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Consider the second-order discrete system

∆2Xn−1 + f(n, Xn) = 0, n ∈ Z, (∗)

where f ∈ C(R × R
m, R

m), f(t + M, Z) = f(t, Z) for any (t, Z) ∈ R × R
m and M is a

positive integer. By making use of critical-point theory, the existence of M -periodic
solutions of (∗) is obtained.

1. Introduction

Let N, Z, R be the set of all natural numbers, integers and real numbers, respec-
tively. For a, b ∈ Z, define Z(a) = {a, a + 1, . . . , }, Z(a, b) = {a, a + 1, . . . , b} when
a � b.

Consider the nonlinear second-order discrete system

∆2Xn−1 + f(n, Xn) = 0, n ∈ Z, (1.1)

where m ∈ N, f = (f1, f2, . . . , fm)T ∈ C(R×R
m, Rm), f(t+M, Z) = f(t, Z) for any

(t, Z) ∈ R × R
m, M is a positive integer and ∆ is the forward difference operator

defined by ∆Xn = Xn+1 − Xn, ∆2Xn = ∆(∆Xn).
Let p be a positive integer. As usual, a solution {Xn} of (1.1) is said to be periodic

of period p if
Xp+i = Xi for i ∈ Z. (1.2)

In recent years, there has been much progress on the qualitative properties of
difference equations, which included results on stability and attractivity [6,12,18,21]
and results on oscillation and other topics [1, 9, 10, 16]. Only a few papers discuss
the periodic solutions of difference equations [2–4,14,19,20]. As it is known, critical-
point theory is an important tool to deal with the existence of periodic solutions of
differential equations [11,13,15,17]. The main idea of these papers is to construct a
suitable variational structure, so that the critical points of the variational functional
correspond to the periodic solutions of the differential equations. It is natural for us
to think that critical-point theory may be applied to prove the existence of periodic
solutions of difference equations. In fact, by using critical-point theory, Guo and Yu
have successfully proved the existence of periodic solutions of (1.1) when m = 1 and
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f(t, Z) is superlinear in the second variable Z, or when f(t, Z) is sublinear in the
second variable Z, in [7] and [8], respectively. Furthermore, [7,8] are the only papers
we found which dealt with the problems of periodic solutions of difference equations
using critical-point theory. When f(t, Z) is neither superlinear nor sublinear, can
we still find the periodic solutions of system (1.1)? The main purpose of this paper
is to solve this problem. In fact, our results not only generalize the results in [7],
but also improve them. For general background on difference equations, we refer
to [1, 5, 10].

Throughout this paper, we suppose that there exists a continuously differential
function F (t, Z) ∈ C1(R × R

m, R) such that ∇ZF (t, Z) = f(t, Z) for any (t, Z) ∈
R × R

m, where ∇ZF (t, Z) denotes the gradient of F (t, Z) in Z.
In the following and in the sequel, for any n ∈ N, | · | will denote the Euclidean

norm in R
n, defined by

|X| =
( n∑

i=1

X2
i

)1/2

for any X = (X1, X2, . . . , Xn) ∈ R
n.

The main results of this paper are as follows.

Theorem 1.1. Suppose that F (t, Z) satisfies the following conditions.

(F1) There exists a positive integer M � 3 such that

F (t + M, Z) = F (t, Z) ∀(t, Z) ∈ R × R
m and F (t, Z) � 0.

(F2) There exist constants δ > 0, α ∈ (0, 1 − cos(2/M)π) such that

F (n, Z) � α|Z|2 for n ∈ N, Z ∈ R
m and |Z| � δ.

(F3) There exist constants ρ > 0, γ > 0, β ∈ (2, +∞) when M is even or
β ∈ (1 + cos(1/M)π, +∞) when M is odd such that

F (n, Z) � β|Z|2 − γ for n ∈ N, |Z| � ρ.

Then system (1.1) possesses at least three M -periodic solutions.

By (F2), we see that f(n, 0) ≡ 0, and thus Xn ≡ 0 is always an M -periodic
solution of (1.1), which is called the trivial periodic solution of (1.1). Therefore, we
have the following result.

Corollary 1.2. If F (t, Z) satisfies (F1) to (F3), then system (1.1) possesses at
least two non-trivial M -periodic solutions.

Example 1.3. Assume that m = 1 and

f(t, Z) = a(Z − sin Z)(φ(t) + D),

where a > 2 when M is even or a > 2(1 + cos(1/M)π) when M is odd, D > 0 and
φ(t) is a continuously M -periodic function satisfying |φ(t)| < D. Then

F (t, Z) = a( 1
2Z2 + cos Z − 1)(φ(t) + D)

and satisfies all conditions of theorem 1.1. Thus (1.1) has at least two non-trivial
M -periodic solutions.

https://doi.org/10.1017/S0308210500003607 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003607


Periodic solutions of higher-dimensional discrete systems 1015

Consider the case where F (t, Z) is superquadratic or f(t, Z) is superlinear. Then
we have the following result.

Corollary 1.4. Suppose that F (t, Z) satisfies (F1) and the following two condi-
tions.

(F4) F (n, Z) = o(|Z|2) as Z → 0.

(F5) There exist constants R1 > 0, α1 > 2 such that

Z · f(n, Z) � α1F (n, Z) > 0 for |Z| � R1.

Then system (1.1) possesses at least three M -periodic solutions.

Remark 1.5. When m = 1, corollary 1.2 reduces to theorem 1.1 in [7].

2. Some basic lemmas

In order to apply critical-point theory to study the existence of periodic solutions
of (1.1), we shall state some basic notations and lemmas, which will be used in the
proofs of our main results.

Let S be the set of sequences

X = (. . . , X−n, . . . , X−1, X0, X1, . . . , Xn, . . . ) = {Xn}+∞
n=−∞,

where Xn = (Xn,1, Xn,2, . . . , Xn,m)T ∈ R
m, m a given positive integer.

For any X, Y ∈ S, a, b ∈ R, aX + bY is defined by

aX + bY := {aXn + bYn}+∞
n=−∞.

Then S is a vector space.
For any given positive integer M , EM is defined as a subspace of S by

EM = {X = {Xn} ∈ S | Xn+M = Xn, n ∈ Z}.

EM can be equipped with norm ‖ · ‖EM
and inner product 〈·, ·〉EM

as follows,

‖X‖EM
:=

( M∑
n=1

|Xn|2
)1/2

∀X = {Xn} ∈ EM (2.1)

and

〈X, Y 〉EM
:=

M∑
n=1

Xn · Yn ∀X = {Xn} ∈ EM , Y = {Yn} ∈ EM , (2.2)

where | · | denotes the Euclidean norm in R
m and Xn · Yn denotes the usual scalar

product in R
m.

Define a linear map L : EM → R
mM by

LX = (X1,1, . . . , XM,1, X1,2, . . . , XM,2, . . . , X1,m, . . . , XM,m)T, (2.3)

where X = {Xn} and Xi = (Xi,1, Xi,2, . . . , Xi,m)T for i ∈ Z(1, m).
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It is easy to see that the map L defined in (2.3) is a linear homeomorphism
with ‖X‖EM

= |LX|, and (EM , 〈·, ·〉EM
) is a Hilbert space, which can be identified

with R
mM .

Consider the functional J defined on EM by

J(X) =
M∑

n=1

[ 12 |∆Xn|2 − F (n, Xn)]. (2.4)

In view of Xn+M = Xn ∀n ∈ Z ∀X ∈ EM , equation (2.4) can be rewritten as

J(X) =
M∑

n=1

[(|Xn|2 − Xn · Xn+1) − F (n, Xn)]. (2.5)

Since EM is linearly homeomorphic to R
mM , by the continuity of f(t, Z), J can

be viewed as a continuously differentiable functional defined on a finite-dimensional
Hilbert space. That is, J ∈ C1(EM , R). Furthermore, J ′(X) = 0 if and only if
∂J(X)/∂Xn,l = 0, n ∈ Z(1, M), l ∈ Z(1, m). If we define X0 := XM , then

∂J(X)
∂Xn,l

= 2Xn,l − Xn+1,l − Xn−1,l − fl(n, Xn), l ∈ Z(1, m), n ∈ Z(1, M)

or

∂J(X)
∂Xn,l

= −[∆2Xn−1,l + fl(n, Xn)], l ∈ Z(1, m), n ∈ Z(1, M).

Therefore, X ∈ EM is a critical point of J , i.e. J ′(X) = 0 if and only if

∆2Xn−1,l + fl(n, Xn) = 0 ∀n ∈ Z(1, M), l ∈ Z(1, m).

That is,
∆2Xn−1 + f(n, Xn) = 0 ∀n ∈ Z(1, M).

On the other hand, {Xn} ∈ EM is M -periodic in n and f(t, Z) is M -periodic in t.
So X ∈ EM is a critical point of J if and only if ∆2Xn−1 + f(n, Xn) = 0 ∀n ∈ Z,
and X is an M -periodic solution of (1.1). Thus we reduce the problem of finding
M -periodic solutions of (1.1) to that of seeking critical points of the functional J
in EM .

Due to the identification of EM with R
mM , we write J(X) as

J(X) = 1
2 〈ALX, LX〉 −

M∑
n=1

F (n, Xn), (2.6)

where X = {Xn} ∈ EM and

A =

⎛
⎜⎜⎜⎝

B 0
B

. . .
0 B

⎞
⎟⎟⎟⎠

mM×mM

,
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B =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 −1

−1 0 0 · · · −1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

M×M

and 〈·, ·〉 denotes the scalar product in R
mM .

Assume that λ is an eigenvalue of B. Since B − rI is positive-definite for r < 0
and negative-definite for r > 4, where I is the M × M identity matrix, we see that
λ ∈ [0, 4]. Assume that ξ = (ξ1, ξ2, . . . , ξM )T is an eigenvector associated to λ and
define the sequence {yn}∞

n=1 as

yi = ξi, i = 1, 2, . . . , M, and yn+M = yn, n ∈ Z.

Then {yn} satisfies

−yn+1 + (2 − λ)yn − yn−1 = 0, yn+M = yn, n ∈ Z. (2.7)

Since the roots of the equation −r2 + (2 − λ)r − 1 = 0 are

r1 = 1
2 (2 − λ +

√
4 − (2 − λ)2i) and r2 = 1

2 (2 − λ −
√

4 − (2 − λ)2i),

set
θ = arccos 1

2 (2 − λ). (2.8)

Then
yn = d1 cos nθ + d2 sin nθ =

√
d2
1 + d2

2 cos(nθ − θ0)

for some constants d1, d2 and θ0, where
√

d2
1 + d2

2 
= 0. By the fact that yn+M = yn,
n ∈ Z, we obtain

Mθ = 2kπ, k = 0, 1, 2, . . . , M − 1.

That is,

θk =
2k

M
π, k = 0, 1, 2, . . . , M − 1.

By (2.8), we see that the eigenvalues of B are

λk = 2
(

1 − cos
2k

M
π

)
, k = 0, 1, 2, . . . , M − 1. (2.9)

Thus λ0 = 0, λ1 > 0, λ2 > 0, . . . , λM−1 > 0. Therefore,

λmin = min{λ1, . . . , λM−1} = 2
(

1 − cos
2
M

π

)
,

λmax = max{λ1, . . . , λM−1} =

⎧⎨
⎩

4 when M is even,

2
(

1 + cos
1
M

π

)
when M is odd.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.10)

Let
W = Ker AL = {X ∈ EM : ALX = 0 ∈ R

mM}.
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Then
W = {X ∈ EM | X = {V }, V ∈ R

m}.

Let Y be the direct orthogonal complement of EM to W , that is, EM = Y ⊕ W .
Assume that H is a real Banach space, I ∈ C1(H, R), i.e. I is a continuously

Fréchet differentiable functional defined on H. I is said to satisfy the Palais–Smale
condition (PS condition) if any sequence {un} ⊂ H for which {I(un)} is bounded
and I ′(un) → 0(n → ∞) possesses a convergent subsequence in H.

Let Br denote the open ball in H about 0 with radius r and let ∂Br denote its
boundary.

Lemma 2.1 (linking theorem [15]). Let H be a real Hilbert space, H = H1 ⊕ H2,
where H1 is a finite-dimensional subspace of H. Assume that J ∈ C1(H, R) satisfies
the PS condition and the following.

(J1) There exist constants a > 0 and ρ > 0 such that J |∂Bρ∩H2 � a.

(J2) There exists an e ∈ ∂B1 ∩ H2 and a constant R0 > ρ such that J |∂Q � 0 and
Q � (B̄R0 ∩ H1) ⊕ {re | 0 < r < R0}.

Then J possesses a critical value c � a, where

c = inf
h∈Γ

max
X∈Q

J(h(X))

and Γ = {h ∈ C(Q̄, H) : h|∂Q = id}, where id denotes the identity operator.

3. Proofs of main results

According to (F3), if we let

γ1 = max{|F (n, Z) − β|Z|2 + γ| : n ∈ Z, |Z| � ρ}, γ′ = γ + γ1,

then
F (n, Z) � β|Z|2 − γ′ for n ∈ Z, Z ∈ R

m. (3.1)

To prove theorem 1.1, we need the following lemmas.

Lemma 3.1. Assume that F (t, Z) satisfies (F3). Then the functional

J(X) = 1
2 〈ALX, LX〉 −

M∑
n=1

F (n, Xn)

is bounded from above in EM .

Proof. For any X ∈ EM , by (3.1),

J(X) � 1
2λmax|LX|2 −

M∑
n=1

F (n, Xn)

� 1
2λmax‖X‖2

EM
−

M∑
n=1

(β|Xn|2 − γ′)

= ( 1
2λmax − β)‖X‖2

EM
+ Mγ′. (3.2)
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Since, by (F3) and (2.10), we see that β > 1
2λmax, then

J(X) � Mγ′.

The proof of lemma 3.1 is complete.

Lemma 3.2. Assume that (F1) and (F3) hold. Then the functional J satisfies the
PS condition.

Proof. Let {J(X(k))} be a bounded sequence from below, that is, there exists a
positive constant c such that

−c � J(X(k)) ∀k ∈ N.

By the proof of lemma 3.1, it is easy to see that

−c � J(X(k)) � ( 1
2λmax − β)‖X(k)‖2

EM
+ Mγ′,

which implies that

‖X(k)‖2
EM

� (β − 1
2λmax)−1(Mγ′ + c).

That is, {X(k)} is a bounded sequence in the finite-dimensional space EM . Conse-
quently, it has a convergent subsequence.

Proof of theorem 1.1. Assumption (F2) and F (t, Z) ∈ C1(R × R
m, R) imply that

F (t, 0) = 0 and f(t, 0) = 0 for any t ∈ R. Therefore, {Xn}, where Xn ≡ 0 ∈ R
m,

n ∈ Z, is a trivial periodic solution of (1.1) with period M . By lemma 3.1, J is
bounded from above on EM . We write c0 = supX∈EM

J(X). There is a sequence
{X(k)}∞

k=1, where X(k) ∈ EM , such that c0 = limk→∞ J(X(k)). On the other hand,
by (3.2), we have

J(X) � ( 1
2λmax − β)‖X‖2

EM
+ Mγ′ for X ∈ EM .

Therefore, J(X) → −∞ as ‖X‖2
EM

→ ∞, which implies {X(k)} is bounded. Thus
{X(k)} has a convergent subsequence, denoted by {X(ki)}. Let X̄ = limi→∞ X(ki).
By the continuity of J(X), it is easy to see that J(X̄) = c0. Clearly, X̄ is a critical
point of J in EM .

We claim that c0 > 0. In fact, by assumption (F2) and the definition of Y , we
see that, for any X ∈ Y with ‖X‖EM

� δ,

J(X) = 1
2 〈ALX, LX〉 −

M∑
n=1

F (n, Xn)

� 1
2λmin|LX|2 − α

M∑
n=1

|Xn|2

= ( 1
2λmin − α)‖X‖2

EM
.

Let σ = ( 1
2λmin − α)δ2. Then

J(X) � σ ∀X ∈ Y ∩ ∂Bδ.
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Thus we have proved that c0 = supX∈EM
J(X) � σ > 0. At the same time, we have

also proved that there exist constants σ > 0 and δ > 0 such that J |∂Bδ∩Y � σ.
This implies that J satisfies assumption (J1) of the linking theorem.

Since, for X ∈ W , ALX = 0 and, by (F1),

J(X) = 1
2 〈ALX, LX〉 −

M∑
n=1

F (n, Xn) = −
M∑

n=1

F (n, Xn) � 0,

then X̄ /∈ W and the critical point X̄ of J corresponding to the critical value c0 is
a non-trivial periodic solution of (1.1) with period M .

In order to obtain another non-trivial M -periodic solution of (1.1) different from
{X̄}, we will use the linking theorem. By lemma 3.2, we know that J satisfies
the PS condition, and we have also verified that J satisfies condition (J1) of the
linking theorem. In the following, we will prove that J satisfies condition (J2) of
the linking theorem. To this end, let e ∈ ∂B1 ∩ Y . Then, for any Z ∈ W and r ∈ R,
let X = re + Z. We have

J(X) = 1
2 〈AL(re + Z), L(re + Z)〉 −

M∑
n=1

F (n, Xn)

= 1
2 〈AL(re), L(re)〉 −

M∑
n=1

F (n, Xn)

� 1
2λmax|L(re)|2 − β

M∑
n=1

(|ren + Zn|2 − γ′)

= 1
2λmaxr

2 − β

M∑
n=1

(r2|en|2 + |Zn|2 − γ′)

= ( 1
2λmax − β)r2 − β‖Z‖2

EM
+ Mβγ′

� −β‖Z‖2
EM

+ Mβγ′.

Therefore, there exists some positive number R2 > δ such that, for any X ∈ ∂Q,
then J(X) � 0, where Q = (B̄R2 ∩W )⊕{re : 0 < r < R2}. By the linking theorem,
J possesses a critical value c � σ > 0, where

c = inf
h∈Γ

max
u∈Q

J(h(u)) and Γ = {h ∈ C(Q̄, EM ) : h|∂Q̄ = id}.

Let X̃ ∈ EM be a critical point corresponding to the critical value c of J ,
that is, J(X̃) = c. If X̃ 
= X̄, then theorem 1.1 holds. Otherwise, X̃ = X̄. Then
c0 = J(X̄) = J(X̃) = c, which is the same as

sup
X∈EM

J(X) = inf
h∈Γ

max
u∈Q

J(h(u)).

Choosing h = id, we have supX∈Q J(X) = c0. Because the choice of

e ∈ ∂B1 ∩ Y ∈ Q = (B̄R2 ∩ W ) ⊕ {re : 0 < r < R2}
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is arbitrary, we can take −e ∈ ∂B1 ∩ Y . Similarly, there exists a positive number
R3 > δ, for any X ∈ ∂Q1, J(X) � 0, where Q1 = (B̄R3 ∩W )⊕{−re : 0 < r < R3}.
Again, by the linking theorem, J possesses a critical value c′ � σ > 0, and

c′ = inf
h∈Γ1

max
u∈Q1

J(h(u))

and

Γ1 = {h ∈ C(Q̄1, EM ) : h|∂Q̄1
= id}.

If c′ 
= c0, then the proof is complete. Otherwise, c′ = c0, supX∈Q1
J(X) = c0.

Because J |∂Q � 0 and J |∂Q1 � 0, then J attains its maximum at some points in
the interior of sets Q and Q1. But Q ∩ Q1 ⊂ W , and J(X) � 0 for X ∈ W . Thus
there is a critical point X ′ ∈ EM satisfying X ′ 
= X̃ and J(X ′) = c′ = c0.

The proof of theorem 1.1 is now complete.

Proof of corollary 1.4. We need only to show that (F2) and (F3) hold in theo-
rem 1.1. In fact, condition (F4) clearly implies (F2). From (F5), we have

Z

|Z| · ∇ZF (n, Z)
F (n, Z)

� α1

|Z| for n ∈ Z and |Z| � R1.

Thus
d lnF (n, Z)

d|Z| � α1

|Z| ,

which implies

d
d|Z| (lnF (n, Z) − α1 ln |Z|) � 0 for n ∈ Z and |Z| � R1. (3.3)

Let
G = min{lnF (n, Z) − α1 ln |Z| : n ∈ Z and |Z| = R1}.

By (3.3),
lnF (n, Z) − α1 ln |Z| � G for n ∈ Z and |Z| � R1.

That is,
F (n, Z) � a1|Z|α1 for n ∈ Z and |Z| � R1,

where a1 = eG. Let ρ1 � R1 satisfying a1ρ
α1−2
1 > 2. Then, for n ∈ Z and |Z| � ρ1,

|F (n, Z)| � a1|Z|α1−2|Z|2 � a1ρ1
α1−2|Z|2.

Let β = a1ρ
α1−2
1 . Then (F3) holds. The proof of corollary 1.4 is complete.
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