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The relaxation of certain time-evolution problems is investigated. As a conceptually
simple example, we study elastically deformable bodies that undergo martensitic
phase transformations. The movement of the phase boundaries is hindered by dry
friction. The fundamental problem is that the phase distribution forms a highly
oscillatory microstructure in space. Therefore, it is desirable to derive a
coarse-grained system that describes the e® ective properties. We introduce a concept
of relaxation of the evolution system and apply it to the case where only two phases
occur and the elastic energy is quadratic. Finally, we present a candidate for the
relaxation in the general case.

1. Introduction

We study rate-independent processes ³ : [0; T ] ! P , where (P ; D) is a complete
metric space, the set of possible states. The word `process’ here is used without
reference to its usage in the probabilistic literature. It denotes a function that maps
time into some metric space. Rate independence means that reparametrizations of
time do not change the evolution equation. Systems of that type arise as limit
problems in mechanics when the inertial forces can be neglected and the internal
friction generates hysteretic behaviour. In the simplest case, an admissible (de­ ned
later) and non-stationary rate-independent process satis­ es the ordinary di¬erential
equation

_³

j _³ j
(t) = ¡ V 0(t; ³ );

where V is a convex time-dependent potential. The time derivative occurs only
within a strong nonlinearity, hence standard methods can not be used to study exis-
tence, uniqueness and the qualitative behaviour of solutions. A detailed derivation
of the governing variational inequalities and discussion of mathematical results can
be found in [8] and [7]. An important application of the theory of rate-independent
processes are materials that can undergo martensitic phase transformations. They
constitute the ingredients for shape-memory alloys, where the friction of the phase
boundaries is the main source of dissipation and the material behaviour is strongly
hysteretic. Classical models for hysteretic behaviour, like the Preissach model, focus
on the description of uniaxial systems. The e¬ects of the evolution of the inho-
mogeneous internal ­ elds lead then to a complicated history dependence. In our
approach we track the change of the internal variables, memory operators are not
required. The advantage of the spatial approach (as opposed to memory models) is
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464 F. Theil

that three-dimensional e¬ects can be captured explicitly and methods from elastic-
ity theory apply. On the other hand, the rapidly ®uctuating internal ­ elds require
a homogenization procedure. In principle, both approaches are equivalent, since
the hysteresis operators can be understood as an ensemble of mechanical friction
elements coupled with springs.

In many important cases, the existence of admissible processes cannot be ex-
pected. The reason is that sequences of approximate solutions might not converge
within P . An example where this phenomenon occurs is the martensitic system.
There the approximate solutions oscillate rapidly in space and converge only weakly,
not strongly. To overcome this di¯ culty, we relax the problem in the sense that we
enlarge the state space P in such a way that we can ensure the existence of a limit
process. The fundamental problem of this approach is that one has to interpret
the generalized states appropriately, i.e. the generalized limit process should solve
a generalized evolution problem that is consistent with the primordial problem.

The purpose of this paper is to introduce a notion of consistency and show for a
special case of the martensitic system that the approach works.

In x 2, the model and the central existence result will be stated brie®y. The main
ingredients are two functionals, I : [0; T ] £P ! R> is the potential energy of
a state ³ 2 P at time t and D( ³ 1; ³ 2) (the distance between ³ 1 and ³ 2) is the
minimal dissipation that occurs when the state changes from ³ 1 to ³ 2. Examples
from the theory of martensitic phase transformations that ­ t into the framework
of the rate-independent model will be presented.

In x 3, we will de­ ne precisely when an extension (I ; D; P) of an unrelaxed prob-
lem (I p ; D p ; P p ) constitutes a relaxation. A central requirement is a sequence of
approximation operators Sk : P ! P p , which realize the values of the relaxed
functionals I and D, i.e.

lim
k ! 1

I p (Sk( ³ )) = I( ³ ) and lim
k ! 1

D p (Sk( ³ 1); Sk( ³ 2)) = D( ³ 1; ³ 2):

The main result of this paper is the proof that, in simple cases, a heuristically
derived model turns out to be a relaxed macroscopic model (theorem 3.6). The
proof relies heavily on a well-known result by Kohn in [4], where an explicit formula
for the quasiconvex envelope for a stored energy function with two quadratic wells is
derived. Another ingredient are H-measures, which were invented by Tartar in [10].
They describe the limit properties of quadratic quantities.

In x 4, we derive a uniqueness result for possible relaxations of the martensitic
system (theorem 4.2).

2. The rate-independent model

Let (P ; D) be a complete metric state space. We interpret D( ³ 1; ³ 2) as the minimal
dissipation necessary to transform a state ³ 1 into ³ 2. For every state ³ 2 P , the
potential energy at time t is denoted as I(t; ³ ). We assume that I is non-negative,
and I and @I=@t are jointly continuous in (t; ³ ). For a process ³ : [0; T ] ! P , we
de­ ne the total dissipation

VarD ( ³ ; 0; T ) = sup

½ NX

=̀ 1

D( ³ (t`¡1); ³ (t`)) j 0 = t0 < ¢ ¢ ¢ < tN = T

¾
:
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A state ³ 2 P is denoted as stable at time t if, for every ² 2 P , the inequality

I(t; ³ ) 6 I(t; ² ) + D( ³ ; ² ) (2.1)

is satis­ ed. A process ³ : [0; T ] ! P satis­ es the energy inequality if

E( ³ ) 6 0; (2.2)

where

E( ³ ) = I(T; ³ (T )) ¡ I(0; ³ (0)) + VarD ( ³ ; 0; T ) ¡
Z T

0

@tI(t; ³ (t)) dt (2.3)

holds.

Definition 2.1. A process ³ : [0; T ] ! P is admissible if it is stable for every
t 2 (0; T ] and the energy inequality (2.2) is satis­ ed.

Note that the energy inequality (2.2) implies that the variation of admissible pro-
cesses is bounded. Hence admissible processes are continuous except on a countable
set.

Remark 2.2.

(1) It can be shown that if P = Rd, D( ³ 1; ³ 2) = j³ 2 ¡ ³ 1j2 and the potential
energy I is smooth and convex, then every non-stationary admissible process
³ satis­ es the ordinary di¬erential equation

_³

j _³ j
(t) = ¡ @I

@³
(t; ³ ):

A collection of related results can be found in [7]. The non-smoothness, which
occurs when P has a boundary, makes a more detailed analysis necessary,
but until now this problem has not been resolved in a completely satisfactory
way. Since in our central example, the martensitic system, the presence of a
boundary is essential, we chose the weak formulation in de­ nition 2.1.

(2) All results that are derived in this work also hold if D is not symmetric.

(3) The de­ nition of admissible processes is invariant under reparametrizations
of time in the following sense. Let ³ : [0; T ] ! P be an admissible process
with respect to (I; D; P) and ’ : [0; T ] ! R a reparametrization of time. Then
³ ¯’¡1 is an admissible with respect to (~I; D; P), where ~I(t; ³ ) = I(’¡1(t); ³ ).

The existence result, which guarantees in the general case that for every initial
value ³ 0 2 P an admissible process ³ satisfying ³ jt = 0 = ³ 0 exists, is proven in [8]
and [7] for special cases. In the latter paper, a collection of uniqueness results can
also be found.

Theorem 2.3. Let X ¼ P be a separable Banach space so that

D( ³ 1; ³ 2) = k ³ 2 ¡ ³ 1k:

Assume that the following conditions hold.
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(i) Lower semicontinuity assumptions for I . For every t 2 [0; T ],

the functional I(t; ¢) is weakly lower semicontinuous

and the mapping ³ 7! @tI(t; ³ ) is weakly continuous in P.

¾
(2.4)

(ii) Compactness. For every r > 0, the intersection P \ fk xk 6 rg is a weakly
compact subset of X and, for every t 2 [0; T ], the set of stable states

S(t) =
\

² 2 P
f ³ 2 P j I(t; ³ ) 6 I(t; ² ) + D( ³ ; ² )g (2.5)

is weakly closed.

Then there exists, for every initial state ³ 0 2 P, an admissible process ³ : [0; T ] ! P ,
so that ³ jt = 0 = ³ 0.

Remark 2.4. The purpose of imbedding P into a Banach space X is to introduce
a Finsler structure F : P £ T P ! [0; 1) that is positively homogeneous (i.e.
F ( ³ ; ¶ ½ ) = ¶ F ( ³ ; ½ ) for all ½ 2 T ³ P , ¶ > 0) and convex. The problems that we are
dealing with in this work are basically only concerned with the length of paths, a
Riemannian metric tensor is not needed. For this reason, the framework of Finsler
manifolds (see [1, 6]) ­ ts exactly to our requirements. This remark is only for the
information of geometrically interested readers. We will not pursue the analogy any
further.

The weak closedness of P and (2.4) is needed to ensure the existence of solutions
to the incremental problem,

for given ³ 0 2 P and a time discretization 0 = t0 < ¢ ¢ ¢ < tN = T ,

­ nd, for ` = 1 : : : N , states ³ ` 2 P such that, for ­ xed ³ `¡1,

the energy sum I(t`; ³ `) + D( ³ `¡1; ³ `) is minimal.

9
=

; (IP)

The piecewise constant in the time-interpolating process

³ N(t) :=
N¡1X

` = 0

³ ` X [t`;t`+1)(t) if t 2 [0; T ); ³ N(T ) := ³ N ;

satis­ es the energy inequality. The proof of theorem 2.3 consists of showing that
this property is conserved and the stability is acquired as the ­ neness of the time
partition tends to zero.

The variational approach to get existence is closely related to De Giorgi’s notion of
minimizing movement (see [2,3] for an exposition in the context of mean-curvature
evolution).

2.1. Our central example: the martensitic system

We will demonstrate that the hysteretic behaviour associated to martensitic phase
transformations ­ ts into the framework of rate-independent processes. Let « » Rd

be the reference con­ guration of an elastically deformable body. For every point
x 2 « , the material is in one of n phases. The ith phase is identi­ ed with the ith
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unit vector ei of Rn. The evolution of the phase distribution within the reference
con­ guration is given by a mapping

³ p : [0; T ] £ « ! P p := fe1; : : : ; eng:

The superscript p indicates that only pure phase distributions (in contrast to phase
mixtures) are considered. The elastic properties of phase ei are determined by the
strain energy density function Wei

: Rd£d ! R> . We assume that, for every ei 2 P ,
the function Wei (¢) is quasiconvex, i.e.

8F 2 Rd£d; ’ 2 C 1
0 ([0; 1]d) :

Z

[0;1]d

Wei (F + r’(x)) dx > W (F ):

The set of kinematically admissible deformations is denoted as V » W 1;p( « ), where
W 1;p is the Sobolev space consisting of functions whose derivative is integrable to
the pth power. The system is driven by time-dependent external forces g : [0; T ] £
« ! Rd, which correspond to a continuous linear functional G 2 C1([0; T ]; V ¤ ).
The energy of a phase distribution ³ p : « ! P p = L1( « ; P p ) is de­ ned as

I p (t; ³ p ) = inf
u 2 V

µZ

«

W ³ p(t;x)(ru(x)) dx ¡ hG(t); ui
¶

: (2.6)

If appropriate growth conditions are met, the general theory implies that, for ­ xed
³ p , the in­ mum is in fact a minimum; this follows from the quasiconvexity of the
strain energy density functions Wei . For the dissipation function D p , we set

D p ( ³ p ; ² p ) =
nX

i;j

µij

Z

«

( ³ p (x) ¢ ei)( ²
p (x) ¢ ej) dx; (2.7)

where ei is the ith unit vector and the coe¯ cients satisfy µij = µji > 0 if i 6= j and
µii = 0.

3. Relaxation of rate-independent evolution problems

Clearly, the existence of theorem 2.3 cannot be applied to the martensitic system,
since, by the discreteness of the target space, P p is not weakly compact in L1( « ).
Therefore, the incremental problem can not be expected to have a solution. In this
section we show how the setting can be relaxed in a simple case in order to assure
existence of admissible processes. We ­ rst state our de­ nition of relaxation (de­ -
nition 3.1) and state some fundamental connections between alternative concepts
(proposition 3.3). Then we present a relaxation for a special case of the martensitic
system (theorem 3.6). This is the main result.

In the calculus of variations, the concept of relaxation basically consists of enlarg-
ing the search space and extending the energy functions to ensure the existence
of generalized solutions. The relation to the original unrelaxed problem is estab-
lished by showing that generalized states can be approximated by unrelaxed states
without increasing the energy. Our approach is an adaption of this concept to rate-
independent evolution problems.

Definition 3.1. A rate-independent evolution problem (I; D; P) is a relaxation of
(I p ; D p ; P p ) if the following three conditions are satis­ ed.
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(1) Extension. There exists a coarser (weak) topology on P so that P p is dense
in P and I and D extend I p and D p .

(3) Existence of solutions. For every initial state ³ 0 2 P , a relaxed admissible
process satisfying ³ jt= 0 = ³ 0 exists.

(3) Consistency. For every relaxed process ³ , there exists a recovery sequence
³ p

k : [0; T ] ! P p so that

³ p
k(t) * ³ (t) for a.e. t 2 [0; T ] as k ! 1; (3.1)

lim sup
k ! 1

E p ( ³ p
k) 6 E( ³ ): (3.2)

The idea behind the de­ nition can be formulated as follows. If (I; D; P) is a
relaxation, then for every admissible process ³ there exists a sequence of unrelaxed
processes Sk( ³ ) that acquires stability and dissipativity (the energy inequality) as
k ! 1. The last hypothesis of the de­ nition is particularly complicated to check
since it requires a speci­ cation of how to approximate relaxed processes with non-
relaxed processes. Of course, the most natural way to generate a relaxed process is
to approximate it pointwise in time, i.e. ³ p

k(t) does not depend on f³ (s) j s 6= tg.

Lemma 3.2. Let (I ; D; P) be a relaxation of (I p ; D p ; P p ) and Sk : P ! P p a
sequence of approximation operators so that, for every ³ ; ² 2 P, we have that

Sk( ³ ) * ³ as k ! 1; (3.3)

lim
k ! 1

I p (Sk( ³ )) = I( ³ ); (3.4)

lim
k ! 1

D p (Sk( ³ ); Sk( ² )) = D( ³ ; ² ):

Then there exists a piecewise constant in the time-interpolating recovery sequence.

Proof. The approximation operators can be extended easily from states to pro-
cesses. For an arbitrary process ³ , we set ³ k(t) = Sk( ³ N(t)), where ³ N is the piece-
wise constant interpolate

³ N(t) =

8
<

:
³ (t`¡1); t 2 [t`¡1; t`); t` =

`

N
T; ` = 1; : : : ; N;

³ (T ); t = T;

and N tends slowly enough to in­ nity as k ! 1 in order to ensure the convergence
of the dissipation. Hence we have that

lim
k ! 1

VarD p (Sk( ³ N); 0; T ) = VarD ( ³ ; 0; T ):

For the term Z

[0;T ]

@I

@t
(t; Sk( ³ N (t))) dt;
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we observe that

lim
k ! 1

Z

[0;T ]

@I

@t
(t; Sk( ³ N (t))) dt

= lim
k ! 1

N¡1X

` = 0

Z

[t` ;t`+1)

@I

@t
(t; Sk( ³ (t`))) dt

= lim
k ! 1

N¡1X

` = 0

µZ

[t` ;t`+1)

@I

@t
(t`; Sk( ³ (t`))) dt + o(jt` + 1 ¡ t`j)

¶
:

The error term vanishes as N ! 1 and we are left with the Riemann sum. Since
t 7! (@I=@t)(t; ³ (t)) has bounded variation, the Riemann sum converges to the cor-
rect limit if N tends to in­ nity slowly enough. The other terms of the energy
inequality converge by (3.3), (2.4) and (3.4).

3.1. Relation between the time continuous relaxation concept and
variational approaches

The notion of relaxation outlined in de­ nition 3.1 does not involve minimiz-
ing sequences. On the other hand, the construction of admissible processes via
minimizing a certain energy demands a generalization of the concept of minimiz-
ing sequences. In order to approximate admissible processes, we seek sequences
of processes that are piecewise constant in time and satisfy in the limit the two
requirements: stability inequality (2.1) and energy inequality (2.2). The approach
that is most widely used is to solve an incremental problem (IP). A su¯ cient con-
dition for the existence of minimizers is that for every t 2 [0; T ], the functional
( ³ ; ² ) 7! J(t; ³ ; ² ) = I(t; ³ )+D( ² ; ³ ) is lower semicontinuous with respect to a topol-
ogy that ensures compactness of bounded sequences. For simplicity, this topology
will be denoted as a weak topology.

The martensitic system provides a good example where this approach requires
relaxation. It is not di¯ cult to ­ nd two strain-energy density functions, We1 (¢)
and We2 (¢), and a dissipation coe¯ cient µ > 0, so that the homogeneous initial
distribution ³ 0 ² e1 is unstable with respect to a phase mixture, i.e. no minimizing
sequence of

³ p 7! inf
u 2 W 1;p([0;1]d)

Z

[0;1]d

W ³ p(x)(ru) dx + µ ¢ measfx 2 « j ³ p (x) 6= e1g

converges strongly in L1( « ). This implies that the weak limit is not a charac-
teristic function. For this reason, Mielke et al . developed in [8] a relaxation con-
cept that relies on the structure of the incremental problem. Given a partition
0 = t0 < ¢ ¢ ¢ < tN = T and an initial state ³ p

0 2 P p ,

­ nd, for every " > 0, almost minimal states ³ p
1;"; : : : ; ³ p

N;" 2 P p

such that

I p (t`; ³ p
`;") + D p ( ³ p

`¡1;"; ³ p
`;")

6 " + inffI p (t`; ² p ) + D p ( ³ p
`¡1;"; ² p ) : ² p 2 P p g:

9
>>>>=

>>>>;

((AIP)")
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A similar approach has been used by many other authors, mainly in the context
of steepest decent dynamics. In [9], an e¬ective evolution model is derived for a
certain limit of the Hele-Shaw cell. This is very close to the line of attack we take.

Our aim is now to clarify the relation between our concept of relaxation and the
approximate incremental problem. On the one hand, the approximate incremental
problem provides very good candidates for the recovery sequence Sk( ³ ) without
specifying P , i.e. (3.2) is satis­ ed, only (3.1) is missing. On the other hand, if we
have a relaxation, then the recovery sequences are automatically solutions to the
approximate incremental problem.

Proposition 3.3. Let (I p ; D p ; P p ) be an unrelaxed rate-independent evolution
problem. Then, for every ³ p

0 2 P p , there exists a solution ( ³ p
`;")` = 1:::N to the approx-

imate incremental problem so that

(1) ³ p
`;" is stable at time t` for ` 2 f1; : : : ; Ng;

(2) the approximate energy inequality

E p

µ NX

` = 1

³ p
`¡1;" X [t` ¡ 1;t`) + ¯ (t ¡ T ) ³ p

N;"

¶
6 "N (3.5)

holds.

Furthermore, if (I ; D; P) is a relaxation of (I p ; D p ; P p ) in the sense of de¯nition 3.1
and, for all t 2 [0; T ], the functional

( ³ ; ² ) 7! J (t; ³ ; ² ) = I(t; ³ ) + D( ² ; ³ )

is weakly lower semicontinuous, then, for every solution ( ³ `)` = 1;:::;N to the relaxed
incremental problem, there exists a sequence of solutions ( ³ p

`;")` = 1;:::;N to the approx-
imate incremental problem (AIP)" that converges weakly to ³ ` as " tends to 0.

Proof. Fix t and ³ p
0 2 P p and let ( ³ p

k)k 2 N be a solution of the recursive variational
problem

I p (t; ³ p
k) + D p ( ³ p

k¡1; ³ p
k) 6 I p (t; ³ p ) + D p ( ³ p

k¡1; ³ p ) + 2¡k" for every ³ p 2 P p :
(3.6)

Since time does not play a role in the proof, we will omit the t dependence of I and
I p in future. Obviously, there always exists ³ p

k that satis­ es inequality (3.6), since we
can use a suitable element of the minimizing sequence of J p (¢) = I p (¢)+D p ( ³ p

k¡1; ¢).
Now we show that ( ³ p

k)k 2 N is a Cauchy sequence. We test (3.6) with ³ p = ³ p
k¡1 and

­ nd that I p ( ³ p
k) is essentially decreasing. From the non-negativity of I p it follows

that I p ( ³ p
k) converges as k ! 1. Let k 6 l, then

D p ( ³ p
k ; ³ p

l ) 6
l¡1X

i = k

D p ( ³ p
i ; ³ p

i + 1)

= ¡ I p ( ³ p
l ) + I p ( ³ p

l ) + D p ( ³ p
l¡1; ³ p

l ) +

l¡2X

i = k

D p ( ³ p
i ; ³ p

i + 1)
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(3:6)

6 ¡ I p ( ³ p
l ) + I p ( ³ p

l¡1) + 2¡l" +

l¡2X

i= k

D p ( ³ p
i ; ³ p

i + 1)

6 ¢ ¢ ¢ 6 ¡ I p ( ³ p
l ) + I p ( ³ p

k) + 2¡k":

Sending k and l to 1 gives the desired result and the completeness of P p induces
the existence of a limit ³ p

¤ ;" 2 P p . We have to prove now that ³ p
¤ ;" is stable, solves

the approximate incremental problem and satis­ es the approximate energy inequal-
ity (3.5). First the stability. We have, for all ³ p 2 P p , that

I p ( ³ p
¤ ;") = lim

k ! 1
(I p ( ³ p

k) + D p ( ³ p
k¡1; ³ p

k))

(3:6)

6 lim
k ! 1

(I p ( ³ p ) + D p ( ³ p
k ; ³ p ) + 2¡k")

= I p ( ³ p ) + D p ( ³ p
¤ ;"; ³ p ):

The second claim is established in a similar fashion,

I p ( ³ p
¤ ;") + D p ( ³ p

0 ; ³ p
¤ ;") = lim

k ! 1
(I p ( ³ p

k) + D p ( ³ p
0 ; ³ p

k))

6 lim
k ! 1

(I p ( ³ p
k) + D p ( ³ p

k¡1; ³ p
k) + D p ( ³ p

0 ; ³ p
k¡1))

(3:6)

6 lim
k ! 1

(I p ( ³ p
k¡1) + 2¡k" + D p ( ³ p

0 ; ³ p
k¡1))

6 ¢ ¢ ¢ 6 I p ( ³ p ) + D p ( ³ p
0 ; ³ p ) + "

for every ³ p 2 P p . Since ³ p
0 is not restricted by any assumption, we can change t,

start the iteration again with ³ p
¤ ;" and thus generate an N -tuple ( ³ p

`;")` = 1:::N of stable
states. We repeat the above arguments inductively and obtain that ( ³ p

`;")` = 1:::N is
indeed a solution for (AIP)". The approximate energy inequality (3.5) is a direct
consequence from the fact that ³ p

`;" solves the approximate incremental problem.
From the de­ nition of E p (¢), it follows that

E p

µ NX

` = 1

³ `¡1 X [t` ¡ 1 ;t`) + ¯ (t ¡ T ) ³ p
N

¶

=

N¡1X

` = 0

(I p (t`; ³ p
`;") ¡ I p (t`; ³ p

`¡1;") + D p ( ³ p
`¡1;"; ³ p

`;"))

(AIP)"

6 "N:

The last claim is that it is possible to construct solutions for the approximate
incremental problem from the solutions of the relaxed problem. The assumption
that ( ³ `)` = 1:::N solves the relaxed incremental problem implies that

J ( ³ `¡1; ³ `) 6 inf
³ 2 Pp

J ( ³ `¡1; ³ )

6 lim inf
k 2 N

inf
³ 2 Pp

J p (Sk( ³ `¡1); ³ p )

6 lim
k ! 1

J p (Sk( ³ `¡1); Sk( ³ `))

= J ( ³ `¡1; ³ `):
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The last identity follows from the assumption that J is continuous along
(Sk( ³ ); Sk( ² )). Hence J p (Sk( ³ `¡1); Sk( ³ `)) converges to inf ³ p 2 Pp J p (Sk( ³ `¡1); ³ p )
as k ! 1 and we see that (Sk( ³ `)), ` = 1; : : : ; N , solves (AIP)" for an appropriate
choice of k(").

3.2. Relaxation of the martensitic system

We now give an example of a system where the relaxation can be carried out
successfully. The system is a special case of the martensitic model from x 2. The
number of phases has to be limited to two, so that non-relaxed phase distribution
functions can be identi­ ed with characteristic functions. In order to be able to
compute the minimizer to the elastic problem, we have to restrict to linearized
elasticity theory, i.e. quadratic stored energy functions We1 (¢) and We2 (¢), and we
will even assume that the elasticity tensors C of both phases coincide. At the
present time, it is not clear whether any of the assumptions can be dropped since
no counterexample is known.

The relaxed state space P is now L1( « ; [0; 1]). For the Banach space X, we take
L1( « ; R). For a displacement gradient F = ru, we denote by E = 1

2(F+F T) the
linearized strain tensor. Let C 2 Lin(Rd£d; Rd£d) be a convex elasticity tensor
(i.e. E(F ):C[E(F )] > cE(F ):E(F ) for some c > 0). For both the potential energy
and the dissipation functional, we need to extend the integrand from pure phase
distributions to phase mixtures. The energy functions of the pure phases are

Wei (F ) = 1
2
C[E ¡ Ai]:(E ¡ Ai) (3.7)

for two stress-free strains Ai 2 Rd£d. We set

W( ³ ; E) = 1
2 C[E ¡ (1 ¡ ³ )A1 ¡ ³ A2]:(E ¡ (1 ¡ ³ )A1 ¡ ³ A2) + 1

2 ® ³ (1 ¡ ³ ); (3.8)

where

® = min

½
(A2 ¡ A1):C[A2 ¡ A1] ¡ (S:C[A2 ¡ A1])2

S:C[S]
: S = ! «v +v «!; !; v 2 Rd

¾
:

(3.9)
This formula is due to Kohn [4]. We denote by ! ¤ the vector of unit length that
realizes the minimum. Since (1 ¡ ³ ) ³ vanishes if ³ 2 f0; 1g, it is clear that the model
is indeed an extension of the model with only pure phase distributions. According
to de­ nition 2.7, the unrelaxed dissipation functional reads

D p ( ³ p
1 ; ³ p

2 ) = µ

Z

«

f(1 ¡ ³ p
2 (x)) ³ p

1 (x) + (1 ¡ ³ p
1(x)) ³ p

2(x)g dx:

We de­ ne the relaxed dissipation as

D( ³ 1; ³ 2) = µ

Z

«

j³ 1(x) ¡ ³ 2(x)j dx: (3.10)

The second requirement is that for every initial state an admissible process exists.
For the sake of completeness, we state the existence result for the relaxed system.
The proof can be found in [8].
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Theorem 3.4. Let « » Rd, d 2 f1; 2; 3g, be a bounded Lipschitz domain, ¡ » @« ,
so that Hd¡1( ¡ ) > 0, P = L1( « ; [0; 1]) » X = L1( « ; R), C 2 Lin(Rd£d; Rd£d) a
convex elasticity tensor, µ > 0, G 2 C1([0; T ]; V ¤ ) and

I(t; ³ ) = min
u2 V

Z

«

W( ³ ; E(u)) dx + hG(t); ui;

D( ³ 1; ³ 2) = µ

Z

«

j ³ 2(x) ¡ ³ 1(x)j dx;

where V = u0 + W 1;2
¡ ( « ) for some function u0 2 W 1;2( « ),

W 1;2
¡ ( « ) = fu 2 W 1;2( « ) : uj¡ = 0g

and W is given by (3.8). If ¡ = @« , then for every initial value ³ 0 2 P there exist
an admissible process ³ 2 BV ([0; T ]; P) in the sense of de¯nition 2.1. The process
³ can be chosen left-hand side continuous except at t = 0.

At the present time we are not able to show existence in the case that ¡ ( @« ,
i.e. if, at some part of the boundary, Neumann conditions are prescribed. However,
for the remainder of the analysis, this restriction is not required. Therefore, we state
theorem 3.5 in a slightly more general way without implying that the extended
model is a relaxation of the original model.

To ful­ l the second requirement of de­ nition 3.1, we have to specify a sequence
of approximation operators. We de­ ne a two-scale approximation function

f : [0; 1] £ R ! f0; 1g : f ( ³ ; s) =

(
1; s 2 [0; ³ ] mod 1;

0; otherwise:

Theorem 3.5. Let ! ¤ 2 Rd be the optimal wave-vector de¯ned in (3.9). For a
relaxed state ³ 2 P, set Sk( ³ )(x) = f ( ³ (x); kx ¢ ! ¤ ). Assume the hypotheses of
theorem 3.4, except that now ¡ 6= @« is possible. Then, for every ³ ; ³ 1; ³ 2 2 P,

Sk( ³ ) * ³ as k ! 1;

lim
k ! 1

D p (Sk( ³ 1); Sk( ³ 2)) = D( ³ 1; ³ 2); (3.11)

lim
k ! 1

I p (Sk( ³ )) = I( ³ ) (3.12)

holds. Furthermore, there exists a constant g0 and continuous mapping g : [0; T ] !
L2( « ) such that

@I

@t
(t; ³ ) = g0 +

Z

«

g(t) ³ dx

holds.

Theorem 3.6 (Main result). Assume the hypotheses of theorem 3.4, including
¡ = @« . Then the extended model is a relaxation of the model without phase mix-
tures.

Proof of theorem 3.6. Since on P = L1( « ; [0; 1]) the topologies of L1( « ) and L2( « )
are equivalent, it follows that @I=@t is continuous on [0; T ] £P . The claim is now
a consequence of lemma 3.2 and theorems 3.4 and 3.5.
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Proof of theorem 3.5. Clearly, we have that Sk( ³ )
k ! 1
* ³ in L2( « ). Due to the

quadratic nature of D p and I p , we can use Fourier analysis to compute the limit
energies. By the fundamental theorem for H-measures [10, theorem 1.1], there exists
a matrix-valued Radon measure · ij 2 M(Rd £ Sd¡1), i; j 2 f1; 2g, and a sub-
sequence (not relabelled), so that, for every function ¿ 1; ¿ 2 2 Cc( « ) and every
function ª 2 C(Sd¡1), one has

lim
k ! 1

Z

«

[F ((Sk( ³ i) ¡ ³ i) ¿ 1)( ¹ )][F ((Sk( ³ j) ¡ ³ j) ¿ 2)( ¹ )] ¤ ª

µ
¹

j¹ j

¶
d ¹ = h · ij ; ¿ 1 ¿ ¤

2« ª i;

where F : L2(Rd) ! L2(Rd) is the Fourier transform. For the sequence

(Sk( ³ 1) ¡ ³ 1; Sk( ³ 2) ¡ ³ 2);

the H-measure can be computed explicitly. Using [10, example 2.1], one can deduce
immediately that there exists a 2 £ 2 Hermitian matrix M so that

· ij = 1
2Mij(x)( ¯ (¢ ¡ ! ¤ ) + ¯ (¢ + ! ¤ )) (3.13)

and

Mii(x) =

Z 1

0

(f ( ³ i(x); s) ¡ ³ i(x))2 ds = ³ i(x)(1 ¡ ³ i(x)) for i 2 f1; 2g: (3.14)

For the o¬-diagonal elements of M , we have the formula

M12(x) =
1

2
lim
» ! 0

lim
k ! 1

1

vol(B( » ; x))

Z

B( » ;x)

(Sk( ³ 1(x)) ¡ ³ 1(x))(Sk( ³ 2(x)) ¡ ³ 2(x)) dx

for every Lebesgue-point of ( ³ 1; ³ 2). By B( » ; x), we denote the ball centred at x 2 «
with radius » . The H-measure · ij encodes enough information so that both lim-
its (in I and D) can be computed. This observation is conceptionally important,
since it demonstrates that the right con­ guration space for that particular rate-
independent evolution problem is the set of H-measures, not just the set of con-
centrations. This remark concerns only possible future applications, where more
complex con­ gurations spaces might be necessary to ­ nd relaxed formulations.

Using Lusin’s theorem we choose, for a given number ¯ > 0, a compact subset
« ¯ » « , so that meas(« n « ¯ ) < ¯ and ( ³ 1; ³ 2)j « ¯ is continuous. From the com-
pactness of « ¯ , we obtain the existence of a number "( » ) > 0, lim» ! 0 "( » ) = 0, so
that j ³ i(x) ¡ ³ i(y)j 6 " holds for all i 2 f1; 2g, y 2 B( » ; x) \ « ¯ . We recall that
the sequence (Sk( ³ 1); Sk( ³ 2)) is bounded in L 1 ( « ) and hence no concentration can
occur. This implies that

M12(x) =
1

2
lim
» ! 0

lim
k ! 1

1

vol(B( » ; x))

£
Z

B( » ;x)

(Sk( ³ 1(y)) ¡ ³ 1(y))(Sk( ³ 2(y)) ¡ ³ 2(y)) dy

=
1

2
lim
¯ ! 0

lim
» ! 0

lim
k ! 1

1

vol(B( » ; x))

£
Z

B( » ;x) \ « ¯

Sk( ³ 1(y))Sk( ³ 2(y)) dy ¡ ³ 1(x) ³ 2(x)
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=
1

2
lim

¯ ! 1
lim
» ! 0

lim
k ! 1

1

vol(B( » ; x))

£
Z

B( » ;x) \ « ¯

f( ³ 1(x) + ³ 1(y) ¡ ³ 1(x)| {z }
= O (")

; k! ¤ ¢ y)

¢ f ( ³ 2(x) + ³ 2(y) ¡ ³ 2(x)| {z }
= O (")

; k! ¤ ¢ y) dy ¡ ³ 1(x) ³ 2(x)

= 1
2 (minf ³ 1(x); ³ 2(x)g¡ ³ 1(x) ³ 2(x)):

After these computations, we can derive identity (3.11) from the fact that

lim
k ! 1

D p (Sk( ³ 1); Sk( ³ 2))

= lim
k ! 1

µ

Z

«

f(1 ¡ Sk( ³ 1(x)))Sk( ³ 2(x)) + (1 ¡ Sk( ³ 2(x)))Sk( ³ 1(x))g dx

= µ

Z

«

( ³ 1(x) + ³ 2(x) ¡ 4M12(x) ¡ 2 ³ 1(x) ³ 2(x)) dx

= µ

Z

«

j³ 1(x) ¡ ³ 2(x)j dx:

In the martensitic model, the most complicated functional is the potential energy,
since the energy density is determined by a non-local operator. Due to the simple
quadratic nature, the H-measure can again be used to evaluate limk ! 1 I p (Sk( ³ )).
In principle, two approaches are available to get rid of the in®uence of the boundary
conditions. The ­ rst method consists of partitioning the reference con­ guration « in
little cubes so that ³ is approximately constant on every cube. By careful estimation
of the errors, one can show that I p (Sk( ³ )) realizes I( ³ ) as k ! 1. This method can
be applied to very general stored energy functions; we will use it in x 4 to deduce
explicit representations for the relaxed formulation.

On the other hand, one can exploit the quadratic structure of the minimization
problem more directly by proving that the e¬ect of the boundary conditions can be
simulated by a compact operator. We will use the second strategy to establish (3.12).

Regrouping the terms in the potential energy and using the weak continuity of
linear terms, we ­ nd that

lim
k ! 1

I p (Sk( ³ ))

=
1

2
lim

k ! 1

Z

«

(E(uk ¡ u) ¡ (A2 ¡ A1)(Sk( ³ ) ¡ ³ )):

C[E(uk ¡ u) ¡ (A2 ¡ A1)(Sk( ³ ) ¡ ³ )] dx

+
1

2

Z

«

(E(u) ¡ (1 ¡ ³ )A1 ¡ ³ A2):C[E(u) ¡ (1 ¡ ³ )A1 ¡ ³ A2)] dx

¡ hG; ui
= I1 + I2;

where u and vk := uk ¡ u are determined by the weak Euler{Lagrange equationsZ

«

(C[E(u) ¡ (A2 ¡ A1) ³ ]):E(Á) dx = 0

8Á 2 H1( « ); Áj ¡ = 0; uj ¡ = u0j ¡ ; (3.15)
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Z

«

(C[E(vk) ¡ » k]):E(Á) dx = 0 8Á 2 H1( « ); Áj ¡ = 0; vkj ¡ = 0; (3.16)

and » k = (A2 ¡ A1)(Sk( ³ ) ¡ ³ ). Note that the existence of solutions follows from
variational principles; Korn’s inequality guarantees that the associated energy is
coercive in H1. We are left with the task to compute I1. The in®uence of the
boundary can be removed by applying the following well-known result.

Lemma 3.7. Let ¿ 2 C 1
c ( « ) be an arbitrary test function, and ~vk be a weak solution

of

div(C[E(~vk)]) = div(C[ » k]¿ ); x 2 Rd; (3.17)

where » k * 0 in L2
loc(Rd) as k ! 1 and vk 2 H1( « ) is determined by (3.16).

Then E(~vk) 2 L2(Rd) and

lim
k ! 1

k(E(vk) ¡ » k) ¿ ¡ (E(~vk) ¡ » k ¿ )kL2(Rd) = 0

holds.

Proof. The integrability of E(~vk) follows from the representation via the Fourier
symbol (the acoustic tensor). One cannot expect that ~vk 2 L2(Rd) holds, since the
average inside the divergence on the right-hand side of (3.17) might be non-zero.
We normalize the expression by adding a constant times the characteristic function
of « . Let

ck =
1

vol(« )

Z

Rd

C[ » k]¿ dx

and

div(C[E( ~wk)]) = div(C[» k] ¿ ¡ ck X « ); x 2 Rd; (3.18)

Z

«

(C[E(wk) ¡ ( » k ¡ ck X « )]):E(Á) dx = 0

8Á 2 H1( « ); Áj¡ = 0; wkj ¡ = 0: (3.19)

Then, by the weak convergence of » k, we have that limk ! 1 kck X « kL2(Rd) = 0. The
fact that the Fourier transform of C[» k]¿ ¡ ck X « is smooth by the boundedness of
« implies that there exists a solution ~wk 2 L2(Rd). Since E(vk) and E(~vk) depend
strongly continuous in L2 on the right-hand side, it follows that

lim
k ! 1

k(E(vk) ¡ » k) ¿ ¡ (E(~vk) ¡ » k ¿ )kL2(Rd)

= lim
k ! 1

k(E(wk) ¡ » k) ¿ ¡ (E( ~wk) ¡ » k ¿ )kL2(Rd)

holds. Next, we see that

(E(wk) ¡ » k) ¿ ¡ (E( ~wk) ¡ » k ¿ ) = E(wk ¿ ¡ ~wk) ¡ 1
2(r ¿ « wk + (r ¿ « wk)T):

The last term converges weakly to 0 in H1( « ) and, by the compact embedding,
strongly in L2( « ). Denote ² k = ¿ wk ¡ ~wk. It follows from the same argument that
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² k converges strongly to 0 in L2
loc(Rd). We ­ nd that

div(C[E( ² k)])

= div(C[E(wk ¿ )]) ¡ div(C([E( ~wk)]))

= ¿ div(C[E(wk)]) ¡ div(C[E( ~wk)]) + div(C[wk « r ¿ + (wk « r ¿ )T])

= ¿ div(C[» k ¡ ck X « ]) ¡ div(C[» k ¿ ¡ ck X « ])

+ div(C[wk « r¿ + (wk « r¿ )T]) by (3.18) and (3.19)

= ¡ r¿ ¢ » k + div(C[r¿ « wk + (r¿ « wk)T])

* 0

in L2( « ) as k ! 1 since wk * 0 in H1( « ) and » k * 0 in L2( « ). The claim follows
now from the coercivity of the elasticity tensor C,

lim
k ! 1

Z

Rd

E( ² k):E( ² k) dx 6 lim
k ! 1

C

Z

Rd

E( ² k):C[E( ² k)] dx

= ¡ lim
k ! 1

C

Z

Rd

² k ¢ div(C[E( ² k)]) dx

= 0;

by the strong convergence of ² k and the boundedness of div(C[E( ² k)]) in L2. This
concludes the proof of the lemma.

Since we are only interested in the weak limit of the integrand, we can ­ rst
apply Plancherel’s formula, the fundamental theorem of H-measures, and ­ nally
formulae (3.13) and (3.14),

1

2
lim

k ! 1

Z

«

(E(vk) ¡ » k) ¿ :C[(E(vk) ¡ » k) ¿ ] dx

=
1

2
lim

k ! 1

Z

Rd

(F ( » k ¿ )):(F ( » k ¿ )) ¤ ª

µ
!

j!j

¶
d!

= 1
2
h · ; ¿ 2 « ª i

= 1
2
ª (! ¤ );

where ª is the symbol that is associated to the di¬erential operator and · (the
component · 11 in (3.13)) is the H-measure of E(vk) ¡ » k. It is quite easy to see
that

ª (! ¤ ) = ® ; (3.20)

where ® is de­ ned in (3.9). For the convenience of the reader, we provide a short
proof.

It follows from (3.16) that the symbol of the operator » 7! v( » ) is given by
A¡1(!)C[^» (!)]!, where the acoustic tensor A(!) 2 Rd£d

s ym is determined by the equa-
tion

a ¢ A(!)a = (a ^ !):C[a ^ !] for all a 2 Rd:

The notation a^! is a shorthand for the symmetrized rank-1 matrix 1
2(a«!+!«a).

But, on the other hand, v̂(!) is a minimizer of ª 1(!; v) = 1
2 (v̂ ^ ! ¡ ^» ):C[v̂ ^ ! ¡ ^» ],
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which follows from the Euler{Lagrange equation,

h ^ !:C[v̂ ^ ! ¡ ^» ] = 0 8h , h ¢ A(!)v̂ ¡ h ^ !:C[^» ] = 0 8h

, h ¢ A(!)v̂ ¡ h ¢ C[^» ]! = 0 8h

, v̂ = A¡1(!)C[^» ]!:

The last step, which establishes (3.20), consists of showing that the functions

ª 1(y) and ª 2(y) =
1

2

µ
^» :C[^» ] ¡ (y:C[^» ])2

y:C[y]

¶
; y 2 S = f! ^ v̂ j !; v̂ 2 Rdg

agree on their minima. But this is a direct consequence of the fact that the mini-
mizers of ª 1 are nothing else but a projection of ^» on the set S.

Before we can conclude that the H-measure indeed gives the value of I1, we have
to exclude concentrations towards the boundary. Let ² 2 C 1 ( « ) be an arbitrary
test function, which we do not require to satisfy any boundary condition. Using the
weak Euler{Lagrange equation (3.16) again, we see that

Z

«

E(vk):C[E(vk)]² dx

=

Z

«

E(vk):C[ » k] ² dx ¡
Z

«

1
2 (vk « r ² + (vk « r ² )T):C[E(vk) ¡ » k] dx

= I1 + I2:

The integrand of I2 is a product of a sequence of functions that converges weakly
to 0 in L2, and is therefore bounded, and a sequence that converges strongly to 0.
Hence I2 converges to 0 as k tends to 1. The integrand of I1 is a product of a
­ xed continuous function with a sequence of functions that is uniformly bounded
in L2. The uniform integrability of the second term implies that I1 goes to 0 as the
support of ² becomes small. Hence E(vk):C[E(vk)] does not concentrate towards
the boundary of « .

From the preceding calculations, it follows that there exists a continuous map
L : L2( « ; R) ! H1( « ; Rd) so that u( ³ ) = u0 + L³ . We obtain the representation
of @I=@t by applying the adjoint of L to _G.

4. Necessary conditions for relaxations of the martensitic system

At the end of this paper we apply known lower semicontinuity results to derive for-
mulae for possible relaxations of the martensitic system. In particular, we present a
naive candidate for a relaxation of the general martensitic system that is based only
on the phase portions. Thus all information about the geometry of the microstruc-
ture is neglected. Until now, we are unable to check any of the requirements of
de­ nition 3.1. However, it can be shown that if a relaxation only based on phase
portions exists, it has to coincide with our postulated model.

Definition 4.1. Let c 2 P = conv(P p ) (the unit simplex in Rn) and, for every
i 2 f1; : : : ; ng, the positive function Wei : Rd£d ! R> be quasiconvex and satisfy
the growth condition

¬ jF jp ¡ C 6 Wei (F ) 6 C(1 + jF jp) (4.1)
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for positive constants ¬ , C and p > 1. The function

W( ³ ; F ) = inf

½Z

[0;1]d

W ² p(x)(F + r¿ (x)) dx j ² p : [0; 1]d ! P p ;
Z

[0;1]d

² p (x) dx = ³ ; ¿ 2 W 1; 1
0 ([0; 1]d)

¾

is the relaxation of (Wei
)i = 1:::N at given phase portions.

A central assumption in the existence theorem 2.3 is that the mappings ³ 7! I( ³ )
and ( ³ ; ² ) 7! D( ³ ; ² ) are weakly lower semicontinuous in P and P £P . There can
be only one relaxation of the martensitic system, so that I and D satisfy this lower
semicontinuity property in L1( « ; P ) and L1( « ; P £ P ).

Theorem 4.2. Let (I; D; P) be a relaxation of (I p ; D p ; P p ), so that the functionals
³ 7! I( ³ ) and ( ³ ; ² ) 7! D( ² ; ³ ) are weakly lower semicontinuous in L1( « ; P ) and
L1( « ; P £ P ). Then the relaxed quantities are given by the following formulae,

P = L1( « ; P ); (4.2)

I( ³ ) = inf
u 2 V

Z

«

W( ³ ; ru) dx ¡ hG; ui; (4.3)

D( ³ ; ² ) =

Z

«

D( ² (x); ³ (x)) dx; (4.4)

where

D(a; c) = inf

½ nX

j;i = 1

mjiµj ! i : mji > 0;

nX

i = 1

mji = ej ¢ a;

nX

j = 1

mji = ei ¢ c

¾
:

Obviously, the relaxed model given by (4.2){(4.4) agrees with the non-relaxed
model if only pure phase distributions are taken into account. Two di¯ culties pre-
vent us from concluding that the extended model is a relaxation of the model with-
out phase mixtures. Firstly, we do not know whether admissible processes exist. The
source of the di¯ culty is that the weak closedness of the stable set S(t) (see (2.5))
is not clear. The second di¯ culty is to show that the relaxed model can indeed
be approximated with the non-relaxed model. Here the problem lies in the fact
that, typically, the approximation of the relaxed stored energy function requires
the choice of very special geometries of the microstructure of the phase distribu-
tion. It is not clear whether the approximating microstructures for two di¬erent
distributions of phase portions can be chosen in such a way that the dissipation
is indeed minimal, as the de­ nition of D suggests. For example, if the optimal
microstructure is given by a simple laminate, where the lamination direction ! ¤

depends non-trivially on ³ , then the dissipation functional (4.4) clearly underesti-
mates the true dissipation.

Proof. We only have to show that I(¢) and D(¢; ¢) are the weak lower semicontinuous
envelopes of I p (¢) and D p (¢; ¢) in L1( « ; P ) and L1( « ; P ) £ L1( « ; P ). The ­ rst step
is to prove that I and D are weakly lower semicontinuous. For general functions
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W, the functional

(u; ³ ) 7!
Z

«

W( ³ ; u; ru) dx

is discussed in detail in [5]. In particular, theorem 4.17 covers exactly our case
except that here the stored energy function takes the value +1, i.e.

W (F; ³ ) =

(
Wei (F ) if ³ = ei for some i 2 f1; : : : ; Ng;

1 otherwise:

One can easily check that the theorem can be generalized to this case without
change.

The functional

( ² ; ³ ) 7!
Z

«

D( ² ; ³ ) dx

is lower semicontinuous since D is convex by standard arguments. Consider now
³ i; ² i 2 P and let m

(i)
jk be the minimizers in the de­ nition of D( ³ i; ² i) for i = 1; 2,

that is,

m
(i)
jk > 0;

nX

l = 1

m
(i)
jl = ej ¢ ³ i and

nX

j = 1

m
(i)
jl = el ¢ ² i:

Then, for ¶ 2 [0; 1], the convex combination m
(3)
jl = ¶ m

(1)
jl + (1 ¡ ¶ )m

(2)
jl forms an

admissible set in the de­ nition of D( ¶ ³ 1+(1 ¡ ¶ ) ³ 2; ¶ ² 1+(1 ¡ ¶ ) ² 2), which gives the
convexity result after separating the minimum into the weighted sum of two minima.

The second step consists of showing that the values of I and D can actually be
achieved by non-relaxed sequences. This is clear from the de­ nition for I and we
will demonstrate it for D.

Choose an arbitrary pair of relaxed states ² ; ³ 2 P and ­ x " > 0. Find, analo-
gously to the proof of theorem 3.5, a compact set K", so that meas(« n K") 6 "
and ( ² ; ³ )jK" are continuous. Next we cover « with a countable disjoint collection
of cubes Q` » « , so that j ³ (x) ¡ ³ (y)j + j ² (x) ¡ ² (y)j 6 " for all x; y 2 Q` \ K". Set

³ " =
X

`

³ ` X Q` and ² " =
X

`

² ` X Q` ;

where ³ ` = ³ (x`), ² ` = ² (x`) and

x` 2
(

Q` \ K" if Q` \ K" 6= fg ;

« otherwise:

Using the de­ nition of D, we ­ nd numbers mij` > 0 so that

X

i

mij` = ej ¢ ² ` and
X

j

mij` = ei ¢ ³ `:

We split Q` into n2 segments Qij` of size meas(Q`) ¢ mij` and set

³ p
" (x) =

X

i;j;`

ei ¢ X Qij` (x); ² p
" (x) =

X

i;j;`

ej ¢ X Qij` (x); x 2 « :
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From the de­ nition of D, it follows that

lim
" ! 0

Z

«

D( ² p
" (x); ³ p

" (x)) dx = lim
"! 0

Z

«

D( ³ "(x); ² "(x)) dx

= lim
"! 0

Z

K"

D( ³ "(x); ² "(x)) dx

= lim
"! 0

Z

K"

D( ³ (x); ² (x)) dx

=

Z

«

D( ³ (x); ² (x)) dx:

This implies the last claim.
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