
J. Appl. Prob. 57, 911–927 (2020)
doi:10.1017/jpr.2020.49

© Applied Probability Trust 2020

TREES GROWN UNDER YOUNG-AGE
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Abstract

We introduce a class of non-uniform random recursive trees grown with an attachment
preference for young age. Via the Chen–Stein method of Poisson approximation, we
find that the outdegree of a node is characterized in the limit by ‘perturbed’ Poisson
laws, and the perturbation diminishes as the node index increases. As the perturbation is
attenuated, a pure Poisson limit ultimately emerges in later phases. Moreover, we derive
asymptotics for the proportion of leaves and show that the limiting fraction is less than
one half. Finally, we study the insertion depth in a random tree in this class. For the
insertion depth, we find the exact probability distribution, involving Stirling numbers,
and consequently we find the exact and asymptotic mean and variance. Under appro-
priate normalization, we derive a concentration law and a limiting normal distribution.
Some of these results contrast with their counterparts in the uniform attachment model,
and some are similar.
Keywords: Random tree; recursive tree; outdegree; insertion depth; tree leaves; prefer-
ential attachment; Poisson approximation; Chen–Stein method; phase transition; small
world; Stirling numbers
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1. Introduction

The classic (uniform) random recursive tree is a natural stochastic growth model, which has
been proposed for numerous applications in such areas as chain letters [9] and philology [14].
These trees grow according to a uniform attachment scheme in which each existing node has
an equal chance of recruiting a new entrant. For a detailed discussion of properties, see [7],
[8], and [16].

Certain applications have encouraged new paths of research. It was observed that uniform
attachment does not capture particular clustering features in real-world networks and does
not give rise to the power laws and scale-free behavior that are characteristic of real appli-
cations. Real-world networks have features described by the Matthew principle, according to
which ‘the rich get richer’ or ‘success breeds success’. Many of these features are generated
by a degree-preferential attachment model, in which fat nodes of higher degree are given pref-
erence at recruiting new entrants. More precisely, a node recruits according to a probability
proportional to its outdegree [17]. The model introduced by Barabási and Albert in [3] and
discussed in [1] is slightly different, where the recruiting is done with probability proportional
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to one plus the outdegree. The same Barabási–Albert scheme was rigorously developed for the
first time in [4]. The random graphs in these sources are not limited to trees. For a broader
discussion, see [2].

Until now, the term preferential attachment has been reserved for this degree-preference
model. However, other applications can conceivably require us to consider an alternative pref-
erential attachment mechanism. For example, in the bonding of atoms to form compounds,
unsaturated atoms have higher affinity to other unsaturated atoms. Less saturated atoms are
hungrier for bonding. This constitutes a preferential attachment scheme inversely proportional
to the valence of an atom in a chemical compound.

Other preferential attachment schemes may depend on the dynamics of the tree growth. In a
social network, affinity may be proportional to node age, whereby older nodes represent popu-
larity and experience in social success. Or as an alternative model, affinity may be proportional
to the youthfulness of a node, which models the eagerness of newcomers to expand their social
network. Trees grown under old-age preference have been considered in the recent book [11].
Here we consider preferential attachment dominated by youth.

2. Young-age attachment trees

We study a random tree model that assumes that younger nodes have stronger affinity. This
assumption is appropriate for networks in which new entrants tend to recruit more members.
For example, frequently clubs offer new members a special deal – possibly discount member-
ships – that they can share with friends for a specified time. Or in the case of modeling disease
transmission, for diseases with varying intensity of communicability, recently infected persons
will be more likely to infect others.

In this model, a recursive tree grows in the following fashion. The tree starts at time 0 with
one node; let us label it 1. At each subsequent point t ≥ 1 in discrete time, one of the nodes in
the existing tree attracts (recruits) the nth ((t + 1)st) entrant in the system, and a node labeled
n is attached to the recruiter, considered the parent. Thus t − i + 1 is the amount of time node
i spent living in the tree; we take it to be the age of node i by time t.

The tree grows in such a way that younger nodes have a higher probability of attracting new
nodes. Concretely, the probability that the ith node (i = 1, . . . , n − 1) is chosen as the parent
of node n is proportional to the node index, which implies younger nodes have greater affinity.
Letting Ai,n be the event that the nth node attaches to the ith node, the proposed young-age
attachment model is governed by the probability

P(Ai,n) = 2i

n(n − 1)
for 1 ≤ i ≤ n − 1. (2.1)

Figure 1 illustrates the six young-age preferential trees of size 4. The numbers in the top
row are their probabilities.

3. Scope and organization

The manuscript is organized as follows. Distributional properties of the outdegree of node
i = 1, 2, . . . , n are derived in Section 4. The mean and variance are established, and Poisson
limit results are found via Chen–Stein Poisson approximation methods. Tree leaves are exam-
ined in Section 5, and limit results are obtained for the fraction of leaves in a given tree as the
size of the tree grows. We find that the young-age probability model results in a fraction of
leaves less than 1/2. Section 6 is devoted to the investigation of various properties of the inser-
tion depth of node n, where it is found that the exact distribution involves Stirling numbers
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FIGURE 1: Young-age attachment recursive trees of size 4 and their probabilities.

of the first kind. Upon appropriate normalization, concentration laws and Gaussian limits are
established. In the concluding remarks of Section 7, the young-age model is contrasted with
the uniform case and areas of potential future research are discussed.

4. Outdegrees

Let �i,n be the outdegree of node i in a young-age attachment tree of size n – a count of the
children of node i right after the node n joins the tree. If we take IB to be the indicator of event
B, we can express the random variable �i,n as a sum of indicators for the events Ai,j with j > i:

�i,n =
n∑

j=i+1

IAi,j .

4.1. Exact moment generating function

The events Ai,j are independent. Consequently, the moment generating function of �i,n is
the product of the individual Bernoulli moment generating functions:

φ�i,n(t) =
n∏

j=i+1

(
1 + 2i

j(j − 1)
(et − 1)

)
. (4.1)

4.1.1. Mean and variance. Using the moment generating function, we have the expectation
and variance. In the presentation, we need the nth harmonic number of the second order, H(2)

n =∑n
k=1 1/k2.

Proposition 4.1. Let �i,n be the outdegree of node i right after node n joins the young-age
attachment tree. We have

E[�i,n] = 2

(
1 − i

n

)
,

Var [�i,n] = 2

(
1 − i

n

)
− 4i2

(
2H(2)

n − 2H(2)
i + 2

n
− 2

i
+ 1

i2
− 1

n2

)
.

Proof. Take the first derivative of the moment generating function with respect to t, and
evaluate it at 0 using the chain rule, to get

φ′
�i,n

(0) =E[�i,n] =
n∑

k=i+1

2i

k(k − 1)
.
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Decomposing the summand into partial fractions, the sum telescopes:

E[�i,n] = 2i
n∑

j=i+1

(
1

j − 1
− 1

j

)
= 2i

(
1

i
− 1

n

)
= 2

(
1 − i

n

)
. (4.2)

The variance of �i,n follows after computing the second derivative of the moment generat-
ing function evaluated at t = 0. To expedite the computation, write the derivative of the moment
generating function using the chain rule

d

dt
φ�i,n(t) =

n∑
k=i+1

2iet

k(k − 1)
× φ�i,n(t)

(1 + 2i
k(k−1) (et − 1))

= 2ietφ�i,n(t)

n∑
k=i+1

1

k(k − 1)
× 1

(1 + 2i
k(k−1) (et − 1))

.

The second derivative at 0 is

d2

dt2
φ�i,n(0) =E[�2

i,n]

= 2i(etφ′
�i,n

(t) + etφ�i,n (t))

∣∣∣∣
t=0

n∑
k=i+1

1

k(k − 1)

+ 2ietφ�i,n(t)
n∑

k=i+1

1

k(k − 1)
× −2iet/(k(k − 1))

(1 + 2i
k(k−1) (et − 1))2

∣∣∣∣
t=0

= 2i(E[�i,n] + 1) × 1

2i
E[�i,n] − 4i2

n∑
k=i+1

1

k2(k − 1)2

=E2[�i,n] +E[�i,n] − 4i2
n∑

k=i+1

1

k2(k − 1)2
.

Using the form (4.2), we have

Var [�i,n] =E[�2
i,n] −E2[�i,n]

=E[�i,n] − 4i2
n∑

k=i+1

1

k2(k − 1)2

= 2

(
1 − i

n

)
− 4i2

n∑
k=i+1

1

k2(k − 1)2
.

The variance as stated in Proposition 4.1 follows after expanding the summand in partial
fractions and recognizing the harmonic numbers in the sums. �
4.1.2. Interpretation. We immediately see one way in which the behavior in young-age prefer-
ential attachment trees contrasts with the uniform attachment model. In young-age preferential
attachment trees, for fixed i, the expected outdegree of node i remains small and bounded by
2, whereas in the uniform attachment tree the expected outdegree of node i (fixed) by the time
node n joins is asymptotic to ln n, and thus grows without a bound.

https://doi.org/10.1017/jpr.2020.49 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.49


Young-age preferential attachment 915

In the young-age preferential attachment tree, we see ‘phases’ depending on the relation
of i to n. For ‘small’ i, where i = o(n), such as the case i = 7 or i = �3 ln n + 6�, we have
E[�i,n] → 2. For i ∼ αn with 0 < α ≤ 1, such as the example i = � 5

7 n + 2
√

n + 12 ln n + π2�,
we have E[�i,n] → 2(1 − α). Note that for the very late arriving nodes, corresponding to i ∼ n,
such as the case i = �n − 7n3/4 + √

n �, we have E[�i,n] → 0.
One can notice a delicate balance. It is true that if n is large, the relative affinity of a young

node with large index i is much higher than the old early nodes. However, the early nodes have
stayed much longer in the tree and had repeated opportunities to recruit, particularly when
they themselves were young and had high affinity. So, after all, it is not surprising that the
early nodes have slightly higher expected outdegrees.

The variance Var [�i,n] is quite close to the expected value E[�i,n]. Again, we have different
phases depending on the relation between i and n. There are two phases for ‘small’ i with
i = o(n). When i is fixed, we have

Var [�i,n] → 8i + 8i2
(

π2

6
− H(2)

i

)
− 2.

When i = o(n) and i → ∞, we have

Var [�i,n] → 2.

For i ∼ αn, with 0 < α ≤ 1, we get Var [�i,n] → 2(1 − α). Note again that for i ∼ n, we have
Var [�i,n] → 0.

4.2. Limit distribution

The moment generating function (4.1) allows us to directly derive the main limit result
of this section. However, we first outline some necessary background material concerning
probability distance measures and Chen–Stein approximation.

4.2.1. Preliminaries. For any two random variables X and Y , respectively, with induced
measures P and Q on the real line, we define the total variation distance

dTV(X, Y) := sup
A∈B

|P(A) −Q(A)|,

where A is an element of the Borel sigma algebra on R.
It is well known that for discrete random variables, convergence in total variation distance

is equivalent to convergence in distribution.

Lemma 4.1. ([10]) For a sequence Xn of discrete random variables and a discrete random
variable X, we have

dTV(Xn, X) → 0 ⇐⇒ Xn
d−→ X.

This lays out a strategy for the proof. We aim to show that the total variation dis-
tance between Xn and a limiting random variable converges to 0, implying convergence in
distribution.

A useful tool is a bound on the total variation distance between Poisson random variables.
In what follows we denote a Poisson random variable with parameter θ by Poi(θ ).

Lemma 4.2. If ν > μ and X and Y are respectively distributed like Poi(ν) and Poi(μ), then we
have

dTV(X, Y) ≤ ν − μ.
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Proof. We use
d= for equality in distribution. Let Y∗ and Z be independent random variables

with Y∗ d= Poi(μ), Z
d= Poi(ν − μ) and define X∗ = Y∗ + Z

d= Poi(ν). By [10, Lemma 7.1]
we have

dTV(X∗, Y∗) ≤ P(X∗ �= Y∗) = P(Z �= 0) = 1 − P(Z = 0) = 1 − e−(ν−μ) ≤ ν − μ.

Note that (X∗, Y∗) is a coupling of (X, Y), so dTV(X, Y) = dTV(X∗, Y∗) ≤ ν − μ. �
The main Chen–Stein result we use applies to approximating sums of independent Bernoulli

random variables with a Poisson random variable [15].

Proposition 4.2. Let X1, . . . , Xn be independent Bernoulli random variables with P(Xi = 1) =
pi. If Wn = ∑n

i=1 Xi and λn =E[Wn] = ∑n
i=1 pi, then we have

dTV(Wn, Poi(λn)) ≤ min

{
1,

1

λn

} n∑
i=1

p2
i ≤ min{1, λn} max

1≤i≤n
pi.

Proof. See Theorem 4.6 of [15] �
4.2.2. Limit laws. The index i and the age n can be tied together in many complicated ways.
For instance, one might think of a bizarre sequence in which

i = i(n) =
⎧⎨
⎩

2 if n is even,

�√n� if n is odd.

Such a sequence is not likely to appear in any application and does not lead to convergence.
Like sequences are not within the scope of this investigation. We focus on relations between
i and n with a systematic unifying theme for the growth of both. Namely, our investigation
covers convergence relations that arise when i = i(n) = αn + o(n), for α ∈ [0, 1]. So i has an
infinite limit, except for the case α = 0, where we require the o(n) term to have a non-oscillating
leading term, such as, for example, i = 7 or i = �3 ln n + 6�.

Theorem 4.1. As n → ∞, �i,n converges in distribution. Consider a node with index i = i(n) =
αn + o(n), for 0 ≤ α ≤ 1. When limn→∞ i(n) exists, we have

�i,n
d−→ �i = Poi(2(1 − α)) + Ylimn→∞ i(n),

where Ylimn→∞ i(n) is a zero-mean integer-valued random variable negatively correlated with
the Poi(2(1 − α)) component.

For fixed i, with α = 0, we have
E[�i] = 2,

Var [�i] = 2 − 4

3
π2i2 + 8i2H(2)

i + 8i − 4,

0 < dTV(�i, Poi(2)) ≤ 2

i + 1
,

whereas, for any growing i = i(n) → ∞, we have Y∞ = 0, almost surely.
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Proof. For the first statement of the theorem, we work with a logarithmic transformation of
φ�i,n (t):

ln φ�i,n(t) =
n∑

j=i+1

ln

(
1 + 2i

j(j − 1)
(et − 1)

)
.

We seek a Taylor series expansion of ln (1 + x) around zero for each summand. To make use
of the expansion, we need

−1 <
2i

j(j − 1)
(et − 1) < 1 for j ≥ 1.

These inequalities restrict the values of t for which the expansion is well-defined. The upper
bounds require

t < ln

(
1 + j(j − 1)

2i

)

for j ≥ 1, and the upper bounds are nested as j increases. So all the inequalities will be true
when

t < ln

(
1 + (i + 1)i

2i

)
= ln

(
1 + i + 1

2

)
,

and since i ≥ 1, the expansion is well-defined for all i, j, when t < ln 2.
With 1 ≤ i < j ≤ n, for negative t the lower bound is automatically satisfied. In summary,

Taylor series expansions are valid for all i and j, when t ∈ ( − ∞, ln 2).
The next step is to show that limn φ�i,n (t) is finite for all t ∈ ( − ∞, ln 2). Trivially, we

have limn→∞ φ�i,n(0) = 1. Next consider t ∈ (0, ln 2). Take a first-order Taylor series expan-
sion around zero using the remainder form and apply the expression for the mean E[�i,n],
to get

ln φ�i,n(t) =
n∑

j=i+1

2i

j( j − 1)
(et − 1) − 1

2

n∑
j=i+1

(
1

1 + xi,j

)2( 2i

j(j − 1)
(et − 1)

)2

,

= 2

(
1 − i

n

)
(et − 1) − 2i2(et − 1)2

n∑
j=i+1

(
1

1 + xi,j

)2( 1

j2( j − 1)2

)
,

for some

xi,j ∈
(

0,
2i

j( j − 1)
(et − 1)

)
,

for all j ≥ 1.
Evidently the series is convergent; let us define

hlimn→∞ i(n)(t) = lim
n→∞ −2

n∑
j=i(n)+1

(
1

1 + xi,j

)2( i(n)

j(j − 1)
(et − 1)

)2

,

and note that |hlimn→∞ i(n)(t)| < ∞.
Since

2

(
1 − i

n

)
(et − 1) → 2(1 − α)(et − 1),
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we have
ln φ�i,n(t) → 2(1 − α)(et − 1) + hlimn→∞ i(n)(t) < ∞.

An identical argument holds for the negative part of the interval and thus

φ�i,n(t) → e2(1−α)(et−1) ehlimn→∞ i(n)(t) for t ∈ ( − ∞, ln 2).

As the convergence of φ�i,n (t) occurs over a finite open interval containing 0, by the Curtiss

theorem [6], the limit function e2(1−α)(et−1) ehlimn→∞ i(n)(t) is the moment generating function of
some random variable, which we call �i.

From the structure of the limit moment generating function, the limiting random variable
�i is ‘close’ to a Poi(2(1 − α)) random variable along with a perturbation random variable
Ylimn→∞ i(n) with moment generating function ehlimn→∞ i(n)(t).

Fixed i. Let Pi,n be a sequence of totally independent Poisson random variables, with

Pi,n
d= Poi

(
2

(
1 − i

n

))
.

These will be the sequence of approximating random variables that we want to be ‘close’
to �i,n.

The triangle inequality holds for the total variation distance:

dTV(�i, Poi(2)) ≤ dTV(�i, �i,n) + dTV(�i,n, Poi(2)).

Using the triangle inequality a second time, we have an inequality valid for all n, which is
namely

dTV(�i, Poi(2)) ≤ dTV(�i, �i,n) + dTV(�i,n, Pi,n) + dTV(Pi,n, Poi(2)).

We now consider each term in order. Since �i,n
d−→ �i, by Lemma 4.1, dTV(�i, �i,n) → 0.

With �i,n being a sum of independent indicators, Proposition 4.2 is applicable, with λn =
2(1 − i/n). From the upper inequality of Proposition 4.2, for large n we get

dTV(�i,n, Pi,n) ≤ min

{
1, 2

(
1 − i

n

)}
max

i+1≤j≤n

2i

j( j − 1)
= 1 × 2i

i(i + 1)
= 2

i + 1
.

Finally, by Lemma 4.2, we have

dTV(Pi,n, Poi(2)) ≤ 2 − 2

(
1 − i

n

)
= 2i

n
.

Taken together, as n → ∞, we have

0 < lim
n→∞ dTV(�i, Poi(2)) ≤ lim

n→∞ dTV(�i, �i,n) + lim
n→∞

2

i + 1
+ lim

n→∞
2i

n
.

For fixed i, this becomes

0 < dTV(�i, Poi(2)) ≤ 0 + lim
n→∞

2

i + 1
+ 0 = 2

i + 1
,

as claimed.
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The mean and variance of the limiting distribution follows from uniform integrability argu-
ments. Except in pathological cases, the limit of the individual random variable moments will
pass through to the limit distribution. Furthermore, similar arguments show that the Ylimi→∞ i(n)
component is negatively correlated with the Poisson piece.

Growing i. Consider i = i(n) = αn + o(n), with α ∈ (0, 1]. By the triangle inequality, we
have

dTV(�i,n, Poi(2(1 − α))) ≤ dTV(�i,n, Pi,n) + dTV(Pi,n, Poi(2(1 − α))).

By Proposition 4.2 and Lemma 4.2, we obtain

dTV(�i,n, Poi(2(1 − α))) ≤ 2

i + 1
+ 2

∣∣∣∣α − i

n

∣∣∣∣.
As n → ∞, we have the convergence 2/(i + 1) → 0, since i → ∞ and i/n → α. So we have

dTV(�i,n, Poi(2(1 − α))) → 0.

Thus we have �i,n
d−→ Poi(2(1 − α)) and Y∞ = 0. �

Remark 4.1. The limit law in Theorem 4.1 combines all the phases discussed in the inter-
pretations in Section 4.1.2 and better explains how they merge at the ‘seam lines’. One can
say that

�i,n
d−→ Poi(2(1 − α)) + Ylimn→∞ i(n).

In the very early phase (fixed i), α = 0, and the role of Ylimn→∞ i(n) = Yi is pronounced. The
assertion that, for fixed i, we have

0 < dTV(�i, Poi(2)) ≤ 2

i + 1

is actually a qualifying description of the random variable Yi.
Then, for intermediate i, growing to infinity, but remaining o(n), α is still 0, and the effect

of Ylimn→∞ i(n) = Y∞ = 0 disappears. An instance of this case is i = �3 ln n + 6�.
In the linear phase i ∼ αn, with 0 < α < 1, the Poisson parameter is attenuated. An instance

of this case is i = � 5
7 n + 2

√
n + 12 ln n + π2�. Ultimately the Poisson parameter becomes 0,

when i ∼ n. Here the limit is a Poi(0) random variable, which is identically 0. An instance of
this case is i = �n − 7n3/4 + √

n �.

Remark 4.2. It is assumed in Theorem 4.1 that limn→∞ i(n) exists. If this limit does not exist,
as in the example discussed at the beginning of this subsection, the interpretation is that �i,n

does not converge in distribution at all to any limit. Rather, it oscillates.

5. Leaves

Let Li,n be an indicator equal to 1 when node i is a leaf in a tree of size n and 0 otherwise.
Define Ln to be the number of leaves in a tree of size n, which can be expressed as the sum of
the individual leaf indicators:

Ln =
n∑

i=1

Li,n.
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Under the young-age attachment model, the root is never a leaf in a tree with size n > 1; node
n is always a leaf in any size tree. Since node attachments are independent, we can directly
calculate the mean and variance of the leaf indicators.

Lemma 5.1.

E[Li,n] =
n∏

j=i+1

(
1 − 2i

j( j − 1)

)
,

and

Var [Li,n] =
n∏

j=i+1

(
1 − 2i

j( j − 1)

)[
1 −

n∏
j=i+1

(
1 − 2i

j( j − 1)

)]
.

Proof. For node i to be a leaf in a tree of size n > i, it must be passed over by every node j >
i, which each occurs with probability 1 − 2i/( j( j − 1)). These attachments are independent,
whence the joint probability is the product of the individual probabilities:

E[Li,n] = P(Li,n = 1) =
n∏

j=i+1

(
1 − 2i

j( j − 1)

)
.

The variance follows immediately since the Li,n are Bernoulli random variables. �
We have a complete characterization of the marginal distributions of the leaf indicators in a

tree of size n > 1:

L1,n = 0 with probability 1,

Li,n = Bernoulli

⎛
⎝ n∏

j=i+1

(
1 − 2i

j( j − 1)

)⎞
⎠ for 1 < i < n,

Ln,n = 1 with probability 1.

5.1. Joint distribution

While node attachments are independent, the resulting Li,n are dependent. Nevertheless, the
structure of the leaf indicators allows us to derive useful covariance results, which we use to
study the asymptotic behavior. Throughout this section we state the results in a more general
form since they hold for any sequence of attachment distributions.

Recall that Ai,n denotes the event that the nth node attaches to the ith node. Assume now
that for node n ≥ 2, we have a general attachment model:

P(Ai,n) = fn(i) for 1 ≤ i ≤ n − 1,

with fn(i) ≥ 0 and
∑n−1

i=1 fn(i) = 1.
In principle this allows for arbitrary individual attachment probabilities for each node at

each time of entry. We can directly calculate the cross-expectation of the Li,n.

Lemma 5.2. With i < j, we have

E[Li,nLj,n] =
j∏

p=i+1

(1 − fp(i))
n∏

p=j+1

(1 − fp(i) − fp( j)).
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Proof. Assume without loss of generality that i < j. The product Li,nLj,n is equal to one
when node i is passed over by the nodes p = i + 1 to j, and then both nodes i and j are passed
over for nodes p = j + 1 to n. The first sequence of events each happen with probability 1 −
fp(i) and the latter sequence of events each occur with probability 1 − fp(i) − fp( j). All of these
node attachments are independent, so the joint probability is the product of probabilities for
the individual events. �

The cross-expectation allows us to find an upper bound for the covariance of the leaf
indicators.

Theorem 5.1. For i �= j, we have

Cov [Li,n,Lj,n] ≤ 0.

Proof. The rightmost expression for the cross-expectation in Lemma 5.2 is

n∏
p=j+1

(1 − fp(i) − fp( j)).

We note for each p:

1 − fp(i) − fp( j) ≤ 1 − fp(i) − fp( j) + fp(i)fp( j) = (1 − fp(i))(1 − fp( j)).

Thus we have
n∏

p=j+1

(1 − fp(i) − fp( j)) ≤
n∏

p=j+1

(1 − fp(i))(1 − fp( j)).

Substituting this inequality into the cross-expectation of Lemma 5.2 and collecting the i and j
terms, we obtain

E[Li,nLj,n] ≤
j∏

p=i+1

(1 − fp(i))
n∏

p=j+1

(1 − fp(i))(1 − fp( j))

=
n∏

p=i+1

(1 − fp(i))
n∏

p=j+1

(1 − fp( j))

=E[Li,n] E[Lj,n],

which implies that the covariance is non-positive. �

5.2. Mean and variance

Specifying the young-age preferential model, we use the cross-expectation in Lemma 5.2
to express the covariance between leaves with i < j.

Corollary 5.1.

Cov [Li,n,Lj,n] =
j∏

p=i+1

(
1 − 2i

p(p − 1)

) n∏
p=j+1

(
1 − 2(i + j)

p(p − 1)

)

−
n∏

p=i+1

(
1 − 2i

p(p − 1)

) n∏
p=j+1

(
1 − 2j

p(p − 1)

)
.
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With the expression for the expectation of Li,n in hand, we can calculate the mean and
variance for Ln, when n > 1:

E[Ln] =
n∑

i=1

E[Li,n] =
n−1∑
i=2

n∏
j=i+1

(
1 − 2i

j( j − 1)

)
+ 1,

Var [Ln] =
n−1∑
i=2

Var [Li,n] + 2
n−2∑
i=2

n−1∑
j=i+1

Cov [Li,n,Lj,n]

=
n−1∑
i=2

n∏
j=i+1

(
1 − 2i

j( j − 1)

) ⎡
⎣1 −

n∏
j=i+1

(
1 − 2i

j( j − 1)

)⎤
⎦

+ 2
n−2∑
i=2

n−1∑
j=i+1

Cov [Li,n,Lj,n],

where Cov [Li,n,Lj,n] is the covariance in Corollary 5.1.

5.3. Fraction of leaves

One of our main interests is in the fraction of leaves in a tree of size n as n → ∞. We first
find the limit of the expected fraction of leaves.

Lemma 5.3.

E

[
Ln

n

]
→ 1

2

(
1 − 1

e2

)
= 0.432332 . . . .

Proof. For i > 1, let

	i,n = ln (E[Li,n]) = ln

⎛
⎝ n∏

j=i+1

(
1 − 2i

j( j − 1)

)⎞
⎠ .

Using an exact first-order Taylor series expansion of ln(1 − x) around zero, we have

	i,n =
n∑

j=i+1

ln

(
1 − 2i

j( j − 1)

)

= −
n∑

j=i+1

2i

j(j − 1)
−

n∑
j=i+1

1

(1 − xi,j)2

(
2i

j(j − 1)

)2

= −2

(
1 − i

n

)
−

n∑
j=i+1

1

(1 − xi,j)2

(
2i

j(j − 1)

)2

,

where each

xi,j ∈
(

0,
2i

j( j − 1)

)
.

This Taylor series expansion makes it possible to get useful bounds for each 	i,n term valid
for all n > 0. Note that the second term of 	i,n is negative, so we immediately have the upper
bound

	i,n ≤ −2

(
1 − i

n

)
.
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For the lower bound, examine each term in the second summation, and observe that over the
range of j in the sum we have

1

(1 − xi,j)2

(
2i

j(j − 1)

)2

≤ 1

(1 − 2i
i(i+1) )2

(
2i

ji

)2

.

With this bound being valid for i > 1, we establish

1

(1 − xi,j)2

(
2i

j(j − 1)

)2

≤ 1

(1 − 2
(2+1) )2

(
2

j

)2

≤ 36

i2
.

We can now use these bounds to sandwich the fraction of leaves:

1

n

n∑
i=2

e−2(1−i/n)−36/i2 ≤ E[Ln]

n
= 1

n

n∑
i=2

e	i,n ≤ 1

n

n∑
i=1

e−2(1−i/n).

The upper bound can be simplified by summing it as a geometric series, which gives

E[Ln]

n
≤ e−2

n

n∑
i=1

e2i/n

= e−2

n

(
e2(n+1)/n − 1

e2/n − 1

)

= e−2

n

(
e2(n+1)/n − 1

(1 + 2/n + O(n−2)) − 1

)

→ 1

2

(
1 − 1

e2

)
.

The extraction of the asymptotics from the lower bound is a little more involved. First expand
the term exp ( − 36/i2) in series with an explicit first term and an error of the exact order 1/i2.
This means that there is a starting index value i0 and a positive constant K such that the error
is at most K/i2, for all i ≥ i0. We can then split the series at i0, getting

E[Ln]

n
≥ 1

n

n∑
i=2

e−2(1−i/n)−36/i2

≥ 1

n

⎛
⎝i0−1∑

i=2

e−2(1−i/n)
(

1 − Ki

i2

)
+

n∑
i=i0

e−2(1−i/n)
(

1 − K

i2

)⎞
⎠

= O

(
1

n

)
+ e−2

n

(
e2(n+1)/n − e2i0/n

e2/n − 1

)

= O

(
1

n

)
+ e−2

n

(
e2(n+1)/n − e2i0/n

(1 + 2/n + O(n−2)) − 1

)

= O

(
1

n

)
+ e−2

(
e2(n+1)/n − e2i0/n

2 + O(n−1)

)

→ 1

2

(
1 − 1

e2

)
.
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Given the convergence of the upper and lower bounds, the sandwich theorem ascertains that

E[Ln]

n
→ 1

2

(
1 − 1

e2

)
. �

We can strengthen this expected fraction result into convergence in L2, and thus in
probability, too. We need the following result from the theory of consistent estimators in
statistics.

Lemma 5.4. Let {Xn} be a sequence of random variables with E[X2
n] < ∞, for all n ≥ 1. If

E[Xn] → μ ∈R and Var [Xn] → 0, then Xn
L2−→ μ ∈R.

Proof. See Theorem 8.2 of [12, pages 54–55]. �
We also use the fact that for random variables with bounded variance and non-positive

correlations, the variability of the average goes to zero.

Lemma 5.5. Let {Bn} be a sequence of random variables with non-positive correlations and
Var [Bn] ≤ M, for some M > 0, then

Var

[
n∑

i=1

Bi

n

]
→ 0.

Proof. For each Bn we have Var [Bn] ≤ M and Cov [Bi, Bj] ≤ 0 for i �= j, so we have

Var

[
n∑

i=1

Bi

n

]
= 1

n2

⎛
⎝ n∑

i=1

Var [Bi] +
∑
i �=j

Cov [Bi, Bj]

⎞
⎠ ≤ M

n

and

lim
n→∞ Var

[
n∑

i=1

Bi

n

]
= 0. �

Finally, this gives us our main result.

Theorem 5.2.
Ln

n
L2−→ 1

2

(
1 − 1

e2

)
= 0.432332 . . . .

Proof. The result follows immediately by noting the non-positive covariance between the
Li,n, as in Theorem 5.1, and applying the previous two lemmas to Ln/n. �

From the L2 convergence we get the following.

Corollary 5.2.
Ln

n
a.s.−→ 1

2

(
1 − 1

e2

)
.

Proof. In-probability convergence is immediate since Lp convergence for any p > 0 implies
in-probability. The almost-sure result follows from the fact that in-probability convergence
is equivalent to almost-sure convergence for countable probability spaces (see [5, Chapter 2,
Section 2] for a discussion). �

https://doi.org/10.1017/jpr.2020.49 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.49


Young-age preferential attachment 925

6. Insertion depth

In this section we derive results about random insertion depth under young-age preferential
attachment. We let Dn denote the depth of the node labeled n in a young-age attachment tree.
We first find the exact moment generating function, from which the exact distribution and a
miscellany of asymptotic results follow.

Let Tn be the tree existing right after node n enters. We condition on Tn−1, for some t ∈R,
and use the young-age probability model (2.1) to write

E
[
eDnt | Tn−1

] =
n−1∑
k=1

e(Dk+1)t 2k

n(n − 1)
.

Taking expectation of both sides and using the law of iterated expectations, we arrive at a
recursive equation for the moment generating function of Dn:

φDn (t) =
n−1∑
k=1

E
[
e(Dk+1)t] 2k

n(n − 1)
= 2et

n−1∑
k=1

φDk (t)
k

n(n − 1)
.

Differencing, we obtain

n(n − 1)φDn (t) − (n − 1)(n − 2)φDn−1 (t) = 2et(n − 1) φDn−1 (t).

After refactoring, we have

φDn (t) =
(

n − 2 + 2et

n

)
φDn−1 (t).

Iterating this relation back, we get

φDn (t) =
⎛
⎝n−2∏

j=1

j + 2et

j + 2

⎞
⎠ φD2 (t).

We have φD2 (t) = et and φD1 (t) = 1 as boundary conditions. It follows that

φDn (t) =
∏n−2

j=1 (j + 2et)

n! 2et = 1

n!
n−2∏
j=0

( j + 2et) for n ≥ 2.

We express the the next theorem in terms of the unsigned Stirling numbers of the first kind,
which are coefficients in the polynomial representing the rising factorial:

x(x + 1) · · · (x + n − 1) =
n∑

k=0

[
n
k

]
xk,

Theorem 6.1. Let Dn be the depth of the nth node in a young-age attachment tree. The exact
distribution of this insertion depth is

P(Dn = k) = 2k

n!
[

n − 1
k

]
, k = 1, . . . , n − 1.
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Proof. Using the moment generating function presented right before the theorem, we can
derive the exact probability mass function of Dn. Setting t = ln u in the moment generating
function switches the view to the probability generating function ζn(u). Namely, it is

ζn(u) = φn( ln u) = 2u(2u + 1) · · · (2u + n − 2)

n! .

Hence we have

ζn(u) = 1

n!
n−1∑
k=0

[
n − 1

k

]
(2u)k.

The exact distribution of Dn is obtained by extracting coefficients. �
The exact distribution of the nth insertion depth in young-age recursive trees is the same

as its counterpart in random binary search trees. Hence a number of results follow immedi-
ately, which we list without proof. The interested reader can examine Chapter 2 in [13]. In the
following proposition, all asymptotics are taken as n → ∞.

Proposition 6.1. Let Dn be the depth of insertion of the nth node in a young-age preferential
attachment tree. We have

E[Dn] = 2(Hn − 1) ∼ 2 ln n,

Var [Dn] = 2(Hn + 1) − 4H(2)
n ∼ 2 ln n,

Dn

ln n
L2−→ 2,

Dn

ln n
a.s.−→ 2,

Dn − 2 ln n√
2 ln n

d−→ N(0, 1).

7. Conclusion

The non-uniform young-age attachment model introduced has both similarities to and dif-
ferences from the standard uniform model. As seen in Proposition 6.1, the average and variance
of the insertion depth in these trees is double that of the uniform case – and both random trees
live in the ‘small world’. Like the uniform model, the insertion depth in the young-age model
is also asymptotically normal (Proposition 6.1).

In the case of tree leaves and outdegrees, the young-age model differs substantially from
the uniform model. The asymptotic fraction of leaves in young-age attachment trees is signifi-
cantly less than 1/2 (the asymptotic fraction in uniform recursive trees), while in the limit the
outdegrees are Poisson or ‘near-Poisson’. These facts imply that the nodes in the young-age
model have a better chance of recruiting than the uniform case, but they tend to have ‘sparse’
connections with fewer outnode links.

The young-age model generates some natural directions for future research. Does the behav-
ior carry over to probability models driven by different powers of the node index? Such an
attachment mechanism could be used to model networks with varying degrees of age-based
affinity. For example, one can work with a general class of growth models in which

P(Ai,n) ∝ iα for 1 ≤ i ≤ n − 1, α ∈R.
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The growth index α would be a parameter of interest and could be estimated from empirical
data under different sampling schemes. Preliminary work suggests that, as α grows, asymptotic
normality remains for the insertion depth albeit with a different character of the variance. For
large α, the growth model approaches the complete linear chaining of the nodes.
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