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Relying only on the classical Bahadur–Rao approximation for large deviations (LDs) of
univariate sample means, we derive strong LD approximations for probabilities involving
two sets of sample means. The main result concerns the exact asymptotics (as n → ∞) of

P

(
max

i∈{1,...,dx}
X̄i,n � min

i∈{1,...,dy}
Ȳi,n

)
,

with the X̄i,ns (Ȳi,ns, respectively) denoting dx (dy) independent copies of sample means
associated with the random variable X (Y ). Assuming E X > E Y , this is a rare event
probability that vanishes essentially exponentially, but with an additional polynomial
term. We also point out how the probability of interest can be estimated using importance
sampling in a logarithmically efficient way. To demonstrate the usefulness of the result, we
show how it can be applied to compare the order statistics of the sample means of the two
populations. This has various applications, for instance in queuing or packing problems.
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1. INTRODUCTION

Let the sequence (Xi)ni=1 ((Yi)ni=1, respectively) consist of i.i.d. samples, all of them dis-
tributed as the random variable X (Y , respectively); in addition, the sequences are assumed
to be mutually independent. In a broad range of applications including, for example, queuing
theory and finance, it is relevant to quantify the behavior of the probability, for n ∈ N,

α1(n) := P
(
X̄n � Ȳn

)
,

with X̄n and Ȳn denoting the sample averages

X̄n :=
1
n

n∑
j=1

Xj , Ȳn :=
1
n

n∑
j=1

Yj .

We assume throughout that EX > EY , which entails that α1(n) corresponds to a rare
event, and therefore vanishes as n grows large. Large deviation (LD) theorems such as
Cramér’s theorem (see, e.g., Dembo and Zeitouni [7]) provide asymptotic expressions that
capture the rough (i.e., logarithmic) asymptotics of probabilities of this form; in the situation
described above they identify a number I > 0, usually referred to as the decay rate, such
that

lim
n→∞

1
n

logα1(n) = −I. (1)

While such results are often useful, they may also turn out to be inaccurate; much informa-
tion on the asymptotic behavior of the probability can get lost when the logarithm of the
probability is considered rather than the probability itself. To illustrate, note that Eq. (1)
is valid if α1(n) behaves as (i) 109 · e−nI , (ii) n−100e−nI , or (iii) e

√
ne−nI , but obviously in

none of these cases the “näıve” approximation e−nI is accurate; see, for example, Mandjes
[12, p. 40] for a brief exposition on this. Approximations to the probability itself, rather
than its logarithm, are more scarce in the literature, and usually referred to as strong, sharp,
or exact LD results. An important result on exact LD asymptotics is due to Bahadur and
Rao [3]; under some conditions (including the requirement that X − Y has a finite moment
generating function (MGF) in a neighborhood of the origin), it states that α1(n) decays as
a product of a polynomial and an exponential factor, in that, as n→ ∞,

α1(n) ∼ C√
n
e−nI ,

for positive constants C and I (where f(n) ∼ g(n) denotes that f(n)/g(n) → 1 as n→ ∞).
A natural next question concerns the context in which there are d independent copies

of each of the sample means. More specifically, with X̄1,n up to X̄d,n (Ȳ1,n up to Ȳd,n, resp.)
being i.i.d. copies of X̄n (Ȳn, resp.), we wish to identify the exact asymptotics of

αd(n) := P (En) , with En :=
{

max
i∈{1,...,d}

X̄i,n � min
i∈{1,...,d}

Ȳi,n

}
.

Some straightforward bounds on αd(n) can easily be found. It is for instance clear that
a necessary condition for En is that X̄i,n � Ȳi,n for all i ∈ {1, . . . , d}, and hence the inde-
pendence of the individual sample means implies the following obvious asymptotic upper
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bound (in self-evident notation):

αd(n) � Cd

nd/2
e−ndI , (2)

as n→ ∞ (with C and I as above). The main result of the present paper is that we show
that the bound given in Eq. (2) is not tight: we prove that, for some C̃d > 0, as n→ ∞,

αd(n) ∼ C̃d

nd−
1
2
e−ndI (3)

(where obviously C̃1 = C). The proof relies on careful use of the Bahadur–Rao approxima-
tion for all sample means involved.

The exact asymptotics of αd(n) do not follow from results that have appeared in the
literature before, as we point out now. We first observe that the setting introduced above
can be cast in a more general framework, involving d2 sample means. Indeed, with

Z̄n = (X̄1,n, . . . , X̄d,n, Ȳ1,n, . . . , Ȳd,n)T ∈ R2d,

we can write αd(n) = P(AZ̄n � 0), for an appropriately chosen d2 × 2d matrix A. Asymp-
totics of probabilities of the type P(AZ̄n � b) are derived (for b ∈ Rd

2
), under specific

conditions, by Chaganty and Sethuraman in [6]; they typically have the form of a product
of a constant, the polynomial function n−d

2/2, and a function that decays exponentially
in n. Later on in this paper, however, we will verify that for the event of our interest the
conditions imposed in Chaganty and Sethuraman [6] are not met. (Indeed, the polynomial
decay term in our asymptotic form (3) is n−d+1/2, rather than the n−d

2/2 that one would
obtain in the setting of Chaganty and Sethuraman [6].)

We extend the asymptotics of αd(n) in several ways. In the first place, in Theorem 1
we actually establish a slightly more general version of the above asymptotic equivalence,
in which the number of sample means X̄i,n, say dx, does not necessarily coincide with the
number of sample means Ȳi,n, say dy. This result is then easily extended to the case where we
consider sample means X̄i,pin and Ȳj,qjn, where pi n, qj n ∈ N; see Eq. (20). We also provide
an importance sampling procedure for estimating such probabilities fast and accurately, and
we prove the underlying algorithm is optimal in the sense that it is asymptotically efficient.

In addition, we apply our main result to derive probabilities of practical relevance.
More concretely, we obtain an asymptotic expression for the false rejection probability in
log-likelihood ratio testing, as well as for the probability of observing at least k ∈ {1, . . . , d}
unordered pairs (where the pair (i, j) is said to be unordered if X̄i,n � Ȳj,n). The latter
can be formulated in terms of a comparison of order statistics, and may, for example, be
understood as the probability that at least k jobs cannot be served, or that at least k items
cannot be packed.

The paper is organized as follows. In Section 2, we recall some preliminaries (in par-
ticular the Bahadur–Rao result) and introduce our notation. Section 3 provides the decay
rate of αd(n), and we explain why this decay rate cannot be obtained from Chaganty and
Sethuraman [6]. The result is illustrated by numerical examples, and in this context we also
devise an efficient simulation procedure. In Section 4, we apply our main result to compare
the order statistics of the sample means, again illustrated by an example. We conclude in
Section 5.
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2. PRELIMINARIES AND NOTATION

In this section, we first recall the Bahadur–Rao result and its assumptions. We then describe
our setting, as was discussed in the Introduction, more formally.

2.1. Bahadur–Rao Result

Let (Zi)ni=1 be a sequence of i.i.d. random variables, distributed as a generic random vari-
able Z. Our results correspond to the light-tailed regime, as formalized in the following
assumption.

A1 The MGF Mz(θ) = E eθZ is finite in an open set containing the origin.

We now define the Legendre transform (also referred to as the Legendre–Fenchel trans-
form, or the convex conjugate) of the logarithm of the MGF. With Λz(θ) := logMz(θ)
denoting the logarithmic MGF (cumulant generating function), we define

Iz(a) := sup
θ∈R

[θa− Λz(θ)] .

A2 The optimizing θ in the definition of Iz(a) exists (and is denoted by θz(a)).

It is well known (Lemma 2.2.5 in Dembo and Zeitouni [7]) that if a > EZ, then
θz(a) > 0; likewise, if a < EZ, then θz(a) < 0. Furthermore, the optimizing θz(a) is eas-
ily seen to satisfy I ′z(a) = θz(a) as well as Λ′(θ) = a. These facts we use repeatedly
later on.

We now consider the sample mean Z̄n := n−1
∑n
i=1 Zi. We fix an a > EZ. The

Bahadur–Rao result states that under assumptions A1–A2, for some positive and finite
constant Cz(a), as n→ ∞,

P(Z̄n � a)
√
n enIz(a) → Cz(a); (4)

see, for example, Theorem 3.7.4 in Dembo and Zeitouni [7]. The precise form of Cz(a)
depends on whether Z corresponds to a non-lattice or a lattice random variable. In this
paper, we focus on the non-lattice case, in which

Cz(a) =
1

θz(a)
√

2πΛ′′
z (θz(a))

.

The original result of Bahadur and Rao [3] on deviations of the sample mean has been
extended in several ways. Notably, there are local versions of it by Petrov [13], as well as
results on the uniformity of the convergence by Höglund [10]. A version not necessarily
requiring the i.i.d. assumption has been proven by Chaganty and Sethuraman in [5]. This
result was further extended into a multi-dimensional context by the same authors [6]: there
exact asymptotics are established of the probability that a vector of sample means is in a
given rectangular set. Further extensions of Chaganty and Sethuraman [6] are found, for
example, in Andriani and Baldi [1], and Iltis [11]; there the set of interest is not necessarily
rectangular, but can have a more general shape.

As pointed out in the Introduction, the rare event studied in this paper can be rewritten
in terms of a vector of sample means attaining a value in a given rectangular set, and it
may therefore seem that we can use the results from Chaganty and Sethuraman [6]. In
Section 3.2, however, we show that in our setting the assumptions imposed in Chaganty
and Sethuraman [6] are not satisfied.
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2.2. Our Model

We now define the setup considered in our main result (stated and proved in the next
section). We let (Xi,j)nj=1 (with i ∈ {1, . . . , dx}) be independent sequences of i.i.d. random
variables Xi,j , all of them distributed as the generic random variable X. Similarly, for i ∈
{1, . . . , dy} we define the i.i.d. sequences (Yi,j)nj=1 with Yi,j ∼ Y . All sequences are assumed
to be mutually independent.

Define the sample averages

X̄i,n :=
1
n

n∑
j=1

Xi,j , i ∈ {1, . . . , dx}, Ȳi,n :=
1
n

n∑
j=1

Yi,j , j ∈ {1, . . . , dy},

where we assume EX > EY . Let Mx(θ) := EeθX and My(θ) := EeθY denote the MGF of
X and Y , respectively, and Λx(θ) := logMx(θ) and Λy(θ) := logMy(θ) the corresponding
logarithmic MGF. Assume that A1–A2 are fulfilled for X and Y .

As indicated previously, in this paper we focus on the non-lattice case, and more
specifically, on continuous random variables. We discuss this assumption in Section 3.1.

A3 The distributions of the random variables X and Y are continuous.

We now introduce a number of functions and quantities that are useful in Section 3. In
the first place it turns out to be convenient to define

adx,dy
:= arg mina∈R Jdx,dy

(a) =: a�, Jdx,dy
(a) := dx Ix(a) + dy Iy(a) =: J(a). (5)

Note that adx,dy
is guaranteed to exist due to the strong convexity of the Legendre trans-

forms (this is Exercise 2.2.24 in Dembo and Zeitouni [7]), and can be seen to lie between
EY and EX. Note that since a� minimizes J(a�), it satisfies

dyθy(a�) = dyI
′
y(a

�) = −dxI ′x(a�) = −dxθx(a�), (6)

where I ′x(a
�) < 0 and I ′y(a

�) > 0, as a consequence of EY < a� < EX; this “symmetry” will
be useful, particularly in Section 3.2. In addition, we will need the function

Kdx,dy
(a) :=

(− Cx(a)
)dx

Cy(a)dy dyI
′
y(a) =: K(a),

with Cx(a) and Cy(a) as defined in Section 2.1. Note here that Cx(a) < 0 and Cy(a) > 0;
to see this, bear in mind that θ−x(−a) = −θx(a).

For our exact asymptotics to hold, we further impose the following regularity condition.

A4 Kdx,dy
(a) is continuous in a�, and Cx or Cy are differentiable in a neighborhood

of a�.

3. EXACT ASYMPTOTICS

In this section, we provide in Theorem 1 the strong LD approximation of

αdx,dy
(n) := P (En) , with En :=

{
max

i∈{1,...,dx}
X̄i,n � min

i∈{1,...,dy}
Ȳi,n

}
.

This means that our objective is to identify an explicit function f(n) such that αdx,dy
(n) ∼

f(n) as n→ ∞; we say that we thus find the exact asymptotics of αdx,dy
(n).

https://doi.org/10.1017/S0269964816000541 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000541


212 J. Kuhn, M. Mandjes and T. Taimre

The result and its proof are presented in Section 3.1. In Section 3.2, we explain why
this result cannot be obtained using the seemingly sufficiently general result stated in
Theorem 3.4 in Chaganty and Sethuraman [6]. In Section 3.3, we provide two numerical
examples featuring normal and exponential random variables, and point out how αdx,dy

(n)
can be estimated efficiently relying on the importance sampling simulation methodology.

3.1. Main Result

We first state the main result in Theorem 1. It says that αdx,dy
(n) decays (roughly) exponen-

tially, where the decay rate is given by J(a�) (with a� as defined in Eq. (5)). The polynomial
term is of the power −(dx + dy)/2 + 1/2. Note that Theorem 1 implies that the logarithmic
asymptotics for αdx,dy

(n) are given by

lim
n→∞

1
n

logαdx,dy
(n) = J(a�),

in line with the LD principle established in Theorem 2.3 in Chaganty [4].

Theorem 1: Suppose that X and Y fulfil A1–A3, and in addition A4 applies. Then,

lim
n→∞αdx,dy

(n) enJ(a�) n(dx+dy)/2−1/2 = K(a�)

√
2π

J ′′(a�)
. (7)

Proof: Assume first that Cy is differentiable (which we can do, due to A4). Then our
starting point is the obvious identity (that is due to conditional independence)

αdx,dy
(n) =

∫ ∞

−∞

(
P
(
Ȳ1,n � a

))dy
P

(
max

i∈{1,...,dx}
X̄i,n ∈ da

)
. (8)

If instead Cx is differentiable, we can start from

αdx,dy
(n) =

∫ ∞

−∞

(
P
(
X̄1,n � a

))dx
P

(
min

i∈{1,...,dy}
Ȳi,n ∈ da

)
,

then proceed analogously. We prove a lower and an upper bound of Eq. (8), which
asymptotically coincide.

Lower bound : The first step is to just consider the contribution of a ∈ (a� − ε, a� + ε)
in Eq. (8), where we choose ε such that (a� − ε, a� + ε) is fully covered in the interval
(EY,EX). The Bahadur–Rao result [3], which holds due to A1–A2, entails that for any
δ > 0 there is an n0 such that αdx,dy

(n) majorizes for any n ≥ n0,

(1 − δ)
∫ a�+ε

a�−ε

(
Cy(a)√

n
e−nIy(a)

)dy

P

(
max

i∈{1,...,dx}
X̄i,n ∈ da

)
; (9)

recall that the convergence in the Bahadur–Rao result holds uniformly (Höglund [10], Petrov
[13]). We proceed by applying integration by parts. To this end, first define

g(a, n) := (1 − δ)
(
Cy(a)√

n
e−nIy(a)

)dy

P

(
max

i∈{1,...,dx}
X̄i,n � a

)

∼ (1 − δ)
(
Cy(a)√

n
e−nIy(a)

)dy
(
−Cx(a)√

n
e−nIx(a)

)dx

;

where the asymptotic equality “∼” again follows from the Bahadur–Rao result.
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Applying integration by parts, we find that Expression (9) asymptotically equals the
sum of three terms:

− (1 − δ)
∫ a�+ε

a�−ε

(
−Cx(a)√

n
e−nIx(a)

)dx

dy

×
(
Cy(a)dy−1C ′

y(a) − nCy(a)dyI ′y(a)
ndy/2

)
e−ndyIy(a)da+ g(a� + ε, n) − g(a� − ε, n).

(10)

Recall that by Lemma 1.2.15 in Dembo and Zeitouni [7] the decay rate of the sum of three
terms equals the largest of the decay rates that correspond to the individual terms. By
definition of a� and the function J(·), for any ε > 0,

lim
n→∞

1
n

log g(a� ± ε, n) < −J(a�); (11)

later on it turns out that the first term in (10) has decay rate −J(a�), and hence this means
that the second and third term can be asymptotically neglected.

We therefore focus on the first term in (10), which can be checked to be asymptotically
equal to

(1 − δ)
∫ a�+ε

a�−ε

(− Cx(a)
)dx

Cy(a)dy

n(dx+dy)/2−1
dyI

′
y(a) e

−nJ(a)da.

Now define the convex functions hx(a) := Ix(a) − Ix(a�) and hy(a) := Iy(a) − Iy(a�), which
both equal 0 at a�. We thus find, for n sufficiently large,

αdx,dy
(n) enJ(a�) � (1 − δ)

∫ a�+ε

a�−ε

(− Cx(a)
)dx

Cy(a)dy

n(dx+dy)/2−1
dyI

′
y(a) e

−n
[
dxhx(a)+dyhy(a)

]
da.

(12)
We now study dxhx(a) + dyhy(a) around a = a�. Setting up a Taylor expansion of J(a)
around a�, we can find a positive function ψ(a) = o(a2), such that

dxhx(a) + dyhy(a) � 1
2
J ′′(a�)(a− a�)2 + ψ(a− a�), J ′′(a�) :=

d2

da2
J(a)

∣∣∣∣
a=a�

> 0,

(13)
where we used that J(a) is convex and minimal at a�. Defining

κ(a�, ε) := inf
a∈(a�−ε,a�+ε)

Kdx,dy
(a) = inf

a∈(a�−ε,a�+ε)

(− Cx(a)
)dx

Cy(a)dy dyI
′
y(a)

and applying the above upper bound (13) on dxhx(a) + dyhy(a), it follows that the right-
hand side of (12) majorizes

1 − δ

n(dx+dy)/2−1
κ(a�, ε)

∫ ε

−ε
e−n[ 12J

′′(a�)a2+ψ(a)]da. (14)

To further evaluate the integral in (14), we now apply the transformation b =
√
nJ ′′(a�) a

(such that db =
√
nJ ′′(a�) da), so that Expression (14) reads

1 − δ

n(dx+dy)/2−1/2

κ(a�, ε)√
J ′′(a�)

∫ ε
√
nJ ′′(a�)

−ε
√
nJ ′′(a�)

e−b
2/2−nψ(b/

√
nJ ′′(a�))db.
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As n→ ∞, relying on “dominated convergence”, and recalling that ψ(a) = o(a2), the
integral in the previous display converges to a constant:

∫ ε
√
nJ ′′(a�)

−ε
√
nJ ′′(a�)

e−b
2/2−nψ(b/

√
nJ ′′(a�))db→

∫ ∞

−∞
e−b

2/2db =
√

2π.

Combining this with (12), we have thus found the asymptotic lower bound, as n→ ∞,

lim inf
n→∞ αdx,dy

(n) enJ(a�) n(dx+dy−1)/2 � (1 − δ)κ(a�, ε)

√
2π

J ′′(a�)
.

Recall that δ > 0 and ε > 0 were chosen arbitrarily. We thus obtain the lower bound: by
letting δ ↓ 0 and ε ↓ 0,

lim inf
n→∞ αdx,dy

(n) enJ(a�) n(dx+dy−1)/2 � K(a�)

√
2π

J ′′(a�)
, (15)

where K(a�) := limε→0 κ(a�, ε) (where we use A4).

Upper bound : The upper bound follows by showing that in Eq. (8) the contributions cor-
responding to a � a� − ε (say α−

dx,dy
(n)) and a � a� + ε (say α+

dx,dy
(n)) are asymptotically

negligible; the contribution corresponding to the interval (a� − ε, a� + ε) (say α◦
dx,dy

(n)) can
be analyzed as in the lower bound, in that it can be verified that, under the assumptions
imposed,

lim sup
n→∞

α◦
dx,dy

(n) enJ(a�) n(dx+dy−1)/2 � K(a�)

√
2π

J ′′(a�)
.

Let us focus on α−
dx,dy

(n), that is, the contribution corresponding to (−∞, a� − ε] (as the
contribution due to the interval [a� + ε,∞) can be dealt with precisely analogously); our
objective is to prove that its exponential decay rate is strictly smaller than −J(a�). For all
δ > 0 we can find an n0 such that for n � n0, α−

dx,dy
(n) is majorized by

(1 + δ)
∫ EY

−∞
P

(
max

i∈{1,...,dx}
X̄i,n ∈ da

)
+ (1 + δ)

∫ a�−ε

EY

e−ndyIy(a) P

(
max

i∈{1,...,dx}
X̄i,n ∈ da

)
;

(16)

here a Chernoff bound argument is used in the second probability.
We start by considering the first term in (16). Suppressing the factor (1 + δ) for the

moment, it can be written as

P

(
max

i∈{1,...,dx}
X̄i,n � EY

)
=
(
P
(
X̄i,n � EY

))dx � e−ndxIx(EY ).

Now observe that

dxIx(EY ) = dxIx(EY ) + dyIy(EY ) > dxIx(a�) + dyIy(a�) = J(a�).

We conclude that the decay rate of the first term of (16) is strictly smaller than −J(a�).
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We now focus on the second term in (16). Using integration by parts, we obtain that
this is smaller than

(1 + δ)

[
e−ndyIy(a�−ε)P

(
X̄1,n � a� − ε

)dx +
∫ a�−ε

EY

ndyI
′
y(a)e

−ndyIy(a)P
(
X̄1,n � a

)dx
da

]
.

(17)

Since the event {X̄1,n � a} is rare for a � a� − ε < EX, we can apply the Bahadur–Rao
result to P(X̄1,n � a� − ε)dx . Then, for large n, the first term in (17) behaves as

e−ndyIy(a�−ε)
(−Cx(a� − ε)√

n
e−nIx(a�−ε)

)dx

= e−nJ(a�−ε)ndx/2(−Cx(a� − ε))dx .

Taking the logarithm and dividing by n we see that for large n the decay rate is −J(a∗ − ε),
which is smaller than −J(a�).

Now consider the second term in (17), which is asymptotically equal to∫ a�−ε

EY

n1−dx/2dyI
′
y(a)

(− Cx(a)
)dx

e−nJ(a)da. (18)

Since the Legendre transform J(·) is convex, it follows that J(a) � J ′(a� − ε)(a− a� + ε) +
J(a� − ε) for any a, and thus (18) is at most

e−nJ(a�−ε)
∫ a�−ε

EY

n1−dx/2dyI
′
y(a)

(− Cx(a)
)dx

e−nJ
′(a∗−ε)(a−a�+ε)da.

Taking the logarithm and dividing by n, we obtain that the decay rate of the second term
in (17) is majorized by

−J(a� − ε) + lim sup
n→∞

1
n

log
∫ a�−ε

EY

dyI
′
y(a)

(− Cx(a)
)dx

e−nJ
′(a∗−ε)(a−a�+ε)da.

Since J is convex and takes its minimum at a�, the derivate at a� − ε is negative:
J ′(a� − ε) < 0. On (−∞, a� − ε] we also have a− a� + ε � 0, and hence the exponential
is at most 1. Hence,

lim sup
n→∞

1
n

log
∫ a�−ε

EY

dyI
′
y(a)

(− Cx(a)
)dx

e−nJ
′(a�−ε)(a−a�+ε)da

� lim sup
n→∞

1
n

log
∫ a�−ε

EY

dyI
′
y(a)

(− Cx(a)
)dx

da = 0.

We conclude that the decay rate of the second term in (17) is smaller than −J(a� − ε).
Combining the above findings, we have established that the asymptotic exponential

decay rate of α−
dx,dy

(n) is strictly smaller than −J(a�) (i.e., the decay rate of α◦
dx,dy

(n)).
As we mentioned above, an analogous procedure can be followed for the probability

α+
dx,dy

(n). Combining all the above elements, it now follows that an asymptotic upper
bound on αdx,dy

(n) is given by

lim sup
n→∞

αdx,dy
(n) enJ(a�) n(dx+dy−1)/2 � K(a�)

√
2π

J ′′(a�)
. (19)

The lower bound (15) and the upper bound (19) together yield the desired result (7). �
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We focus here on continuous random variables (see A3) because it is otherwise not
clear that a� as defined in (5) is in the support of X̄i,n and Ȳj,n, where the latter quantities
depend on n. This, however, is needed to ensure that the lower bound (9) is non-trivial.
Note that the result can be expected to hold more generally; clearly the random variables
do not need to be continuous everywhere, it is sufficient to assume that X̄i,n and Ȳi,n are
continuous in a neighborhood of a�.

Moreover, the result can easily be adapted to the situation in which the individual
sample means correspond to different numbers of samples. We find that, for pin, qin ∈ N,
as n→ ∞,

P

(
max

i∈{1,...,dx}
X̄i,npi

� min
i∈{1,...,dy}

Ȳi,nqi

)
(20)

∼ (−Cx(a�))dx Cy(a�)dy

n(dx+dy−1)/2

q̄∏dx

i=1

√
pi
∏dy

j=1
√
qj
I ′y(a

�)
√

π

J ′′̄
p,q̄(a�)

e−nJp̄,q̄(a�),

where now a� = arg mina Jp̄,q̄(a) with p̄ :=
∑dx

i=1 pi, and q̄ :=
∑dy

i=1 qi. This more general
asymptotic relation may be useful in applications, for example those we mention in Section 4.

3.2. Comparison with Earlier Results

In this subsection, we compare the main result, as derived in the previous section, with
related results from the literature. If dx = dy = 1, then the asymptotics of (3) could also be
obtained by applying the Bahadur–Rao result from [3] directly. Therefore, we first verify
that indeed our expression coincides with that of Bahadur and Rao in this case.

As mentioned earlier, the event of interest can be written in terms of dxdy inequalities
involving the sample means X̄i,n and Ȳj,n, which suggests that we can analyze the prob-
ability αdx,dy

(n) using the results from Chaganty and Sethuraman [6]. In case dx > 1 and
dy > 1, however, we show that one of the conditions imposed in Chaganty and Sethuraman
[6] is not fulfilled, entailing that our result is thus new for this case. (If either dx = 1 or
dy = 1, then the result from Chaganty and Sethuraman [6] does apply.)

The case dx = dy = 1. Consider first the case where d := dx = dy = 1. Define the sam-
ple mean Z̄n := n−1

∑n
j=1(Yj −Xj), and note that from the Bahadur–Rao approximation

stated in (4) we have

α1,1(n) = P
(
Z̄n � 0

) ∼ Cz(0)√
n
e−nIz(0). (21)

In order to compare this with Eq. (7), we first check that θz(0) = θy(a�) = −θx(a�),
where the latter equality holds by (6). We thus have that θy(a�) solves a� − Λ′

y(θ) = 0
as well as −a� + Λ′

x(−θ) = 0. In conclusion, θy(a�) is the unique solution to Λ′
z(θ) =

Λ′
y(θ) − Λ′

x(−θ) = 0, and hence θy(a�) = θz(0). With this relationship it is now readily
checked that J(a�) = Iz(0). Note that

J ′′(a) = a
[
θ′′x(a) + θ′′y (a)

]
+ 2

[
θ′x(a) + θ′y(a)

]
− [

θ′′x(a)Λ
′′
x

(
θx(a)

)
+ θ′′y (a)Λ

′′
y

(
θy(a)

)
+ θ′x(a)

2Λ′′
x

(
θx(a)

)
+ θ′y(a)

2Λy
(
θy(a)

)]
.

Because θ′(a) = 1/Λ′′(θ(a)) and Λ′(θ(a)) = a, this reduces to

J ′′(a) =
1

Λ′′
x

(
θx(a)

) +
1

Λ′′
y

(
θy(a)

) .
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We then obtain

K(a�)

√
2π

J ′′(a�)
= − 1

θx(a�)
√

2πΛ′′
x

(
θx(a�)

) 1

θy(a�)
√

2πΛ′′
y

(
θy(a�)

)θy(a�)
√

2π
J ′′(a�)

=
1

θy(a�)
√

2π
[
Λ′′
x

(
θx(a�)

)
+ Λ′′

y

(
θy(a�)

)] = Cz(0).

Thus, we conclude that Eq. (7) reduces to Eq. (21) if d = 1.

The case dx > 1 and dy > 1. Now we consider the case that both dx > 1 and dy > 1 and
show that our result does not fall in the framework of Chaganty and Sethuraman [6]. As was
already briefly pointed out in the Introduction, we can rewrite αdx,dy

(n) as P(AZ̄n � 0),
where

Z̄n = (X̄1,n, . . . , X̄dx,n, Ȳ1,n, . . . , Ȳdy,n)
T,

and A an appropriately chosen matrix of dimension dxdy × (dx + dy). In Theorem 3.4 in
Chaganty and Sethuraman [6], it is proved that, conditional on certain assumptions being
satisfied, for positive constants C and I,

P(AZ̄n � 0) ∼ C

n(dx dy)/2
e−nI .

In Theorem 1, we showed that the polynomial factor in the asymptotics is of the form
n−(dx+dy)/2+1/2 rather than n−(dx dy)/2; in this section, we show that this seeming incon-
sistency is due to the fact that Condition (B) in Chaganty and Sethuraman [6] is not met.
Observe that if dx = 1 or dy = 1 the powers match; we therefore consider the situation that
both dx and dy are strictly larger than 1.

Let us first define the multivariate cumulant function. To this end, we write W̄ij,n =
Ȳj,n − X̄i,n, with i ∈ {1, . . . , dx} and j ∈ {1, . . . , dy}; observe that the probability of our
interest equals P(W̄ n � 0), where W̄ n is the dxdy-vector with entries Wij,n. Then the
corresponding multivariate MGF is given by

M(θ) :=
dy∏
j=1

E

[
eYj

∑dx
i=1 θi,j

] dx∏
i=1

E

[
e−Xi

∑dy
j=1 θi,j

]
,

and hence the multivariate cumulant function equals

Λ(θ) := logM(θ) =
dy∑
j=1

Λy

(
dx∑
i=1

θi,j

)
+

dx∑
i=1

Λx

⎛⎝−
dy∑
i=1

θi,j

⎞⎠ .

Let θ� solve Λ′(θ) = 0; it is readily checked that all dx dy entries of θ� are equal (say, have
value τ), and solve the equation Λ′

y(dxτ) = Λ′
x(−dyτ). Then Condition (B) in Chaganty

and Sethuraman [6] states that the determinant of the Hessian of Λ(θ�) should be different
from 0. An elementary computation yields that the elements of this Hessian are given by,
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with k, k̄ ∈ {1, . . . , dx} and 
, 
̄ ∈ {1, . . . , dy},

∂2Λ(θ)
∂θk,�∂θk̄,�̄

= r�1{
 = 
̄} + sk1{k = k̄}, r� := Λ′′
y

(
dx∑
i=1

θi,�

)
, sk := Λ′′

x

⎛⎝−
dy∑
j=1

θk,j

⎞⎠ .

Let R(θ) := diag{r} and S(θ) := diag{s}; in addition, E is a dx × dx all-ones matrix, and
F a dy × dy all-ones matrix. Then we can write the Hessian compactly by

H(θ) = R(θ) ⊗ E + F ⊗ S(θ),

where ⊗ denotes the Kronecker product. Let ek be the kth dx-dimensional unit row vector
(i.e., ek ∈ Rdx such that the kth entry is 1 and all other entries 0). Likewise, f � denotes
the 
th dy-dimensional unit row vector. Then define, for arbitrary k 
= k̄ and 
 
= 
̄ (which
is possible as dx � 2 and dy � 2),

v := (ek ⊗ f �) − (ek ⊗ f �̄) − (ek̄ ⊗ f �) + (ek̄ ⊗ f �̄).

It is then an elementary computation to conclude that vH(θ�) = 0, and hence H(θ�)
is singular. We conclude that Condition (B) in Chaganty and Sethuraman [6] does not
apply.

The intuitive reason for the violation of the condition is that some of the dx dy restric-
tions are essentially redundant. For example, if dx = dy = 2, then Ȳ1,n − X̄1,n > 0 will
usually occur by a realization in which Ȳ1,n ≈ X̄1,n, and similarly for Ȳ1,n − X̄2,n > 0 and
Ȳ2,n − X̄1,n > 0. Thus, informally speaking, these three conditions boil down to requir-
ing that Ȳ1,n ≈ X̄1,n ≈ Ȳ2,n ≈ X̄2,n. As a consequence, the fourth constraint, that is,
Ȳ2,n − X̄2,n > 0, is already ensured to hold by the first three conditions with high likeli-
hood. With this line of reasoning, it also becomes intuitively clear that we should have
n−(dx+dy)/2+1/2 as a pre-factor, as we obtained in Eq. (7). Informally, Condition (B) in
Chaganty and Sethuraman [6] ensures that none of the restrictions imposed by W̄ n � 0 is
redundant.

The case dx = 1 or dy = 1. We finally show that in case dx = 1 or dy = 1 the result from
Chaganty and Sethuraman [6] does apply. This can be seen as follows. Let us assume that
dx = d ≥ 1 and dy = 1 (the opposite case works analogously). Then by Sylvester’s theorem
it follows that

|H(θ)| = |S(θ)| ∣∣I + S(θ)−1rE
∣∣ .

Note that S(θ)−1rE is a matrix with rows (r/sk, . . . , r/sk). Furthermore, |S(θ)| =
∏d
k=1 sk.

It can then be checked that

|H(θ)| =
∑
x∈χ

d∏
i=1

xi,

where χ denotes the set of all combinations of length d from {r, s1, . . . , sd} (hence, |χ| =
d+ 1). Now, inserting r = Λ′′

y(dτ) and sk = Λ′′
x(−τ), we obtain that the determinant of
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H(θ�) is non-zero:

|H(θ�)| = dΛ′′
x

(− τ
)d−1Λ′′

y

(
dτ
)

+ Λ′′
x

(− τ
)d
.

Invoking (6) we note that dτ = θy(a�) = −dθx(a�). Thus, the result from Chaganty and
Sethuraman [6] states that

αd,1(n) ∼ 1
(2πn)d/2

(
dΛ′′

x

(
θx(a�)

)d−1Λ′′
y

(
θy(a�)

)
+ Λ′′

x

(
θx(a�)

)d)−1/2

× e
n
[
dΛx

(
θx(a�)

)
+Λy

(
θy(a�)

)]
.

This can be checked to be equivalent to the expression given in Theorem 1, using that

J ′′
d,1(a

�) =
d

Λ′′
x(θx(a�))

+
1

Λ′′
y(θy(a�))

.

3.3. Examples and Importance Sampling

In this subsection, we work out two examples with Gaussian and exponentially distributed
random variables, respectively. In addition, we point out how to set up a provably asymp-
totically efficient importance sampling procedure for general random variables satisfying
A1 and A2.

1. Gaussian. In this example, we let X ∼ N (μx, σ2
x), Y ∼ N (μy, σ2

y) and fix n. We have

Λ−x(θ) = −θμx +
1
2
σ2
xθ

2,

so that θ−x(−a) = −(a− μx)/σ2
x = −θx(a). It follows directly that

I−x(−a) =
1
2

(
a− μx
σx

)2

= Ix(a).

A similar procedure can be followed for Y . Furthermore, note that J(a) = dxIx(a) +
dyIy(a) is minimized by

a� =
dxμxσ

2
y + dyμyσ

2
x

dxσ2
y + dyσ2

x

;

indeed, as we remarked earlier, this quantity lies in the interval (μy, μx). We thus
arrive at the following expression for the decay rate of αdx,dy

(n):

J(a�) =
dxdy

2
(μy − μx)2

dyσ2
x + dxσ2

y

.

For dx = dy = 1 and σx = σy this is just the Kullback–Leibler divergence between
X and Y . Moreover, note that

θ−x(−a�) = − dy(μy − μx)
dxσ2

y + dyσ2
x

, θy(a�) =
dx(μx − μy)
dxσ2

y + dyσ2
x

,

https://doi.org/10.1017/S0269964816000541 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000541


220 J. Kuhn, M. Mandjes and T. Taimre

and hence

−Cx(a�) = − dxσ
2
y + dyσ

2
x

dy(μy − μx)
√

2πσ2
x

, Cy(a�) =
dxσ

2
y + dyσ

2
x

dx(μx − μy)
√

2πσ2
y

(which can both be checked to be positive). With I ′y(a
�) = θy(a�), we can then

compute K(a�).
2. Exponential. The logarithmic MGF of an exponential random variable with parame-

ter λ is, for θ < λ, given by Λ(θ) = log λ− log(λ− θ), so that (with θ(a) = λ− 1/a,
assuming a 
= 0), I(a) = λa− 1 − log(λa). For exponential X and Y with λx < λy,
we thus have

J(a) = a (dxλx + dyλy) − (dx + dy)
(
log(a) + 1

)− dx log(λx) − dy log(λy),

which is minimal at

a� =
dx + dy

dxλx + dyλy
.

We obtain

θ−x(−a�) = −dy(λx − λy)
dx + dy

, θY (a�) =
dx(λy − λx)
dx + dy

(thus, indeed θ−x(−a�) < λx and θy(a�) < λy, and hence the MGFs are defined at
these points). We have

CX(a�) =
dxλx + dyλy√
2πdy(λx − λy)

, CY (a�) =
dxλx + dyλy√
2πdx(λy − λx)

and J(a�) = −(dx + dy) log(a�) − dx log(λx) − dy log(λy).

Our asymptotic results describe how αdx,dy
(n) behaves as n→ ∞, but do not provide

any error bound for a given n0 ∈ N. This explains the interest in devising efficient simulation
procedures. As is known from the literature (see Asmussen [2]), direct (näıve) procedures
do not work for small probabilities, as the number of experiments needed to obtain an
estimate with a given precision (defined as the ratio of the standard error of the estimate
and the estimate itself) is roughly inverse proportional to the probability to be estimated.
We describe here an importance sampling algorithm that resolves this issue.

Let fx(·) be the density of X, and fy(·) the density of Y . Now associate the alternative
probability measure Q with the system in which the Xi,k and Yj,� are sampled according to
the densities

gx(x) =
eθx(a�)x

Mx(θx(a�))
fx(x), gy(y) =

eθy(a�)y

My(θy(a�))
fy(y).

Recall that a� minimizes J(a), and therefore solves −dxθx(a) = dyθy(a) (where it is used
that I ′x(a) = θx(a) and I ′y(a) = θy(a)). It is readily checked that EX > EY implies that
θx(a) < 0 and θy(a) > 0.

The idea is to sample all Xi,k and Yj,� under the newly constructed measure Q, but to
weight the simulated output by a likelihood ratio (which can be interpreted as a Radon–
Nikodym derivative). We now point out how a single unbiased sample is drawn; to estimate
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the probability of interest reliably, the average of a number of such samples needs to be
taken. The usual change-of-measure argument entails that, in self-evident notation,

αdx,dy
(n) = EQ

[
L1{En}

]
, where L :=

(
dx∏
i=1

n∏
k=1

Lx(Xi,k)

)⎛⎝ dy∏
j=1

n∏
�=1

Ly(Yj,�)

⎞⎠ ,

with the “per-sample likelihood ratios” defined by

Lx(x) = Mx(θx(a�))e−θx(a�)x, Ly(y) = My(θy(a�))e−θy(a�)y.

We now analyze the variance performance of the resulting estimator. It is said (see, e.g.,
Asmussen and Glynn [2], Mandjes [12], Sadowsky and Bucklew, [14]) that the latter is
asymptotically efficient if it satisfies

lim sup
n→∞

1
n

log EQ(L2 1{En}) � lim sup
n→∞

2
n

log EQ(L1{En}) = −2J(a�).

To this end, we first rewrite EQ(L2 1{En}) as(
Mx(θ(a�))

)2ndx
(
My(θ(a�))

)2ndy
EQ

[
e−2θx(a�)

∑dx
i=1

∑n
k=1Xi,ke−2θy(a�)

∑dy
j=1

∑n
�=1 Yj,�1{En}

]
.

The next step is to bound, on the event En, the exponential term. To this end, note that,
on En, for all i ∈ {1, . . . , dx} and j ∈ {1, . . . , dy}, we have that

∑n
k=1 Yi,k �

∑n
�=1Xj,�.

Summing this inequality over all i and j and dividing by dxdy we obtain, on En,

1
dx

dx∑
i=1

n∑
k=1

Xi,k � 1
dy

dy∑
j=1

n∑
�=1

Yj,�.

It now follows that, recalling that −dxθx(a�) = dyθy(a�),

−θy(a�)
dy∑
i=1

n∑
k=1

Yi,k = −dyθy(a�) 1
dy

dy∑
i=1

n∑
k=1

Yi,k

� −dyθy(a�) 1
dx

dx∑
j=1

n∑
�=1

Xj,�

= dxθx(a�)
1
dx

dx∑
j=1

n∑
�=1

Xj,� = θx(a�)
dx∑
j=1

n∑
�=1

Xj,�,

from which we conclude that, for any n ∈ N,

EQ

[
e−2θx(a�)

∑dx
i=1

∑n
k=1Xi,ke−2θy(a�)

∑dy
j=1

∑n
�=1 Yj,�1{En}

]
� 1.

This yields the desired inequality:

lim sup
n→∞

1
n

log EQ

[
L2 1{En}

]
� 2dx Λx(θx(a�)) + 2dy Λy(θy(a�))

= −2a� [dxθx(a�) + dyθy(a�)] + 2dx Λx(θx(a�))

+ 2dy Λy(θy(a�))

= −2J(a�).

We have thus found the following result.
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(a) (b)

Figure 1. Ratio of the asymptotic expression (7) and simulated probabilities αdx,dy
(n).

The dotted horizontal line indicates a ratio of 1, (a) Gaussian random variables, μy = 1,
σx = σy = 2, (b) Exponential random variables, λx = 2.8.

Proposition 1: The measure Q yields an asymptotically efficient procedure for estimating
αdx,dy

(n).

In the remainder of this section, we examine the accuracy of the approximation by the
exact asymptotics of αdx,dy

(n). With the proposed importance sampling procedure, and
inserting the explicit expressions we found for Gaussian and exponential random variables,
we can compare the asymptotic formula given by Theorem 1 to the probabilities as estimated
by simulation. Some examples are provided in Figure 1. The two examples indicate that the
approximation tends to be more accurate if (i) dx and dy are smaller, or (ii) if the means of
X and Y differ more. The former could be a consequence of the additional approximation
steps we used compared to Bahadur and Rao in order to extend their result. The latter
may be due to the fact that in this case the event is more rare so that the applied LD
approximations are more accurate.

4. APPLICATIONS AND FURTHER REFINEMENTS

Motivated by specific practical applications, we now study two variants of our main result.

4.1. Probability of at Least One Sample Mean Pair not Being Ordered

It is directly seen that Theorem 1 allows us to conclude that

P

(
min

i∈{1,...,dx}
X̄i,n � max

i∈{1,...,dy}
Ȳi,n

)
∼

dx∑
i=1

dy∑
j=1

P
(
Ȳj,n − X̄i,n � 0

)
(22)

because the decay rate corresponding to events {Ȳj,n − X̄i,n � 0} is − infa J1,1(a), which is
larger than the rate functions corresponding to any number of intersections of such events
given that those correspond to infa Ji,j(a) for i+ j > 2. Then the asymptotic relation (22)
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follows from the inclusion–exclusion principle. It is thus evident that

P

(
min

i∈{1,...,dx}
X̄i,n � max

i∈{1,...,dy}
Ȳi,n

)
∼ dxdyP

(
X̄1,n � Ȳ1,n

)
∼ e−nJ1,1(a1,1)

1√
n
dxdyK1,1(a1,1)

√
2π

J ′′
1,1(a1,1)

.

This probability has applications in log-likelihood ratio testing. Note that log-likelihood
ratio test statistics take the form of a sample mean. Thus, the probability (22) may be
understood as the false classification probability for the problem of discriminating between
two populations X and Y .

For a more specific example, suppose dx signals are sent from an echo sounding system,
and in return dx + dy echoes are received, dy of which have to thus to be identified as
noise. If this echo sounding experiment is carried out n times, the probability of wrongly
discarding a signal as noise can be evaluated as a probability of the form (22).

If we relax the assumption that the distributions of X and Y are known (e.g., replace
the MGFs of X and Y by their maximum-likelihood estimators), one may also think of
applications in ordinal optimization problems such as stochastic bandit problems; see for
example, Glynn and Juneja [8,9].

4.2. Existence of at Least k Unordered Sample Mean Pairs

Denote the order statistics of the sample means of X and Y by X̄(i),n and Ȳ(j),n; we assume
that these order statistics have been put in decreasing order. We here focus on the evaluation
of the probability 1 − P(X̄(1),n > Ȳ(1),n, . . . , X̄(d),n > Ȳ(d),n), or, more generally (as we can
put k = 1)

βd,k(n) := P
(∃i ∈ {1, . . . , d− k + 1} : X̄(i),n � Ȳ(k+i−1),n

)
, (23)

which is the probability that for every bijection mapping the set of indices of X̄n to the
set of indices of Ȳn there exist at least k unordered pairs (the pair (i, j) is unordered if
X̄i,n � Ȳj,n).

For a potential application of this type of probability, think of the following packing
problem. We have d ships with n containers, and dnc items that need to be packed onto
these ships. We assume that the items are separated into d loads (e.g., they came from d
trucks) of n batches of c items. The expected capacity of each container is μx – the actual
capacity is random (e.g., it might be that the containers arrive more or less empty than
expected). The total observed capacity of ship i is nX̄i,n. The items have an expected size
of μy/c, so that each batch of c items has an expected size of μy. The total size of load j
is nȲj,n. After observing nX̄i,n and nȲj,n each of the d loads needs to be brought to a ship
and packed into the containers. In this case, the question of whether the full load can be
packed (if the batches are assigned carefully) boils down to whether or not there exists a
perfect matching of order statistics. More generally we can ask for the probability that at
least k loads cannot be packed, which is given by (23).

For another application, suppose that we want to assign memory space/server capacities
to serve d batches/queues of jobs. Suppose there are np ∈ N jobs in each batch. (As we
remarked in (20) it is easy to adapt our results for the case where one of the populations
has sample size pn instead of n.) The expected job size/duration is μy. The size of the
jobs in batch i amounts to npȲi,np. Each batch has to be assigned to one of d server pools,
each with n servers with expected capacity EX. The actual service capacity of server pool j
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amounts to nX̄j,n. Clearly a quantity of interest is of the form (23), which can be interpreted
as the probability that at least k job batches cannot be served.

The main result of this subsection is as follows. It states that the asymptotics of βd,k(n)
are essentially determined by those of αdx,dy

(n).

Proposition 2: Assume that A1–A4 hold, and in addition that i� defined by

i� := arg min
i∈{1,...,d−k+1}

Jd−i+1,k+i−1(Ai), (24)

with Ai := ad−i+1,k+i−1, is unique. Then,

βd,k(n) ∼
(

d
k + i� − 1

)(
d

d− i� + 1

)
αd−i�+1,k+i�−1(n). (25)

Proof: Define a� := Ai� . First, we note that we can write

P
(
X(i),n � Y(i+k−1),n

)
=
(

d
k + i− 1

)(
d

d− i+ 1

)
P

(
min

j∈{1,...,k+i−1}
Ȳj,n > max

j∈{i,...,d}
X̄j,n,

min
j∈{1,...,k+i−1}

Ȳj,n � max
j∈{k+i,...,d}

Ȳj,n, max
j∈{i,...,d}

X̄j,n � min
j∈{1,...,i−1}

X̄j,n

)
.

The probability on the right-hand side can be computed as∫ ∞

−∞

∫ ∞

a

P

(
max

j∈{k+i,...,d}
Ȳj,n � b

)
P

(
min

j∈{1,...,k+i−1}
Ȳj,n ∈ db

)
× P

(
max

j∈{1,...,i−1}
X̄j,n � a

)
P

(
max

j∈{i,...,d}
X̄j,n ∈ da

)
.

(26)

We again prove a lower and an upper bound, which asymptotically coincide.

Lower bound: A lower bound for (26) is given by∫ a�+ε

a�−ε

∫ a�+ε

a

P

(
max

j∈{k+i,...,d}
Ȳj,n � a� − ε

)
P

(
min

j∈{1,...,k+i−1}
Ȳj,n ∈ db

)
× P

(
max

j∈{1,...,i−1}
X̄j,n � a� + ε

)
P

(
max

j∈{i,...,d}
X̄j,n ∈ da

)
,

which asymptotically equals∫ a�+ε

a�−ε

∫ a�+ε

a

P

(
min

j∈{1,...,k+i−1}
Ȳj,n ∈ db

)
P

(
max

j∈{i,...,d}
X̄j,n ∈ da

)
.

This can be rewritten as∫ a�+ε

a�−ε
P

(
min

j∈{1,...,k+i−1}
Ȳj,n � a

)
P

(
max

j∈{i,...,d}
X̄j,n ∈ da

)

−
∫ a�+ε

a�−ε
P

(
min

j∈{1,...,k+i−1}
Ȳj,n � a� + ε

)
P

(
max

j∈{i,...,d}
X̄j,n ∈ da

)
.
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This lower bound holds for any i; we pick i = i�. The above expression is asymptotically
equal to, with d̄ := d− i� + 1 and k̄ := k + i� − 1,

αd̄,k̄(n) − Cy(a� + ε)k̄

nk̄/2
e−nk̄Iy(a�+ε)

×
[
Cx(a� − ε)d̄

nd̄/2
e−nd̄Ix(a�−ε) − Cx(a� + ε)d̄

nd̄/2
e−nd̄Ix(a�+ε)

]
= αd̄,k̄(n) − Cy(a� + ε)k̄

nk̄/2
e−nJd̄,k̄(a�+ε)

×
[
Cx(a� − ε)d̄

nd̄/2
end̄

[
Ix(a�+ε)−Ix(a�−ε)

]
− Cx(a� + ε)d̄

nd̄/2

]
,

where αd̄,k̄(n) is as in Section 3.
Recall that the exponential term in αd̄,k̄(n) is Jd̄,k̄(a�). Since a� minimizes Jd̄,k̄(a), we

have that exp(−nJd̄,k̄(a�)) asymptotically dominates exp(−nJd̄,k̄(a� + ε)). Furthermore,
recall that a� < EX, and therefore Ix(a� + ε) − Ix(a� − ε) < 0. We thus conclude that the
lower bound is asymptotically equal to αd̄,k̄(n).

Upper bound: We can simply replace probabilities in (26) by one to obtain that∫ ∞

−∞

∫ ∞

a

P

(
min

j∈{1,...,k+i−1}
Ȳj,n ∈ db

)
P

(
max

j∈{i,...,d}
X̄j,n ∈ da

)
is an upper bound for (26). Since this is equal to∫ ∞

−∞
P

(
min

j∈{1,...,k+i−1}
Ȳj,n � a

)
P

(
max

j∈{i,...,d}
X̄j,n ∈ da

)
,

the results of Section 3 state that an upper bound is given by αd−i+1,k+i−1(n), which thus
coincides with the lower bound. We thus find, asymptotically,

P
(
X(i),n � Y(k+i−1),n

) ∼ (
d

k + i− 1

)(
d

d− i+ 1

)
αd−i+1,k+i−1(n). (27)

It now follows that

βd,k(n) �
d−k+1∑
i=1

(
d

k + i− 1

)(
d

d− i+ 1

)
αd−i+1,k+i−1(n).

Asymptotically what matters is the dominating summand given by i� as defined in (24); as
n→ ∞ the other summands are asymptotically negligible (under the uniqueness assumption
that we imposed). Since every single summand is a lower bound for βd,k(n), we then have
the asymptotic relation (25). �

If there is no unique optimizer i�, we have proven the asymptotic upper bound

βd,k(n) �
∑
i∈I ∗

(
d

k + i− 1

)(
d

d− i+ 1

)
αd−i+1,k+i−1(n), (28)

where I ∗ denotes the set of optimizing i ∈ {1, . . . , d− k + 1}. Furthermore, every summand
of the right-hand side is an asymptotic lower bound.
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One may now wonder whether the upper bound in (28) is asymptotically tight. Observe
that the inequality in (28) is essentially a Bonferroni inequality, and one might expect that
probabilities of intersections of the corresponding events are asymptotically negligible, in
which case by the inclusion–exclusion principle the upper bound would be asymptotically
tight (similar to the argument we gave in Section 4.1). The following heuristic argument indi-
cates, however, that this reasoning is not valid in this case, and this is confirmed numerically
in the example provided below.

In our example, we consider the simplest case possible: we suppose that d = 2 and
k = 1. We define the events

Ei,j :=
{
X̄i,n � Ȳj,n

}
, Fi,j :=

{
X̄(i),n � Ȳ(j),n

}
,

where i, j ∈ {1, 2}.
We have

β2,1(n) = P (F1,1 ∪ F2,2) = P (F1,1) + P (F2,2) − P (F1,1 ∩ F2,2) .

It is directly verified that

P(E1,1 ∩ E1,2) = P(E2,1 ∩ E2,2), P(E1,1 ∩ E2,1) = P(E1,2 ∩ E2,2),

P(E1,1 ∩ E2,2) = P(E1,2 ∩ E2,1).

Furthermore, relying on arguments similar to those used in Section 3.2, it follows that some
events essentially imply each other, in that

P(E1,1 ∩ E2,1 ∩ E2,2) ≈ P(E1,1 ∩ E2,2), P(E1,2 ∩ E2,1 ∩ E2,2) ≈ P(E1,2 ∩ E2,1), . . .

and analogously for other probabilities of this form. Based on these findings, and applying
elementary set theory, we have that P(F1,1) + P(F2,2) behaves as[

2 P(E1,1 ∩E1,2) − P(E1,1 ∩ E2,2)
]
+
[
2 P(E1,1 ∩ E2,1) − P(E1,1 ∩ E2,2)

]
, (29)

whereas P(F1,1 ∩ F2,2) ≈ P(E1,1 ∩ E2,2). We conclude that this probability is thus not
negligible compared with (29), and as a consequence (28) is not asymptotically tight.

Gaussian example. We consider again the example with X and Y both being normally
distributed, as introduced in Section 3.3. First, assume that σx 
= σy. Define a differentiable
function h : R → R by

h(x) :=
1
2

(d− x+ 1)(k + x− 1)(μy − μx)2

(k + x− 1)σ2
x + (d− x+ 1)σ2

y

.

As can be checked by an explicit calculation, we have that h′′(x) < 0, and hence h(·) is
concave. Note that for i ∈ {1, . . . , d− k + 1} we have Jd−i+1,k+i−1(Ai) = h(i). We conclude
that Jd−i+1,k+i−1(Ai) is concave as a function of i ∈ {1, . . . , d− k + 1}, and thus takes
its minima at the boundaries, that is, for i ∈ {1, d− k + 1}. A straightforward calculation
reveals that Jd−i+1,k+i−1(Ai) is minimized at i� = 1, if σy > σx, and at i� = d− k + 1
otherwise.

Now consider the case σx = σy. Then the function h(·) simplifies:

Jd−i+1,k+i−1(Ai) =
(d− i+ 1)(k + i− 1)

2σ2

(μy − μx)2

d+ k
.
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Figure 2. Ratio of the asymptotic bounds (30) and simulated probabilities βd,k(n), where
d = 3, k = 2, for Gaussian random variables with μx = 1, μy = 0.8, σ = 2. The dotted
horizontal line indicates a ratio of 1.

As before, this concave function can attain its minimum value only at the boundary points
i ∈ {1, d− k + 1}, but note that at these points the function value is the same. Hence, from
(28) we have (

d
k

)
αd,k(n) � βd,k(n) �

(
d
k

)[
αd,k(n) + αk,d(n)

]
. (30)

Numerical experiments such as Figure 2 seem to confirm that these bounds are not tight,
as was argued earlier in this subsection.

5. CONCLUDING REMARKS

We have derived exact asymptotics for the rare event probability that all sample means of
a population Y exceed all sample means of an independent population X, while EX > EY .
The proof relies on Bahadur–Rao-type asymptotics that describe the tail distribution of
the sample mean of i.i.d. random variables. Our result is new: it seemingly fits in the
framework of Chaganty and Sethuraman [6], but careful inspection shows that the condi-
tions imposed in [6] are not met in our situation (and we do obtain a different asymptotic
form with the polynomial factor being n−d+1/2 rather than n−d

2/2). We also provide an
asymptotically efficient importance sampling procedure for estimating the probability of our
interest.

We then showed that this result yields an expression for the exact asymptotics of the
probability that there exists a sample mean from Y that exceeds a sample mean from X,
and pointed out the relevance in log-likelihood ratio testing. We also used our result to
derive the probability that there are at least k unordered sample means in every possible
matching of sample means between X and Y ; we explained that this probability may be of
practical interest for example in particular queuing or packing problems.
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