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Specification tests reject a linear inflation forecasting model over the period 1959–2002.
Based on this finding, we evaluate the out-of-sample inflation forecasts of a fully
nonparametric model for 1994–2002. Our two main results are that: (i) nonlinear models
produce much better forecasts than linear models, and (ii) including money growth in the
nonparametric model yields marginal improvements, but including velocity reduces the
mean squared forecast error by as much as 40%. A threshold model fits the data well over
the full sample, offering an interpretation of our findings. We conclude that it is
important to account for both nonlinearity and the behavior of monetary aggregates when
forecasting inflation.
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1. INTRODUCTION

It has become widely accepted that, for most purposes, changes in monetary
aggregates are of little interest for the U.S. monetary policy process. This view-
point is summarized nicely by the title of the paper by Leeper and Roush (2003):
“Putting ‘M’ Back into Monetary Policy.” Numerous recent papers have pre-
sented evidence that money growth has no predictive power for inflation, and this
finding is robust to changes in the sample period and econometric methodology.1

Svensson and Woodford (2003) summarize the empirical literature, “Under normal
circumstances, the information content of money growth for inflation forecasts in
the short and medium term seems to be quite low. Only in the long run does
a high correlation between money growth and inflation result.” The importance
of these papers has grown, as inflation forecasting has come to occupy a central
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place in monetary economics, both in practice and in theory. It is clear that the
Federal Reserve relies on inflation forecasts when setting monetary policy [see,
e.g., Clarida, et al. (2000)]. Additionally, a large academic literature has promoted
the benefits of “inflation-forecast targeting,” whereby the central bank chooses a
target inflation rate and adjusts its policy instrument to eliminate deviations of the
expected inflation rate from the target [see, e.g., Bernanke and Woodford (2003),
Svensson (2003), and Woodford (2005)].

This paper asks whether such a conclusion is warranted. Specifically, the papers
cited earlier have focused on forecasts from linear vector autoregressive (VAR)
models:

Xt = α + β(L)Xt−1 + εt ,

where Xt = (πt ,�mt)
′, πt is the inflation rate at time t , and �mt is the growth

rate of a monetary aggregate. The popularity of VAR modeling arises from the
fact that it is an atheoretical approach, and as such requires very few assumptions.
The Wold Decomposition Theorem suggests that linear models are a good starting
point [see Diebold (1998, pp. 179–180) for a related discussion]. If the system of
interest is nonlinear, it may be better to directly estimate a nonlinear model rather
than a linear approximation.

Aside from the obvious importance of correct specification in practical fore-
casting situations, the finding of a nonlinear relationship between inflation and
fundamentals would have implications for VAR models of monetary policy. The
price puzzle, a finding that tighter monetary policy is initially followed by a rise in
the price level, is argued to be the result of information omitted from the Federal
Reserve’s reaction function. “Solutions” to the price puzzle consist of adding
variables to the model, such as commodity prices [see, e.g., Hanson (2004)]. Yet
the omitted information also might take the form of a more complicated functional
form. Predictable movements in the variables are interpreted as shocks, which can
lead to a price puzzle in the same way that omitting relevant variables from the
model leads to a price puzzle. A different literature has studied changes in the
parameters of the Federal Reserve’s reaction function. It is common to include
a measure of money growth in the reaction function, based on the argument that
money growth has played an important role in monetary policy decisions. When
the relationship between inflation and money growth is nonlinear, the reaction
function will in general also be nonlinear. Boivin (2001) accounts for nonlineari-
ties with a time-varying parameter VAR model, using an estimation strategy that
accommodates the many estimated parameters in a VAR model.

Our baseline model is a fully nonparametric model that allows for any kind of
nonlinearity in the relationship between money growth and inflation. We compare
the linear univariate and bivariate VAR inflation forecasts that have been used in
previous studies to their nonparametric counterparts. We then compare the fore-
cast performance of the nonparametric models that include either money growth or
velocity to autoregressive models, which provides a measure of the out-of-sample
information content of these variables for inflation. Finally, we present evidence
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that a threshold model captures the nonlinearity in inflation well, although a thresh-
old model does not always forecast well out-of-sample. The idea that a parametric
nonlinear model can fit the data well without providing large improvements in
forecast performance is not new [see, e.g., Kilian and Taylor (2003) and Clements
et al. (2004)].

A nonparametric approach should in principal be preferred to parametric ap-
proaches, because it is more general (the linear model is nested by the nonpara-
metric model). As few other macroeconomic papers have attempted to exploit
the gains from nonparametric modeling,2 we now discuss some reasons why
this may be so. First, the curse of dimensionality requires that only parsimonious
models be considered. This limitation poses a special problem for macroeconomic
models because of the importance, in many cases, of including multiple lags of
the variables. Second, the computational burden of implementing a nonparamet-
ric approach with a data-driven method for selecting the smoothing parameters
is nontrivial. A third disadvantage is that nonparametric models are less efficient
when the data generating process can be approximated well by a linear model. The
assumption of linearity is prevalent in out-of-sample macroeconomic forecasting
exercises, presumably because of a lack of evidence to the contrary.3 Finally, it
can be difficult to interpret the results obtained from a nonparametric regression.
This is a problem when fitting prediction models, insofar as forecasters need
to ask whether an estimated model has sensible properties and decide whether
adjustments are necessary.

The paper proceeds as follows. Section 2 describes the data. Section 3 presents
evidence on the importance of allowing for a flexible functional form, and discusses
our findings on the information content of monetary aggregates for inflation.
Section 4 summarizes our findings and suggests directions for future research.

2. DATA

All of the data series were downloaded from the St. Louis Federal Reserve bank
Web site, and cover the period from January 1959 to May 2002. The monetary
aggregate data we analyze are simple sum M1, M2, and M3, and the correspond-
ing M1, M2, and M3 Divisia monetary services index data [see, e.g., Belongia
and Chalfant (1989), Belongia (1996), and the collection of papers in Barnett
and Serletis (2000) for discussion and empirical evidence on the advantages and
disadvantages of using Divisia monetary aggregates]. The consumer price index
series is used in place of other possible measures of the price level, because it is
available at a monthly frequency, and has been studied widely in the literature. Use
of data available at a quarterly frequency, such as the GDP deflator, would prohibit
the use of nonparametric methods, because the sample size would be too small to
allow for an informative out-of-sample forecast comparison. The velocity series
is calculated as V = PQ/M, where PQ is the index of industrial production
(nominal) and M is one of the six monetary aggregates.
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3. EMPIRICAL RESULTS

As a benchmark, we first replicate for our updated data the well-known result that
money growth is useless as an inflation indicator. Then we show how the results
change when relaxing assumptions on functional form, and expand the models
to include velocity. We finish by evaluating the in-sample fit and out-of-sample
forecasts of threshold models. The advantage of these parametric nonlinear models
is that they are easy to interpret.

3.1. Linear Models

Forecasts here and throughout this paper are made using a recursive estimation
procedure with an increasing window of data, so that each forecast is based on
a model estimated using only data available through the date that forecast would
have been made. Because our first forecasted inflation rate is January 1994, the
corresponding one-step ahead model was estimated using data available through
December 1993. Observations for January 1994 were then added to the dataset,
all models were reestimated, and one-step ahead forecasts were produced for the
inflation rate in February 1994. The procedure was repeated to make a series of 100
forecasts for each model and forecast horizon, covering the period January 1994
through April 2002. Given the different forecast series and the observed historical
inflation series, the mean squared prediction error (MSPE) was calculated for each
model as [

∑2002:4
t=1994:1(π̂t −πt)

2]/100. The out-of-sample period was chosen for two
reasons. First, the nonparametric models we look at below require a sufficiently
large estimation sample. Second, this time period is more interesting than previous
time periods. It has been argued that there may have been stable money demand
relationships in earlier years but that they had broken down by the early 1990s.
Good forecast performance in this time period would be an important finding.

Table 1 reports the MSPE of a linear model including money growth as a
regressor:

πt = α0 + α1πt−s + α2πt−s−1 + α3�mt−s + α4�mt−s−1 + εt ,

relative to the autoregressive model:

πt = α0 + α1πt−s + α2πt−s−1 + εt , (1)

where the forecast horizon is given by s = 1, 6, 12, and 24. To choose the lag
length, the Schwarz information criterion (SIC) selected a VAR model with two
lags of inflation and money growth.4 The statistics reported in Table 1 are the ratio
of MSPE of one of the VAR models to the MSPE of the autoregressive model
at that horizon, so that values less than one imply the VAR model forecasts are
more accurate. p-values for the CCS test of out-of-sample Granger causality [Chao
et al. (2001)] are reported in parenthesis below the relative MSPE statistics. The
CCS test statistic is a measure of the correlation between the forecast errors of
the AR model and the additional terms in the VAR model. As such the CCS test
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TABLE 1. Relative MSPE (Linear VAR/Linear AR)

Horizon M1 M2 M3 M1D M2D M3D

1 Month 1.04 0.99 1.04 1.00 1.00 1.00
(0.44) (0.04) (0.02) (0.91) (0.25) (0.05)

6 Months 1.09 1.05 1.13 0.98 1.01 1.05
(0.55) (0.00) (0.00) (0.95) (0.07) (0.01)

12 Months 0.90 0.93 1.04 0.98 0.97 1.01
(0.54) (0.00) (0.00) (0.92) (0.08) (0.02)

24 Months 1.05 0.76 1.07 0.99 0.87 0.94
(0.13) (0.00) (0.00) (0.34) (0.02) (0.01)

Notes: Entries in Table 1 are the MSPE of the linear VAR model divided by the MSPE of the linear AR model, for
the period January 1994 to April 2002. Numbers in parentheses are p-values for the CCS test [Chao et al. (2001)] of
no Granger causality from the money variable to inflation.

is not a direct comparison of the loss from the two forecasting models as is the DM
test of Diebold and Mariano (1995) or West (1996), and the relative MSPE and
CCS test results may sometimes contradict one another (for instance, the relative
MSPE might be greater than one yet the CCS test rejects). The CCS test is closer
to an encompassing test of whether the benchmark AR model contains all of the
information in the VAR model. It is possible that one model may forecast better
than another even if encompassing is rejected. Clark and McCraken (2001) propose
a one-step ahead test of equal forecast accuracy of non-tested linear models, but
no DM-type test is available for comparisons between nested models when the
forecast horizon is greater than one.

At one-month and six-month forecast horizons, consistent with our prior expec-
tations, any gains from including money are unimportant. In fact, the inefficiency
associated with including money growth variables actually leads to as much as a
13% increase in MSPE! Interestingly, at the longer horizons (12 and 24 months)
money growth does have value in some cases, contrary to the conclusions in
recent studies, with an MSPE reduction in one case of 23%. Outside of three
cases, however, any gains are small, with the VAR model offering little or no
improvement over the AR model. Overall, the case for using money growth as an
indicator variable for inflation is weak.

3.2. Relaxing Assumptions about Functional Form

We have confirmed the well-known result that inflation forecasts from linear VAR
models are usually not more accurate than an autoregressive model. This section
compares the linear inflation forecasting models earlier, used by previous authors
(see the papers cited in the Introduction) to their nonparametric counterparts. The
benchmark in each case is the s-step ahead linear model

πt = α + β(L)xt−s + εt , (2)
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with xt−s = πt−s for an AR model, and xt−s = (πt−s , �mt−s) for a VAR model,
where mt can be any one of the six monetary aggregates: M1t , M2t , M3t , M1Dt ,
M2Dt , and M3Dt . Forecasts for each linear model are compared to those of a
general nonparametric model

πt = f (πt−s , πt−s−1,�mt−s) + εt . (3)

The nonparametric model relaxes any assumptions about functional form, so that
the only restrictions in equation (3) are the variables included in x and the lag
length. This model encompasses all nonlinear models that have been proposed,
including threshold, smooth transition, and Markov switching models [see, e.g.,
Granger and Teräsvirta (1993) or Hamilton (1994)]. By contrast, even if equa-
tion (2) is not correctly specified, as is almost certainly the case, it might still
provide a better approximation than equation (3) in practice. The nonparametric
model converges more slowly than the linear model, so that there is no a priori
reason to expect one model to forecast better out-of-sample. In fact, for a nonpara-
metric model to be of use with a sample of several hundred observations, which is
true for this paper, it is necessary that the linear model be severely misspecified.

We estimate the nonparametric models using the Nadaraya-Watson kernel esti-
mator [Nadaraya (1965), Watson (1964)]. The forecast of inflation at time T + s
is given by

E(πT +s | πT , πT −1,�mT ) =
∑T −s

t=1 πt+sK[(xt − xT )/h]∑T −s
t=1 K[(xt − xT )/h]

, (4)

where xt = (πt , πt−1,�mt) and K(·) is the product normal kernel function. A
practical difficulty associated with any nonparametric estimation is the choice of
bandwidth h, and the recursive nature of our analysis makes matters more difficult,
as we need to choose the bandwidth thousands of times. Each time a forecast
was made, out-of-sample inflation forecasts were calculated for the previous 50
observations using many different bandwidth choices, and we set h equal to the
value that yielded the lowest MSPE for those 50 forecasts. For example, to make
a one-step ahead forecast of inflation for January 1995, we use the value of h

that produced the best forecasts over the period November 1990 to December
1994. There is little theoretical guidance as to the selection of bandwidth for out-
of-sample forecasts. The intuition behind our procedure is that we are interested
in producing out-of-sample forecasts, so we should use the bandwidth that has
produced the best forecasts in the past. To the extent that this procedure is not
optimal, our nonparametric forecasts can be improved further.

Table 2 offers a comparison of the linear and nonlinear models. DM test statis-
tics are reported in parenthesis.5,6 In nearly every case, the nonparametric model
does better. The only way we can observe the nonparametric models consistently
outperforming linear models with the same regressors is if there is a relationship
between money growth and inflation, and if that relationship is far from lin-
ear. In the Introduction, we cited two motivations for this paper—the inflation
forecast-targeting literature, and the monetary VAR literature. The results in
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TABLE 2. Relative MSPE (Nonparametric VAR/Linear VAR)

Horizon AR M1 M2 M3 M1D M2D M3D

1 Month 0.88 0.94 0.84 0.84 0.88 0.87 0.86
(1.75) (0.67) (2.38) (2.18) (1.69) (1.83) (1.89)

6 Months 0.93 0.86 0.86 0.84 0.90 0.91 0.88
(2.12) (1.15) (2.43) (2.22) (2.08) (1.92) (2.22)

12 Months 0.93 0.99 0.91 0.88 0.94 0.95 0.91
(2.21) (0.32) (2.26) (2.40) (1.66) (1.23) (2.12)

24 Months 1.09 1.00 0.94 0.91 1.07 1.10 1.05
(−5.84) (0.00) (0.80) (1.08) (−3.91) (−1.88) (−0.83)

Notes: Entries in Table 2 are the MSPE of the nonparametric AR model of inflation divided by the MSPE of the linear
AR model of inflation, for the period January 1994 to April 2002. Numbers in parentheses are DM test statistics
[Diebold and Mariano (1995)].

Table 2 are most relevant for the latter, as they show that a linear model omits
relevant information, and may cause expected movements to be mistakenly labeled
as shocks, resulting in a price puzzle. Given that it is not straightforward to modify
structural VAR models to incorporate nonparametric estimation, and that there are
controversies over which variables to include, changes in the policy rule, and so
on, we leave this to future work.

Table 3 reports the MSPE of each nonparametric model with money growth
relative to the nonparametric AR(2) model at each horizon. There are two things
to note here. First, the VAR model usually does better than the AR model, with
the MSPE ratio in most cases less than one. This is quite different from Table 1,
where the MSPE ratio was greater than 1 in 12 cases, especially in light of the
fact that the nonparametric AR model is already outperforming the linear AR
model. Second, most of the gains appear to be a result of allowing for a nonlinear
functional form, rather than from the inclusion of money growth.

TABLE 3. Relative MSPE (Nonparametric VAR/Nonparametric AR)

Horizon M1 M2 M3 M1D M2D M3D

1 Month 1.12 0.94 1.00 1.00 0.99 0.99
(−0.97) (1.78) (0.06) (0.01) (0.46) (0.78)

6 Months 1.00 0.98 1.02 0.94 0.98 1.00
(0.05) (0.88) (−0.66) (1.80) (0.79) (0.24)

12 Months 0.95 0.90 0.98 0.99 0.99 0.98
(1.20) (2.76) (0.43) (0.49) (0.40) (0.93)

24 Months 0.96 0.66 0.89 0.98 0.88 0.91
(0.69) (6.43) (1.10) (1.46) (4.33) (1.86)

Notes: Table 3’s entries are the MSPE of the nonparametric model of inflation containing money divided by the MSPE
of the nonparametric AR model of inflation, for the period January 1994 to April 2002. Numbers in parentheses are
DM test statistics [Diebold and Mariano (1995)].
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For the nonparametric AR model, we use the same number of lags (two lags)
as that used in the linear AR model. Using the same set of explanatory variables
enables us to determine whether relaxing the linear functional form is responsible
for the improved forecasts. Gao and Tong (2004) have recently proposed a proce-
dure for selecting the number of lags in a nonparametric AR model framework.
For the data we used, Gao and Tong’s procedure for selecting the number of lags in
the nonparametric model led to a slight improvement in the forecasting accuracy.
In the remaining part of the paper, we continue to consider the cases of using two
lags in the nonparametric AR model, and adding one lag of money growth (in
Section 3.5, a lag of velocity) for the nonparametric VAR model to better focus
on the effects of functional form.

3.3. Specification Tests

These forecasting results suggest that the linear AR and VAR models are misspeci-
fied. In this section we formally test the correctness of linear AR and VAR models.
We test the null hypothesis of a linear specification against a general nonparametric
(nonlinear) model. The consistent model specification test proposed by Fan and
Li (1996), Li (1999), and Zheng (1996) will be used to test the following null
hypotheses for the inflation model: (i) a linear AR model: πt = β0 +β1πt−s +
β2πt−s−1 + ut against a nonparametric AR model: πt = g(πt−s , πt−s−1) + ut ;
(ii) a linear VAR model, πt = β0 + β1πt−s + β2πt−s−1 + β3�mt−s + ut against
a nonparametric VAR model: πt = g(πt−s , πt−s−1,�mt−s) + ut ; and (iii) a non-
parametric AR model: πt = g(πt−s , πt−s−1) + ut against a nonparametric VAR
model: πt = g(πt−s , πt−s−1,�mt−s) + ut .

Briefly, the testing procedure is implemented in the following manner. Start by
introducing some notation: wt = (πt−s , πt−s−1), zt = �mt−s . Then the above
hypotheses can be tested based on E(ut | xt ) = 0, where ut = πt − β0 − wtβ and
xt = wt for (i); ut = πt −β0−wtβ−ztγ and xt = (wt , zt ) for (ii); ut = πt −g(wt)

and xt = (wt , zt ) for (iii). The test statistic proposed by Fan and Li (1996), and
Zheng (1996) is a kernel estimate of I = E[utE(ut | xt )f (xt )]. This is because
I = E{[E(ut | xt )]2f (xt )} ≥ 0, and I = 0 if and only if the null hypothesis is
true. Therefore, I serves as a proper candidate for testing the null hypothesis of
E(ut | xt ) = 0. A feasible test statistic is given by

În = 1

n(n − 1)

n∑
t=1

n∑
s �=t

ût ûsKh,ts ,

where ût is the residual (estimated error) from the null model, Kh,ts =∏d
j=1 h−1

j k[(xs,j − xt,j )/hj ] is the product kernel function, and hj is the smooth-
ing parameter associated with xj (j = 1, . . . , d), d is the dimension of xt (d = 2
for (i), and d = 3 for (ii) and (iii)). A standardized test is given by

Ĵn = n(h1 . . . hd)
1/2Î /

√
σ̂ 2

0 ,
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where σ̂ 2
0 = h1 · · · hd/n(n − 1)

∑
t

∑n
s �=t û2

t û
2
sK

2
h,ts . Under the null hypothesis

and some regularity conditioins, Ĵn has an asymptotic standard normal distribution.
Li and Wang (1998), and Hsiao and Li (2001) show that in finite sample

applications, the Ĵn test is significantly undersized (there is finite sample negative
bias under the null hypothesis). They recommend using bootstrap procedures to
better approximate the finite sample null distribution of the test statistic Ĵ . Hsiao
and Li (2001) proposed a bootstrap procedure for time series data. We adopt
the bootstrap procedure suggested by Hsiao and Li (2001) to obtain the critical
values for the test statistic Ĵn. The number of bootstrap replications is 1,000. The
bootstrap critical values differ for each case, so rather than reporting all of the test
statistics and bootstrap critical values, we summarize the testing results.

For case (i) of testing a linear AR model, we reject the null of a linear AR model
for all t = 1, 6, 12, 24 at the 5% level based on bootstrap critical values.

For case (ii) of testing a linear VAR model, we reject the null of a linear VAR
model for all money growth models, and for s = 1, 6, 12, 24 at the 5% level based
on bootstrap critical values.

For case (iii) of testing a nonparametric AR model, the results are mixed. For
s = 1, we do not reject the null hypothesis of a nonparametric AR model at the
5% level for all money growth models. For s = 6, we reject the null hypothesis of
a nonparametric AR model at the 5% level for m = M1 and M3, but we do not
reject the null hypothesis at the 5% level for m = M2, M1D, M2D and M3D.
For s = 12, we reject the null hypothesis of a nonparametric AR model at the 5%
level for m = M2 and M3, but we do not reject the null hypothesis at the 5% level
for m = M1, M1D, M2D and M3D. For s = 24, we reject the null hypothesis of
a nonparametric AR model at the 5% level for m = M1, M2, M2D, and M3D,
but we do not reject the null hypothesis at the 5% level for m = M3 and M1D.

These in-sample testing results are largely consistent with the out-of-sample
prediction results. The linear AR and linear VAR models are strongly rejected,
and we conclude that there is significant nonlinearity in the relationship between
inflation and its lagged values, and between inflation and money growth. Also,
there is some weak evidence that a nonparametric VAR model fits better than a
nonparametric AR model in in-sample fit. Our primary interest is in producing
out-of-sample forecasts, so in the next section we compare forecast performance
of a nonparametric model with velocity replacing the money growth variable.

3.4. Forecasting Inflation with Velocity

These results suggest the importance of functional form, but with a few excep-
tions, out-of-sample causality from money growth to inflation is still hard to find.
There are, however, alternative ways to incorporate information on the behavior of
monetary aggregates into the model. We now evaluate the information content of
velocity, motivated by the P∗ inflation forecasting model that has been studied by
many authors [see, e.g., Gerlach and Svensson (2003) and the references contained
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TABLE 4. Relative MSPE (Nonparametric VAR/Parametric VAR)

Horizon V1 V2 V3 V1D V2D V3D

1 Month 0.74 0.72 0.88 0.77 0.76 0.77
(2.24) (3.04) (1.62) (2.05) (2.42) (2.10)

6 Months 0.84 0.90 0.93 0.87 0.85 0.84
(1.62) (1.29) (1.42) (1.56) (1.84) (2.02)

12 Months 0.73 0.88 0.90 0.75 0.76 0.79
(3.10) (1.77) (2.07) (2.87) (3.56) (3.14)

24 Months 0.83 0.82 1.20 0.99 0.98 0.99
(2.00) (1.29) (−3.14) (0.09) (0.54) (0.16)

Notes: Table 4’s entries are the MSPE of the nonparametric model of inflation containing velocity divided by the
MSPE of the linear VAR model of inflation containing velocity, for the period January 1994 to April 2002. Numbers
in parentheses are DM test statistics [Diebold and Mariano (1995)].

therein]. Despite the lack of a formal theoretical basis for the P∗ model [Gerlach
and Svensson (2003)], it is nevertheless popular as a tool for forecasting inflation.
In keeping with our use of monthly data, the measure of output is industrial
production.

Table 4 shows that the forecast improvements from using nonparametric VAR
models versus linear VAR models are more pronounced than for money growth.
With only one exception, the nonparametric (nonlinear) VAR model always out-
performs its linear counterpart, and in many cases the differences are substantial.
The only difference between the models is that the linear model imposes restric-
tions on functional form, suggesting that it is crucial to allow for nonlinearity
when estimating P ∗-type models. To the best of our knowledge, this is the first
paper to demonstrate important nonlinearities in the (out-of-sample) P ∗ inflation
forecasting model. Table 5 is particularly interesting. Our earlier results suggested
only modest improvements in the forecast performance of a nonparametric VAR

TABLE 5. Relative MSPE (Nonparametric VAR/Nonparametric AR)

Horizon V1 V2 V3 V1D V2D V3D

1 Month 0.94 0.90 0.99 0.97 0.87 0.87
(0.74) (1.85) (0.16) (0.43) (2.25) (2.03)

6 Months 1.01 0.93 0.93 1.03 0.84 0.84
(−0.14) (0.94) (1.62) (−0.43) (2.01) (2.29)

12 Months 0.93 0.83 0.83 0.93 0.71 0.71
(0.85) (2.41) (4.17) (0.80) (3.87) (4.02)

24 Months 0.83 0.63 0.70 1.00 0.60 0.59
(2.57) (4.12) (3.31) (−0.01) (4.60) (4.79)

Notes: Table 5’s entries are the MSPE of the nonparametric model of inflation containing money divided by the MSPE
of the nonparametric AR model of inflation, for the period January 1994 to April 2002. Numbers in parentheses are
DM test statistics [Diebold and Mariano (1995)].
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model over the autoregressive benchmark when money growth is included. When
money growth is replaced by velocity, we find strong evidence of causality. Even
at a one-month forecast horizon, the velocity of three of the aggregates reduces
the MSPE by 10% or more. The forecast improvement grows with the forecast
horizon, and at a 24-month horizon including velocity of Divisia M2 or Divisia
M3 reduces the MSPE by 40%.

Note that the relative MSPE comparison between the nonparametric VAR model
with velocity and the nonparametric VAR model with money growth can be
obtained as a ratio of the results of Table 5 to that of Table 3 (as they both have the
MSPE of the nonparametric AR model in the denominator). We observe that the
nonparametric VAR models with velocity generally perform much better (have a
smaller MSPE) than the nonparametric VAR models with money growth.

To sum up our results, we have shown that the relationship between money
growth and inflation is nonlinear, with a linear VAR model forecasting no better
(and usually worse) than an autoregressive benchmark, and the nonparametric
model producing small forecasting gains. Tables 4 and 5 show that the relationship
between inflation and velocity is also nonlinear, and when we relax the strict
assumptions of the linear model, velocity serves as a very important source of
information about inflation. This suggests that the P ∗ model is still useful for
predicting U.S. inflation.

We also have carried out in-sample specification tests for testing (i) a para-
metric VAR model (with velocity) versus a nonparametric VAR model, and
(ii) a nonparametric AR model versus a nonparametric VAR model (with ve-
locity). The test statistic is the same as discussed in Section 3.3 with ûi be-
ing the estimated error from the null model, xt = (πt−s , πt−s−1, vt−s), where
v = V 1, V 2, V 3, V 1D,V 2D,V 3D. The testing results are as follows.

For case (i) of testing a linear VAR, we reject the null hypothesis of a linear
VAR model for all s = 1, 6, 12, and 24 at the 5% level based on bootstrap critical
values (for all measures of velocity). For case (ii) of testing a nonparametric AR
model versus a nonparametric VAR model, the results are mixed. For s = 1, we
reject the null for all measures of velocity. For s = 6, we reject the null for V 1,

V 2, V 3, V 2D, and V 3D, but we do not reject the null with V 1D. For s = 12 and
s = 24, we reject the null for all measures of velocity. Thus, the in-sample testing
results suggest that there is significant nonlinear interaction between inflation and
money growth.

One difficulty with using a nonparametric estimation approach is that the inter-
pretation of the model is more difficult. We therefore consider next the forecasts
from a parametric nonlinear model, the threshold model.

Threshold autoregressive (TAR) models [see, e.g, Hansen (1996, 2000)] are
similar to the linear AR but allow for multiple regimes. In the leading case of two
regimes, the TAR model can be written

yt =
{

α0 + α1πt−s + α2πt−s−1 if qt−s ≥ c

β0 + β1πt−s + β2πt−s−1 if qt−s < c,
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where qt−s is a “switching variable” observable at the time a forecast is made,
equal to money growth or velocity, and c is the “threshold.” It is straightforward to
compute multivariate threshold forecasts by simply adding additional variables to
each equation. When q represents money growth, there is an intuitive interpretation
of the TAR model. During periods of high money growth (such as during the 1970s)
the money supply might be a dominant factor in the determination of the price
level, whereas in other periods money growth is only a minor factor in the deter-
mination of the price level. There is no reason to believe that inflation will behave
in the same way across the two regimes. When q represents velocity, a threshold
model can be motivated by observing that changes in velocity may be reflecting
changes in the inflation generating process itself, possibly due to differences in
the predictability of inflation in different regimes.

We have examined both full sample tests for threshold nonlinearity as well
as the out-of-sample forecast gains from using a threshold model. A number
of published papers have addressed the choice between in-sample testing and
out-of-sample forecast comparison when the goal is to evaluate theories (i.e., to
explain the data rather than just produce forecasts). Authors such as West (1996)
begin with the assumption that out-of-sample forecast evaluation is of interest,
without providing any underlying motivation for evaluating the forecasts, whereas
authors such as Kilian and Taylor (2003) and Clements et al. (2004) have provided
reasons why an estimated nonlinear model may not forecast as well as simple
benchmark models, even when the true data generating process is the nonlinear
model being used to compute forecasts. Potter (1999) gives reasons why it is
difficult to forecast using threshold models, because small errors in classification of
observations into regimes can dramatically increase the mean squared error of the
forecasts.

We do not take sides in this debate. Instead, we consider both approaches
to model evaluation. If in-sample tests uncover evidence favoring a nonlinear
specification, or if the out-of-sample forecasts of that specification are better than
those of a linear model, the nonlinear model deserves further consideration. The
main difficulty with tests for threshold nonlinearity is that the value of the threshold
is not identified under the null hypothesis. Hansen (1996, 2000) has provided a
simulation procedure for inference that controls the size of the test.

Our findings for the threshold model can be summarized as follows. In-sample
tests, following the strategy outlined by Hansen (1996), do not reject linearity
for any of the monetary aggregates, but do reject in all cases for each of the six
velocity variables. This is strong evidence that the large improvements in forecast
performance from including velocity in the nonparametric model (Tables 4 and 5)
is a result of a simple type of nonlinearity. In contrast, the threshold model seldom
yields better out-of-sample forecast performance than the linear AR model, even
when velocity is used as the switching variable. This might be explained by
problems with classifying observations into different regimes as described by
Potter (1999). Tables with detailed results can be obtained from the authors on
request.
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4. CONCLUSION

This paper has evaluated the performance of nonparametric forecasting models of
inflation. When relaxing assumptions about functional form, money growth and
velocity contain information about inflation for horizons as short as one month. It
is particularly interesting that the forecast improvement from including velocity is
so large—over 40% in some cases. We have found these results in spite of the fact
that we focus on the period from 1994 to 2002, a time period for which it is widely
believed that the demand for money was unstable. Our results also suggest that
the nonlinearity may be captured by a threshold model, even though the threshold
model often does not provide good forecasts, possibly because of difficulties in
assigning observations to one of the regimes. We conclude that arguments that
the Federal Reserve can learn nothing by monitoring the behavior of monetary
aggregates may be premature, as they are based on analysis of an overly restrictive
set of models.

As suggested in the Introduction, our findings of nonlinearity have important
implications for VAR models of monetary policy. More generally, our results
indicate that nonparametric methods are sometimes a useful tool for macroeco-
nomic forecasting, with the benefits of relaxing assumptions on functional form
substantially outweighing any efficiency losses. It would be worthwhile to see
whether our findings for inflation carry over to forecasts of other macroeconomic
variables. The univariate results of Stock and Watson (1999b) may provide a useful
starting point.

NOTES

1. See, for example, Leeper and Roush (2002, 2003), Stock and Watson (1999a), and the references
contained therein. Recent empirical papers on inflation forecasting include, among many others, Clark
and McCracken (in press), Gerlach and Svensson (2003), and Stock and Watson (2003). See these
papers for an extensive list of references.

2. See, for example, Diebold and Nason (1990). This is one of the few papers to have analyzed
nonparametric forecasts of macroeconomic variables, and the conclusion of the paper was actually that
nonparametric models are not useful. Note that we are referring specifically to nonparametric forecasts
here (as opposed to other types of nonlinear models).

3. For examples of in-sample nonlinearity tests, see, for example, Michael, Nobay, and Peel (1997),
Taylor (2001), and Hamilton (2003). Granger (2001) concludes that the evidence for nonlinearity in
macroeconomic data is weak, and finds it troubling that few of the papers he reviews look at forecast
performance. Diebold (1998) takes a more pessimistic view, arguing that nonlinearities “require large
amounts of high quality data” and that many nonlinearities “simply don’t appear to be important in
macroeconomics.” See Clements et al. (2004) for additional discussion. Chen, Racine, and Swanson
(2001) find some evidence of nonlinearity in U.S. inflation using a neural network-based semipara-
metric model with 1948 to 1995 quarterly data.

4. An alternative would be to select the lag length each time a forecast is made [see, e.g., Stock and
Watson (2003)]. Given that we use an increasing window of data for estimation, and that the number
of observations ranges from approximately 400 for the initial forecasts to 500 for the final forecast,
the optimal lag length choice will not change much through time.

5. It is known that the DM statistic does not have an asymptotic normal distribution when the
models are nested [see, e.g., Clark and McCracken (2001)]. We nevertheless view it to be both a useful
available alternative and better than not reporting any significance tests.
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6. Corradi and Swanson (2002, 2004) have developed a formal test for out-of-sample nonlinear
predictive accuracy, but their test does not allow for comparison of nonparametric models. Fan and
Li’s tests (1996) allow for comparison of nonparametric models, but they only consider the case of
in-sample tests.
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