that is illfounded is also illfounded inLα) and from this it follows that any
two structures which are countable in Lα and isomorphic are also isomorphic in Lα
(build a tree of partial isomorphisms). It now follows that the sequence of gn ’s can
be built in Lα . Using 1 and 4, f(g0) � f(g). But this contradicts the assumption
that f is a reduction of E1 to � on Lα . �
Now to prove Theorem 1 wemodify the above argument as follows. Suppose that
f were a Hyp reduction of E1 to isomorphism on Hyp and choose a large enough
computable ordinalα so that the code forfbelongs toLα. Fix aHyp g0 : �×� → 2
which is Cohen-generic over Lα and belongs to L� where � is also computable. We
would like to build sequences ((gn, jn) | n ∈ �) and (�n | 0 < n ∈ �) as above
which are Hyp, as this will then yield the desired contradiction. This is possible
provided there is a computable bound on the Scott ranks of all of the relevant
structuresf(gn), because if � is a computable ordinal then the isomorphism relation
on structures of Scott rank at most � is Hyp.
Note that if g, h : �×� → 2 and g E1 h fails then f(g), f(h) are nonisomorphic
Hyp structures and therefore for some computable ordinal �, f(g) �≡� f(h) (where
≡� is elementary equivalence for sentences of quantifier-rank less than �). Now the
set of pairs (g, h) in L� such that g E1 h fails is a Hyp set (i.e., it belongs to L�ck1 )
and therefore there is some fixed computable ordinal � such that f(g) �≡� f(h) for
all such pairs (g, h).

Lemma 4. Suppose that α is a nonzero computable ordinal.
Then there is a Hyp function A 
→ A∗ from countable relational structures A to
countable structuresA∗ such that:

(a) A � B → A∗ � B∗.
(b) A∗ ≡α B∗ → A ≡α B.
(c) For each A, A∗ has Scott rank at most α.
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Proof. We define A∗ as follows:

a. An element of A∗ is an ≡α class [a1, . . . , an] of a tuple (a1, . . . , an) from A
(where two tuples are equivalent under ≡α iff they have the same length and
satisfy the same formulas in A of quantifier-rank less than α).

b. RA∗
([a1, . . . , an]) iff RA(a1, . . . , an). (Thus the n-ary predicate RA becomes

the unary predicate RA∗
. Note that RA∗

is well-defined.)
c. [a1, . . . , an] ∗ [b1, . . . , bm] = [a1, . . . , an, b1, . . . , bm] (i.e., we add a new binary
concatenation function ∗).

d. Lm([a1, . . . , an]) iff m = n (we add �-many new unary predicates Lm,
m ∈ �). �

Claim 5. If A is isomorphic to B then A∗ is isomorphic to B∗. (This is clear.)

Claim 6. If A∗ ≡α B∗ thenA ≡α B.
Proof. By induction on ϕ = ϕ(x1, . . . , xn) we show there is a formula ϕ∗ =
ϕ∗(x∗) with the same quantifier-rank as ϕ such that A � ϕ(a1, . . . , an) iff A∗ �
ϕ∗([a1, . . . , an]). For atomic ϕ = R(x1, . . . , xn) we may take ϕ∗ to be R(x∗). And
(∼ ϕ)∗ =∼ ϕ∗, (ϕ ∧ 	)∗ = ϕ∗ ∧ 	∗.
If ϕ is ∃y	(x1, . . . , xn, y) then take ϕ∗ to be ∃y∗(	∗(x∗ ∗ y∗) and L1(y∗)).
We have:
A � ∃y	(a1, . . . , an, y) iff
A � 	(a1, . . . , an, an+1) for some an+1 iff
A∗ � 	∗([a1, . . . , an, an+1]) for some an+1 iff
A∗ � 	∗([a1, . . . , an] ∗ [an+1]) and L1([an+1]) for some an+1 iff
A∗ � ∃y∗(ϕ∗([a1, . . . , an] ∗ y∗) and L1(y∗)). �
Claim 7. Suppose that (A∗, [�a1], . . . , [�an]) ≡α (A∗, [�b1], . . . , [�bn]). Then [�ai ] =
[�bi ] for each i (and thereforeA∗ has Scott rank at most α).

Proof. The hypothesis implies that (A∗, [�ai ]) ≡α (A∗, [�bi ]) for each i . And it is
enough to show that �ai ≡α �bi for each i . If ϕ has quantifier-rank less than α then
A � ϕ(�ai ) iff A∗ � ϕ∗([�ai ]) iff A∗ � ϕ∗([�bi ]) iff A � ϕ(�bi). So as ϕ∗ also has rank
less than α we are done. �
Now recall that we have computable ordinals � < � such that for g, h in L� , gE1h
ifff(g) ≡� f(h). Applying the Lemmawhenα is equal to � we obtain for g, h inL� :
g E1 h →
f(g) � f(h)→
f(g)∗ � f(h)∗
and

f(g)∗ � f(h)∗ →
f(g)∗ ≡� f(h)∗ →
f(g) ≡� f(h)→
g E1 h

and therefore have a Hyp reduction of E1 on L� to isomorphism on Hyp whose
range consists of structures of Scott rank bounded by a fixed computable ordinal.
As explained above, this allows us to repeat the proof of Theorem 2 to reach a
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contradiction from the assumption of a Hyp reduction E1 to isomorphism on Hyp.
This completes the proof of Theorem 1.
As a corollary to the proof of Lemma 4 we also obtain the following, which may
be of independent interest.

Theorem 8. For each computable limit ordinal α there is a Hyp reduction of the
equivalence relation≡α on countable structures to isomorphismon countable structures
of Scott rank at most α.

Proof. For each countable structure A and � < α let A∗
� be the structure of

Scott rank at most � defined in the proof of Lemma 4. Now formA∗ by taking the
union of disjoint copies of the structures A∗

� , � < α, expanded with the quasiorder
x�0 ≤ x�1 iff �0 ≤ �1 when x�i belongs to the copy of A∗

�i
. Thus A∗ consists of the

structures A∗
� , � < α, ordered in ordertype α.

If A ≡α B, then for each � < α, A∗
� is isomorphic to B∗

� via the isomorphism
which sends [a1, . . . , an] to [b1, . . . , bn], where [b1, . . . , bn] satisfies the same formulas
of quantifier rank at most � as [a1, . . . , an] (the fact thatA ≡α B implies that there
is such a unique [b1, . . . , bn]). It follows that A∗ is isomorphic to B∗. Conversely, if
A∗ is isomorphic to B∗ then Claim 2 of the proof of Lemma 4 implies thatA and B
satisfy the same sentences of quantifier rank less than α and thereforeA ≡α B.
Finally, note thatClaim 7 of the proof of Lemma 4 implies thatA∗ has Scott rank
at most α. �
Remarks. The results of this paper relativise in the natural way: For any real
parameter x, no reduction to isomorphism of E1 restricted to the reals Hyp in x is
Hyp in x. From this one can infer the Kechris–Louveau result that there is no Borel
reduction of the entire E1 to isomorphism on countable structures.

Question 9. Suppose that E is a Σ11 equivalence relation and E1 is not Hyp-
reducible to E on Hyp. Then is E Hyp-reducible to isomorphism on Hyp?
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